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Abstract. This paper reports the results of our experimentation with
modeling worm behavior on a large scale, fully adaptable network simu-
lator. Our experiments focused on areas of worm scanning methods, IP
address structure, and wireless links that, to the best of our knowledge,
have been mostly neglected or abstracted away in prior worm simula-
tions. Namely, our intent was to first study by direct observation of our
simulations the effects of various IP scanning techniques on the effective-
ness of worm spread. Second, our intent was to research the effects that
having a larger IP address space (specifically a sparsely populated IP ad-
dress space like that provided by Internet Protocol Version 6) would have
on the effectiveness of several worms. Third, we study how the wireless
media may affect the propagation of worms. In order to perform these
simulations we have made use of the Georgia Institute of Technology’s
network simulator, GTNetS, extending the worm classes packaged with
the simulator.

1 Introduction

The propagation of Internet worms has a devastating effect on the normal oper-
ations of the Internet. Because of the cost of worm attacks, much research has
recently been devoted to trying to understand, detect, and prevent the spread of
Internet worms. While various analytical modeling and empirical analyses have
been conducted to study the propagation nature of various Internet worms, the
effects of real-world factors on the propagation of worms with various scanning
methods are still not fully understood. In this work, we study two major fac-
tors on the propagation of Internet worms—IP address distribution and wireless
media—while worms can choose various scanning methods.

– IP address distribution. While relatively dense, the current IPv4 address
space still has a large portion of unallocated addresses. When a worm scans
for victims, its success rate is affected by whether or not a scanned address is
allocated. Studying this may potentially help design a more worm-resistant
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IP address allocation policy. In addition, it also warrants further study to
know how worms may propagate in the much larger IPv6 address space.

– Wireless media. Every day many nodes are connected to the Internet through
wireless media using WLAN, WiFi, upcoming Mesh networking, Bluetooth
PAN or 3G cellular technologies. Little is known regarding the speed and
style Internet worms may propagate through these wireless media to users.
Various networking choices (e.g., a single large subnet vs. dispersed sub-
networks) or access control techniques (MAC address filtering vs. password
protection) may or may not affect the behavior of worm propagation. User
mobility could have both a positive and negative impact on the worm spread.
To the best of our knowledge, no work has been extensively performed in
this area.

Internet worms can scan in many different ways. Scans can be random, lo-
cal preference, hitlist-based, permutation, topological, or some combination of
these. It can be based on either TCP or UDP, or even piggybacked onto other
networking traffic. With the various scanning methods, we investigate the impact
of IP address distribution and wireless media on Internet worms spread through
a systematic, comprehensive analysis that compares the propagation speeds and
trends in an Internet-like networking environment.

We use a packet-level network simulator, GTNetS. Our work identifies and ex-
plores parameters affecting worm-propagation which have been largely ignored,
abstracted away, or overlooked in previous studies. Most previous simulation
studies of worms have not simulated worm behavior at a per-packet level; instead,
they rely on certain analytical models to reduce the computational complexity
which could be substantial when simulating a worm outbreak on a network of
non-trivial size. Even relatively small networks take an enormous amount of CPU
time to simulate at a packet-level because of the massive traffic load needed to
be simulated as a matter of course when analyzing worm behavior. However,
with improved simulators, and the ever increasing computational power avail-
able, simulating outbreaks at a per-packet level on networks of non-trivial size
has been shown to be feasible. For example, work has been done by George F.
Riley and his colleagues at Georgia Tech [1,2].

The rest of this paper is organized as follows. We first describe previous work
in Section 2. We then describe our GTNetS-based simulation environment in
Section 3, and illustrate our approach in detail in Section 4. Our results are
presented in Section 5. We conclude our paper and point out future work in
Section 6.

2 Previous Work

Worms pose a substantial threat to the Internet and much work has been done to
study real worm outbreaks [3,4,5,6,7,8]. The previous work is generally divided
into two categories, analytical modeling and empirical simulations. In addition,
researchers have studied various approaches in detecting worms, such as [15].
Theoretical analyses of worms have been performed as far back as [9], but not
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until Staniford et al. systematically categorized and analyzed the threats from
various worm propagation techniques in [10] was the threat really well under-
stood. Another study by Staniford et al. [21] was on flash worms, showing that
using a pre-computed spread tree, an UDP worm could infect up to 1 million
hosts in half a second, or in 1.3 seconds if the worm uses TCP. In [22], address
space distribution is modeled far from uniform. The authors analyze the im-
pact of unused blocks of the IP space and provide a model for implementing a
distributed traffic monitor system. Further work on worm propagation models
[11,12] and the potential sophistication of worms [13,14] also show that worms
are an ever-increasing threat that will not be easily stamped out.

The previous work on worm simulations has not focused on the key issues of
our research. Namely, these are the effects of varying worm IP block scanning
methods and the effects of a larger IP address space and other changes provided
by IPv6, as well as the effect of wireless media. Work in [21] focuses on one
scanning strategy - hit-list, while our work analyzes multiple scanning methods
as well as different topologies and IP address distributions. Also, compared to
work in [22], we study the effect of a much larger IP address space while also
taking into consideration multiple network topologies.

2.1 Analytical Modeling

Analytical modeling is a significant area of research. Internet worm research,
in particular, has made use of analytical modeling to study worm behavior.
Generally speaking, the idea of analytical modeling is to, through analysis of a
problem domain, define and apply a mathematical model that fits the system
being analyzed within an acceptable margin of error. Analytical models benefit
from computational efficiency because calculations are largely independent of
the size of the network. Generally, however, there will be some necessary un-
certainty inherent in the relationship between the mathematical model and real
world behavior. On top of this uncertainty, analytical models are often easily
implementable and cannot interact with any proposed detection and defensive
mechanism or varying network and worm parameters without altering the math-
ematical model on which they depend [16].

Chen, Gao, and Kwiat [12] give an analytical model for the spread of worms
which they dub Analytical Active Worm Propagation (AAWP) model. Their
AAWP model characterizes the propagation of worms that employ random IP-
block scanning. This model is a prime example showing that analytical models
are suitable for the study of Internet worms. However, the model’s mathematical
complexity as well as its inflexibility (especially in the method for handling IP-
block scanning) shows that it still suffers from problems inherent to all analytical
models.

2.2 Empirical Simulations

With the problems inherent in analytical models many researchers have begun
a push to use empirical simulations to test hypotheses concerning the behavior
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and propagation of worms in various network models. Our research falls in this
vein. To our knowledge, however, there have been no papers published that focus
on the comparative effects of varying IP-block scanning techniques as well as the
effects of a larger address space.

As discussed before, Riley et al. [1,2] give an interesting framework for how
Internet worms might be simulated using the GTNetS simulator.

Wei, Mirkovic, and Swany [17] perform research on worm simulation on sim-
ulators that are very similar in nature to GTNetS. Their simulations exhibit
high-fidelity through their use of packet level simulations. They also provide some
flexibility for varying worm types, though not to the level proposed by our re-
search. For instance, they developed classes for worms with random scanning and
subnet scanning, but have not extended the classes beyond these approaches. Wei
et al. also expound upon the limitations of GTNetS. Mainly, GTNetS requires
a good deal of centralized computational power. The simulator from Wei, et al.
is a distributed simulator that uses normal PC nodes to run their distributed
simulation algorithms and treats the PC nodes as existing at the Autonomous
System network level. Unfortunately, this distributed algorithm suffers from the
complexity inherent in distributed computing.

Weaver, Staniford, and Paxson [18] present an algorithm for worm propagation
retardation which they call the Threshold Random Walk (TRW) algorithm. They
begin with this algorithm for containment of scanning worms and try to make
ad hoc changes to general purpose system’s hardware and specific choices for
software implementation that work together to form an ad hoc simulator that
is suitable to test their algorithm and various hypotheses. This approach turns
our approach, in which we move from a general simulator to a specific worm
implementation, on its head, and is a much less flexible approach.

3 GTNetS-Based Worm Simulation Environment

The work by Riley et al. has resulted in the development of a fully adaptable real-
world network simulator that is capable of supporting the modeling of Internet
worms. Some simple worm examples have already been created for use with the
simulator.

GTNetS is unique amongst computer network simulators in that it is designed
to allow for large-scale packet-level network simulations. There are several issues
that must be solved in order to allow for simulations of these kinds due to the
extreme demands on memory and computational power. We will briefly discuss
how GTNetS solves these issues. For a full explanation, refer to [1,2].

3.1 Simulating Large-Scale Networks

GTNetS has been designed from the ground up to provide for large-scale net-
work simulations. GTNetS uses several approaches to limit the computational
complexity and memory use of simulating networks on a large scale, thus freeing
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us from these considerations. First, GTNetS addresses the memory complex-
ity of such simulations by employing NIx-Vectors [19] for routing simulation.
This approach does not maintain routing tables, but rather uses a source-based
method in which routing information is stored in each packet. As such, routes
are computed only as needed, and are cached at packet sources for later use.
This approach is useful because normal routing tables in network simulations
cause a large overhead in memory.

Also in an effort to reduce memory complexity for the simulator, special
consideration is taken of leaf nodes or subnetworks of leaf nodes that are known
to have a single gateway router as an access point to the rest of the network.
GTNetS first attempts to route the packet within the subnetwork (this will
only be possible if leaves in the subnetwork are interconnected). If this is not
possible then the packet is unconditionally forwarded to the gateway router.
This simple step saves a large amount of memory, and is an advance over other
simulators.

Second, GTNetS addresses the complexity inherent in maintaining an “event
list” by attempting to control the size of the list. The event list is the list of
events (sending packet, receiving packet, etc.) that the simulator must simulate.
The first method for controlling the size of this list is to use FIFO receive queues
which, they explain, will limit the number of events necessary in the event list
for receiving packets. Also, they note that in many cases the queuing delay for a
packet in a FIFO queue (such as a basic Drop Tail queue) can be deterministically
calculated. Thus, GTNetS uses “Abstract Queuing” such that information about
transmitted packets is stored deterministically and packets are never queued at
the transmitter. Instead, these packets are given the appropriate queuing delay
and sent directly to the receiver. Finally, GTNetS uses a data structure called a
“Timer Bucket” which is used to abstract out network delays such as the round-
trip time (RTT) in order to model TCP timeout events in an efficient way and
thus reduce the size of the event list.

Third, and finally, GTNetS reduces the computational and memory complex-
ity of simulating large-scale networks by limiting the size of log files that are
normally kept by simulators for storing the results of a simulation. It does this
by providing pre-packaged statistical packages that can create the desired statis-
tics and allow for the removal of raw fine-granularity files from the kept log
files.

3.2 The Worm Simulation Environment

As we mentioned above, not only is GTNetS specifically designed for large-scale
networks, it is also highly adaptable to various network environments. This turns
out to be very useful, especially in the simulation of worms. A major concern of
our research, as well as all research in the area, is exactly which elements of the
network environment to hold constant and which elements to test against. We
discuss these decisions in depth below. Here, however, we discuss exactly what
options are available to us via the GTNetS simulator.
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The first and foremost concern is the network itself; that is, the network
topology. This is important because GTNetS is fully flexible in this regard, both
in network structure, bandwidth, and IP address assignment. GTNetS provides
a robust interface for creating network graphs, including limited functionality
for generating random network topologies fitting certain regular patterns. These
include common graph types such as star graphs, dumbbell graphs (bandwidth
bottleneck graphs), and trees. However, it does not natively provide support
for generating more complicated types of random networks. Fortunately, it does
provide a facility whereby random graphs can be imported from random graph
generation programs such as BRITE, which generates random graphs which
mathematically resemble the AS structures of the existing Internet. Other graph
generation tools such as iNet (another Internet-like topology generator) can also
be used [20].

Second, but no less important, is the structure of the worm packets themselves
which help define the worm’s structure. GTNetS is capable of supporting worm
packet classes of either TCP or UDP. Thus, worms with varying infection lengths,
selected infection ports, and varying number of connections can be appropriately
simulated. Also very important to our research is the fact that GTNetS allows
for worm classes with varying IP block scanning and selection patterns via the
use of a standard extensible C++ class, as well as varying scan rates.

In short, the full flexibility of GTNetS allows us to gather empirical data
from simulations that are based on a great variety of simulated networks and
worm types that behave as in the real world. Thus, our research results should
very closely mimic empirical observations of the real world, without putting any
hardware at risk or causing billions of dollars of damage.

4 Our Approach

Our approach centers around the manipulation of code provided with the GT-
NetS simulator to facilitate our simulations. Our first step was to design a work-
ing model on a single processor. As described above, the GTNetS simulator is
designed to provide simulations with characteristics of real networks in mind.
Thus, there are several variables for both network related and worm related
characteristics that needed to be addressed. Specifically, what needed to be de-
cided was which variables would be held constant across the spectrum of our
simulations. As we previously stated, the goal of our research is to discover the
effects of varying IP address population density and scanning methods on the
propagation of worms. With that in mind, we made decisions concerning network
and worm characteristics as described below.

4.1 Constants

There are really two types of constants that we must address. We will deal
with network-related characteristic constants first. Prime among these was the
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network topology itself. Rather than deal with the uncertainty that multiple
network topologies would bring into our simulations, we decided that the best
course of action was to select a suitable topology and to hold this topology
constant across various simulations. GTNetS comes pre-equipped with a simple
network topology generator. However, this generator only accepts the number of
required nodes and arranges the nodes in patterns which are unlike real-world
networks. Because we are primarily interested in Internet worms, we decided
to create a network topology that would be more characteristic of the Internet.
In order to do this, we created a network using the BRITE graph generation
program. BRITE creates Internet-like AS and subnet structures at random. After
creating a network topology we assigned IPs at random with respect to subnets
such that subnets would have IPs within a given range. The network topology
was held constant, but we eliminated unnecessary overhead by not holding IP
addresses constant over all the simulations.

The wireless networks are treated differently. They are subnets in the Internet
topology with different link bandwidth and packet loss rate. A wireless subnet
can be a large address space that adheres to a higher level on the topology tree
or a small one to a lower address topology tree. For example, a campus wireless
network can use a campus-wide universal subnet that accommodates a large
number of IP addresses, or a small subnet that builds within each department.
These two types of configurations are modeled using GTNetS directly as: a wider-
tree with a few levels in a topology tree and lowest level has large amount of fan
out links for the first case, and a deeper-tree with more levels and less fan out
links in the lowest level.

There is also the issue of network traffic that is not worm related. In dealing
with this issue we simply abstracted out all other network traffic. We do so
with full realization that congestion in one network subnet could affect worm
propagation. However, for ease of simulation, and because congestion is partly
a factor of the network topology itself (i.e. number of nodes in a subnet, speed
of connections, etc.), we have chosen to focus only on “ideal” networks where
congestion is uniform (or non-existent). Future endeavors may deal more directly
with this issue.

Finally is the issue of individual node vulnerability. GTNetS decides worm
vulnerability by assigning a vulnerable state to individual generated nodes ac-
cording to some probability. In an effort to make our simulated network as
Internet like as possible we held this probability constant across our simulations
and assigned the probability to 90%. We arrived at this number by determining
that approximately 97% of machines on the Internet run Windows operating
systems of one variety or another, thus making them the main targets of most
attacks. We then reduced the overall percentage marginally to account for in-
stances where, for whatever reason, a machine may be running a Windows O.S.
and not be vulnerable to attack, thus arriving at the approximated value of 90%
vulnerability across our simulated network.

Next, we deal with worm related characteristic constants. Because our research
focuses only on the worm scanning method all other worm characteristics were
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held constant with the exception of that one. Scan rate, infection length, infection
port, and the number of TCP connections have all been held constant at default
GTNetS settings across simulations.

4.2 Variables

Obviously, those network and worm characteristics that we have not held con-
stant must still be dealt with. In fact such characteristics allow us to make
observations as to how certain aspects affect worm propagation. We vary the IP
address space population density to simulate the effects of implementing IPv6
(with its larger address space) on the Internet. Specifically, our simulations were
set to use approximately one IP address in every thirty-five available IP addresses
for dense (IPv4 like) networks, and one in every one hundred and thirty-four for
sparsely populated (IPv6 like) networks. These numbers are best guess efforts
at assigning Internet like IP addresses. For IPv4 approximately 75% of available
/8 blocks have been assigned. However, there are many IP addresses within each
block that are still available. Unfortunately, specifics about individual networks
are not readily available, so we have made our best guess in assigning 1/35 ad-
dresses for our simulations [11]. We further noted that the full address space of
IPv4 is much less than one percent of the entire address space of IPv6. However,
for the sake of the computational time of our simulations, and to obtain more
meaningful results, we assigned our simulations of IPv6 address space to have
just less than 1% of address spaces to be occupied.

There are also two worm characteristics which varied across our simulation.
First, we obviously varied the worm scanning method across our simulations.
GTNetS provides simple worm scan methods including uniform random IP scan-
ning, and local preference scanning. We have added to these hit-list scanning
which assumes that worm propagation does not begin until a certain set of key
nodes has been pre-infected.

Finally, in the case of hit-list scanning, unlike in the other cases, we have
run simulations using both TCP connections and UDP connections. All of our
other simulations have been run using UDP connections with a constant default
scan rate because UDP worms are most effective. So, in order to compare high
and low density address space simulations using hit-list scanning with our other
simulations we have first run UDP hit-list worms. However, because we are
already spending time to select certain nodes across the network to pre-infect,
we wanted to test what effect a TCP hit-list worm would have. As such, we have
run an additional TCP hit-list worm simulation for both high and low density
address space populations.

4.3 Simulations

This subsection, in way of an overview of the previous subsection and a precursor
to the next section, gives a complete account of the simulations which we have
performed. For each UDP worm the scan rate has been held at a constant default
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value of 100, and for each TCP worm the number of connection threads has been
held at a constant default of 3. Also, in the case of all simulations, the infection
length and infection port, which we have not concerned ourselves with as we have
abstracted out all other traffic, have been held at constant default values. Finally,
each worm type simulation has been run twice, once with a densely populated
(IPv4 like) IP address space and once with a sparsely populated (IPv6 like) IP
address space. Densely populated networks were generated such that 1/34 of the
available address space is used, and sparsely populated networks were generated
such that 1/134 of the available address space is used.

Each of the following worm simulations was run as described above. First was
the UDP uniform random scanning worm. Second was the UDP local preference
scanning worm. Next, we generated a simulation using a UDP hit-list worm
using local preference scanning after the hit-list is established. Finally, the same
hit-list local preference scanning worm was simulated again, only this time TCP
connections were used to propagate the worm. The results of these scans are
given in the next section of this paper.

4.4 Results

The final aspect of our approach involves exactly what statistics we have cho-
sen to acquire from our simulations. Using the data provided by GTNetS and
the program gnuplot, we have plotted interval infection rates for our various
simulations. This allows us to provide a graphical representation of how well a
worm is able to propagate across a network at given time intervals. In each case
our simulations were run until all 1000 nodes were infected. The graphs that
are provided in the next section each contain at least two simulation plots for
comparative purposes.

5 Analysis of Results

Our results, like our simulations, are divided into worm classes based on IP block
scanning methods as described above. Below we attempt to both give an overview
of results for individual worm classes as well as results from comparisons of our
results.

5.1 Comparing Worm Types on Sparse and Dense Graphs

First we consider Figure 1 and Figure 2. The two worm types are the uniform
random scanning and the local preference scanning. We tested each of these two
methods in both dense and sparse graphs. There are several areas of interest on
the curve of the infection interval. The first is the slope of the curve itself. If the
slope is steep, then the worm has infected the nodes very quickly. The less steep
the curve is, the longer it has taken the worm to infect the network’s vulnerable
nodes. This is true for each of the graphs provided.
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Fig. 1. Comparison of Uniform Ran-
dom Worms

Fig. 2. Comparison of Local Preference
Worms

The graphs of Figure 1 and Figure 2 show that the worms which are operating
on dense graphs are much more successful than the worms that are operating
on sparse graphs. In other words, if the network is sparsely populated then the
worm has much more trouble finding and infecting vulnerable nodes quickly.
This is not unexpected, but it does present a good argument for migrating the
Internet to IPv6. However, it is interesting to note that it has still taken about
the same amount of total time to infect all vulnerable nodes for both sparse and
dense graphs in the case of these simulations.

5.2 Comparing Sparse and Dense Networks Overall

We now look at comparing the effects of sparse and dense networks overall.
Figure 3 gives a side-by-side comparison of all three worm types on a dense
network and Figure 4 gives a side-by-side comparison of all three worm types
on a sparse network. Here we add worm type of hit-list pre-seeding for both
dense and sparse networks. In this section we attempt to shed more light on
exactly what the effects of dense and sparse networks are by comparing the
three together.

For the case of dense networks we can examine Figure 3 to see our graphical
comparison of infection intervals. What we note from this graph is that the curves
of the infection intervals themselves are very similar. This is not unexpected
because the worm types of hit-list and local preference scanning use the same
IP block scanning method. However, more importantly, we can actually see the
effect of the pre-seeding of worm infected nodes in various subnetworks from the
hit-list worm. The hit-list worm infection interval is shifted to the left, indicating
an overall increase in virulence.

As for the case of sparse networks we examine Figure 4. What we find is
that for hit-list and local preference plots the slope of the graph is flatter. This
effect is the same effect as noted before for worms working on sparse networks.
However, we still see, as was hinted at above, that the hit-list worm infection
interval is shifted to the left.
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Fig. 3. Comparison of UDP worms on
dense graph

Fig. 4. Comparison of UDP worms on
sparse graph

These graphs highlight that the order of the effectiveness of the three worm
types is not changed drastically due to the change from densely to sparsely popu-
lated graphs, though uniform random scanning worms suffer a greater flattening
effect than the others. The graphs also further indicate that a sparsely popu-
lated network is going to suppress the effectiveness of worm spread, regardless
of worm type.

5.3 Comparing TCP and UDP Hit-List Worms

Finally, we examine the tests we ran on hit-list worms with local preference
scanning using TCP and UDP connections respectively as in Figure 5 and Fig-
ure 6. Dense and sparse networks are compared. The most obvious thing to note
is that the simulation for sparse networks is unfinished for TCP hit-list worm.
The reason for this is that the overhead for creating a TCP worm is exempli-
fied in the simulation itself. As a result, the machine on which the simulation
was run ran out of memory before the simulation could complete, even after a
substantial memory upgrade. We discuss options for further research with more
computational power in the final section. However, what we can tell from this
simulation is that the overhead is substantial.

Further, what we can tell by comparing dense and sparse networks is that
the hit-list worm with TCP connections is an improvement in the case of dense
networks, but it has no real effect in the worm spread for sparse networks. Not
surprisingly, TCP hit-list worms work better on dense networks and do not work
as well with sparse networks. In short, overall TCP hit-list worms seem to add
significantly to the overhead of hit-list worms, especially in sparse networks,
without adding any benefit to worm spread.

5.4 Worm Propagation in Wireless Media

We simulate wireless media in two different network architectures, namely, a
wired Internet backbone (or high bandwidth link) with local WLANs directly
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Fig. 5. Comparison of TCP Hit-list
Worms

Fig. 6. Comparison of Hit-list Worms

attached to it, and a leveled organizational network tree with the WLAN subnets
penetrated as smaller subnets at lower levels. A wider-tree topology is designed
to reflect the first network architecture and a deeper-tree topology represents
the second case. In the following Figures, curves numbered 1 are results run on
deeper-tree topology and curves numbered 2 are results run on wider-tree. We
compare both TCP and UDP worms with uniform scanning and local preference
scanning methods.

Figure 7 shows a comparison of TCP worms using uniform scan in the two
topologies. The Figure shows that worms start infection much later and propa-
gate much slower in the deeper-tree topology than them in the wider-tree topol-
ogy. Figure 8 shows a comparison of TCP works using local preference scanning.
Similar trends as observed before are present here as well.

Fig. 7. Wireless TCP Uniform Worms Fig. 8. Wireless TCP Local Preference
Worms

Figure 9 and Figure 10 show a comparison of UDP worms using uniform and
local preference scan in the two topologies respectively. Again, the Figures show
that deeper tree topology can slow down worm propagation due to the fact that
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Fig. 9. Wireless UDP Uniform Worms Fig. 10. Wireless UDP Local Prefer-
ence Worms

more links need to be searched for the preferred addresses. These results suggest
that the commonly used WLAN configuration of creating a single direct subnet
for wireless access as in parallel to other organizational subnets may not be a
preferred network topology in hampering worm propagation speed.

6 Conclusion and Future Directions

In this paper we investigated two major factors that impact the propagation of
worms with a few major propagation methods. Especially we investigated the
influence of IP address space and wireless links. We use GTNetS, a detailed
network packet level simulator to conduct the evaluation. Our simulation results
show that worms propagate slower in IPv6 address space due to the sparse
address allocation. The results also show that WLAN configuration impacts the
worm propagation. A deep tree type of topology can slow down the propagation.

Certainly, there are many future directions in which this research could head.
Prime among these is the distribution of the simulations amongst various pro-
cessors to give us more computational power. Originally, our hope was to be able
to distribute the simulations in some manner for this reason. Indeed, GTNetS is
designed to be distributable. However, due to lack of access to proper computer
hardware and documentation, at this time we have not been able to do so. In
the future, distribution of the simulation processes will allow many networks of
much greater size to be analyzed.

Also, another direction is the implementation of more unusual worm types
which we chose not to implement due to the exotic nature of the worms and the
foundational nature of our initial research. Namely, these worm types are those
which use permutation scanning and topological scanning to obtain a measure
of synchronization among worms; this could prove to render the worms more
effective in sparse networks if the overhead of such synchronization could be
managed.

Finally, future research could take advantage of other scanning methods than
local preference for hit-list worms. Local preference was chosen for this research
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because it seemed to be a best fit for a worm type that is pre-seeded in different
subnets. However, this hypothesis could be tested by choosing different scanning
methods.
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