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Abstract—The ubiquity of the Internet of Things (IoT) can
cause devastating distributed denial-of-service (DDoS) attacks. In
order to thwart IoT-enabled DDoS attacks, network operators can
deploy an anomaly detection system that detects and mitigates
the DDoS traffic near the source of the attack. Unfortunately,
anomaly detection systems face conflicting real-world deployment
challenges in IoT networks. Namely, many IoT network operators
cannot deploy systems that require manual parameter tuning
or labeling, but without such system maintenance, previously
proposed anomaly detection systems display far too many false
positives for acceptable deployment in IoT networks. To exacer-
bate this problem, pre-trained machine learning models often fail
to accurately classify traffic when ported to a new environment
(i.e., domain shift), and must either retrain with labeled data
painstakingly collected from the newly deployed network or
exhibit poor accuracy.

In order to overcome these IoT deployment challenges, we
propose a novel anomaly detection system, Rapid, that successfully
detects IoT-enabled DDoS attacks but also meets the accuracy
demands of IoT under domain shift with little to no system mainte-
nance from IoT network operators. Rapid initially provides robust
detection through advanced machine learning techniques such as
Long Short Term Memory (LSTM), but further, Rapid introduces
a novel active learning technique that interweaves closely with
attack mitigation to automatically adapt to new network domains
without manual system maintenance. Rapid operates in real-time,
and even though we leverage neural network techniques that
typically cannot explain their predictions, our system architecture
can provide diagnostic insight into any detected attack.

I. INTRODUCTION

The ubiquity of the Internet of Things (IoT) continuously
disrupts the infrastructure of the Internet in unintended ways.
As non-security professionals often act as the network op-
erator for IoT networks (e.g., many smart-home networks),
poor security practices such as default login passwords for
the IoT devices within the network are common. These IoT
devices consequently become compromised and collectively
form botnets that can launch devastating distributed denial-of-
service (DDoS) attacks. In fact, due to the ubiquity of these IoT
botnets [1], [2], networks desperately need a means to detect
and mitigate modern IoT-enabled DDoS attacks [3], [4].

Anomaly detection plays a pivotal role in the detection and
mitigation of IoT-enabled DDoS attacks. With the assumption
that malicious traffic appears statistically different from benign
traffic, anomaly detection defines a normal behavior profile
for benign traffic and classifies any traffic statistically outside

the normal behavior profile as anomalous. A network operator
can define the classification boundaries between anomalous
and normal traffic through a manual statistical investigation of
previous traffic in which the network operator selects static
classification thresholds, a machine learning algorithm that
trains on previous traffic and automatically derives classifica-
tion thresholds, or more advanced machine learning techniques,
such as neural networks, that detect anomalous traffic through
a black-box approach (i.e., the network operator only learns
traffic labels not the classification boundary). Of course, un-
supervised machine learning techniques can extract anomalies
in a static set of data, but in order to discern the malevolence
of future traffic, even unsupervised methods must compare the
future traffic to an extracted classification boundary (i.e., we
consider this process training). In particular, anomaly detection
can discover a more diverse set of attacks on future traffic than
signature-based detection alone. Moreover, when deployed at
the source-end (i.e., near the source of the attack), a properly
constructed anomaly detection system can pair with a mitiga-
tion system to prevent complex IoT-enabled DDoS attacks that
victim-end defenses cannot [5].

Unfortunately, anomaly detection faces five critical real-
world deployment challenges in the detection of IoT-enabled
DDoS attacks. First, because IoT devices often maintain strict
energy consumption requirements, the high cost of errors
caused by anomaly detection intensifies in IoT networks [6].
Namely, anomaly detection traditionally exhibits high false
positive rates, and a false positive for IoT-enabled DDoS will
trigger a mitigation system to drop benign traffic which leads
to increased retransmission and energy consumption for benign
IoT devices [7]. Second, because many IoT networks deploy
through non-security professionals, the anomaly detection sys-
tem must meet an even higher bar for ease of deployment than
the already demanding requirements of typical network oper-
ators [8]. Without a security professional to analyze network
traffic and manually tune classification thresholds, a pre-trained
machine learning-based anomaly detection scheme becomes the
only reasonable design choice. Third, because of the hetero-
geneity of IoT, pre-trained anomaly detection systems exhibit
magnified false positives under domain shift [9]. The normal
traffic profile that an anomaly detection system defines for one
IoT network may have little relevance for another IoT network.



Fourth, because of IoT often directly connects with the physical
world, any automated decision from an anomaly detection
system must allow a human-in-the-loop to make structured
configuration changes. For example, an unexplainable system
is unacceptable in many IoT environments, such as Industrial
Control Systems (ICSes) [10]. Finally, due to the computational
constraints of many IoT devices, the chosen anomaly detection
algorithm must appropriately weigh system complexity and
accuracy with real-time operation [11].

To exacerbate these challenges, a solution to solve one spe-
cific IoT deployment challenge often fundamentally neglects or
contradicts a different IoT deployment challenge. For example,
a pre-trained neural network is a powerful machine learning
technique that may meet the accuracy demands of IoT, but fails
to provide an explainable detection system. Similarly, in order
to combat domain shift, a network operator can leverage active
learning techniques in which a pre-trained machine learning
model labels a pool of unlabeled data from the policed network.
Thus, before deployment in the policed network, the pre-trained
system can avoid domain shift by retraining on labeled data
from the policed network. However, as the pre-trained model
may sometimes exhibit low confidence on the unlabeled pool
(e.g., a classification probability near 0.5), domain shift requires
a security professional to assist in the active learning process
and manually label any data the model cannot classify with
high confidence.

We propose a new anomaly detection scheme, Rapid, that
overcomes each of the aforementioned challenges. Rapid de-
ploys at the source-end and detects any outgoing IoT-enabled
DDoS attacks, but most importantly, Rapid departs from pre-
vious work with a focus on real-world deployability in IoT
networks. First, in order to achieve state of the art accuracy
for detection of IoT-enabled DDoS attacks, we leverage a
Multilayer Perceptron (MLP) to ensemble the output of various
statistical methods, and further, we deploy a Long Short Term
Memory (LSTM) architecture to take full advantage of the
sequential nature of network data. Second, because IoT network
operators require an easily deployable system, our detection
architecture automatically tunes every necessary parameter, and
we provide a pre-trained model ready for deployment in any
IoT network. Third, as the accuracy of pre-trained models
suffer under domain shift, Rapid automatically adapts to
any network through novel active learning techniques that
interweave closely with attack mitigation rather than require
manual effort from a security professional. Fourth, with our
careful feature selection, even though Rapid utilizes a neural
network architecture that typically cannot explain its predic-
tions, our design provides diagnostic insight into any detected
attacks. Finally, we deploy a cost efficient architecture and
implementation that operates in real-time and achieves online
classification.

We organize the remainder of this paper as follows. Section
II reviews the related work on previous anomaly detection
systems and discusses the deployment challenges for such
defenses. Section III introduces the design of our anomaly de-

tection system which addresses the major deployment concerns
of previous anomaly detection systems in IoT environments.
Section IV provides a comprehensive evaluation of our anomaly
detection system that uses multiple real-world IoT traffic traces
for a realistic simulation environment in which we compare
our system to the current state of the art anomaly detection
schemes. Finally, Section V concludes this work.

II. RELATED WORK

Even though manual statistical analysis for anomaly de-
tection was first proposed many years ago, the statistical
technique, data separation, is still an active research area [11],
[12], [13], [14], [15]. Data separation performs mathematical
transformations on the traffic features to accentuate anomalous
behavior. In particular, the most common technique for data
separation is Principal Component Analysis (PCA) [11], [15].
For example, Xie et al. use an orthogonal transformation to
convert possibly correlated observed variables into a set of
linearly uncorrelated variables called Principle Components
(PCs), and whenever the variance between sequential PCs
surpasses a threshold, the defense flags an anomaly [11]. While
these simple statistical detection schemes operate with low
system overhead, they suffer from high rates of false positives
[6], and a false positive in IoT-enabled DDoS leads to dropped
benign traffic and increased energy consumption for benign
IoT devices [7]. Moreover, success of these systems rely on a
correct classification threshold that non-security professionals
in IoT networks cannot determine manually.

Rather than manually set classification thresholds, ma-
chine learning algorithms automatically derive the classification
boundaries between normal traffic and anomalous traffic [8],
[16], [17], [18], [19]. In particular, due to their superior
accuracy, recent machine learning-based anomaly detection
systems choose to deploy neural network architectures [18],
[19]. For example, in order to define the classification boundary
between normal and anomalous traffic, Mirsky et al. introduce
Kitsune, an ensemble of autoencoders—a neural network de-
signed to reconstruct its inputs—that efficiently learns complex
behaviors and traffic patterns of benign traffic [19]. While an
improvement for accuracy, Kitsune acts as a black-box to the
network operator and cannot explain any anomalous behavior.
Furthermore, even a pre-trained model of Kitsune will suffer
under domain shift in IoT networks without a network operator
to manually label anomalous traffic.

To properly handle domain shift, a pre-trained anomaly
detection system must retrain on labeled data from the policed
network, but manually labeling traffic within the policed net-
work is a painstaking process. Thus, recent work attempts to
limit the effort required of network operators to obtain labeled
data from their network [9], [20]. For example, Beaugnon et
al. present a system, ILAB, that leverages active learning tech-
niques along with a pre-trained machine learning model to label
a pool of target data [20]. When the machine learning model
cannot confidently label a data point, ILAB requests a security
professional to manually label the traffic data in question. ILAB
significantly limits the manual effort of a network operator to
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Fig. 1: Rapid’s gateway infrastructure.

label traffic, but many IoT network operators may not possess
the required skill to manually label even limited data points.

While each of the anomaly detection systems above can
directly deploy in IoT networks, other anomaly detection
systems specifically tailor their design for IoT [10], [21], [22],
[23], [24]. In particular, similar to Rapid, Feng et al. [10]
and Linda et al. [24] build their anomaly detection systems
with Long Short Term Memory (LSTM) for Industrial Control
Systems (ICS) and a Multilayer Perceptron (MLP) for Critical
Infrastructure (CI) respectively. However, while each system
meets the accuracy demands of IoT, neither system can explain
their detection results. In fact, Feng et al. discuss this issue
and deploy a bloom filter along side their LSTM [10] which
provides side information about the environment in which
the neural network operates. However, since the LSTM does
not use the statistical method directly as a feature, the net-
work operator cannot guarantee the relevance of the statistical
method to the classification decision. Furthermore, Hamza et
al. build an anomaly detection system designed to detect IoT-
enabled DDoS attacks [21]. Similar to Rapid, the authors use
a machine learning-based anomaly detection to identify IoT-
enabled DDoS attacks, but unlike Rapid, the authors cannot
guarantee their pre-trained model will operate correctly under
domain shift. In fact, we train Rapid on a similar dataset as
Hamza et al. [21] to illuminate the shortcomings of their design.

III. SYSTEM DESIGN

A. System Overview

We first assume that our anomaly detection system resides
at the gateway of a generic IoT network with access to traffic
that enters and leaves the IoT network. Due to the heterogeneity
of IoT, we make no assumptions on the type of IoT network
that deploys our system except for the resource constrained
nature of its end-hosts. As physical access to many IoT de-
vices can prove difficult (e.g., underwater networks or sensors
within a nuclear reactor), we demand no hardware or software
requirements of the IoT devices. For example, the network can
exhibit traits of a Wireless Sensor Network (WSN), Mobile Ad-
hoc Network (MANET), or Intermittently Connected Network
(ICN), and/or deploy in a smart-home, healthcare facility, large-
scale factory, or Cyber Physical System (CPS).

Our defense must detect any IoT-enabled DDoS traffic that
attempts to leave the IoT network. Specifically, we aim to
detect any volumetric DDoS attack that originates within the
policed IoT network and targets an external victim. While our
architecture maintains the intrinsic capability to detect internal
DDoS attacks, application layer DDoS attacks, flash-crowds,
and external DDoS attacks launched toward the IoT network,
we leave such attacks formally outside the scope of this work.

There are five main design goals Rapid must meet. First,
in order to achieve state of the art performance, we lever-
age a classification architecture based on Long Short Term
Memory (LSTM). Second, Rapid must easily deploy in an
IoT network, so we preemptively tune every parameter in our
classification architecture and provide a pre-trained model for
any IoT network. Third, as any pre-tuned anomaly detection
system inevitably performs sub-optimal under domain shift,
Rapid must automatically retrain with relevant labeled traffic
whenever the system deploys in a new environment. Fourth,
in order to provide diagnostic insight into classifications, we
only leverage neural networks to ensemble a set of statistical
methods. Finally, we must maintain a real-time classification
system, so our architecture includes a streamlined feature
extraction process, a suite of performant statistical analysis,
and an optional DDoS attack detection component to limit the
computational overhead of the classification system. See Fig.
1 for an overview of Rapid.

B. Feature Extraction and Statistical Analysis

Because Rapid can classify IoT-enabled DDoS traffic without
the use of payload information, we can efficiently mirror the
traffic at the gateway with sFlow [25]. sFlow, or sampled flow,
is an industry standard for packet export that can handle high
traffic links. In order to limit the computational overhead of
Rapid, Rapid can change the sampling rate of sFlow (e.g.,
rather than analyze every single packet, Rapid can set sFlow
to mirror only a fraction of packets). However, we leave a
formal evaluation of the relationship between sampling rates
and classification accuracy to future work. We separate col-
lected sFlow streams into aggregate flows and granular flows.
Aggregate flows represent groups of sFlow packets with the
same external IP address, and granular flows represent groups
of sFlow packets that share the same internal and external IP
addresses. We use aggregate flows for attack detection and
granular flows for attack classification. See step 1 in Fig. 1
for more details.

During every time window, we describe each flow (both
aggregate and granular) with four extracted features: (1) total
outgoing bytes, (2) a ratio of incoming to outgoing bytes, (3)
total outgoing packets and, (4) a ratio of incoming and outgoing
packets. Because early DDoS detection solutions (along with a
static threshold) used these features directly as their detection
system [26], [27], [28], [29], we call these features basic
detectors. In particular, for each flow, we create an time-ordered
list of the last n values of each basic detector (i.e., each flow
has four associated basic detector time series). While the basic
detectors fail to meet real-world standards for detection by



themselves, they offer condensed, descriptive characteristics
specifically tailored for DDoS detection. Namely, these features
may miss anomalies specific to attacks other than DDoS attacks
(e.g., worm detection), but as Rapid focuses solely on the
detection of DDoS traffic, we rely on the previous studies
to assume our basic detectors are appropriate features for
volumetric DDoS detection.

Given each basic detector time series, we perform multiple
statistical tests to understand the state of the network. Rather
than directly determine the class label for each current flow at
this step (as with most previous machine learning techniques
for anomaly detection), our statistical methods output the extent
current traffic differs from previous traffic—which we call the
severity degree—and leave the classification decision to future
components. In particular, in order to derive a set of severity
degrees for each traffic flow, we analyze each basic detec-
tor time series with multiple parameterizations of the Auto-
Regressive Integrated Moving Average (ARIMA) algorithm
[30]. The ARIMA algorithm forecasts the next value in a time
series and can provide a collection of confidence intervals (e.g.,
ARIMA may output 90% confidence that the next value in a
series will land in the interval [0, 100], 50% confidence that
the next value in a series will land in the interval [25, 75], etc).
Thus, the severity degree each ARIMA algorithm outputs for
each basic detector value corresponds to the smallest confidence
interval in which the current basic detector value resides.
Moreover, ARIMA uses three integer parameters, (p, d, q), that
when set properly, can represent many commonly known time
series approaches (e.g., ARIMA parameterized with (0, 0, 1) is
a simple moving average). We consider one combination of p,
d, and q to represent one parameterization of ARIMA.

C. Ensembled Classification with Deep Learning

The choice of which ARIMA parameterizations to deploy
depends on the specific time series. But, as an IoT network
operator cannot perform manual investigations to discern which
ARIMA parameterization best suites the current traffic patterns,
we instead take a comprehensive approach and feed the severity
degrees from the first 27 parameterizations of ARIMA, (0, 0, 0)
to (2, 2, 2), into an ensemble algorithm that automatically de-
termines which parameterization to follow. Unfortunately, tra-
ditional ensemble methods, such as the random forest classifier,
Opprentice, used by Liu et al. [8], cannot achieve the accuracy
guarantees IoT security applications require. Therefore, in order
to achieve state of the art accuracy, we ensemble the collected
severity degrees with two neural network techniques. First,
we use a Multilayer Perceptron (MLP) [31] to ensemble the
severity degrees into a single severity degree. Due to its non-
linearity, the MLP can derive a more complex understanding
of the severity degrees than traditional machine learning tech-
niques (e.g., the MLP learns which ARIMA parameterization
to highlight based on underlying traffic distributions). Second,
we use Long Short Term Memory (LSTM) [31] to analyze the
output of the MLP over many time windows and submit the
final, single probabilistic severity degree of our system to the
mitigation component (i.e., see step 2 in Fig. 1). Because the

I1

I2

I3

In-1

In

H2

Hf-1

E1 L1

L2

Multi-Layer Perceptron Long Short Term Memory

Lr

In-2
...

H1

Hf

...
Lr-1

mt-1

mt-r

mt-r-1

mt

s1,t

s2,t

s3,t

sn-2,t

sn-1,t

sn,t

pt-1

pt-r

pt-r-1

pt

ht-r-1

ht-r

ht-1

w1,1

wn,f

...
z1

zf

A1

A2

A3

An-1

An

An-2

B2

B3

B1

B4

...

Statistical Analysis

Aggregate
and

Granular
Flows

Basic
Detectors:
Features

for ARIMA

ARIMA
Severity Degrees:
Features for MLP

Fig. 2: Rapid’s classification architecture.

MLP only investigates the severity degrees of the current time
period, the LSTM allows our architecture to further take into
account past trends of prediction. See Fig. 2 for more details.

With Fig. 2 as a reference, we can formally define the
various aspects of our classification architecture as follows. At
each time window t, the IoT gateway mirrors sFlow streams
that Rapid collects into granular and aggregate flows in which
the four basic detectors, or Bi, extract features for ARIMA.
Each of the n parameterizations of ARIMA, or Ai, receives
the four basic detector values and outputs a severity degree,
si,t. Together, each severity degree feeds into the visible layer
of the MLP such that si,t enters the cell Ii in which each
neuron applies the ReLU activation function. Subsequently, we
apply each synapse of the MLP, wi,j , to the value towards the
hidden layer—specifically neuron Hj—until we arrive at the
final output of the MLP, mt. The LSTM then incorporates r
time windows to derive the final probabilistic severity degree,
pt, for the time window t. Specifically, the hidden memory,
ht−1, previous severity degree, pt−1, and the current MLP
output, mt, act as input to the final cell of the LSTM.

D. Domain Adaptation through Active Learning

Even though our neural network can learn many statistical
subtleties of the network traffic, domain shift can skew our
pre-trained model if the new domain contains different sub-
tleties. Thus, every time period, Rapid retrains and retunes
its parameters. Concretely, Rapid replaces a subset of the
original training data with labeled data gathered from the
previous time period. In order to maintain a diverse, but recent
training data set, Rapid intelligently chooses which traffic to
replace (e.g., if the previous time period contains no DDoS
traffic, Rapid will not replace malicious training samples).
Because we feed our neural network a comprehensive set of
ARIMA parameterizations, even if Rapid deploys in a new
IoT environment, Rapid can quickly adapt to new underlying
assumptions (i.e., the neural network will learn to emphasize
a new set of ARIMA parameterizations specific to the new
environment).



Dataset Benign IoT Traffic Benign Non-Iot Traffic UDP Flood TCP SYN Flood HTTP Flood DNS Flood
Smart Home 1 [32] X X X X X 7
Smart Home 2 [33] X 7 7 7 7 7
Smart Hospital [34] X X 7 7 7 7

CAIDA DDoS Attack [35] 7 7 7 X 7 7
Booter DDoS Attack [36] 7 7 7 7 7 X

DARPA DDoS Attack [37] 7 X 7 X 7 7

TABLE I: List of real-world traffic traces used for our evaluation.

As we cannot rely on an IoT network operator to label
traffic in the new domain, throughout each time period, Rapid
partners with an attack mitigation system to label traffic based
on compliance with the mitigation techniques. Because attack
mitigation must deploy traffic engineering techniques such as
throttling or filtering traffic to promptly respond to DDoS
attacks, recent attack mitigation research suggests that a con-
nection’s response to these traffic engineering techniques offers
further insight into the malevolence of the connection [7]. For
example, if attack mitigation drops traffic in a TCP connection,
and the sender fails to comply with congestion control (and
continues to send at the same high rate), Rapid can label this
previous traffic as malicious. Thus, attack mitigation acts as
a security professional and automatically provides the labeled
traffic necessary to combat domain shift. To save computa-
tional resources, Rapid only queries attack mitigation for low
confidence classifications and directly labels high confidence
classifications (i.e., see step 3 and step 4 in Fig. 1).

E. Diagnosing Classifications
While automation with deep learning can solve complicated

problems, deep learning cannot explain its results. Due to
the hidden layers of the neural network, network operators
will struggle to discern the underlying reason for a particu-
lar classification given by the model. Compounded with the
fact that real-world security applications can never guarantee
perfect implementation, diagnostic insight becomes critical for
a human-in-the-loop to resolve any deployment issues. For
example, if an IoT application begins to exhibit poor quality
of service, the network operator will likely wish to investigate
why. Without a rigorous explanation, the network operator
may develop a distrust for the security application and remove
its deployment. Furthermore, if the security application can
provide a rigorous explanation, the human-in-the-loop can
pinpoint any misconfiguration of the security system, and nudge
the system back to proper deployment.

While directly using the basic detectors as input to our neural
network may improve our accuracy, Rapid would become
unexplainable. The statistical analyses provide a means for
diagnostic insight into the classifications. Because the LSTM
directly makes its predictions based on the statistical analysis,
we have assurance that the LSTM decision correlates with the
severities degrees. In fact, Rapid provides a simple statistical
diagnostic that the network operator can request for a particular
flow (i.e., see step 5 and step 6 in Fig. 1).

F. Attack Detection
Attack detection aims to reduce the overhead of classifica-

tion. We assume that, more often than not, network behavior is
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Fig. 3: Precision, Recall, and F1-score of each system.

benign. Therefore, if the system constantly analyzes the traffic
at a fine-grained scale (e.g., every granular flow), the majority
of system execution is unnecessary. Thus, to save resources,
by default, Rapid applies its classification methodology on
aggregate flows, and only when an aggregate flow appears
anomalous, Rapid analyzes each granular flow within the
suspicious aggregate flow. However, as attack detection is not
fundamental to the success of Rapid, but rather, an option for
extremely resource constrained networks whose IoT gateway
maintains strict resource consumption requirements, we allow a
network operator to turn attack detection on or off depending on
their situation. In fact, because attack classification maintains
the final classification decision, a false positive in attack detec-
tion simply means attack classification executed unnecessarily.
However, even with false positives during attack detection,
attack classification will still execute less frequently than with
no attack detection component. Therefore, we can sacrifice the
false positive rate of attack detection to maintain very low false
negatives during attack detection. Moreover, attack detection
and classification can sequentially execute within a small time
frame, so a network operator can add attack detection without
fear of noticeable added latency for classification. We discuss
the trade offs of attack detection further in Section IV.

IV. EVALUATION

A. Datasets and Evaluation Overview

In order to distill confidence that Rapid overcomes the IoT
deployment challenges, we must evaluate Rapid in a scenario
as close to the real-world as possible. In particular, we select
six different datasets of realistic traffic exhibited in actual
networks. While no perfect dataset exists (i.e., a network trace
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Fig. 5: Specificity of each anomaly detection system under various attack traces.

that contains benign IoT traffic, benign non-IoT traffic, and
multiple non-synthetic IoT-enabled DDoS attacks), let alone
multiple such datasets to study the effect of domain shift,
we combine various real-world datasets for a comprehensive
evaluation. For further details of each dataset, see TABLE I.

We compare Rapid to various state of the art anomaly
detection systems. Namely, we evaluate Rapid against the
anomaly detection algorithms seen in Opprentice [8], IDS-
NNM [24], and DeepLog [18]. Opprentice ensembles various
statistical methods together for a final probabilistic severity
degree, but unlike Rapid, Opprentice leverages a Random
Forest classifier rather than a neural network to perform
the ensemble procedure. Second, the IDS-NNM system uses
a Multilayer Perceptron (MLP) to identify anomalies in a
supervisory control and data acquisition (SCADA) network.
Lastly, to leverage the sequential nature of network events,
DeepLog uses a Long Short Term Memory (LSTM)-based
anomaly detection system. While IDS-NNM and DeepLog
leverage neural network techniques like Rapid, both systems
directly use features from the network rather than various
statistical methods. Furthermore, in order to compare directly
with Rapid, we focus on the classification model architecture of
the previous systems and adapt the surrounding system—with

potential implementation changes—to the same environment as
Rapid (i.e., we test Opprentice in the security domain, we test
IDS-NNM in IoT environments other than ICS, and we use
network logs as input to DeepLog rather than system logs).

B. Model Accuracy

We begin with the standard evaluation of a classification
system to show Rapid can classify traffic with state of the
art accuracy. First, we leverage a smart-home dataset that
contains both IoT benign traffic and multiple different IoT-
enabled DDoS attacks [32]. In particular, we split this dataset
into three main pieces: train, validation, and test data. For
the remainder of our evaluations, each anomaly detection
system only sees data from these train and validation sets at
train time. Specifically, we use the validation set to perform
cross validation and prevent overfitting. Next, we collect the
classification precision, recall, and F1-score of each anomaly
detection system with this test data. Second, in order to test
Rapid under domain shift, we leverage two other IoT datasets
[33], [34] and two other DDoS attack traces [35], [36]. Because
the additional IoT datasets contain no DDoS attack traffic,
we use them to observe the negative effect each system has
on benign traffic. Namely, we can count the number of false
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(a) Confidence in Smart Home 1.
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(b) Confidence in Smart Home 2.
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(c) Confidence in Smart Hospital.
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(d) Confidence under DARPA DDoS Attack.
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(e) Confidence under CAIDA DDoS Attack.
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(f) Confidence under Booter DDoS Attack.

Fig. 6: Cumulative distribution of classification confidences in various environments.

positives and calculate the sensitivity of each system. Similarly,
because the additional DDoS attack traces contain no benign
traffic, we use them observe how well each system can prevent
DDoS attacks. Namely, we can count the number of false
negatives and calculate the specificity of each system.

In line with traditional anomaly detection studies, we can
see in Fig. 3 that each detection system can achieve decent
performance in the network in which they train. In fact, we see
that Rapid slightly out performs each system. However, Fig. 4
and Fig. 5 suggest Rapid significantly outperforms the other
systems under domain shift. While Fig. 4a and Fig. 5a detail
the performance gains seen in Fig. 3, Fig. 4b and Fig. 4c show
that Rapid offers superior robustness to domain shift. Namely,
they show Rapid limits negative effects on benign traffic with
significantly better sensitivity and less false positives. While
Fig. 5b and Fig. 5c suggest that Rapid’s performance gains on
benign traffic may come at the cost of detecting new attacks,
they also show that when Rapid deploys with our novel active
learning technique, Rapid can more effectively detect new
DDoS attacks than any other system. In fact, our novel active
learning technique limits false positives and false negatives

practically to zero—even under domain shift.

C. Model Calibration and Reliability

To further discuss the deployability of each system, we
next observe the model calibration of each system. Under
proper model calibration, a model should exhibit a smooth and
diverse set of confidences, but maintain a majority of confident
classifications (i.e., near 0 or 100). Ideally, a system should
exhibit prediction probabilities (i.e., confidences) that form a
shape similar to a sigmoid curve reflected on the y = x curve
that plateaus on the horizontal ratio of benign to malicious
traffic in the test set and points upward again only after the
classification threshold. Proper model calibration limits the
computational expense of attack mitigation [7].

In Fig. 6, we show the cumulative distribution function
(CDF) of the confidence of each system in each environment.
The horizontal dotted line in each graph shows the ratio of
benign to malicious traffic in the test set, and the vertical line
represents the classification threshold. Therefore, an ideal CDF
will display confidences that level near the horizontal dotted
line, but turn upward again after the vertical dotted line. We can
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(a) Detection threshold set to 0.35.
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(b) Detection threshold set to 0.5.
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(c) Detection threshold set to 0.65.

Fig. 7: The false positive and false negative rates of our attack detection component.
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Fig. 8: Model Reliability for each defense system.

see that the two other neural network-based techniques—IDS-
NNM and DeepLog—showcase poor calibration and frequently
exhibit confidences very close to the decision threshold which
reinforces previous studies that suggest that neural networks
often exhibit poor calibration [38]. Meanwhile, while we de-
ployed the exact same set of calibration techniques on Rapid as
we did for IDS-NNM and DeepLog (i.e., temperature scaling),
Rapid achieves a more acceptable calibration which suggests
another benefit of our ensembled architecture with ARIMA
models. Moreover, while Opprentice shows decent calibration,
we see that Rapid maintains higher confidence across benign
traffic in Fig. 6a, Fig. 6b, and Fig. 6c. However, without active
learning, Rapid struggles to confidently detect two of the three
unseen DDoS attacks in Fig. 6e and Fig. 6f. Because Rapid
is so strongly confident of the opposite classification, Rapid
could manually adapt to these attacks, but we would violate
our assumption of no manual tuning in new environments.
Fortunately, this is exactly the motivation of our novel active
learning techniques. In fact, our active learning technique
successfully detects all three of the unseen DDoS attacks with

high confidence and proper model calibration.
Similarly, we observe a closely related metric to model

calibration: the model reliability of each system. Under proper
model reliability, a model should exhibit a correlation between
accuracy and confidence. For example, ideally, 75% of classi-
fications with confidence 0.75 should truly be attacks. Model
reliability is notoriously difficult to achieve [38], and in Fig. 8,
we see similar results in that each model struggles to achieve an
ideal model reliability. While Rapid mostly classifies reliably
for benign traffic, our evaluation suggests that each model
struggles to reliably classify DDoS traffic which we pose as
an area of future interest.

D. Attack Detection

Lastly, we observe the attack detection trade offs for Rapid.
Because a network operator should use attack detection mainly
to improve system efficiency, we aim to investigate the effect
of the detection threshold for attack detection (i.e., a decrease
of the classification threshold, t, should result in less false
negatives but more false positives). In particular, in the Smart
Home 1 network, we examine the false positive and false
negative rates over time of our Rapid system adapted for attack
detection. We can see in Fig. 7 that Rapid successfully adjusts
for various operator desires. Specifically, in Fig. 7a, when the
detection threshold is set to 0.35, Rapid has no false negatives
in attack detection. With no false negatives, such a setting will
have no affect on the overall classification accuracy of Rapid,
but will reduce system execution. Whereas, in Fig. 7b, when
the detection threshold is set to 0.5, we see a network operator
can achieve a more balanced mix of false positives and false
negatives, and in Fig. 7c, when the detection threshold is set to
0.65, we see Rapid can reduce false positives further at the cost
of false negatives. Thus, when desired, a network operator can
smoothly adjust Rapid to favor system efficiency over detection
latency.

V. CONCLUSION

In order to identify IoT-enabled DDoS attacks that attempt
to leave a policed IoT network, we presented a novel anomaly
detection system, Rapid, specifically designed for real-world
IoT deployment. Rapid achieves state of the art accuracy,



and further, due to our novel and automatic active learning
techniques, our detection system requires little to no manual
system maintenance for IoT network operators—even under
domain shift. Moreover, Rapid supports diagnostic insight into
classifications and operates in a real-time and online fashion.
Through simulation of real-world IoT traffic traces (both mali-
cious and benign), we showed that Rapid initially deploys with
higher accuracy and confidence compared to past defenses, and
further, our active learning techniques allow Rapid to adapt to a
new network domain and achieve state of the art classification
accuracy within a reasonable period of time.
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