
1 23

Peer-to-Peer Networking and
Applications

ISSN 1936-6442

Peer-to-Peer Netw. Appl.
DOI 10.1007/s12083-013-0202-x

Tsunami: A parasitic, indestructible botnet
on Kad

Ghulam Memon, Jun Li & Reza Rejaie

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Peer-to-Peer Netw. Appl.
DOI 10.1007/s12083-013-0202-x

Tsunami: A parasitic, indestructible botnet on Kad

Ghulam Memon · Jun Li · Reza Rejaie

Received: 13 July 2012 / Accepted: 15 February 2013
© Springer Science+Business Media New York 2013

Abstract While current botnets rely on a central server or
bootstrap nodes for their operations, in this paper we iden-
tify and investigate a new type of botnet, called Tsunami,
in which no such bottleneck nodes exist. In particular,
we study how a Tsunami botnet can build a parasitic
relationship with a widely deployed P2P system, Kad, to
successfully issue commands to its bots, launch various
attacks, including distributed denial of service (DDoS) and
spam, at ease, as well as receive responses from the bots.
Our evaluation shows that in a Kad network with four mil-
lion nodes, even with only 6 % nodes being Tsunami bots,
Tsunami can reach 75 % of its bots in less than 4 min and
receive responses from 99 % of bots. We further propose
how we may defend against Tsunami and evaluate the
defense solution.

Keywords Botnet · DHT (distributed hash table) · Kad ·
DDoS · Spam

1 Introduction

Botnets—i.e., networks of compromised computers called
bots—are one of the most challenging network security

G. Memon (�) · J. Li · R. Rejaie
University of Oregon, 120 Deschutes Hall,
1202 University of Oregon, Eugene,
OR 97403-1202, USA
e-mail: gmemon@cs.uoregon.edu

J. Li
e-mail: lijun@cs.uoregon.edu

R. Rejaie
e-mail: reza@cs.uoregon.edu

problems of today’s Internet. Their threat is clear: a botmas-
ter can use a command and control (C&C) channel to direct
thousands or even millions of bots to launch large-scale
security attacks (e.g., DDoS, spam campaign).

The most critical component of botnets is their C&C
channel. While botnets have employed several different
types of C&C channels, all C&C channels so far rely
on a central server or bootstrap nodes to operate, and
such “bottleneck” nodes can be the weakest points of a
botnet. For example, a centralized botnet (e.g., an IRC
botnet or a HTTP botnet) can stop functioning if its
central server is located and shut down, and a peer-to-
peer botnet (e.g., Nugache [19], Phatbot [2]) will not
be able to recruit new bots if its bootstrap nodes are
captured.

We introduce a new type of botnet in this paper and
draw the research community’s attention towards it. Such
a botnet will not have a central server or bootstrap nodes,
or any types of bottleneck nodes, and every bot will be
equal to each other. Without bottlenecks to target, the only
way to bring down such a botnet is to remove all the
bots, which can become a vast amount of work if such
a botnet consists of a very large number of bots. More-
over, this hard-to-destroy feature holds true even if one
may identify the bots on this botnet or discover its C&C
traffic.

This new type of botnet we introduce has an addi-
tional feature. Instead of building dedicated C&C chan-
nels for communication, this botnet acts as a parasite,
and exploits a widely deployed, benign distributed sys-
tem as its host. It sprinkles its bots randomly across
the benign host system, and uses the built-in com-
munication channels of the host system for its own
C&C.

Author's personal copy

mailto:gmemon@cs.uoregon.edu
mailto:lijun@cs.uoregon.edu
mailto:reza@cs.uoregon.edu

Peer-to-Peer Netw. Appl.

While a centralized botnet may also piggyback on other
communication platforms, such as the IRC botnet or the
HTTP botnet, this new botnet is more advanced by avoid-
ing the need of a central server as required by a cen-
tralized botnet. It will still have a botmaster, of course,
but unlike the botmaster in a centralized botnet and many
P2P botnets, the botmaster here does not need to be
always online. It can simply inject its command and run
away.

This new botnet is also more dangerous than today’s
peer-to-peer botnets, which all have their own dedicated net-
work. Not only does the new botnet avoid the need for the
bootstrap nodes as required by these peer-to-peer botnets,
it also avoids the need for building its own dedicated C&C
channels.

We set out to study this new type of botnet in this
paper. As the botnet traffic is hidden under the regu-
lar traffic, and is similar to a tsunami moving forward
under the ocean wave, we call the botnet Tsunami. We
choose Kad to be the host system for Tsunami. Kad is
a public network that serves over four million users. It
is an implementation of the Kademlia [10] Distributed
Hash Table (DHT). Kad is used by the eMule file-sharing
system [3]. We study how Tsunami can accomplish a
C&C channel without points of failure by running on
top of Kad as a parasitic botnet. Specifically, we will
study how Tsunami can use Kad to issue its commands
to millions of bots, receive responses from them, and con-
duct surreptitious but damaging functions as needed. Also,
using Kad as the host system, we can study the secu-
rity of Kad, including how a P2P network such as Kad
can be exploited and become an involuntary host of a
botnet.

We further evaluate Tsunami to show that when 5 %
nodes of Kad are Tsunami bots, a command can reach virtu-
ally all of them in less than 6 min. Even when Tsunami bots
experiences churn (bots arrive and depart all the time), with
6 % Kad nodes that are bots, a Tsunami botmaster can still
reach 75 % bots in 4 minutes.

In addition to designing the botnet, we also study how
to defend against Tsunami. Since capturing and destroying
Tsunami bots is extremely hard and costly, we study how
we may capture the Tsunami traffic, mislead the bots, and
thus disrupt their C&C communication.

The rest of this paper is organized as follows. We first
summarize the related work in Section 2. Then, after pro-
viding a background on the Kad system in Section 3, we
describe the design of Tsunami in Section 4 and two exam-
ples of launching attacks via Tsunami in Section 5. We
evaluate Tsunami’s performance in Section 6, and describe
our current implementation of Tsunami in Section 7.
Section 8 discuses our defense strategies against Tsunami,
and we conclude the paper in Section 9.

2 Related work

In this section we provide a brief review of existing bot-
net C&C channels. In particular, we consider three general
C&C categories: centralized, peer-to-peer, and hybrid. We
highlight the generic disruption techniques for each of them.

Centralized botnets These botnets use a central C&C
server. In order to receive new commands, the bots main-
tain permanent or periodic TCP connections with the C&C
server. Several examples of such botnets exist: Mybot,
Gobot [13], Mebroot [18] and Machbot [4]. This centralized
design, while very efficient, makes it hard for a C&C server
to hide its identity. If a single binary that carries the loca-
tion of the C&C server is captured, the server can be located
and shut down. Even if the binary does not possess the loca-
tion of the C&C server, a bot’s traffic pattern may reveal the
location.

Peer-to-peer (P2P) botnets The basic goal of P2P botnets
is to avoid the shortcomings of centralized botnets. The
biggest shortcoming of centralized botnets is the existence
of a central point of failure. Examples of real-world P2P bot-
nets include Nugache [19] and Phatbot [2]. Both the botnets
form an unstructured P2P network, similar to the Gnutella
P2P network [14]. The commands propagate through these
botnets via gossiping, i.e., each bot passes the command to
its directly connected peers. Wang et al. [21] also designed
an unstructured P2P botnet where servant bots with static,
public IP address are responsible to ensure the connectivity
of the botnet.

While P2P botnets eliminate the central point of fail-
ure, these botnets are faced with new potential threats: the
removal of their bootstrap nodes. The bootstrap nodes are a
set of nodes, through which peers can join a P2P network.
P2P botnets, similar to all P2P networks, also require the
bootstrap nodes. For example, Nugache uses a fixed set of
22 bootstrap nodes; Phatbot uses Gnutella cache servers for
bootstrapping; and Wang et al.’s botnet uses servant bots
for bootstrapping. Bootstrap nodes are Achilles’ heel [7]
of P2P botnets: if the bootstrap nodes are captured and
compromised, then bots cannot join the botnet.

Hybrid botnets Hybrid botnets combine centralized C&C
with peer-to-peer networking. Specifically, hybrid botnets
use P2P networks as a directory service for bots to dis-
cover the location of the central C&C server. Examples of
hybrid botnets include Storm [8], Trojan.Peacomm [7] and
Alureon [1].

While Storm and Trojan.Peacomm botnets are signifi-
cantly different from Tsunami, Alureon bears some resem-
blance to Tsunami. Alureon is a new botnet, and very little
is known about it. Based on the little information that we

Author's personal copy

Peer-to-Peer Netw. Appl.

have, we know that both Tsunami and Alureon hide their
bots in the Kad DHT.

To the best of our knowledge, hybrid botnets are the most
sophisticated botnets in existence given their use of pub-
lic P2P networks and encryption. However, hybrid botnets
(including Alureon) still rely on the presence of a cen-
tralized C&C server for bots to pull commands from. A
dedicated defender may continuously monitor a target P2P
network and discover the location of the C&C server, which
can then be destroyed. Tsunami, on the other hand, uses a
push model for issuing commands: the C&C server injects
a command into a public P2P network. Given the way the
commands are propagated through the P2P network, it is
challenging to discover the original source of the command.
In other words, a Tsunami C&C server hides behind regular
bots, which makes Tsunami indestructible.

Hybrid botnets also face the threat of directory poison-
ing. The location of central C&C server is published at
well-known rendezvous locations in the P2P network. The
defenders may poison the directory service and change the
location of the central C&C server [7].

3 Background and preliminary

Kad is a peer-to-peer (P2P) system based on Distributed
Hash Table (DHT). In this section we first introduce DHTs,
then describe Kad’s features that are relevant to Tsunami.

3.1 Distributed hash table (DHT)

A DHT is a peer-to-peer (P2P) system that provides
a lookup service similar to a hash table, where every
(key, value) pair is stored at a peer whose ID is closest
to key. Different DHTs have different schemes to define
what is meant by “closest,” such as the XOR distance in
Kademlia [10], the numeric difference in Chord [17], and
prefix matching in Pastry or Tapestry [15, 22].

DHTs use iterative routing to find a peer whose ID is
closest to a key K . The iterative routing process of DHTs
is demonstrated in Fig. 1. It shows three different types of
peers:

1. Peer Pr , which starts the iterative routing process.
2. Peer Pd , which is the closest peer to K .
3. Peers Pi and Pj , which are intermediate peers that route

requests from peer Pr towards peer Pd .

Peer Pr initiates the routing process by consulting its own
routing table and finds a peer Pi that is closest to the key
K . Peer Pr sends a request for K to the peer Pi , as shown
in Fig. 1. Peer Pi consults its own routing table, finds the
closest possible peers to K , and informs the peer Pr about
the newly discovered peers that are closer to K . This process

Fig. 1 Iterative routing process in DHTs

continues until the peer Pr finds the peer Pd , which is the
closest possible peer to K .

The type of (key, value) pairs in a DHT depends on the
usage of the DHT. In a file-sharing DHT, the key is typi-
cally the hash of a file and the value is the location of the
peer storing the file. To help search files using their key-
words, sometimes the key is the hash of a keyword of a file,
and the value is the meta-data of files matching the key-
word. Call peers that publish content publishers, and peers
that consume content consumers. Using DHT algorithms, a
publisher can map a file to a specific peer and store the file
in that peer, and a consumer can find the peer that stores
the file.

3.2 Kad

Used by eMule [3] and other file sharing applications, Kad
is a DHT with the largest user base (more than four million
users). It is derived from Kademlia [10] DHT, and uses 128-
bit IDs for peers and keys. Since there are 2128 peer IDs and
there is little chance of collision, every peer chooses their
IDs randomly. Kad uses XOR metric to calculate the dis-
tance between IDs where an ID can belong to either a peer
or a key (i.e., the distance between IDs x and y is
x ⊕ y).

Kad embraces a unique lookup algorithm that can locate
nodes “closer” to a target ID hop by hop, and it takes log-
arithmic steps to finally discover multiple “closest” nodes.
Specifically, upon the receipt of a lookup message, a Kad
peer will discover a k-bucket that contains k contacts closer
to the target ID than itself, and forwards the lookup request
in parallel to three out of k contacts.

Kad allows a publisher to publish content and a con-
sumer to search specific content. A publish operation
includes a lookup phase and a storage phase. A search
operation includes a lookup phase and a retrieval phase.

Lookup phase In this phase a publisher (or a consumer)
sends a lookup message to discover the peers whose IDs
are the “closest” to the key of the content to be published

Author's personal copy

Peer-to-Peer Netw. Appl.

(or to be consumed). This phase is supported by the lookup
algorithm of Kad.

Storage/retrieval phase In this phase a publisher or a con-
sumer directly contacts the peers discovered in the lookup
phase. The publisher stores the content (or information
about the content) at the peers, and a consumer retrieves
content (or information about the content) from the peers.
Kad supports two different kinds of content: keywords and
files. Thus there are four different kinds of messages:

– PUBLISH FILE (PuF) for publishing a file, where the
key field of the message is the hash of the file, and the
value field of the message is the publisher’s IP address
and TCP port number.

– PUBLISH KEYWORD (PuK) for publishing a key-
word, where the key field of the message is the key-
word’s hash, and the value field is the meta-data of
those files that include the keyword in their names. The
meta-data for each file includes their name, hash, size
and type.

– SEARCH FILE (SeF) for searching a file, where the
key field of the message is the hash of the file. A
response to this message carries the IP address and TCP
port number of the file’s publisher.

– SEARCH KEYWORD (SeK) for searching the files
associated with a keyword, where the key field of the
message is the hash of the keyword. The response to this
message carries the meta-data of relevant files, includ-
ing their hash. For each desire file, a consumer then
can use its hash just retrieved to issue an SeF request to
finally get the file.

4 Design: Tsunami botnet as a parasite of Kad

As we discussed in Section 1, the goal of Tsunami is a C&C
channel without points of failure, and it accomplishes this
goal by being a parasite of the Kad system and leveraging
the built-in communication capabilities of Kad. We describe
how Tsunami can achieve these capabilities in this section.

4.1 Tsunami objective refined

Every Tsunami bot embeds itself in Kad as a peer node in
Kad, and does not even necessarily know any other Tsunami
bots. Nevertheless, a Tsunami botmaster must be able to
send commands to Tsunami bots, and perhaps also receive
responses from the bots. Of course, Tsunami would prefer a
good performance such as reaching its bots quickly. Albeit
not required, Tsunami bots can also try to stay unnoticeable.

A Tsunami botmaster does not know which peers in Kad
are Tsunami bots. In order to reach them, the botmaster can

send a message to every peer in Kad. However, as Kad uses
a 128-bit ID space to represent peers, doing so implies 2128

messages. This is not only resource intensive, but will also
make the botmaster appear anomalous and get captured.

This problem can be resolved by realizing that a 128-bit
ID space can never be fully populated. In fact, Kad uses a
large ID space to avoid collisions between the IDs of dif-
ferent peers. We know from our earlier measurement study
on Kad [11] that in practice, only the top 22 bits of a peer’s
ID are used to locate peers. In other words, as long as the
top 22 bits are common between a lookup ID and a peer
ID, the desired peer will be found. Thus, instead of send-
ing 2128 messages, the refined objective of Tsunami is for
the botmaster to send 222 messages instead to broadcast its
command. Note that 222 is the total number of messages that
needs to be sent; individual bots only send a small fraction
of these messages, as explained in Section 4.3

Our measurement study on Kad [11] shows that the num-
ber of bits required to locate peers is directly proportional
to peer population; as peer population increases, more bits
are required to locate peers. Thus, Tsunami must adjust the
number of messages as the peer population changes, and
also must cope with reduced number of command-carrying
bits. While we do not provide a technical mechanism to
address this problem, we note that only when peer popula-
tion doubles, one bit needs to be added to the lookup bits
(i.e., instead of 222 messages, 223 messages need to be sent).
The botmaster may periodically crawl the Kad DHT, and as
the peer population doubles, it may increase the number of
messages.

4.2 Tsunami command

The Tsunami botmaster issues commands using Kad lookup
messages. In particular, the target ID in such Kad lookup
messages is divided into the following two parts (Fig. 2):

– Lookup Bits: The top 22 bits are used to find Tsunami
bots. As we discussed in Section 4.1, using the top 22
bits is sufficient for finding bots.

– Command Bits: The lower 106 bits are used to carry a
Tsunami command. For example, it can encode multi-
ple 32-bit IP addresses as the victims of a DDoS attack.
The reader may observe that Kad may counter this com-
munication mechanism by always using zeros for lower
order 106 bits. However, recall from Section 3 that in
Kad each file and keyword is uniquely identified by a
128 bit ID. Decreasing the number of bits by using zeros
for lower order bits will lead to collisions.

Upon the receipt of a Kad lookup message that carries
a Tsunami command, a benign peer will simply process it
as a normal lookup message, while a Tsunami bot must be

Author's personal copy

Peer-to-Peer Netw. Appl.

Fig. 2 Tsunami command format

able to recognize it, obtain the command, and act upon the
command. To meet this condition, the command bits can
carry a command signature.

The botmaster can further encrypt the command bits,
such as by using the private key of the botmaster, and a bot
can decrypt the command and verify the command is indeed
from the botmaster. This will require every bot to have the
decryption key, such as the public key of the botmaster,
when distributing the binary code of the botnet.

4.3 Sending commands to tsunami bots embedded in Kad

We now describe how a Tsunami command can reach
Tsunami bots embedded in Kad. In doing so, Tsunami wants
to (1) reach as many bots as possible, (2) be fast in reach-
ing them, and (3) stay relatively quiet in order not to appear
suspicious to ISPs.

Tsunami uses a tree-based command propagation mech-
anism. First, the botmaster sends lookup messages toward
a small number (e.g., 100) of target IDs. Every bot that
happens to receive a lookup message will repeat the same
process. If a bot discovers that a command is a duplicate
(such as that caused by a loop), it will simply drop the
command. Note that the tree is constructed on-the-fly, and
does not require any coordination among the bots. Since
the bots receive messages purely by chance, the larger the
bot population the higher the reachability of the command
(Section 6).

As shown in Fig. 3, this process will involve three
different kinds of nodes:

– M represents the bot master.
– B represents a bot.
– K represent a regular Kad peer.

We emphasize that the botmaster of a Tsunami botnet
can hide itself in two measures: First, the botmaster hides
itself behind regular bots. If a defender captures a Tsunami
bot binary and finds out the pattern of Tsunami commands,

Fig. 3 Sending commands to tsunami bots embedded in Kad

it could detect Tsunami commands and try to trace who
sent the commands. However, there is no way to distinguish
between a message sent by the botmaster and a message
from one of thousands of bots. Furthermore, since lookup
messages use UDP and their source IP address can be
spoofed without affecting message delivery, the botmaster
(and a regular bot as well) can fake its IP address at the last
hop of the lookup message.

We introduce two forms of bot-bot communication:

– Whispering: For a bot, lookup messages simply provide
a way to find other peers in the network. A bot hopes
(without knowing) that some of the discovered peers
are bots. As a result, the bot does not have to carry the
command bits in its lookup message. It can simply find
a peer closest to any random ID. Then it can send the
actual command bits to the discovered peer using some
other Kad protocol message. This approach saves the
bot from exposing itself. During the lookup, at interme-
diate hops, a bot cannot fake its IP address because it
expects replies to progress in routing. As a result, if a
lookup message is intercepted in the middle and if the
lookup message is carrying command bits, the bot itself
can be exposed. This cautious approach, however, may
reduce the efficiency of the botnet because after every
lookup only one peer is sent the command bits.

– Shouting: Shouting is opposite of whispering. In this
approach, the lookup messages issued by the bots carry
the command bits. As a result, any bot along the way
will learn about the command. This efficiency comes at
the possible cost of exposure, as described above.

4.4 Receiving response

A botmaster may wish to receive responses for certain com-
mands, such as the machine information of bots and the
success rate of spam. Since Tsunami bots do not know
the identity of the botmaster, they cannot directly send
responses to the botmaster.

To solve this problem, Tsunami bots use logical overlay
links that are created during command dissemination. At
each step of forwarding a Tsunami command, a bot A will
discover at least one bot B: when B forwards a command
to A, A immediately learns that B is a bot and is a par-
ent of A. This information creates a logical uni-directional
link from A to B . Bot A sends its response to bot B ,
which collects responses from all its children and propa-
gates aggregated response to its parents. Same as Tsunami
command, the response messages are also delivery via Kad
protocol messages.

A bot’s parent(s) may depart, disconnecting it from the
botmaster. However, the botmaster can recreate the overlay
by periodically rebroadcasting a command. Each command

Author's personal copy

Peer-to-Peer Netw. Appl.

may carry a nonce to distinguish command re-broadcasts
from original command broadcasts. Bots can respond at
the first command-rebroadcast after the fulfillment of the
original command.

Command responses can also help the botmaster to esti-
mate the bot population. (As described in Section 6, the
botmaster can then determine the number of copies that
every bot needs to forward for a command.) Bots com-
municate this information by embedding it in the aggre-
gated responses, where every aggregated response carries
the number of responses merged. Note because the redun-
dancy in the Kad network may artificially inflate the bot
population, this approach only provides an estimate of bot
population.

5 Tsunami attack examples

In this section we describe how Tsunami issues distributed
denial of service (DDoS) and spam commands.

5.1 Distributed denial of service (DDoS)

A DDoS command can be delivered using either short
commands or long commands.

Short commands A short DDoS command consists of two
parts: a 10-bit unique command ID, and at least one target
IP address. The command ID helps the botmaster identify
the response to a command, as described in Section 4.4.
The botmaster requires the command ID to be unique across
unanswered commands only. Thus, the botmaster can issue
1024 (210 = 1024) distinct commands in parallel.

Tsunami uses lookup messages to deliver short DDoS
commands. It embeds the command in the 106-bit suffix of
the lookup ID, as described in Section 4.2. It can also embed
a Tsunami signature (e.g., a particular bit string) for bots to
recognize it is a Tsunami command.

Long commands A long DDoS command consists of four
components: a 10-bit unique command ID, IP address(es)
or hostname(s) of the target, date and time of the attack,
and bot population. As the Kad lookup message does not
provide enough space to accommodate all components,
Tsunami uses Kad’s storage/retrieval-phase messages for
these commands. It delivers long commands in two steps.
First, it uses lookup messages to find peers for storing com-
mands. Next, it sends PUBLISH messages (i.e., either PuK
or PuF) to the discovered peers, with commands embedded
in the value portion. Tsunami prefers PUBLISH messages
over SEARCH messages, because SEARCH messages do
not have a value portion, which limits the space for a
command.

Tsunami uses different keys for a given pair of LOOKUP
and PUBLISH messages. The keys share the prefix, but they
differ in the suffix. The suffix of the lookup key is com-
pletely random because it does not carry a command. On the
other hand, the suffix of the PUBLISH key must carry the
command.

5.2 Spam

Because of the bulky nature of spam, issuing spam com-
mands is more challenging than issuing DDoS commands.
Modern spam campaigns [9] typically consist of list of
email addresses, email template and a collection of val-
ues for macros in the text, called a dictionary. Tsunami
solves this problem by storing the spam information as
key-value pairs in Kad, and broadcasting only the keys to
the bots.

The botmaster uses one PuK message for each compo-
nent of spam information. First, the botmaster randomly
chooses three 128-bit IDs K1, K2, and K3 as the keyword
hashes for three PuK messages M1, M2, and M3, respec-
tively. The botmaster uses the body of each PuK message to
encode spam information. Next, it goes through the lookup
phase to find the closest possible peers to K1, K2, and K3,
as described in Section 3. After that, it sends M1, M2 and
M3 to the discovered closest possible peers. Finally, the bot-
master broadcasts K1, K2 and K3 using the same method as
DDoS.

As bots receive K1, K2 and K3, they retrieve each com-
ponent of spam information. First, each bot goes through
the lookup phase to find the closest possible peers to K1, K2

and K3. Next, each bot sends SeK messages to discovered
peers and retrieves spam information. Finally, they con-
struct spam email messages using email template and email
dictionary, and start sending spam (e.g., every bot can ran-
domly choose a pre-determined number of email addresses
for sending spam).

6 Evaluation

We have developed a discrete event simulator to evaluate
the performance of C&C in Tsunami when it runs on top of
Kad. We now present the results for these evaluations.

6.1 Issuing commands

We use “time taken to reach maximum possible bots” as the
main performance metric, which is affected by the following
two factors:

– Bot population
– Number of lookup messages issued by each bot

Author's personal copy

Peer-to-Peer Netw. Appl.

During our simulations, we vary these two factors to
understand their impact on command dissemination time.
We use a real world churn model [20] to simulate the arrival
and departure of the bots.

We keep peer population constant at 4,000,000 [11] and
lookup latency constant at 8 s [16]. Note that lookup latency
takes into account the network latency as well. We vary bot
population and number of messages issued by each bot. Bots
are placed randomly in Kad, as they would be in a real-world
scenario. During our simulations each bot picks up a ran-
dom id and simulates a lookup. We check if the lookup id is
registered as a bot. If it is then it is considered as a success-
ful lookup. Upon receiving a command, the bot simulates
more lookups and the process continues until there are no
more pending messages in the botnet.

The results of our simulation are shown in Fig. 4.
Figure 4a shows the impact of varying % of bot popula-
tion on command distribution time. The x-axis shows bot
population as the percentage of total population. The y-axis
shows command distribution time in seconds for reaching
75 % of bots. Each line in the figure represents different
number of messages sent by a single bot. If a given line

 100

 120

 140

 160

 180

 200

 220

 240

 6 7 8 9 10 11 12 13 14 15

T
im

e
to

 r
ea

ch
 b

ot
s

(s
ec

)

Bot Population (%)

Msgs.
30
40
50
60
70
80
90

100

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ax

. B
ot

s
R

ea
ch

ed
 (

%
)

Bot Population (%)

Msgs.
10
20
30
40
50

100

a

b

Fig. 4 Evaluation of command dissemination. a Impact of bot pop-
ulation on command distribution time. b Maximum number of bots
reached

does not show a value for a given j% of bots, it means that
with j% bot population and i messages, 75 % of bots are
not reachable. Figure 4a demonstrates that increasing the
bot population decreases command distribution time. This
observation follows the intuition that a larger bot population
will distribute commands more efficiently. Figure 4a also
shows that increasing the number of messages sent by each
bot increases the command distribution time. For example,
for a bot population of 7 % or more, sending 50 messages
from each bot is the optimal operating point. Sending 60
or 70 messages only increases command distribution time
without much gain. Sending more messages from each bot
increases the likelihood of discovering already contacted
bots, thus wasting the message. Figure 4a also indicates that
for 6 % bot population, at least 80 messages must be sent
from each bot to reach 75 % of bots. Figure 4a also shows if
the bot population is less than 6 % of total population, then
75 % of bots cannot be reached.

Figure 4b shows maximum possible bots that can be
reached under the current churn model, while varying the
bot population and number of messages sent by each bot.
The x-axis shows bot population as the percentage of total
population. The y-axis shows the percentage of bots that
can be reached. Each line in the figure represents differ-
ent number of messages sent by each bot. Figure 4b shows
increasing the bot population increases the likelihood of
reaching more bots. Figure 4b also shows that increasing
the number of messages sent from each bot increases com-
mand reachability but to a certain point only. For example,
if the bot population is 7 % or more of the total population,
then sending more than 50 messages from each bot does not
increase command reachability. This is because of the mes-
sage overlap phenomenon described earlier. Finally, we note
from Fig. 4b that under the current churn model, slightly
more than 80 % of bots can be reached at best. Thus, if max-
imum bots need to be reached with minimum number of
messages, then at least 9 % of total population must be bots
and at least 50 messages must be sent from each bot.

In order to get an upper bound on bot performance we
also conducted experiments with a constant bot population.
The results of this experiment are shown in Fig. 5. This
experiment was conducted with 100 messages per bot. We
only varied the bot population. Figure 5 shows that as long
as 5 % bots are present in the system, all the bots can be
easily reached. As bot population increases, the time to
reach all the bots decreases.

6.2 Performance of response reachability

Figure 6 shows how many bots are able to respond to a
Tsunami botmaster. The x-axis shows bot population as per-
centage of total population. The y-axis shows those bots
that receive a command and have a response-route to the

Author's personal copy

Peer-to-Peer Netw. Appl.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100
 150

 200
 250

 300
 350

 400
 450

 500
 550

 600
 650

%
 o

f
B

ot
s

R
ea

ch
ed

Time (seconds)

5%
10%
15%
20%

Fig. 5 Simulation results without churn

botmaster. Each line in the figure shows the number of mes-
sages sent by each bot. Figure 6 shows that for 30 or more
messages, 99 % of the bots have a response route to the
botmaster, and can successfully send the response. In other
words, the bot population has no impact on response route
when each bot sends 30 or more messages. Figure 6 also
shows if each bot sends less than 30 messages, then response
routes only exist when bot population is greater than or
equal to 6 % of total population. If the bot population is less
than 6 % and each bot sends less than 30 messages, then
under the given churn model, no route exists from bots to
botmaster.

7 Implementation of tsunami

In addition to evaluating the performance of Tsunami via
simulations (Section 6), we demonstrate its feasibility via
emulation over Kad.

We opted for emulation instead of a real-world imple-
mentation, because an implementation would disrupt the
normal operation of Kad. An implementation would require
deployment of modified Kad peers that can identify and
propagate malicious commands. Such peers would artifi-
cially inflate the peer population, and their sudden departure

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

 3 4 5 6 7 8 9 10 11 12 13 14 15

%
 o

f B
ot

s W
ith

 R
ou

te
s t

o
M

as
te

r

Bot Population (%)

Msgs.
10
20
30
50
70
80
90

100

Fig. 6 Successful routes from bots to botmaster

at the end of the experiment would result in stale routing
table entries.

In order to avoid above-mentioned problem, we devel-
oped an emulator that uses Planetlab [5] nodes as bot
emulators, which inject malicious commands in the real-
world DHT. Specifically, the emulator chooses random Kad
peers as artificial bots, and assigns one bot emulator to each
artificial bot. The botmaster injects a malicious command at
a random point in the Kad DHT. As artificial bots receive
malicious command traffic, bot emulators propagate com-
mands in the DHT on their behalf. The use of Planetlab
nodes helps us in avoiding the artificial inflation of Kad peer
population, while still propagating malicious commands in
the real-world Kad DHT.

The specific emulation steps are shown in Fig. 7, and
described below:

0. Crawler crawls a zone of the Kad DHT once every
minute, and discovers all the peers in that zone.

We define a zone as a collection of Kad IDs that
share the same x bit prefix. For example, a 12 bit zone,
0xacf, contains all the lookup IDs with 0xacf as prefix.
For the emulation, we crawl a 12 bit zone instead of the
entire DHT, in order to minimize the resource usage.

The crawler discovers all the peers in a given zone
by issuing lookups for all the Kad IDs in that zone, and
finding all the closest peers. Finally, it chooses n% of
discovered peers at random as artificial bots. Similar to
simulations, we vary n from 1 to 15.

1. The botmaster injects a command in the Tsunami
botnet. In a real-world implementation the botmaster
would simply issue lookups, as described in Section 4.

Fig. 7 Tsunami emulator design

Author's personal copy

Peer-to-Peer Netw. Appl.

However, for emulation, the botmaster requests the con-
troller to issue lookups on its behalf. As the name
indicates, the controller is the central component of the
emulator that coordinates its activity.

2. The controller requests identities of currently chosen
bots from the crawler.

3. The crawler sends the Kad ID, IP address and port
number of currently chosen bots to the controller.

4. The controller chooses a random Planetlab node to
perform lookups on behalf of the botmaster.

5. The chosen Planetlab node performs lookups in the
crawled 12 bit zone, and sends the Kad ID, IP
address and port number of all discovered peers to the
controller.

6. The controller compares the discovered peers from the
previous step against the bot identities received from
the crawler. If a match is found, the controller assumes
that a bot received the command and it will propagate
the command further. For each match, the controller
picks a random Planetlab node to perform lookups in
the crawled 12 bit zone. This process continues until
all lookups are complete on all Planetlab nodes and no
more unique bots are found.

8 Defense against tsunami botnet

In general, defense against a botnet may use the following
approaches: (i) patching the software or hardware vulner-
abilities so that the botnet cannot recruit new bots; (ii)
protecting probable targets [6] from a botnet attack; and (iii)
disrupting the C&C of the botnet once it becomes active. In
this paper, we focus on disrupting the C&C. Since unlike
today’s botnets, Tsunami does not employ bottleneck nodes
for us to locate and shut down, we investigate how we may
intercept C&C traffic of Tsunami in Kad.

In this section, we first briefly describe our generic tech-
nique for capturing DHT traffic. We then use this technique
for defending Kad against Tsunami. After that, we evalu-
ate the effectiveness of defense. Finally, we describe the
weaknesses in the defense approach.

8.1 Capturing DHT traffic

In order to capture DHT traffic, we use Montra [12]. Montra
introduces a large number of passive peers—called mon-
itors—to capture Kad traffic. The monitors are passive
because they do not issue any queries. A single monitor can
either capture the traffic received by a single peer, or cap-
ture the traffic destined towards a single lookup ID. The two
forms of capturing traffic require a different monitor place-
ment strategy. In the next two subsections we describe how
each form works.

Monitoring a single peer (peer monitor) In order to moni-
tor a single peer P, Montra divides the lookup traffic that P
observes into two types: destination traffic if P is the clos-
est peer to the lookup ID, and routing traffic if P is not the
closest peer to the lookup ID.

Montra focuses on capturing destination traffic only
because it is more tractable. Montra captures a peer’s des-
tination traffic by exploiting Kad’s redundancy. In order to
minimize the effect of churn, Kad peers publish and search
information at multiple peers that are close to the lookup ID.
If a monitor M is placed close to P such that M is one of the
closest peers to P’s destination traffic, M will receive all of
P’s destination traffic.

We carefully choose the ID of M to control its place-
ment. In our implementation of Montra, we set ID(M) =
1 XOR ID(P). As a result, P and M share a 127-bit pre-
fix. Usually Kad peers share a 22-bit prefix [12]; thus M
is the closest peer to P, and for all the traffic that is clos-
est to P (i.e., destination traffic), M is the 2nd closest peer.
Such a placement ensures that M receives P’s destination
traffic.

Monitoring a single lookup ID (ID monitor) Monitoring a
lookup ID is simpler than monitoring a peer. We simply set
the ID of the monitor M same as the lookup ID in question,
thus making M the closest peer to T. As a result, M receives
all the traffic destined for T.

8.2 Protecting Kad against tsunami

In order to intercept Kad traffic that carry Tsunami com-
mands, we must first capture it and then redirect it, as
described in the next two subsections.

8.2.1 Capturing malicious traffic

We capture malicious traffic by monitoring all command-
carrying lookup IDs (i.e., use ID monitors), as described in
Section 8.1. In order to deploy ID monitors, we must find
the command-carrying IDs in advance. From the analysis of
the bot binary, we know that Tsunami bots issue lookups
for 222 lookup IDs, varying high-order 22 bits. Thus, we
know all the 222 prefixes. However, we do not know the 106
bit command suffix that the botmaster is currently using to
issue the command. Without the command suffix, we cannot
construct the lookup IDs and cannot deploy the monitors.

We find the command suffix by monitoring a large num-
ber of individual peers (i.e., use peer monitors), as described
in Section 8.1. Since bots send commands to random
peers, the larger the number of monitored peers, the higher
the probability of intercepting malicious traffic. Research
in [11] demonstrates that we can use one desktop machine
to monitor 32,000 Kad peers with 90 % accuracy. Thus the

Author's personal copy

Peer-to-Peer Netw. Appl.

percentage of Tsunami’s 222 lookups that our monitors can
receive is Numberof Monitors=32,000

T otalPopulation=2,000,000 = 0.016, or 1.6 %. In
other words, we can receive 67, 109 lookup messages on
average—more than enough to find the command-carrying
suffix (we only need one lookup for this purpose). The
monitors decrypt all the intercepted traffic, using Tsunami’s
public key. By examining the decrypted traffic for command
signature, the monitors finally discover the command suffix.

Upon finding command suffix, we construct 222 lookup
IDs by combining 222 prefixes and one command suffix,
and deploy 222 ID monitors. It may seem resource-intensive
to deploy such a large number of monitors. However, [11]
demonstrates that we can deploy 222 monitors using 64
desktop machines. Compared to the recent botnet defense
proposals [6], which have advocated the use of a multi-
million-node, non-malicious botnet to defend against a
malicious botnet, 64 machines are negligible.

8.2.2 Redirecting malicious traffic

We redirect malicious traffic by sending it towards a traffic
sink. The traffic sink consists of large number of modi-
fied Kad nodes, distributed across the world in order to
prevent the identification of traffic sink nodes by IP pre-
fix. These nodes pretend to be the closest peers to all the
incoming traffic, preventing the traffic from going to any
other peer.

The task of traffic redirection is best-suited for traffic
monitors that capture malicious traffic. These monitors can
mislead the traffic-sending bots and force them to send the
traffic to the traffic sink. Specifically, they use false IDs for
traffic sink nodes, such that those IDs appear to be closest
to the lookup ID in the intercepted traffic. (The traffic mon-
itors construct false IDs by using the same 30-bit prefix as
the captured lookup ID, and choose the remaining 98 bits
randomly. Usually a closest peer and a lookup ID share a
22-bit prefix [12]; using 30 bits is simply to be more safe.)
As a result, the bots regard traffic sink nodes as the closest
and stop sending further traffic.

8.3 Evaluation of tsunami defense

In this section we evaluate the effectiveness of our defense
mechanism. Our evaluation metric is the percentage of
requests that we successfully intercept and redirect. For
evaluation, we emulate defense and C&C over the real Kad
network, as described below.

8.3.1 Emulating defense

We emulate the defense by deploying ID monitors in an 8
bit zone of the Kad ID space. We deploy ID monitors by
generating artificial command-carrying IDs. An 8-bit zone

contains 1
28 ∗ 222 = 214 command-carrying lookup IDs.

Thus, we generate 214 ID prefixes. We assume that we know
the 106-bit command-carrying suffix without monitoring a
large number of Kad peers (Results in [12] shows that
Montra can capture destination traffic with 90 % accuracy).
By using 214 prefixes and one constant 106-bit suffix, we
generate 214 lookup IDs and deploy 214 ID monitors.

8.3.2 Emulating C&C

We emulate C&C over the real Kad network by issuing
2,000 command-carrying lookups towards the 8-bit moni-
tored zone. We construct command-carrying lookup IDs as
follows:

– We set the first 8 bits same as the prefix of the moni-
tored zone, so that the lookups can enter that zone.

– We set the next 14 bits randomly, because the bots issue
commands randomly.

– Finally, we use the same 106-bit command carrying
suffix that we use for deploying ID monitors.

8.3.3 Results

The results of our evaluation are shown in Fig. 8.
Figure 8a shows the distribution of the number of

common bits between requested ID and destination node
under normal conditions. We borrowed this result from
[12]. Figure 8a shows that for 20 % of requests, the clos-
est possible node and the lookup ID has 19 bits in common;
for the next 20 % of the requests, the closest possible node
and the lookup ID has 20 bits in common; and the remain-
ing 60 % of requests have 21 or more bits in common with
the destination node.

Figure 8b shows the distribution of the number of com-
mon bits between requested ID and the last closest node
that is contacted before the Montra monitors intercept the
request and mislead the request-issuing bot. The figure
shows that 70 % of the requests are captured at the 19th bit.
From this we can derive that 50 % of requests are captured
before they reach their destination, since previously only
20 % of requests had destination at the 19th bit. In addition
only 10 % of the requests are captured at 21 or more bits.
Under normal conditions, 60 % of the requests found their
destination at 21 or more bits.

8.4 Limitations of proposed defense

Although our proposed defense intercepts and re-directs
50 % of traffic, it has the following weaknesses:

– We must know the command signature a priori.
Tsunami may further use polymorphic commands to
hide its traffic.

Author's personal copy

Peer-to-Peer Netw. Appl.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

C
D

F(
%

 o
f

R
eq

ue
st

s)

Matching Bits Between Dst. Req. & Dst. Peer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

C
D

F
(%

 o
f

R
eq

ue
st

s)

Matching Bits Between Dst. Req. Dst. Peer

a

b

Fig. 8 Evaluations for defense against tsunami. a Number of bits
matching between requested ID and destination node for regular traf-
fic. b Number of bits matching between requested ID and destination
node for traffic after adding montra monitors

– We capture traffic before it reaches destination, but bots
at intermediate hops may still receive commands.

– The proposed defense only works for short commands
that are carried by first-phase lookup messages. We
cannot capture long commands that are carried by
second-phase storage/retrieval messages.

9 Conclusion

This paper identifies and discusses a new type of botnet,
called Tsunami. By building a parasitic relationship with
a widely deployed system, Kad, Tsunami can successfully
issue commands to its bots, launch various attacks, includ-
ing distributed denial of service (DDoS) and spam, at ease,
as well as receive responses from the bots, all without rely-
ing on any kind of central server or bootstrap nodes as
current botnets do.

As we have demonstrated and evaluated using the Kad
network, Tsunami is not only theoretically feasible, but also

very real. In a Kad network with four million nodes and
6 % of them being embedded Tsunami bots, it can reach
75 % of its bots in just about 240 s. Meanwhile, defending a
system such as Kad against Tsunami necessitates a system-
atic approach. As we discussed in the paper, a solid defense
must be able to effectively intercept Tsunami traffic with a
low cost, and do so without being intrusive to the system in
question.

Acknowledgments We are extremely grateful to Sven Dietrich,
Geoffrey Voelker, Peter Reiher and Jelena Mirkovic for their com-
ments and suggestions on earlier drafts of this work. We are also
thankful to anonymous reviewers of our earlier conference submis-
sions, who helped in improving the clarity of this paper. Finally,
we thank the members of Mirage and Netsec research groups at the
University of Oregon for their continued feedback, comments and
suggestions.

References

1. Alureon botnet. Website: http://arstechnica.com/security/
news /2011 / 07 / 4 - million - strong - alureon - botnet - practically-
indestructable.ars

2. Analysis of phatbot. Website: http://www.secureworks.com/
research/threats/phatbot/

3. emule. Website: http://www.emule-project.net
4. Machbot. Website: http://www.team-cymru.com/ReadingRoom/

Whitepapers/2008/http-botnets.pdf
5. Chun B, Culler D, Roscoe T, Bavier A, Peterson L, Wawrzoniak

M, Bowman M (2003) Planetlab: an overlay testbed for broad-
coverage services. ACM SIGCOMM Comput Commun Rev
33(3):3–12

6. Dixon C, Anderson T, Krishnamurthy A (2008) Phalanx: with-
standing multimillion-node botnets. In: NSDI’08: proceedings of
the 5th USENIX symposium on networked systems design and
implementation. USENIX Association, Berkeley, pp 45–58

7. Grizzard JB, Sharma V, Nunnery C, Kang BB, Dagon D (2007)
Peer-to-peer botnets: overview and case study. In: Proceedings of
the first conference on first workshop on hot topics in understand-
ing botnets. USENIX Association, Berkeley, pp 1–1. http://dl.acm.
org/citation.cfm?id=1323128.1323129

8. Holz T, Steiner M, Dahl F, Biersack E, Freiling F (2008) Mea-
surements and mitigation of peer-to-peer-based botnets: a case
study on storm worm. In: LEET’08: proceedings of the 1st usenix
workshop on large-scale exploits and emergent threats. USENIX
Association, Berkeley, pp 1–9

9. Kanich C, Kreibich C, Levchenko K, Enright B, Voelker GM,
Paxson V, Savage S (2008) Spamalytics: an empirical analysis
of spam marketing conversion. In: CCS ’08: proceedings of the
15th ACM conference on computer and communications security.
ACM, New York, pp 3–14. http://doi.acm.org/10.1145/1455770.
1455774

10. Maymounkov P, Mazières D (2002) Kademlia: a peer-to-peer
information system based on the xor metric. In: IPTPS ’01: revised
papers from the first international workshop on peer-to-peer sys-
tems. Springer-Verlag, London, pp 53–65

11. Memon G, Rejaie R, Guo Y, Stutzbach D (2009) Large-scale
monitoring of dht traffic. In: IPTPS ’09: proceedings of the
8th international workshop on peer-to-peer systems. http://www.
usenix.org/events/iptps09/tech/full papers/memon/memon.pdf

12. Memon G, Rejaie R, Guo Y, Stutzbach D (2011) Montra: a large-
scale dht traffic monitor. Comput Netw 56(3):1080–1091

Author's personal copy

http://arstechnica.com/security/news/2011/07/4-million-strong-alureon-botnet-practically-indestructable.ars
http://arstechnica.com/security/news/2011/07/4-million-strong-alureon-botnet-practically-indestructable.ars
http://arstechnic11a.com/security/news/2011/07/4-million-strong-alureon-botnet-practically-indestructable.ars
http://www.secureworks.com/research/threats/phatbot/
http://www.secureworks.com/research/threats/phatbot/
http://www.emule-project.net
http://www.team-cymru.com/ReadingRoom/Whitepapers/2008/http-botnets.pdf
http://www.team-cymru.com/ReadingRoom/Whitepapers/2008/http-botnets.pdf
http://dl.acm.org/citation.cfm?id=1323128.1323129
http://dl.acm.org/citation.cfm?id=1323128.1323129
http://doi.acm.org/10.1145/1455770.1455774
http://doi.acm.org/10.1145/1455770.1455774
http://www.usenix.org/events/iptps09/tech/full_papers/memon/memon.pdf
http://www.usenix.org/events/iptps09/tech/full_papers/memon/memon.pdf

Peer-to-Peer Netw. Appl.

13. Rajab MA, Zarfoss J, Monrose F, Terzis A (2006) A multifaceted
approach to understanding the botnet phenomenon. In: IMC ’06:
proceedings of the 6th ACM SIGCOMM conference on internet
measurement. ACM, New York, pp 41–52. http://doi.acm.org/10.
1145/1177080.1177086

14. Ripeanu M (2001) Peer-to-peer architecture case study: Gnutella
network. In: First international conference on peer-to-peer com-
puting. Proceedings, IEEE, pp 99–100

15. Rowstron AIT, Druschel P (2001) Pastry: scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
In: Middleware ’01: proceedings of the IFIP/ACM international
conference on distributed systems platforms Heidelberg. Springer-
Verlag, London, pp 329–350

16. Steiner M, Carra D, Biersack EW (2008) Faster content access in
kad. In: P2P 2008, 8th IEEE international conference on peer-to-
peer computing, Aachen. doi:10.1109/P2P.2008.28

17. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H
(2001) Chord: a scalable peer-to-peer lookup service for internet
applications. In: SIGCOMM ’01: proceedings of the 2001 confer-
ence on applications, technologies, architectures, and protocols for
computer communications. ACM, New York, pp 149–160. http://
doi.acm.org/10.1145/383059.383071

18. Stone-Gross B, Cova M, Cavallaro L, Gilbert B, Szydlowski M,
Kemmerer R, Kruegel C, Vigna G (2009) Your botnet is my bot-
net: analysis of a botnet takeover. In: Proceedings of the 16th ACM
conference on computer and communications security. ACM,
pp 635–647

19. Stover S, Dittrich D, Hernandez J, Dietrich S (2007) Analysis of
the Storm and Nugache Trojans: P2P Is Here. ;login: The USENIX
Magazine 32(6):18–27. http://www.usenix.org/publications/login/
2007-12/pdfs/stover.pdf

20. Stutzbach D, Rejaie R (2006) Understanding churn in peer-to-peer
networks. In: IMC ’06: Proceedings of the 6th ACM SIGCOMM
conference on internet measurement. ACM, New York, pp 189–
202. http://doi.acm.org/10.1145/1177080.1177105

21. Wang P, Sparks S, Zou CC (2007) An advanced hybrid peer-to-
peer botnet. In: HotBots’07: proceedings of the first conference on
first workshop on hot topics in understanding botnets. USENIX
Association, Berkeley

22. Zhao BY, Kubiatowicz JD, Joseph AD (2001) Tapestry: an
infrastructure for fault-tolerant wide-area location and Tech. rep.,
Berkeley

Ghulam Memon is a Ph.D.
candidate at the University
of Oregon. During his Ph.D.,
his focus has been the design,
measurement and security
of content-oriented networks
(e.g., Kad, Rebus). From 2002
to 2004, Ghulam worked as a
software developer for Synen-
tia Karachi and Synentia
Dubai. Ghulam also worked
as a Research Programmer at
the University of California
San Diego from 2004 to 2006,

where he designed and developed web-based analysis tools for geo-
scientists. Ghulam graduated with B.Sc. (Hons.) from the University
of Huddersfield in 2002, and received a gold medal for maintaining
the best GPA in his class. Ghulam has been a member of IEEE and
ACM since 2006. Address: 120 Deschutes Hall, 1202 University of
Oregon, Eugene, OR 97403-1202 Email: gmemon@cs.uoregon.edu

Dr. Jun Li is an associate
professor in the Department
of Computer and Information
Science at the University of
Oregon, and directs the Net-
work Security Research Lab-
oratory there. He received his
Ph.D. from UCLA in 2002
(with honors), M.E. From Chi-
nese Academy of Sciences in
1995 (with Presidential Schol-
arship), and B.S. from Peking
University in 1992, all in com-
puter science. In 2011 he is

also a “Catedra de Excelencia” (Chair of Excellence) at the Carlos III
University of Madrid, Spain, and a visiting researcher at the IMDEA
Networks Institute in Spain.

Specialized in computer networks, distributed systems, and their
security, Dr. Jun Li is currently researching Internet monitoring and
forensics, social networking, future Internet architecture, and vari-
ous network security topics. He studies both direct countermeasures
against network security attacks (including Internet worms, phishing,
and botnets) and fundamental security issues and solutions at the net-
work architecture and protocol level (such as security for Internet
routing, DNS, and peer-topeer networking). He has also done research
on open architecture and programmable network as well as sensor
networks.

He has published a book on disseminating security updates over the
Internet and more than 30 peerreviewed papers. He has also served on
several USA National Science Foundation research panels and more
than 50 international technical program committees. He is a 2007
recipient of the prestigious NSF CAREER award, a senior member of
ACM, and a senior member of IEEE.

Reza Rejaie received the M.S.
and Ph.D. degrees from the
University of Southern Cali-
fornia, Los Angeles, in 1996
and 1999, respectively, and
the B.S. degree from the
Sharif University of Technol-
ogy, Iran, in 1991. He is cur-
rently an Associate Professor
at the University of Oregon,
Eugene. From 1999 to 2002,
he was a Senior Technical
Staff Member at AT&T Lab-
sResearch in Menlo Park, CA.

His research interests include P2P networking, network measurement,
multimedia networking and online social networks. Dr. Rejaie received
an NSF CAREER Award for his work on P2P streaming in 2005.
He has been a Senior Member of the Association for Computing
Machinery (ACM) since 2006.

Author's personal copy

http://doi.acm.org/10.1145/1177080.1177086
http://doi.acm.org/10.1145/1177080.1177086
http://dx.doi.org/10.1109/P2P.2008.28
http://doi.acm.org/10.1145/383059.383071
http://doi.acm.org/10.1145/383059.383071
http://www.usenix.org/publications/login/2007-12/pdfs/stover.pdf
http://www.usenix.org/publications/login/2007-12/pdfs/stover.pdf
http://doi.acm.org/10.1145/1177080.1177105

	Tsunami: A parasitic, indestructible botnet on Kad
	Abstract
	Introduction
	Related work
	Centralized botnets
	Peer-to-peer (P2P) botnets
	Hybrid botnets

	Background and preliminary
	Distributed hash table (DHT)
	Kad
	Lookup phase
	Storage/retrieval phase

	Design: Tsunami botnet as a parasite of Kad
	Tsunami objective refined
	Tsunami command
	Sending commands to tsunami bots embedded in Kad
	Receiving response

	Tsunami attack examples
	Distributed denial of service (DDoS)
	Short commands
	Long commands

	Spam

	Evaluation
	Issuing commands
	Performance of response reachability

	Implementation of tsunami
	Defense against tsunami botnet
	Capturing DHT traffic
	Monitoring a single peer (peer monitor)
	Monitoring a single lookup ID (ID monitor)

	Protecting Kad against tsunami
	Capturing malicious traffic
	Redirecting malicious traffic

	Evaluation of tsunami defense
	Emulating defense
	Emulating C&C
	Results

	Limitations of proposed defense

	Conclusion
	Acknowledgments
	References

