
Computer Networks 168 (2020) 106981

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

VeriTable: Fast equivalence verification of multiple large forwarding

tables

�

Yaoqing Liu

∗, Garegin Grigoryan , Jun Li , Guchuan Sun , Tony Tauber

Computer Science Department, Fairleigh Dickinson University, 10 0 0 River Road, Teaneck, NJ 07666 United States

a r t i c l e i n f o

Article history:

Received 1 January 2019

Revised 2 October 2019

Accepted 4 November 2019

Available online 4 December 2019

Keywords:

Routing table forwarding equivalence

Forwarding verification

Longest prefix matching

Routing scalability

Network diagnosis

Patricia trie algorithm

a b s t r a c t

Due to network practices such as traffic engineering and multi-homing, the number of routes, also known

as IP prefixes, in the global forwarding tables has been increasing significantly in the last decade and

continues growing in a super linear trend. One of the most promising solutions is to use Forwarding

Information Base (FIB) aggregation algorithms with incremental handling of BGP updates. FIB aggregation

compresses the forwarding tables by reducing the number of prefixes in an FIB. Obviously, FIB aggregation

should preserve the forwarding behavior of the data plane, i.e., packets must be forwarded in the same

directions as if the original FIB is applied. Failures at the control plane or an incorrect algorithm may

violate this rule. Thus we pose a research question, how can we efficiently verify that the original table

achieves the same forwarding behavior for a router as the aggregated one? This paper proposes VeriTable,

an algorithm that addresses the problem of verification of the equivalence of forwarding tables and the

challenges caused by the Longest Prefix Matching (LPM) lookups. VeriTable employs a single tree traversal

to quickly check if multiple forwarding tables are equivalent, as well as if they result in network ”black-

holes”. VeriTable algorithm significantly outperforms the state-of-the-art work for both IPv4 and IPv6

tables in terms of the total running time, memory access times and memory consumption.

© 2019 Elsevier B.V. All rights reserved.

1

t

t

t

r

T

p

a

s

h

o

f

p

m

i

r

l

C

g

r

m

c

s

t

s

p

d

g

e

i

r

t

n

t

t

h

1

. Introduction

While the amounts of the Internet traffic continues to increase,

he Internet Service Providers’ (ISP) task to provide fast, consis-

ent and loop-free routing becomes more challenging. For example,

he size of the global routing table, that is installed on backbone

outers, exceeds 70 0,0 0 0 entries for IPv4 addresses [2] (see Fig. 1).

he great amount of entries in the forwarding table leads to the

roblem known as the overflow of the Ternary Content Address-

ble Memory (TCAM). As TCAM is used for fast hardware-based

election of the Longest Prefix Match for each incoming packet, it

as memory limitations, increased power consumption, and high

perational costs [3–5] . To mitigate this problem, Forwarding In-

ormation Base (FIB) aggregation is considered as one of the most

romising solutions [6] . The basic idea of FIB aggregation is that

ultiple prefix entries sharing a same next hop can be merged

nto a single entry. Unlike many other approaches, FIB aggregation

equires neither architectural or hardware changes [7,8] . FIB aggre-
� This paper is an extension of our previous publication ”VeriTable: Fast Equiva-

ence Verification of Multiple Large Forwarding Tables” [1] that appeared in INFO-

OM 2018.
∗ Corresponding author.

E-mail address: yliu@fdu.edu (Y. Liu).

t

r

i

a

t

c

ttps://doi.org/10.1016/j.comnet.2019.106981

389-1286/© 2019 Elsevier B.V. All rights reserved.
ation is a software solution and can be applied locally on a single

outer. While FIB aggregation can compress forwarding tables by

ore than 50% [9] , it is necessary to verify the correctness of such

ompression. More specifically, the forwarding behavior of a router

hould not change after the aggregated forwarding table replaces

he original forwarding table. Moreover, the aggregation algorithm

hould correctly conduct incremental routing updates. Thus, the

acket with any possible destination address will be forwarded or

ropped regardless of what table was used, the original or the ag-

regated one.

This work is dedicated to the general problem of verifying the

quivalence of forwarding tables, i.e. if a router’s forwarding behav-

or is the same for each of the comparable tables. Besides a natu-

al application as validating the correctness of FIB aggregation and

he incremental updates, verifying the forwarding equivalence is

ecessary for testing a router’s hardware and software. Due to dis-

ributed system design of a traditional router, it contains at least

hree copies of the same forwarding table. The first copy, called

he master forwarding table, is located at the control plane of the

outer, which is responsible for collecting, selecting and distribut-

ng routes. The master forwarding table, in its turn, is derived from

 Routing Information Base (RIB). The second copy is located in

he forwarding engines of a router. Finally, the third copy is lo-

ated in forwarding chips with TCAM memory. All the copies of

https://doi.org/10.1016/j.comnet.2019.106981
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2019.106981&domain=pdf
mailto:yliu@fdu.edu
https://doi.org/10.1016/j.comnet.2019.106981

2 Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981

Fig. 1. Active BGP entries in AS650 0 0 (FIB) [2] .

t

b

t

t

p

t

t

b
the forwarding tables on a router must be equivalent, which may

not be the case when a router is incorrectly configured or after

link failures [10] . In addition, the routing updates accepted by a

router shall simultaneously be reflected in all of its forwarding ta-

bles. Thus, verifying the equivalence of multiple forwarding tables

is necessary for debugging and diagnosing misconfiguration. An ex-

ample of such software is Cisco Express Forwarding (CEF) real-time

consistency checkers, that discover prefix inconsistencies between

the RIB and FIB ([11,12]). Such inconsistencies may happen due to

the asynchronous nature of the distribution mechanism for both

databases. They include missing prefix or different next hops on a

line card and in the RIB.

A relaxed version of the forwarding equivalence verification,

when an algorithm needs to verify if certain routes are missing

in at least one of the comparable forwarding tables, but exist in

other forwarding table(s), will help network operators to prevent

so-called network ”black-holes”. The existence of ”black-holes” may

lead to a silent disappearance of the traffic destined for a certain

scope of IP addresses. Such failures may occur due to several rea-

sons, such as misconfiguration of an individual router and slow

network convergence [13] .

There are at least four challenges necessary to overcome for de-

signing an efficient algorithm, that verifies the equivalence of for-

warding tables:

(1) Verify forwarding equivalence over the entire IP address

space, i.e. 2 32 IP addresses for IPv4 and 2 128 addresses for

IPv6 protocol. More specifically, the equivalence condition

is satisfied only if, for each IP address, the Longest Prefix

Matching operation in FIB results in a same next hop.

(2) An efficient algorithm should be able to handle large for-

warding tables for both IPv4 and IPv6 forwarding tables. It

is estimated that millions of routing entries will be present

in the global forwarding table in the next decade [14] .

(3) The algorithm should be fast enough for processing incre-

mental updates. Typically, the number of such updates is

100 per second on average, however, it can reach the fre-

quency of several thousand updates per second during the

spikes.
(4) In several cases, such as verification of a ”black-hole-free”

network or verifying the equivalence of all forwarding tables

on the same device, the algorithm should be able to process

multiple large forwarding tables simultaneously.

This work presents VeriTable , an algorithm that conquered all of

he above-mentioned challenges and makes the following contri-

utions:

(1) It presents the design and the implementation of an algo-

rithm that verifies multiple snapshots of arbitrary rout-

ing/forwarding tables simultaneously through a single PA-

TRICIA tree [15] traversal.

(2) For the first time, this work examines the forwarding equiv-

alence over both real and large IPv4 and IPv6 forwarding ta-

bles; in addition, it for the first time demonstrates the re-

sults of aggregation of IPv6 forwarding tables.

(3) VeriTable significantly outperforms existing work TaCo and

Normalization . This work both demonstrates and evaluates

these two algorithms, using IPv4 and IPv6 forwarding tables.

According to the evaluation results, VeriTable is 2 and 5.6

times faster than TaCo in terms of verification time for IPv4

and IPv6, respectively, while it only uses 36.1% and 9.3% of

total memory consumed by TaCo in a two-table scenario.

For Normalization, VeriTable is 1.6 and 4.5 times faster in

terms of the total running time for IPv4 and IPv6, respec-

tively;

(4) In a relaxed version of VeriTable , it is able to quickly test if

multiple forwarding tables cover the same routing space. We

also extended the algorithm to quickly identify if there are

loops and blackholes in a large network. The evaluation re-

sults are described in Section 4 .

The rest of this paper is organized as follows. Section 2 presents

he necessary background information on the Internet organiza-

ion, a router’s architecture, the Longest Prefix Match rule and the

roblem of verifying the equivalence of forwarding tables. In addi-

ion, it presents two state-of-the-art solutions: TaCo and Normaliza-

ion . Section 3 describes the theorem and property used in VeriTa-

le algorithm, the design of VeriTable algorithm, its data structures

Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981 3

Fig. 2. The generic router architecture.

a

T

2

2

c

t

a

o

2

d

d

M

F

h

Table 1

Forwarding Information Base (FIB).

Prefix Next Hop

128.153.0.0/16 A

128.153.64.0/18 B

128.153.128.0/17 C

128.153.192.0/18 D

128.153.96.0/19 E

Table 2

Forwarding Equivalence of FIBs.

(a) FIB table 1 (b) FIB table 2

Prefix Next hop Prefix Next hop

– A – B

000 B 001 A

01 B 1 A

11 A 100 A

1011 A

2

t

p

a

h

t

a

a

d

i

(

t

t

I

b

(

o

a

t

2

a

1 Default route matches the IP addresses that don’t have any match among other

table entries. The default route can be used if only the table entries do not fully

cover the IP address space.
nd the workflow. Section 4 shows the evaluation of VeriTable over

aCo and Normalization . Finally, Section 6 concludes this work.

. Background

.1. The generic router architecture

Routers play a vital role in computer networking. First, they cal-

ulate, select and distribute the paths towards different destina-

ions in the global network. Second, they direct the network traffic

long selected paths hop by hop. A typical network router consists

f two main components (see Fig. 2):

(1) Control plane. Its duty is to run different routing protocols,

such as the Border Gateway Protocol (BGP) [16] , and to ex-

change routes towards other networks (i.e., their IP prefixes)

with neighbor routers. In addition, for each destination pre-

fix, the control plane runs BGP decision process, to pick the

best routes among all collected. The destination IP prefixes

and selected routes are stored in the Routing Information

Base (RIB). Finally, each destination prefix and the next hop

from the selected route is pushed in the data plane. The con-

trol plane usually runs on a cheap Dynamic Random Access

Memory (DRAM).

(2) Data plane. Dedicated for packet forwarding. It maintains

several copies of the Forwarding Information Base (FIB), the

entries of which are derived from the routes, selected and

pushed by the control plane. An FIB contains the IP pre-

fixes of different length and the corresponding next hops,

i.e., output ports. To guarantee fast next hop lookup for

each incoming packet, FIB memory resides on highly expen-

sive [3,17,18] line cards with Ternary Content-Addressable

Memory (TCAM) chips. As the number of entries in the

global FIB constantly grows, network operators try to com-

press the forwarding tables using different aggregation tech-

niques, in order to prolong the lifetime of the legacy TCAM

chips [6] .

.2. Longest prefix match rule

When a packet arrives at a router’s data plane, its next hop is

etermined according to the Longest Prefix Match of packet’s IP

estination address in the FIB. An example of the Longest Prefix

atch selection is shown in Table 1 . The table represents a sample

IB for IPv4 addresses with 32-bit address space. Several cases may

appen during the matching process:

(1) An IP destination address does not have a match in the FIB.

In such case, the packet will be dropped by the router. For

example, an IP destination address that does not start with
the prefix 128.153.0.0/16, for example, 45.56.76.120, will be

discarded.

(2) An IP destination address has a single match in the table. In

such case, the packet will be simply forwarded to the cor-

responding next hop. An example of such an IP address is

128.153.0.11 with the match 128.153.0.0/16 and next hop A .

(3) An IP destination address has several matches in the

table. In such case, a match with the longest prefix

length will be selected. An example of such an IP ad-

dress is 128.153.124.35, that matches prefixes 128.153.0.0/16,

128.153.64.0/18, 128.153.96.0/19. However, only the prefix

128.153.96.0/19 will be selected by the data plane engine,

since it is the Longest Prefix Match. Thus, the packet will be

forwarded to the next hop E .

.3. The equivalence of forwarding tables

The forwarding tables are equivalent if and only if when applied

o a router, a router’s forwarding engine behaves similarly for a

acket with any possible IP destination address (see Section 3.1 for

 more formal definition).

In other words, a packet will be forwarded to the same next

op, regardless of what equivalent forwarding table was used for

he FIB. We use Table 2 with the binary representation of prefixes

s an example. In this example, the FIB tables 1 and 2 are equiv-

lent, even though their default routes (with the prefix ”_ ”1) are

ifferent. For exam ple, a packet with destination IP address start-

ng with 0 0 0 will be forwarded to the next hop B in both tables

LPM is ”_ ” for the first table and 0 0 0 for the second table). On

he contrary, if the FIB Table 1 changes its default next hop to A ,

he forwarding tables will be no longer equivalent. For example, an

P address starting with 011 will be forwarded to the next hop A

y the first FIB (LPM: ”_ ”), and to the next hop B by the second FIB

LPM: 01).

The naive way for verifying the forwarding equivalence of two

r more forwarding tables is to match each possible IP address

gainst those tables. However, such approach is not feasible, since

he IP address space for IPv4 and IPv6 protocols contains 2 32 and

128 addresses, respectively. We present the current state-of-the-

rt approaches, TaCo and Normalization in the following section.

4 Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981

Fig. 3. Binary prefix trees.

Fig. 4. Binary prefix trees after leaf pushing.

s

e

e

2

f

b

b

a

p

b

b

b

h

a

s

p

p
2.4. State of the art

2.4.1. Taco: Semantic equivalence of IP prefix tables

TaCo verification algorithm [19] bears the following features:

(1) TaCo is designed for comparing two tables simultaneously.

(2) It uses separate binary trees to store all entries for each for-

warding/routing table.

(3) TaCo leverages leaf pushing to obtain non-overlapping pre-

fixes in both trees.

(4) TaCo performs two types of comparisons: (a) direct compar-

isons of the next hops for prefixes, common between two

tables, and (b) comparisons that involve LPM lookups of the

IP addresses, extended from the remaining prefixes of each

table.

More specifically, TaCo needs to use four steps to complete

equivalence verification for the entire routing space. We illustrate

each step using two FIBs, shown at Table 2 a and b:

(1) Building a binary tree for each table, as shown in Fig. 3 . The

binary tree is built as a traditional prefix tree, where a left

branch represents the bit 0 and the right branch represents

the bit 1. The root node of such tree is a default node with

the prefix length equal to zero. To add a prefix to the binary

tree, a node should be generated according to the bits of the

prefix, with the depth equal to the prefix length. Such node

will contain the value of the next hop from the forwarding

table. In the meantime, binary prefix tree requires generat-

ing auxiliary nodes at each level of the prefix tree.

(2) Perform leaf pushing for each binary tree. Leaf pushing op-

eration requires each node with a single child on one branch

to generate a second child on another branch. The next hops

of the generated nodes should be inherited from their clos-

est ancestor with the next hop value. Fig. 4 shows the resul-

tant binary trees. Note, that after leaf pushing, TaCo’s inter-

nal nodes do not need to carry next hop information, since

all the possible Longest Prefix Matches are the leaf nodes.

(3) Finding common prefixes and their next hops, then making

comparisons. In Fig. 4 , those are the prefixes 0 0 0, 0 01, 01,

100, 11.

(4) Extending non-common prefixes, found in both binary trees,

to IP addresses and making comparisons. Prefix extension

is performed by adding enough zero bits at the end of a

prefix, to obtain valid IP address (32-bit or 128-bit address

for IPv4 and IPv6 protocols respectively). In the example,
Table 1 needs to extend the prefix 1010 and 1011 to an

IP address and perform an IP lookup traversal through the

Table 2 . At Table 2 , the non-common prefix is 101. TaCo

extends this prefix to an IP address and performs an IP

lookup traversal through the Table 1 . The IP lookups in the

binary tree are performed in the following way: starting

from the root node, the algorithm reads the IP address bit

by bit. If 0 bit is encountered, the algorithm moves to the

left branch; otherwise, it moves to the right branch. The IP

lookup traversal ends at the leaf node and returns the next

hop value of that node.

Finally, when all comparisons end up with the equivalence re-

ults, TaCo theoretically proves that two FIB tables have forwarding

quivalence. To summarize, TaCo undergoes several inefficient op-

rations:

(1) Leaf pushing for binary trees, a costly and slow operation.

(2) To find common prefixes for direct comparisons, TaCo must

additionally perform tree traversals.

(3) IP address extension and mutual lookups for non-common

prefixes are CPU-expensive.

(4) Finally, to compare n tables and find the entries that cause

possible non-equivalence, it may require (n − 1) ∗ n times of

tree-to-tree comparisons. For example, for three tables A, B,

C there are six comparisons: A vs B, A vs C, B vs C, B vs A,

C vs B, C vs A . Thus, it may require 90 tree-to-tree combina-

tions to compare 10 tables mutually. On the contrary, Veri-

Table eliminates all these expensive steps and accomplishes

the verification over an entire IP routing space through a

single traversal over the Patricia trie.

.4.2. Normalization

Rétvári e t al. in [20] show that a unique form of a binary tree

or a forwarding table with the specific forwarding behavior can

e obtained through Normalization , a procedure that eliminates

rother leaf nodes with identical labels (e.g., next hop values) from

 leaf-pushed binary tree. Indeed, if a recursive substitution is ap-

lied to the binary trees in Fig. 4 , binary trees (a) and (b) will

e identical (see Fig. 5). Authors in [20] prove that the set of ta-

les with the same forwarding behaviors have identical normalized

inary trees. More specifically, Normalization verification approach

as three steps involved: (1) Leaf pushing; (2) tree compression

nd (3) side-by-side verification. Leaf pushing operation was de-

cribed in details in Section 2.4.1 . Tree compression involves com-

ressing two brother leaf nodes with identical values, into their

arent node. The parent node’s next hop will be then equal to the

Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981 5

Fig. 5. Binary prefix trees after normalization.

n

p

fi

t

o

s

t

t

c

t

e

i

o

3

p

s

d

i

3

P

D

l

t

c

L

a

D

T

g

N

f

Table 3

Forwarding tables for 3-bit address space.

(a) FIB table T 1 (b) FIB table T 2

Prefix Next hop Prefix Next hop

– A – B

11 B 10 A

0 B

(c) Joint FIB table T

Prefix Next hop in Table 1 Next hop in Table 2

– Not an LPM in T

0 B B

10 A A

11 B B

I

o

s

b

t

V

T

i

t

i

P

S

t

n

t

b

e

D

t

p

p

r

D

E

t

N

L

m

b

T

a

s

F

b

A

s

L

h

N

j

P

o

ext hop value of the compressed brother nodes. This is a recursive

rocess until no brother leaf nodes have the same next hops. The

nal step for verification is to verify the sameness of the binary

ree. For that goal, the algorithm needs to perform full simultane-

us traversal over both trees.

Although Normalization needs to perform the expensive recur-

ive leaf compression operation, it has several significant advan-

ages over TaCo . First, unique binary trees contain fewer nodes,

herefore the traversal over those trees is quicker. Second, verifi-

ation of the identity of binary trees requires no IP address ex-

ensions and IP lookups (for satisfying the forwarding equivalence,

ach prefix in the first normalized tree must have a common prefix

n the second normalized tree). In Section 4 , we present the results

f comparison between VeriTable, TaCo and Normalization .

The following section presents the design of VeriTable in details.

. Design

In this section, first, we represent VeriTable theorem and the

roperty derived from the theorem. Next, we introduce the data

tructures used in this work and the workflow of VeriTable . In ad-

ition, we used a smalll example to demonstrate each step of Ver-

Table .

.1. Veritable theorem and property

First, we need to formalize the definition of the terms Longest

refix Match and Forwarding Equivalence .

efinition 1 Longest Prefix Match . Suppose p is a prefix with

ength l p in a forwarding table T . We denote p as p 1 p 2 .p l p , where

p = { 0 , 1 } l p (i.e., p i is 0 or 1 for i = 0 , 1 , 2 , . . . , l p). Also suppose

here is a string s = { 0 , 1 } l s , where l s is the length of s . Then, ac-

ording to the Longest Prefix Matching rule, we define that p is the

ongest Prefix Match for s in T , namely, p = LPM s (T), if and only if

(1) l p ≤ l s
(2) p is a prefix for s , i.e. p 1 p 2 .p l p = s 1 s 2 .s l p .

(3) � p ′ in T , where p ′ is a prefix of s and l p ′ > l p .

In the following proofs, we denote the value of the next hop for

 prefix p in the table T as N T (p).

efinition 2 Forwarding Equivalence . The forwarding tables

 1 , T 2 , . . . , T m

are forwarding equivalent, if and only if, for every sin-

le IP address ω = { 0 , 1 } n , N T 1
(LP M ω (T 1)) = N T 2

(LP M ω (T 2)) = . . . =
 T m (LP M ω (T m

)) , where n is the length of an IP address.

According to the definition above, verifying the equivalence of

orwarding tables requires 2 32 or 2 128 IP addresses for IPv4 and
Pv6, respectively. The goal of VeriTable is to reduce the number

f comparisons by using prefixes, but still verify the entire routing

pace. To do that, we leverage a joint forwarding table, that is build

y merging all comparable tables into a single table. The following

heorem proves an important property of such a table; we design

eriTable based on that property.

heorem 1. Let T to be a joint forwarding table, built by merging

ndividual forwarding tables T 1 , T 2 , . . . , T m

. Assume that p = LP M ω (T) ,

hen we can prove that ∀ ω = { 0 , 1 } n , LP M ω (T i) = LP M p (T i) , where n

s the length of an IP address and i = 1 , 2 , . . . , m .

roof. Let a prefix p be p 1 p 2 .p l (l ≤ n), and ω be ω 1 ω 2 .ω n .

uppose, p = LP M ω (T) , then ω = p 1 p 2 . . . p l ω l+1 .ω n . We prove the

heorem using contradiction. Suppose, LP M ω (T i) � = LP M p 1 p 2 .p l
(T i) ,

amely, LP M p 1 p 2 ... p l ω l ω l+1 .ω n (T i) � = LP M p 1 p 2 .p l
(T i) . Then, according to

he Definition 2 , there exists a different prefix p ′ in the forwarding ta-

le T i , such as its length l p ′ > l p , and p ′ is a prefix for w. But then, p ′
xists in T. Thus, p can not be a Longest Prefix Match for ω in T (see

efinition 2), which is contradictory to the initial assumption of this

heorem, that p = LP M ω (T) . �

Based on the Theorem 1 , we derive VeriTable property: com-

aring next hops for each ω in T 1 , T 2 , . . . , T m

is equivalent to com-

aring next hops for each p in T 1 , T 2 , . . . , T m

. More formally, we

ephrase the definition of Forwarding Equivalence :

efinition 3. The forwarding tables T 1 , T 2 , . . . , T m

are Forwarding

quivalent , if and only if, ∀ ω = { 0 , 1 } n , ∀ p = LP M ω (T) , where T is

he union of T 1 , T 2 , . . . , T m

, N T 1
(LP M p (T 1)) = N T 2

(LP M p (T 2)) = . . . =
 T m (LP M p (T m

)) .

In other words, since all IP addresses ω are covered by all

ongest Prefix Matches p in the joint forwarding table, VeriTable

erely needs to go through all p s, match it against each compara-

le forwarding table and verify the equivalence of the next hops.

he outcome of this property can be illustrated through an ex-

mple with two forwarding tables with prefixes for 3-bit address

pace (see Table 3 a and b). According to the original definition of

orwarding Equivalence , to verify it one needs to match any possi-

le IP address against each of the tables (8 IP addresses in total).

ccording to VeriTable property, it is necessary to do the following

teps: (1) Join two tables into a single merged table; (2) Find all

ongest Prefix Matches p in that table; (3) For each p , find next

ops in each table. The resulting joint table is shown on Table 3 c.

ote, that since the address spaces 0 and 1 are fully covered in the

oin table T by other prefixes, the default prefix ”_ ” is not a Longest

refix Match (LPM) and is skipped during the verification process.

The following section shows the implementation and workflow

f each of VeriTable steps in details.

6 Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981

Fig. 6. PATRICIA Trees (PTs) Hollow nodes denote GLUE nodes, that help to build

the Patricia trie structure. Other non-hollow nodes are called REAL nodes, whose

prefixes are derived from at least one of the forwarding tables..

a

b

a

r

m

n

e

t

f

h

s

b

b

n

t

f

b

i

t

A

2

2

2

2

2

2

2

3

3

3

i

f

F

2 In this work we assume only single next hop for each distinct prefix in an FIB

table.
3.2. VeriTable implementation and workflow

According to VeriTable property, the implementation of VeriTable

should complete the following tasks: (1) Build a data structure of

the joint forwarding table; (2) Identify all Longest Prefix Matches p

of the joint table using that data structure; (3) For each p , find the

values of next hops in the comparable tables. To satisfy the for-

warding equivalence requirement, the next hop values from each

table shall be equal.

3.2.1. Setup the joint patricia trie

Patricia Trie

Instead of using a binary tree to store the joint forwarding ta-

ble, VeriTable uses the Joint Patricia trie data structure, derived

from the PATRICIA (Practical Algorithm to Retrieve Information

Coded in Alphanumeric) tree [15] , a data structure based on a radix

tree using a radix of two. PATRICIA Tree (PT) is a compressed bi-

nary tree and can be quickly built and perform fast IP address pre-

fix matching. For instance, Fig. 6 demonstrates the corresponding

PTs for FIB Table 2 a and FIB Table 2 b. The most distinguished part

of a PT is that the length difference between a parent prefix and

its child prefix can be equal to and greater than 1. This is different

than a binary tree, where the length difference must be 1. As a re-

sult, as shown in the example, PTs only require 7 and 4 nodes, but

BTs require 10 and 7 nodes for the two tables, respectively. While

the differences for small tables are not significant, however, they

are significant for large forwarding tables with hundreds of thou-

sands of entries. An exemplary IPv4 forwarding table with 575,137

entries needs 1,620,965 nodes for a BT, but only needs 1,052,392

nodes for a PT. The detailed comparison in terms of running time,

node accesses and memory consumption is presented in Section 4 .

The above-mentioned features enable the PT to use less space

and perform faster lookups. However, it results in more compli-

cated operations in terms of node creations and deletions, e.g.,

what if a new node with prefix 100 needs to be added in Fig. 6 a?

In fact, PT has to use an additional glue node to accomplish this

task.

Building the joint Patricia Trie The first step of VeriTable algo-

rithm is to build the joint Patricia trie (PT), the main data struc-

ture used in this work. Rather than building multiple binary trees

or PTs for each individual table and comparing them in a one-to-

one peering manner, as TaCo and Normalization do, VeriTable builds
n accumulated joint PT using all tables one upon another. In the

eginning, VeriTable takes the first table as an input and initiates

ll necessary fields to construct a PT accordingly. Afterward, while

eading other tables, the nodes with the same prefixes will be

erged. In case of new prefixes, VeriTable will add corresponding

odes to the joint PT.

For the next hops, VeriTable uses an integer array, located at

ach node of the joint PT. The size of the array is the same as

he number of tables for comparison. The array contains next hops

rom each individual forwarding table. More specifically, these next

ops will be placed at the corresponding n th element in the array,

tarting from 0, where n is the index number of the input FIB ta-

le 2 For instance, the next hop A of prefix 001 in FIB Table 2 will

e assigned as the second element in the Next Hop Array at the

ode with prefix 001 . If there is no next hop for a prefix in a par-

icular table, the value in the array will be initialized as ”_ ” by de-

ault, or called an ”empty” next hop (in the implementation, VeriTa-

le uses ”-1”). The nodes derived from at least one of the forward-

ng tables are REAL and contain at least one non-empty next hop in

he array. The rest of the nodes are called GLUE nodes. Algorithm 1

lgorithm 1 Building a Joint PT T .

1: procedure BuildJointP T (T 1 , T 2 , . . . , T n)

2: Initialize a PT T with its head node

3: Add prefix 0 / 0 on its head node.

4: Set default next hop values in the Next Hops array.

5: for each table T i ∈ T 1 , T 2 , . . . , T n do

6: for each entry e in T i do

7: Find a node n in T such as n.pre f ix is a longest

match for e.pre f ix in T

8: if n.pre f ix = e.pre f ix then

9: n.nexthop i ← e.nexthop

10: n.type ← REAL

11: else

12: Generate new node n ′
13: n ′ .pre f ix ← e.pre f ix

14: n ′ .nexthop i ← e.nexthop

15: n ′ .type ← REAL

16: Assume n has a child n c
17: if the overlapping portion of n c and n ′ is longer

than n.length but shorter than n ′ .length bits then

18: Generate a glue node g

19: n ′ .parent ← g

0: n c .parent ← g

21: g.parent ← n

2: g.type ← GLUE

3: Set g as a child of n

24: Set n ′ and n c as children of g

5: else

6: n ′ .parent ← n

27: n c .parent ← n ′
8: Set n c as a child of n ′
9: Set n ′ as a child of n

0: end if

31: end if

2: end for

33: end for

4: end procedure

n Appendix A elaborates the detailed work-flow to build a joint PT

or multiple tables. Table 4 describes a joint PT’s node’s attributes.

ig. 7 a shows the resultant joint PT for FIB Table 2 a and b.

Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981 7

Table 4

Joint Patricia trie node’s attributes.

Name Data type Description

parent Node Pointer Points to a node’s parent node

l Node Pointer Points to a node’s left child node if exists

r Node Pointer Points to a node’s right child node if exists

prefix String Binary string

length Integer The length of the prefix, 0–32 for IPv4 or 0–128 for IPv6

nexthop Integer Array Next hops of this prefix in T 1 . . . T n , size n

type Integer Indicates if a node is a GLUE or REAL

Fig. 7. VeriTable algorithm. In Figure a , for REAL nodes, the n th element denotes the next hop value of the corresponding prefix from the n th forwarding table. “ _ ′′ indicates

that no such prefix and next hop exist in the forwarding table. In Figure b , after each top-down step, the fields with previous “ _ ′′ value will be filled with new next hop

values derived from the corresponding Next Hop array elements of its nearest REAL node. In Figure c, F denotes False and T denotes True for the LEAK flag. GLUE nodes will

carry the True flags over to its parent recursively until finding a REAL node.

s

p

f

c

a

a

3

o

d

R

p

h

t

p

L

fi

i

”

f

s

o

c

t

fi

d

H

i

t

N

a

n

n

a

t

n

o

There are a several advantages for the design of a joint PT:

(1) Mostly, common prefixes among comparable tables will

share the same node and prefix, which can considerably re-

duce memory consumption and computational time for new

node creations.

(2) Common prefixes and uncommon prefixes will be automat-

ically gathered and identified in one single PT after the first

step of building the joint PT.

(3) Such design will greatly speed up subsequent comparisons

of next hops between multiple tables without traversing

multiple individual trees.

In the rest of this section, we describe the second, verification

tep of VeriTable , during which (1) VeriTable identifies all longest

refix matches (LPMs) in the joint PT; (2) VeriTable finds next hops

or each of those LPMs in the comparable tables; (3) Based on the

omparison of those next hops, VeriTable either verifies the equiv-

lence of the comparable forwarding tables or shows the discrep-

ncies between those tables.

.2.2. Verification steps

The verification step consists of a single post-order traversal

ver the joint PT. We divide this traversal into two phases: (1) Top-

own phase, during which VeriTable inherits next hops from the

EAL nodes towards the first REAL descendants; and (2) bottom-up

hase, during which VeriTable verifies the equivalence of the next

ops for each Longest Prefix Match (LPM) in the joint PT. Note,
hat both phases are rotating and replacing each other during the

ost-order traversal.

Top-down phase VeriTable follows the intuitive property of the

PM rule, according to which the real next hop value for a pre-

x that has an ”empty” next hop on the joint PT should be inher-

ted from its closest REAL ancestor, whose next hop exists and is

non-empty”. For example, to search the LPM matching next hop

or prefix 0 0 0 in the second table using Fig. 7 a, the next hop value

hould return B , which was derived from the second next hop B

f its nearest REAL ancestor – the root node. The top-down pro-

ess will help each specific prefix on a REAL node in the joint PT

o inherit the next hop from its closest REAL ancestor if the pre-

x contains an ”empty” next hop. More specifically, when moving

own, VeriTables is searching for ”empty” next hops in the Next

op array in each node. If ”empty” next hops are found, VeriTable

nitializes them with the next hop of their closest REAL parent. In

he meantime, ”non-empty” next hops are always preserved in the

ext Hop array. Note, that all GLUE nodes (hollow nodes in Fig. 7 a)

re skipped during this process because they are merely ancillary

odes helping to build up the tree structure and do not carry any

ext hop information.

After top-down phase, every REAL node will have a Next Hop

rray without any ”empty” next hops. Fig. 7 b shows the results of

he top-down phase. If there is not a default route 0/0 in the origi-

al forwarding tables, for calculation convenience, VeriTable creates

ne, with the next hop value 0 and node type REAL .

8 Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981

Algorithm 2 Forwarding Equivalence Verification.The initial value

of ancestor is NULL , and the initial value of node is T → root . For

simplicity, we assume the root node is REAL .

1: procedure VeriTable (ancestor, node)

2: if node.type = REAL then

3: ancestor = node � The closest ancestor node for a REAL

node is the node istelf

4: end if

5: l ← node.l

6: r ← node.r

7: if l � = NULL then

8: if l.type = REAL then

9: Inherit Next Hops (ancestor, l) � A REAL child node

inherits next hops from the closest REAL ancestor to initialize

“empty” next hops

10: end if

11: Le f tF l ag ← V eriT abl e (ancestor, l) � LeftFlag and RightFlag

signify the existing leaks at the branches

12: end if

13: if r � = NULL then

14: if r.type = REAL then

15: Inherit Next Hops (ancestor, r)

16: end if

17: RightF l ag ← V eriT abl e (ancestor, r)

18: end if

19: if l = NULL ∧ r = NULL then

20: CompareNextHops (node) � The leaf

nodes’ next hops are always compared; a verified node always

returns the false LeakFlag.

21: LeakF l ag ← F al se

22: return LeakF lag

23: end if

24: if l � = NULL ∧ l .l ength − node.length > 1 then

25: LeakF lag ← T rue

26: else if r � = NULL ∧ r.length − node.length > 1 then

27: LeakF lag ← T rue

28: else if l = NULL ∨ r = NULL then

29: LeakF lag ← T rue

30: else if Le f tF lag = T rue ∨ RightF lag = T rue then

31: LeakF lag ← T rue

32: end if

33: if LeakF lag = T rue ∧ node.type = REAL then

34: CompareNextHops (node)

35: LeakF l ag ← F al se

36: end ifreturn LeakF lag

37: end procedure

m

m

3

v

n

fi

b

i
Bottom-up phase As it was already mentioned above, this process

is interwoven with the top-down phase in the recursive post-order

verification step. While VeriTable moves downward, the top-down

operations will be executed. While it moves upward, a series of

operations will be conducted as follows. First of all, a leaf node

may be encountered, where the Next Hops array will be checked

linearly, i.e., element by element. If there are any discrepancies,

then VeriTable can immediately conclude that the forwarding tables

are non-equivalent. If all next hops share the same value, VeriTable

moves upward to its directly connected parent node.

To identify the Longest Prefix Matches in the joint PT at the

internal nodes, VeriTable needs to check the prefix length differ-

ence at each internal node. Two cases may occur: d = 1 and d > 1,

where d denotes the length difference between the parent node

and the child node.

The first case, i.e., d = 1 for all children nodes, implies that the

parent node has no extra routing space to cover between itself and

the children nodes. On the contrary, the second case d > 1 for at

least one child node, indicates that the parent node covers more

routing space than that of all its children nodes. If d > 1 happens

at any time, VeriTable sets a LEAK flag variable at the parent node,

to indicate that all of its children nodes are not able to cover the

same routing space as the parent. In case if this parent is a REAL

node, VeriTable identifies it as a Longest Prefix Match and verifies

it, according to the VeriTable property, described in Section 3.1 . If

the parent with at least one LEAK flag is a GLUE node, the flag will

be carried over up to the nearest REAL node, which can be an in-

termediate parent node of the GLUE node or a further ancestor. In

this case, the verification of the ”Next Hop” array will be executed

at that REAL node, after which the flag will be cleared.

Intuitively, VeriTable checks the forwarding equivalence over the

routing space covered by leaf nodes first, then over the remain-

ing ”leaking” routing space covered by internal REAL nodes. Fig. 7 c

demonstrates the bottom-up LEAK flag setting and carried-over

process. For example, d = 2 between the parent 10 and its child

1011 , so the LEAK flag on node 10 will be set to True first. Since

node 10 is a GLUE node, the LEAK flag will be carried over to its

nearest REAL ancestor node 1 with the Next Hops array (A,A) , where

the leaking routing space will be checked. Next, the LEAK flag will

be cleared to False to avoid future duplicate checks of the same

routing space.

In Algorithm 2 (see in Appendix A), we show the pseudocode

of the verification step of VeriTable . Note, that VeriTable can exactly

identify and print out the prefixes that cause non-equivalence of

the comparable forwarding table by simply referring to the Longest

Prefix Matches at the joint PT, on which the discrepancy was de-

tected.

3.2.3. Complexity

As we show above in this work, at every stage of VeriTable algo-

rithm we use the Patricia Tree data structure, which significantly

reduces the number of memory accesses compared to the binary

tree. In the worst case, when one of the comparable FIB tables con-

sists of all possible IP addresses from the range (i.e., 2 32 or 2 128

prefixes for IPv4 and IPv6 respectively), the Patricia tree will be

equivalent to the full binary tree. Thus, the running time of Veri-

Table is equal to O (k ∗m

∗n), where:

• k is the maximum prefix length in the comparable FIBs;

• m is the number of those FIBs;

• n is the number of nodes in a joint table. 3

In reality, prefixes in an FIB rarely exceed the length of 24 bits.

As we show in Section 4 , compared to TaCo, VeriTable reduces
3 n = 2 ∗ p − 1 in the worst case, where p is the number of prefixes in a largest

FIB.

b

f

l

V

emory accesses by at least 35 times, consuming much smaller

emory space.

.3. Applications-network problem diagnosis

The VeriTable algorithm can be extended and applied to solve

ery serious network problems. One application is to detect

etwork-wide loop issues mainly caused by incorrect network con-

guration. Another application is to discover if there are routing

lackholes, which happen when there is not any matching route

n the routing table and correspondingly the network traffic will

e dropped. The cause of blackholes may be due to sudden link

ailures or misconfiguration. We designed two algorithms to detect

oops and black holes in a realistic routing topology based on the

eriTable algorithm. We verified the results detailed in Section 4 .

Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981 9

Algorithm 3 Loop and Blackhole Detection in a Nexthop Array:

DFS.

1: procedure Loop _ and _ blackhole (node n)

2: a = n.nexthop array

3: b = a new array with the same size as a

4: Initialize b with status code ”1”

5: for each index i in a.size do

6: if a i = −1 then

7: There is a blackhole at i

8: end if

9: while b i = 1 do

10: b i = 0

11: i = a i
12: if b i = 0 then

13: There is a loop at i

14: else

15: if b i = −1 then

16: break

17: end if

18: end if

19: end while

20: Change all the visiting b i values to -1

21: end for

22: end procedure

3

S

s

n

n

a

”

r

I

t

o

i

f

v

I

d

m

o

r

e

t

i

g

d

i

c

n

k

”

t

b

i

n

3

i

Algorithm 4 Loop and Blackhole Detection in a Nexthop Array:

Indegree.

1: procedure Loop _ and _ blackhole (node n)

2: a = n.nexthop array

3: b = a new array with the same size as a

4: Initialize b with ”0”s, which indicates the in-degree at that

position

5: for each index i in a.size do

6: b i + +

7: end for

8: for each index i in b.size do

9: if b i = 0 then

10: i = a i
11: while i ≥ 0 do

12: b i − −
13: if b i � = 0 then

14: break

15: end if

16: end while

17: if i = −1 then

18: There is a blackhole at position i

19: end if

20: end if

21: end for

22: for each index i in b do

23: if b i � = 0 then

24: There’s loop at position i

25: Trace the loop from a i and change b a i to 0

26: end if

27: end for

28: end procedure

Algorithm 5 Loop and Blackhole Detection after Adding an Entry.

1: procedure Ad d (ancestor, i, pre f ix, nxthop)

2: target = search (ancestor, pre f ix)

3: if target is NULL or GLUE then

4: target = createREALnode (ancestor, pre f ix)

5: inherit all the nexthops from target ’s nearest REAL ances-

tor except the one at index

6: end if

7: data = target.data

8: dat a.st atus i = 1

9: data.next hop i = nxt hop

10: Detect Loops and Blackholes (target)

11: Change target ’s left and right child nodes to data.nexthop i =

nxthop

12: Detect Loops and Blackholes at the same time until a node

with nod e.d at a.st atus i = 1 is found

13: end procedure

r

t

m

t

f

t

s

A

a

t

t

w
.3.1. Loop and blackhole detection with static FIBs

The first algorithm is shown in Algorithm 3 . It uses Depth First

earch (DFS) to trace every forward chain. A forward chain is to

imulate the forwarding steps of a packet in a hop-by-hop man-

er. This algorithm allocates a temporary array visit for the current

exthop array. visit is used to record the visiting status, ”-1” means

lready scanned, ”0” means on the chain that is being scanned and

1” means not scanned. visit is initialized with all ”1”s. The algo-

ithm scans nexthop from left to right, checking nexthop i and visit i :

f nexthop i is equal to or bigger than the total FIB number, it means

he package is forwarded outside the network and there is no loop

r blackhole for this chain. If nexthop i is ”-1” and it is not the start-

ng point, it means there is a blackhole detected and the package

orwarded to this position will be dropped. Otherwise, the visit i
alue is checked: If visit i is ”-1”, there is no need to check again.

f visit i is ”1”, it is changed to ”0”. The iterator then moves to in-

ex nexthop i , and repeats the previous check step. If visit i is 0, it

eans the position is in the current chain and visited again. In an-

ther word, this position is in a loop. If this is the case, the loop is

eported and finally, all the visit i values are changed to ”-1”.

The second algorithm takes advantage of the property that ev-

ry vertex in a single loop has the Indegree of 1. Blackhole de-

ection is also included during the trace process. Detail is shown

n Algorithm 4 . This algorithm allocates a temporary array inde-

ree for the curren nexthop array. indegree is used to count the in-

egrees for every position. After all the elements in the array are

nitialized to 0, the algorithm scans nexthop from left to right: The

ount of the indegree value at nexthop i will be added by 1 unless

exthop i is ”-1”. After this step, the algorithm scans indegree and

eeps looking for indegree i with ”0” value, it changes indegree i to

-1”, which means visited, and subtract 1 from it. The iterator con-

inues to index nexthop i , repeats the previous step and adds the

lackhole check: if nexthop i is ”-1”, there is a blackhole at i . The

terator repeats the previous step as long as the indegree i is 0. Fi-

ally, the ”1” values in indegree reveal the vertices into loops.

.3.2. Loop and blackhole detection upon updates

The algorithm of the detections after adding an entry is shown

n Algorithm 5 . It has a precondition that there is no original
ecord at that position. If the position i is valid, nexthop i is set to

he given next hop. At the same time, status i is set to ”1”, which

eans there is an original record now. Then, the algorithm calls

he detection function to check if there are new loops or blackholes

ormed. Afterwards, it keeps searching the left and right nodes of

he current one, changes the nexthop i values, until a node with

tatus i = 1 is found.

The detection algorithm after modifying an entry is shown in

lgorithm 6 . It has a precondition that there was an original record

t that position. If the position i is valid, nexthop i is changed to

he given next hop. Then, the algorithm calls the detection func-

ion to check if there are new loops or blackholes formed. After-

ards, it keeps searching the left and right nodes of the current

10 Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981

Algorithm 6 Loop and Blackhole Detection after Modifying an En-

try.

1: procedure Mod(ancestor, i, pre f ix, nxthop)

2: target = search (ancestor, pre f ix)

3: data = target.data

4: data.next hop i = nxt hop

5: Detect Loops and Blackholes (target)

6: Change target ’s left and right child nodes to data.nexthop i =

nxthop

7: Detect Loops and Blackholes at the same time until a node

with nod e.d at a.st atus i = 1 is found

8: end procedure

s

p

s

s

o

4

v

1

t

u

o

t

w

t

a

2

n

i

o

s

r

f

t

4

w

F

b

f

w

i

T

a

o

N

T

a

b

m

t

b

b

i

I

c

b

b

4

s

t

v

i

c

i

s

p

a

4 We used FIFA-S algorithm, described in [9]
one, changes the nexthop i values, until a node with status i = 1 is

found.

The algorithm of the detections after deleting an entry is shown

in Algorithm 7 . It has a precondition that there was an original

Algorithm 7 Loop and Blackhole Detection after Deleting an Entry.

1: procedure Del(ancestor, i, pre f ix)

2: target = search (ancestor, pre f ix)

3: data = target.data

4: dat a.st atus i = 0

5: if All the status in target .data.stat us are 0 then

6: if target has two child nodes then

7: change target to GLUE node

8: else

9: target = remov enode (ancestor, target)

10: end if

11: nxt hop = next hop i from target ’s nearest REAL ancestor

12: else

13: Detect Loops and Blackholes (target)

14: nxt hop = target.next hop i
15: end if

16: Change target ’s left and right child nodes to data.nexthop i =
nxthop

17: Detect Loops and Blackholes at the same time until a node

with nod e.d at a.st atus i = 1 is found

18: end procedure

record at that position. If the position i is valid, nexthop i is changed

to ”-1” and status i is changed to ”0”. Then the current status array

is checked. if all the values in the array are ”0”, the PT runs the

erase operation and the nearest REAL ancestor node n is returned.

Afterwards, the algorithm keeps searching the left and right nodes

of the current one, changes the nexthop i values, until a node with

status i = 1 is found.

3.3.3. Complexity

As indicated by Algorithms 3 and 4 , when we need to detect

loops or blackholes, each of the algorithms needs to go through a

top-down process from the joint Patricia trie root to the leaves one

by one, and each internal node maintains an array with a constant

number of next hops. If we use n to represent the number of the

trie nodes and a to indicate the number of next hops in the array,

then the complexity of the loop and blackhole detection is O(an),

where a is a constant once the network topology is known. There-

fore, the overall complexity is O(n).

4. Results

All experiments in this work were run on a machine with In-

tel Xeon Processor E5-2603 v3 1.60GHz and 64GB memory. This
ection presents three different sets of experiments: first, the com-

arison of VeriTable against TaCo and Normalization in a two-tables

cenario. Next, it shows how scalable is VeriTable for the 10-tables

cenario. Finally, it shows the performance of the ”relaxed” version

f VeriTable for ”black-holes” detection in a network.

.1. VeriTable vs TaCo vs Normalization

Datasets were provided by the RouteViews project of the Uni-

ersity of Oregon (Eugene, Oregon USA) [21] . For the evaluation,

2 IPv4 Routing Information Bases (RIBs) and 12 IPv6 RIBs from

he first day of each month in 2016 were collected. For the sim-

lation purpose, AS numbers were used as next hops. By the end

f 2016, there were about 633K IPv4 routes and 35K IPv6 routes in

he global forwarding tables. To obtain different but equivalent for-

arding tables, an optimal FIB aggregation algorithm

4 was applied

o RIB tables. Fig. 8 shows the aggregation results for both IPv4

nd IPv6 tables. IPv4 achieves a better compression ratio (about

5% of the original size) than IPv6 (about 60% percent of the origi-

al size) because IPv4 has the larger number of prefixes. The orig-

nal and compressed tables were used to evaluate the performance

f VeriTable vs the state-of-the-art TaCo and Normalization (see de-

cription of these two algorithms in Section 2.4) verification algo-

ithms in a two-table scenario. The following metrics were used

or the evaluations: data structure building time, verification time,

he number of node accesses and memory consumption.

.1.1. Data structure building time

TaCo and Normalization need to build two separate binary trees,

hile VeriTable only needs to build a single joint Patricia Trie (PT).

ig. 9 shows the building time for both IPv4 and IPv6. VeriTa-

le outperforms TaCo and Normalization in both cases. In Fig. 9 a

or IPv4, TaCo uses minimum 939.38 ms and maximum 1065.41 ms

ith an average 986.27 ms to build two BTs. For Normalization ,

t is 1063.42 ms , 1194.95 ms and 1113.96 ms respectively. Our Veri-

able uses minimum 608.44 ms and maximum 685.02 ms with an

verage 642.27 ms to build a joint PT. VeriTable only uses 65.11%

f the building time of TaCo and 57.65% of the building time of

ormalization for IPv4 tables. In the scenario of IPv6 in Fig. 9 b,

aCo uses minimum 137.94 ms and maximum 186.73 ms with an

verage 168.10 ms to build two BTs; for Normalization these num-

ers are 162.40 ms , 225.75 ms and 197.25 ms. VeriTable uses mini-

um 36.39 ms and maximum 49.99 ms with an average 45.06 ms

o build a joint PT. VeriTable only uses 26.78% and 22.84% of the

uilding time of TaCo and Normalization respectively for IPv6 ta-

les. Although IPv6 has much larger address space than IPv4, Ver-

Table achieves much less building time under IPv6 than that of

Pv4, which is attributed to the small FIB size and the usage of a

ompact data structure – a joint PT. Note the slower Normalization

uilding time due to the operation of tree compression performed

y that algorithm.

.1.2. Verification time

A valid verification algorithm needs to cover the whole routing

pace (2 32 IP addresses for IPv4 and 2 128 IP addresses for IPv6)

o check if two tables bear the same forwarding behaviors. The

erification time to go through this process is one of the most

mportant metrics that reflects whether the algorithm runs effi-

iently or not. Fig. 10 shows the running time of TaCo, Normal-

zation and VeriTable for both IPv4 and IPv6, respectively. VeriTable

ignificantly outperforms TaCo in both cases thanks to the VeriTable

roperty, described in Section 3.1 . TaCo takes minimum 355.06 ms

nd maximum 390.60 ms with an average 370.73 ms to finish the

Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981 11

Fig. 8. IPv4 and IPv6 FIB size before and after aggregation

Fig. 9. IPv4 and IPv6 data structure building time

Fig. 10. IPv4 and IPv6 verification time

12 Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981

Fig. 11. IPv4 and IPv6 number of node accesses

o

e

i

V

T

c

r

fi

t

c

4

t

t

fi

n

V

s

t

b

(

N

b

b

t

h

f

a

b

4

c

p

p

p

e

a

V

1

o

t

s
whole verification process. VeriTable takes minimum 51.91 ms and

maximum 57.48 ms with an average 54.63 ms to verify the entire

IPv4 routing space. VeriTable only takes 14.73% of the verification

time of TaCo for verification over two IPv4 tables. Taking building

time into consideration, VeriTable is about 2 times faster than

TaCo for IPv4 verification (1356 ms VS 696 ms) . Normalization veri-

fication time for IPv4 tables is slightly faster than that of VeriTa-

ble (which is not the case for IPv6 tables). This is achieved due to

the compression that shrinks the size of the binary trees for ver-

ification process. However, Normalization has much longer build-

ing time than VeriTable . Overall, considering both building and

verification time, VeriTable is faster than Normalization by 40%

(696.90 ms VS 1154.08 ms) for IPv4 verification .

Fig. 10 b shows the IPv6 scenario (note the Y-axis is a log

scale). TaCo takes minimum 75.17 ms and maximum 103.18 ms with

an average 92.79 ms to finish the whole verification process. For

Normalization it is 11.47 ms , 15.58 ms , 13.87 ms respectively. VeriTa-

ble takes minimum 1.44 ms and maximum 1.97 ms with an aver-

age 1.75 ms to verify the entire IPv6 routing space. VeriTable only

takes 1.8% and 12.6% of the verification time of TaCo and Normal-

ization respectively for verification over two IPv6 tables. Consid-

ering both building and verification time, VeriTable is 5.6 times

faster than TaCo (261 ms VS 47 ms) and 4.5 times faster than Nor-

malization (211 ms VS 47 ms) for IPv6 verification . The fundamen-

tal cause for such a large performance gap is due to the single trie

traversal used in VeriTable over a joint PT with selection of Longest

Prefix Matches for comparisons, without tree normalization (see

Section 3) for details). Note, that the leaf pushing operation over

IPv6 forwarding table causes a significant inflation of the binary

trees. That explains much slower speed of TaCo and Normalization

verification for IPv6 tables than for IPv4 tables.

4.1.3. Number of node accesses

Node accesses, similarly to memory accesses, refer to how many

nodes were visited during the verification process. The total num-

ber of node accesses is the primary factor to determine the ver-

ification time of an algorithm. Fig. 11 shows the number of total

node accesses for both IPv4 and IPv6 scenarios. Due to the novel

design of VeriTable , it is able to control the total number of node

accesses to a significantly low level. For example, node accesses

range from 1.1 to 1.2 million for 580K and 630K comparisons,

which is less than 2 node accesses per comparison for IPv4. Ver-

iTable achieves similar results for IPv6. On the contrary, TaCo and

Normalization requires larger number of node accesses per compar-

ison. For instance, TaCo bears 35 node accesses per comparison,
n average, for IPv4 and 47 node accesses per comparison, on av-

rage, in IPv6. Normalization has 4 node accesses per comparison

n both cases. There are two main reasons for the gaps between

eriTable, TaCo and Normalization : (a) VeriTable uses a joint PT, but

aCo and Normalization uses separate binary trees; and (b) VeriTable

onducts only single post-order PT traversal. TaCo conducts several

epeated node accesses over a binary tree, including Longest Pre-

x Match lookups. Due to the unique form of a normalized binary

ree, Normalization requires no mutual IP address lookups and thus

onducts significantly fewer node accesses than TaCo .

.1.4. Memory consumptions

Memory consumption is another important metric to evaluate

he performance of algorithms. Fig. 12 shows the comparisons be-

ween TaCo, Normalization and VeriTable for both IPv4 and IPv6 pre-

xes, in terms of their total memory consumptions. In both sce-

arios, VeriTable outperforms TaCo and Normalization significantly.

eriTable only consumes around 38% (80.86 MB) of total memory

pace than that of TaCo and Normalization (223 MB) on average for

he same set of IPv4 forwarding tables. In the IPv6 case, VeriTa-

le bears even more outstanding results, consuming only 9.3%

4.9 MB) of total memory space than that of TaCo (53 MB) and of

ormalization on average. The differences in memory consumption

y VeriTable, Normalization and TaCo are caused by the unique com-

ined trie data structure used in VeriTable . A node in Normaliza-

ion and TaCo holds a single next hop instead of an array of next

ops, because TaCo and Normalization build separate BTs for each

orwarding table. Moreover, those BTs inflate after leaf pushing.

Overall, thanks to the design of VeriTable , it outperforms TaCo

nd Normalization in all aspects, including total running time, num-

er of node accesses and memory consumption.

.1.5. Scalability of VeriTable

This experiment shows the performance of VeriTable when

hecking the forwarding equivalence and differences over multi-

le forwarding tables simultaneously. For the experimental pur-

ose, 20 0 0 distinct errors were intentionally added to each com-

arable forwarding table. It was verified that the same number of

rrors were detected by VeriTable algorithm. The evaluation results

re showed in Table 5 . There are two primary observations. First,

eriTable is able to check the whole address space quickly over

0 large forwarding tables (336.41 ms) with relatively small mem-

ry consumptions (165 MB). Second, the building time, verification

ime, node accesses, and memory consumptions grow significantly

lower than the total number of forwarding entries. This indicates

Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981 13

Fig. 12. IPv4 and IPv6 memory consumption

Table 5

VeriTable’s comparison of 10 IPv4 FIB tables simultaneously.

Number of tables Total number of entries Building time(ms) Verification time (ms) Number of comparisons Node access times Number of errors MB

2 1230512 962 82 586942 1133115 4000 84

3 1845768 1326 108 1175884 1137115 6000 94

4 2461024 1684 135 1766826 1141115 8000 104

5 3076280 2060 172 2359768 1145115 10000 114

6 3691536 2471 194 2954710 1149115 12000 124

7 4306792 2869 213 3551652 1153115 14000 134

8 4922048 3248 224 4150594 1157115 16000 145

9 5537304 3630 322 4751536 1161115 18000 155

10 6152560 4007 337 5354478 1165115 20000 165

t

b

w

o

t

p

t

4

a

t

p

c

w

f

o

m

m

w

t

a

t

d

s

o

m

n

w

w

r

Table 6

Comparison of individual forwarding tables from RouteViews [21] with the merged

super table.

Table size Router IP ASN BGP peers Leaking routes

673083 203.189.128.233 23673 204 489

667062 202.73.40.45 18106 1201 507

658390 103.247.3.45 58511 1599 566

657232 198.129.33.85 292 153 495

655528 64.71.137.241 6939 6241 667

655166 140.192.8.16 20130 2 879

646912 85.114.0.217 8492 1504 796

646892 195.208.112.161 3277 4 772

641724 202.232.0.3 2497 294 1061

641414 216.221.157.162 3257 316 1239

d

c

4

l

d

e

t

r

s

F

h

b

f

n

hat VeriTable is scalable for equivalence checking of a large num-

er of tables. On the contrary, TaCo and Normalization naturally

ere not designed to compare multiple forwarding tables. In the-

ry, TaCo may need n ∗ (n − 1) table-to-table comparisons to find

he exact entries that cause differences, which is equal to 90 com-

arisons for this 10-table scenario. On the other hand, Normaliza-

ion needs additional decompression steps to find such entries.

.1.6. Routing space comparisons

A relaxed version with minor changes of VeriTable algorithm is

ble to quickly identify the routing space differences between mul-

iple FIBs. More specifically, after building the joint PT for multi-

le FIBs, VeriTable goes through the same verification process re-

ursively. When traversing each node, it checks if there is a case

hen the corresponding Next Hop array contains at least one de-

ault next hop (the next hop on default route 0/0) and at least

ne non-default next hop. If yes, it indicates that at least one FIB

isses certain routing space while another FIB covers it, which

ay potentially lead to routing ”black-holes”. In our experiments,

e used data from RouteViews [21] project, where 10 forwarding

ables that contain the largest number of entries were collected

nd then merged into a super forwarding table with 691,998 en-

ries. Subsequently, we compared the routing spaces of the 10 in-

ividual forwarding tables with the super forwarding table. The re-

ults of these comparisons (see Table 6 in detail) show that none

f these 10 forwarding tables fully cover the routing space of the

erged one. The leaking routes in Table 6 were calculated by the

umber of subtrees in the joint PT under which an individual for-

arding table ”leaks” certain routes, but the merged super for-

arding table covers them. These facts imply that the potential

outing ”black-holes” may take place between routers in the same
omain or between different domains. To this end, VeriTable verifi-

ation algorithm can find out routing space differences quickly.

.2. Network-wide loop and blackhole detection

In order to test the efficiency and scalability of the VeriTable’s

oop and blackhole detection algorithms. In the evaluation, we con-

ucted 6 runs of the experiments. The number of the entries in

ach forwarding table in the network ranges from 10 0K, 20 0K, all

he way to 600K. IP prefixes in each table are chosen from the

outing tables on RouteViews [21] project. The network topology is

hown in Fig. 13 . We select the next hops for each prefix of each

IB in the following way: We can see from Fig. 13 that each node

as some directly connected nodes, for example, the node num-

ered 8 is connected to nodes numbered 3, 5, 7 and 9. As a result,

or each prefix entry in forwarding table of node 8, therefore, the

ext hops is randomly selected from values of {3,5,7,9}.

14 Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981

Fig. 13. Network topology used in loop and blackhole detection.

Fig. 14. Time consumption.

Fig. 15. Memory consumption.

b

t

4

1

fi

1

n

w

v

w

f

b

t

h

b

h

t

e

f
4.2.1. Time and memory consumption

Fig. 14 shows the results of time used to detect loops and

blackholes in the given topology versus the number of entries in

each node. According to the figure, In general, the average time

spent for loop and blackhole detection is 2838 ms for 350K entries,

which is relatively small. It reveals the algorithm is very efficient

as it has the time complexity better than linear. The advantage is

outstanding especially when there is a huge amount of entries. The

possible reason for this saving is, although the number of entries

is increasing linearly, there might be more branch nodes hidden

into the Patricia Trie and are fully covered by their child nodes. As

a result, the number of nodes under detection does not increase

that fast when compared with the situation with a small number

of entries.

Fig. 15 shows the results of memory consumed to detect loops

and blackholes. In general, the average memory spent for loop and

blackhole detection is 362 MB for 350K entries, which is also rela-

tively small. As a result, the algorithm used is very scalable, espe-

cially when there is a huge amount of entries. The possible reason

for this saving is similar to that analyzed in the time consump-

tion part: with the number of entries increases, the ratio of inner
ranch node increases. This results in a decrease of the ratio for

he nodes that need to be checked.

.2.2. Loop and blackhole size distribution

Fig. 16 shows the loop size distribution for the test results with

0 0K, 30 0K and 50 0K entries individually. It is concluded from the

gure that, normally most of the loops have sizes no bigger than

0 and for a given size, the loop number increases with the entry

umber increases. the number of loops has a logarithmic decrease

ith the size increases. This reveals the detection algorithm works

ery well to detect a large scale of potential loops in a network.

Fig. 17 shows the blackhole size distribution for the test results

ith 10 0K, 30 0K and 50 0K entries individually. It is concluded

rom the figure that, normally most of the blackholes have sizes no

igger than 10. It is worth to note that, for a given blackhole size,

he peak values of the blackhole numbers occur when there is a

alf number of prefixes chosen from the routing table. The possi-

le reason for this result is, the chosen routing table has no black-

ole when all the prefixes are chosen in the experiment. Before

he routing space is half-filled, with the increase of the number of

ntries, there are more forwarding chains and the possibility for a

orwarding chain to end up with a ”-1” increases. After half of the

Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981 15

Fig. 16. Loop size distribution.

Fig. 17. Blackhole size distribution.

e

c

b

t

s

w

5

o

F

p

m

e

p

p

r

a

b

a

w

s

T

d

c

w

t

t

T

t

r

i

a

n

T

l

o

N

t

t

b

A

s

(

t

Z

a

t

w

p

t

a

s

V

w

fi

N

S

P

t

u

i

(

p

a

e

d

N

V

t

w

c

t

L

c

6

T

i

e

p

s

i

e

f

i

d

c
ntries are filled into the FIB array, with the number of entries in-

reasing, there are fewer new forward chains and more and more

lackholes will get values instead of ending up with ”-1”. In addi-

ion, the number of blackholes has a logarithmic decrease with the

ize increases. This reveals the detection algorithm can scale very

ell to a large number of FIB entries and block holes.

. Related work

The natural application for verifying the forwarding equivalence

r routing tables is to verify the correctness of FIB aggregation of

IB caching algorithms. To this end, multiple solutions for com-

ressing an FIB were proposed. FIB aggregation algorithm imple-

entations [9,22–24] can incur misbehavior of the router after the

ntry merging process or when applying BGP updates to the com-

ressed forwarding table. FIB caching approach implies storing the

opular routes in a fast and expensive memory, while rest of the

outes are stored on a slower memory [17,25–27] . Although such

pproach can be extremely efficient in compressing the routing ta-

le (2% of the cache can reach 99.5% cache hit ratio [28]), it poses

 risk of a problem called “cache-hiding”, when instead of a route

ith the longer prefix, which stays in the slower memory, the

horter prefix in the cache is selected for obtaining the next hop.

hus, “cache-hiding” may cause a forwarding behavior of a router

ifferent from its original forwarding behavior.

The above-mentioned risks of forwarding misconfiguration indi-

ate the importance of developing efficient tools to verify the for-

arding equivalence between original and compressed forwarding
ables. TaCo algorithm, proposed by Tariq et al. [19] , is designed

o verify forwarding equivalence between two forwarding tables.

aCo builds two separate binary trees for two tables and performs

ree normalization and leaf-pushing operations. Section 2.4 elabo-

ates the algorithm in detail. VeriTable is different from TaCo , since

t builds a single joint Patricia tree for multiple tables and lever-

ges novel ways to avoid duplicate tree traversals and minimize

ode accesses. Thus, as shown in Section 4 , VeriTable outperforms

aCo in all aspects.

Inconsistency of forwarding tables within one network may

ead to different types of problems, such as ”black-holes”, looping

f IP packets, packet losses and violations of forwarding policies.

etwork properties that must be preserved to avoid misconfigura-

ion of a network can be defined as a set of invariants. In [29] au-

hors present a patent for a system that validates the equivalence

etween an RIB and an FIB in a network. Mai et al. introduced

nteater in [30] , that converts the current network state and the

et of invariants into instances of boolean satisfiability problem

SAT) and resolves them using heuristics-based SAT-solvers. Anean-

er was evaluated with 178 FIBs with the mean size of 1627 entires.

eng et al. introduced Libra in [31] . Libra used MapReduce [32] to

nalyze rules from forwarding tables on a network in parallel. Due

o the distributed model of MapReduce, Libra analyzes the for-

arding tables significantly faster than Anteater. VeriFlow [33] , pro-

osed by Khurshid et al., leverages software-defined networking

o collect forwarding rules and then slice the network into Equiv-

lence classes (EC s). Each EC consists of prefixes that exhibit the

ame forwarding behavior on the network. Upon routing update,

eriFlow finds all EC s affected by the update and generates a for-

arding graph for each of them. Thus, VeriFlow confines the veri-

cation by the entries of affected EC s. Kazemian et al. introduced

etPlumber in [34] , a real-time network analyzer based on Header

pace Analysis protocol-agnostic framework, described in [35] . Net-

lumber is compatible with both Software-Defined and conven-

ional networks. It incrementally verifies the network configuration

pon every policy change in a quick manner. However, NetPlubmer

s not designed for networks with a high rate of routing updates

e.g. networks, operating in Default-Free Zone), because of high

rocessing time for update verification. The problem of FIB equiv-

lence in a programmable data plane is studied in [36] . Sanger

t al. in [37] use a Multi-Terminal Binary Decision Diagram in or-

er to verify consistency of the data plane in a Software-Defined

etwork.

Different from the network-wide verification methods above,

eriTable aims to investigate whether multiple static forwarding

ables achieve the same forwarding behaviors, given an IP packet

ith an arbitrary IP destination address, or whether those tables

over the same routing space. VeriTable will is able to quickly iden-

ify if the forwarding tables return the same next hop after the

ongest Prefix Matching lookups, and which prefixes result in dis-

repancy if the answer is no.

. Conclusion

This paper presents the design and the implementation of Veri-

able , which can quickly determine if multiple routing or forward-

ng tables achieve the same or different forwarding behaviors. The

valuation results of VeriTable show that VeriTable significantly out-

erforms its counterparts. The novel algorithm and compact data

tructures can offer the benefit not only in quick and efficient ver-

fication of the correctness of an FIB compression, but also in sev-

ral other scenarios, when the Longest Prefix Matching rule is used

or performing IP lookups. For example, VeriTable is able to check

f routing updates in the control plane are consistent with the up-

ates in the data plane. Moreover, the principles used in this work

an be applied to network-wide abnormality diagnosis of network

16 Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981

[

[

[

[

[

[

c

H

n

n

problems. To this end, we extended VeriTable to conduct a scalable

and efficient forwarding loop detection and avoidance in the data

plane of a network. The newly extended algorithms can handle in-

cremental updates, applied to the forwarding tables in a network.

Our evaluation results show that the designed algorithms are effi-

cient enough to handle large scale of forwarding tables for identi-

fying their loop and blackhole problems.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgement

The research work has been partially supported by Comcast In-

novation Fund. We thank the anonymous reviewers for their in-

sightful comments and feedback.

Appendix A. Algorithms of VeriTable

Algorithm 1 shows the pseudo code of the first step of Veri-

Table , when the joint Patricia Tree is built. At this step, VeriTable

reads the entries from each table, starting from the first table, and

generates or updates the nodes corresponding to the prefixes from

those tables. Note, that GLUE nodes need to be generated in case

if two REAL nodes have the same parent and located at the same

branch of that parent.

Algorithm 2 shows the pseudo code of the second step of Veri-

Table, when it performs single traversal over the joint Patricia tree,

in order to:

(1) Initialize empty next hops at the nodes of the joint Patricia

tree.

(2) Identify Longest Prefix Matches (LPM) in the joint Patricia

tree.

(3) Compare the next hops in the Next Hop array at those LPM

nodes, in order to verify, if they have the same value.

For the description of each node field in the algorithms see

Table 4 .

References

[1] G. Grigoryan , Y. Liu , M. Leczinsky , J. Li , Veritable: fast equivalence verification

of multiple large forwarding tables, in: IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, IEEE, 2018, pp. 621–629 .

[2] Active BGP entries (FIB), http://bgp.potaroo.net/as1221/ .
[3] M. Moradi , F. Qian , Q. Xu , Z.M. Mao , D. Bethea , M.K. Reiter , Caesar: high-

-speed and memory-efficient forwarding engine for future internet architec-
ture, in: Architectures for Networking and Communications Systems (ANCS),

2015 ACM/IEEE Symposium on, IEEE, 2015, pp. 171–182 .

[4] A.X. Liu , C.R. Meiners , E. Torng , Packet classification using binary content ad-
dressable memory, Biol Cybern 24 (3) (2016) 1295–1307 .

[5] V. Khare , D. Jen , X. Zhao , Y. Liu , D. Massey , L. Wang , B. Zhang , L. Zhang , Evolu-
tion towards global routing scalability, IEEE J. Sel. Areas Commun. 28 (8) (2010)

1363–1375 .
[6] X. Zhao , D.J. Pacella , J. Schiller , Routing scalability: an operator’s view, IEEE J.

Sel. Areas Commun. 28 (8) (2010) 1262–1270 .

[7] D. McPherson , S. Amante , L. Zhang , The Intra-domain BGP Scaling Problem,
RIPE 58, Amsterdam, 2009 .

[8] D. Saucez , L. Iannone , O. Bonaventure , D. Farinacci , Designing a deployable in-
ternet: the locator/identifier separation protocol, IEEE Internet Comput. 16 (6)

(2012) 14–21 .
[9] Y. Liu , B. Zhang , L. Wang , FIFA: fast incremental FIB aggregation, in: INFOCOM,

2013 Proceedings IEEE, IEEE, 2013, pp. 1–9 .
[10] J. Liu , A. Panda , A. Singla , B. Godfrey , M. Schapira , S. Shenker , Ensuring con-

nectivity via data plane mechanisms, in: Presented as part of the 10th USENIX

Symposium on Networked Systems Design and Implementation NSDI 13),
2013, pp. 113–126 .

[11] Troubleshooting Prefix Inconsistencies with Cisco Express Forwarding,
http://www.cisco.com/c/en/us/support/docs/ip/express- forwarding- cef/14540-

cefincon.html .
[12] Configuring CEF Consistency Checkers, http://www.cisco.com/c/en/us/td/
docs/ios- xml/ios/ipswitch _ cef/configuration/12- 4/isw- cef- 12- 4- book/isw- cef-

checkers.html .
[13] R.R. Kompella , J. Yates , A. Greenberg , A.C. Snoeren , Detection and localization

of network black holes, in: INFOCOM 2007. 26th IEEE International Conference
on Computer Communications. IEEE, IEEE, 2007, pp. 2180–2188 .

[14] Geoff Huston, BGP in 2016, https://blog.apnic.net/2017/01/27/bgp- in- 2016/ .
[15] D.R. Morrison , PATRICIA - Practical algorithm to retrieve information coded in

alphanumeric, J. ACM (JACM) 15 (4) (1968) 514–534 .

[16] BGP4.net Wiki, http://bgp4.net .
[17] N. Katta , O. Alipourfard , J. Rexford , D. Walker , Infinite cacheflow in soft-

ware-defined networks, in: Proceedings of the third workshop on Hot topics
in software defined networking, ACM, 2014, pp. 175–180 .

[18] R.C. Cheung , M.K. Jaiswal , Z. Ullah , Z-Tcam: an sram-based architecture for
tcam, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. Digital Object Identifier

10 (2015) .

[19] A. Tariq , S.J. Tariq , J.A. Uzmi , Taco: semantic equivalence of ip prefix tables, in:
International Conference on Computer Communications and Networks (ICCCN),

2011 .
[20] G. Rétvári , J. Tapolcai , A. K ̋orösi , A. Majdán , Z. Heszberger , Compressing IP for-

warding tables: towards entropy bounds and beyond, in: ACM SIGCOMM Com-
puter Communication Review, 43, ACM, 2013, pp. 111–122 .

[21] Advanced Network Technology Center and University of Oregon, The Route-

Views project, http://www.routeviews.org/ .
[22] Z.A. Uzmi , M. Nebel , A. Tariq , S. Jawad , R. Chen , A. Shaikh , J. Wang , P. Francis ,

SMALTA: practical and near-optimal FIB aggregation, in: Proc. CoNEXT, 2011 .
23] E. Karpilovsky , M. Caesar , J. Rexford , A. Shaikh , J. Van Der Merwe , Practical net-

work-wide compression of IP routing tables, IEEE Trans. Netw. Serv. Manage. 9
(4) (2012) 446–458 .

[24] Y. Liu , G. Grigoryan , Toward incremental fib aggregation with quick selections

(faqs), in: 2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA), IEEE, 2018, pp. 1–8 .

25] C. Kim , M. Caesar , A. Gerber , J. Rexford , Revisiting route caching: the world
should be flat, in: International Conference on Passive and Active Network

Measurement, Springer, 2009, pp. 3–12 .
26] Y. Liu, S.O. Amin, L. Wang, Efficient FIB caching using minimal non-overlapping

prefixes, SIGCOMM Comput. Commun. Rev. 43 (1) (2013) 14–21, doi: 10.1145/

2427036.2427039 .
[27] G. Grigoryan , Y. Liu , Pfca: a programmable fib caching architecture, in: Pro-

ceedings of the 2018 Symposium on Architectures for Networking and Com-
munications Systems, ACM, 2018, pp. 97–103 .

[28] K. Gadkari , M.L. Weikum , D. Massey , C. Papadopoulos , Pragmatic router FIB
caching, Comput. Commun. 84 (2016) 52–62 .

29] S. Harneja, A. Pani, Validation of routing information base-forwarding informa-

tion base equivalence in a network, 2018, US Patent App. 15/663,623.
[30] H. Mai , A. Khurshid , R. Agarwal , M. Caesar , P. Godfrey , S.T. King , Debugging

the data plane with anteater, in: ACM SIGCOMM Computer Communication
Review, 41, ACM, 2011, pp. 290–301 .

[31] H. Zeng , S. Zhang , F. Ye , V. Jeyakumar , M. Ju , J. Liu , N. McKeown , A. Vahdat ,
Libra: Divide and Conquer to Verify Forwarding Tables in Huge Networks, in:

NSDI, 14, 2014, pp. 87–99 .
32] J. Dean , S. Ghemawat , Mapreduce: simplified data processing on large clusters,

Commun. ACM 51 (1) (2008) 107–113 .

[33] A. Khurshid , W. Zhou , M. Caesar , P. Godfrey , Veriflow: verifying network-wide
invariants in real time, ACM SIGCOMM Comput. Commun. Rev. 42 (4) (2012)

467–472 .
[34] P. Kazemian , M. Chan , H. Zeng , G. Varghese , N. McKeown , S. Whyte , Real

Time Network Policy Checking Using Header Space Analysis., in: NSDI, 2013,
pp. 99–111 .

[35] P. Kazemian , G. Varghese , N. McKeown , Header Space Analysis: Static Checking

for Networks., in: NSDI, 12, 2012, pp. 113–126 .
36] D. Dumitrescu , R. Stoenescu , M. Popovici , L. Negreanu , C. Raiciu , Dataplane

equivalence and its applications, in: 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019, pp. 683–698 .

[37] R. Sanger , M. Luckie , R. Nelson , Identifying equivalent sdn forwarding be-
haviour, in: Proceedings of the 2019 ACM Symposium on SDN Research, ACM,

2019, pp. 127–139 .

Dr. Yaoqing Liu received his Master’s and PhD degrees

from the University of Memphis in Computer Science.
He is the program coordinator of M.S. in Cybersecurity

and Information Assurance program (MSCSIA), and an As-

sistant Professor in Gildart Haase School of Computer
Sciences & Engineering at Fairleigh Dickinson University

(FDU). His research interests are networked systems (se-
curity, routing, algorithm and measurement), currently fo-

cusing on Named Data Networks (NDN) and Blockchain
applications. His publications appear in highly reputed

conference proceedings and journals, such as IEEE INFO-
COM, ACM SIGCOMM CCR and ACM/IEEE ANCS. He has

been a TPC member and technical paper reviewer for IEEE

onferences, journal magazines and transactions. He is the inventor of four patents.
is research work has been selected as one of the 2018 TechConnect Defense In-

ovation Awards recognizing the potential positive impact for the warfighter and
ational security.

http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0001
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0001
http://bgp.potaroo.net/as1221/
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0002
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0003
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0004
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0005
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0006
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0007
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0008
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0009
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0009
http://www.cisco.com/c/en/us/support/docs/ip/express-forwarding-cef/14540-cefincon.html
http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipswitch_cef/configuration/12-4/isw-cef-12-4-book/isw-cef-checkers.html
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0010
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0010
https://blog.apnic.net/2017/01/27/bgp-in-2016/
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0011
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0011
http://bgp4.net
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0012
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0013
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0014
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0015
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0015
http://www.routeviews.org/
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0016
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0017
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0018
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0019
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0019
https://doi.org/10.1145/2427036.2427039
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0021
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0022
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0023
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0024
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0025
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0026
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0027
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0028
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0029
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0030
http://refhub.elsevier.com/S1389-1286(18)31410-5/sbref0030

Y. Liu, G. Grigoryan and J. Li et al. / Computer Networks 168 (2020) 106981 17

B

b

f

a

Garegin Grigoryan was born in 1991 in Moscow, Russia.

He received a Diploma degree in “Automated Data Pro-
cessing and Management Systems” from the Department

of Cybernetics of Moscow Engineering Physics Institute, in
2012. The same year, he joined Diasoft, a Moscow-based

company that provides a wide range of financial software

solutions. In 2016, he entered the graduate program of
Clarkson University (Potsdam, NY, USA). After receiving

his MS degree in Computer Science, he joined Rochester
Institute of Technology as a Ph.D. candidate. His current

research interests include routing scalability, aggregation
and caching of forwarding tables, Software-Defined Net-

working, software switching, programmable data planes,

lockchain technology, and Information-centric networking.

Dr. Jun Li is a Professor in the Department of Com-
puter and Information Science and founding director of

the Center for Cyber Security and Privacy at the Univer-
sity of Oregon. He received his Ph.D. from UCLA in 2002

(with Outstanding Doctor of Philosophy honor), M.E. from

Chinese Academy of Sciences in 1995 (with Presidential
Scholarship), and B.S. from Peking University in 1992, all

in computer science. His research is focused on network-
ing, distributed systems, and network security, with about

90 peer-reviewed publications. He has served on US Na-
tional Science Foundation research panels and more than

70 international technical program committees, including

chairing six of them. He currently serves on the editorial
oard of IEEE Transactions on Dependable and Secure Computing and a few con-

erence or workshop steering committees. He is a senior member of ACM and IEEE
nd an NSF CAREER awardee in 2007.
Guchuan Sun was born in the city of Zhenjiang, Jinagsu

Province, China in 1988. He received a Master’s degree in
Computer science from Clarkson University in 2019, under

the supervision of Dr. Yaoqing Liu. His major research in-
terests include network optimization algorithms, network

problem diagnosis and blockchain applications.

Tony Tauber is a distinguished engineer at Comcast since
Jan 2014. His specialties include routing, instrumentation,

measurement, scaling, and network planning to accom-
modate new services and achieve business objectives. He

works on the design and engineering of Comcast’s na-

tional backbone network including initial implementa-
tion and ongoing evolution. He served as the chair of

NANOG from 2011 to 2016, and led the technical commit-
tee which solicit, review, and develop material for thrice-

yearly conference on the state of the art in the Internet
Service Provider and computer networking arena. He has

been an active member of several standards groups.

	VeriTable: Fast equivalence verification of multiple large forwarding tables
	1 Introduction
	2 Background
	2.1 The generic router architecture
	2.2 Longest prefix match rule
	2.3 The equivalence of forwarding tables
	2.4 State of the art
	2.4.1 Taco: Semantic equivalence of IP prefix tables
	2.4.2 Normalization

	3 Design
	3.1 Veritable theorem and property
	3.2 VeriTable implementation and workflow
	3.2.1 Setup the joint patricia trie
	3.2.2 Verification steps
	3.2.3 Complexity

	3.3 Applications-network problem diagnosis
	3.3.1 Loop and blackhole detection with static FIBs
	3.3.2 Loop and blackhole detection upon updates
	3.3.3 Complexity

	4 Results
	4.1 VeriTable vs TaCo vs Normalization
	4.1.1 Data structure building time
	4.1.2 Verification time
	4.1.3 Number of node accesses
	4.1.4 Memory consumptions
	4.1.5 Scalability of VeriTable
	4.1.6 Routing space comparisons

	4.2 Network-wide loop and blackhole detection
	4.2.1 Time and memory consumption
	4.2.2 Loop and blackhole size distribution

	5 Related work
	6 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Algorithms of VeriTable
	References

