
Splider: A Split-based Crawler of the BT-DHT
Network and its Applications

Bingshuang Liu∗†, Shidong Wu∗†, Tao Wei∗†‡, Chao Zhang∗†‡, Jun Li§, Jianyu Zhang∗†¶,
Yu Chen∗† and Chen Li∗†

∗Institute of Computer Science and Technology, Peking University, Beijing 100871, China
†Beijing Key Laboratory of Internet Security Technology, Peking University

Email: {liubingshuang, wusd, wei tao, chao.zhang, zhangjianyu, chen yu, icst-lichen}@pku.edu.cn
‡University of California, Berkeley, CA 94720, USA

§Department of Computer and Information Science, University of Oregon, Eugene, OR 97403, USA

Email: lijun@cs.uoregon.edu

Abstract—Capturing accurate snapshots of peer-to-peer
(P2P) networks, especially those with millions of users, is
essential to many P2P-based applications, including those
monitoring and analyzing P2P networks. The large scale
and dynamic nature of P2P networks, however, make this
task very challenging. Existent crawlers of P2P networks, for
example, often miss a substantial portion of the ID space
while unnecessarily crawling numerous nodes repeatedly. In
this paper, we design and evaluate a new crawler called
Splider. Unlike traditional crawling algorithms that adopt an
iterative approach, Splider recursively splits the ID space of
P2P nodes to crawl even tiny corners of the ID space, while
avoiding crawling repeated nodes. We further implement a
Splider prototype for BT-DHT, a Kademlia-based distributed
hash table (DHT) P2P network, that exploits the structure
of routing tables at BT-DHT nodes. Experiments show that
Splider is able to gather more than 16 million nodes with a
100% recall ratio, whereas a traditional iterative crawler can
at best capture only about 8 million nodes with a 66% recall
ratio while its traffic-cost effectiveness is 50% less than Splider.
Splider can further support distributed deployment; without
any synchronization overhead, it reduces the time of capturing
a full snapshot to be only about 3 minutes. We finally report
and analyze the captured BT-DHT snapshots, including the
spatial and temporal distribution of BT-DHT nodes and the
existence of sybil and eclipse attacks in BT-DHT.

I. INTRODUCTION

Snapshots of peer-to-peer (P2P) networks are often fun-
damental for studying and optimizing P2P networks. They
can show characteristics of a P2P network, such as its size
and the spatial and temporal distribution of its nodes, or
even help discover stealthy attacks, e.g., sybil attacks [1]
and eclipse attacks [2].

A common approach to capturing the snapshot of a
P2P network is to use a crawler to query nodes in the
network and collect their relevant information in order to
build accurate snapshots of the target network. The crawler
faces key challenges, however. First, the snapshot needs to
be accurate; i.e., it should cover as many nodes as possible
that are active when capturing the snapshot. Also, since the
goal is to obtain a snapshot, but a P2P network is dynamic

¶ Corresponding author. This research was supported in part by National
Natural Science Foundation of China (Grant No. 61003216).

and nodes join and leave the network all the time, it must be
done as quickly as possible. Furthermore, the crawler should
be efficient and consume as little time and bandwidth as
possible, such as by not crawling nodes repeatedly.

Capturing snapshots for structured P2P networks is par-
ticularly important. For instance, the top two most popular
P2P file-sharing systems, BitTorrent [3] and eMule [4], are
both structured P2P networks, and they adopt Kademli-
a [5]—one of a few Distributed Hash Table (DHT) protocols
that are used in practice by tens of millions users [6], [7].
These two top P2P systems are also called BT-DHT and
eMule-Kad, respectively.

However, existing crawlers are incapable of producing
qualified snapshots in real world. These crawlers usually
crawl networks in an iterative way [6], [8], [9], and overlook
the structural characteristics of the crawled network. They
frequently miss substantial portions of nodes while they
crawl numerous nodes repeatedly. The crawling time to
capture a full snapshot is also too long, e.g., up to 20 minutes
for the BT-DHT network [6]. Due to the high churn rate of
DHT networks, the captured snapshot is also inaccurate.

In this paper, we design a new, split-based crawler for
Kademlia called Splider. We also implement a prototype of
Splider to crawl a specific Kademlia network, i.e., the BT-
DHT network. Splider leverages the structural characteristics
of routing tables of nodes in Kademlia networks, and works
in a recursive way. It can keep splitting ID spaces of nodes
in the BT-DHT network into smaller ones, and thus is
able to reach even tiny corners of the original ID space.
Moreover, such a way of crawling greatly reduces the chance
of repetition. Finally, Splider can be easily deployed in a
distributed manner by parallelizing the split crawls.

We use two metrics to evaluate the accuracy and ef-
ficiency of Kademlia crawlers, i.e., the recall ratio and
TCE (Traffic-Cost Effectiveness), respectively. The recall
ratio [10] is the percentage of test nodes captured by the
crawler. It thus reflects the crawler’s ability of finding out
all nodes in the whole node space (i.e., accuracy). The TCE
measures how many nodes can be captured by consuming
one unit of Internet traffic, and thus can be used to evaluate
the efficiency of a crawler.

978-1-4799-2355-7/14/$31.00 ©2014IEEE

The 11th Annual IEEE CCNC - P2P Networking and Cloud-based Content Distribution

327

Experiments show that Splider is able to gather more
than 16 million nodes with a 100% recall ratio; whereas
for an iterative crawler, the best outcome is about 8 million
nodes with a 66% recall ratio, and its TCE is only one half
of ours. Moreover, the distributed version of Splider is able
to capture a snapshot of the entire network in approximately
3 minutes, without any communication penalty. So, Splider
can efficiently and accurately crawl the BT-DHT network.

Using our distributed crawlers, we have captured hun-
dreds of snapshots of the BT-DHT network within 24 hours.
As far as we know, such a data set is the most fine-grained
and comprehensive measurement of the BT-DHT network.
We then can learn characteristics of BT-DHT from these
snapshots.
Spatial distribution of nodes: Due to the high-quality
snapshots generated by Splider, we can obtain a more
accurate geographic distribution of BT-DHT nodes than
previous crawlers. For example, we found that Russia has
the largest number of nodes at the moment, different from
the conclusion in [11] and [9];
Temporal distribution of nodes: Existing study on this
area is based on limited snapshots or trackers, so the results
could be biased. Based on our fine-grained and complete
snapshots, we can measure the temporal distribution of BT-
DHT nodes from the network level and the node level
respectively. For the former, we give the fluctuation of
the whole BT-DHT network over time in a day. And for
the latter, we find that the distribution of nodes’ session
lengths complies with a long tail distribution, similar to the
Pareto distribution [12], rather than the Weibull distribution
described in [13];
Sybil and eclipse attacks: Lacking complete network snap-
shots, few works have measured sybil and eclipse attacks
in real networks. By analyzing snapshots, we can measure
and identify sybil and eclipse attacks in the real BT-DHT
network. In fact, substantial sybil and eclipse attacks have
been identified.

The rest of the paper is organized as follows. After an
overview of Kademlia and the related work in Section II,
we present the design and implementation of Splider in
Section III. The evaluation and comparison of Splider and
existing iterative crawlers is given in Section IV. Section V
presents an analysis of the captured BT-DHT snapshots. And
Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Background on Kademlia

In Kademlia, both the routing tables and routing process
are well structured, which ensure the high efficiency of node
lookup and resource locating. The elementary structure of
Kademlia networks is a shared 160-bit ID space for both
nodes and keys.

According to Kademlia’s specification, each node is
assigned with an unique 160-bit ID generated by the SHA-1
hash function taking a random value as the input. For each
file object or keyword, its hash value is used as its ID. The
distance of two IDs is calculated using the bitwise XOR
operation. The value associated with each key is stored in
several nodes whose nodes are closest to the key’s ID.

For routing, each node maintains a routing table consist-
ing of 160 k-buckets. Each k-bucket has at most 8 entries,
where each entry is a triple 〈nodeID, IP, port〉. In node
A’s routing table, nodes in its m-th k-bucket (0 ≤ m ≤ 159)
share exactly an m-bit common prefix with A. For example,
nodes in the 159-th k-bucket differ with A only on the last
bit, while the first bit of every node in the 0-th k-bucket is
different from A’s.

In Kademlia, routing to a specific node (i.e., node ID)
is carried out in an iterative way. The initiator sends a
FIND_NODE request message with the target ID to a node
that it already knows, and then the destination node replies
this message with sufficient nodes in its routing table which
are closest to the target ID. It is worth noting that, the
replied nodes fall into exactly one k-bucket if the destination
node has enough nodes in that k-bucket of the routing table.
The initiator then queries the replied nodes and repeats this
process until the target ID is found (iterative routing), instead
of forwarding the request message to these replied nodes
(recursive routing). While iterative routing experiences a
slightly higher delay than recursive routing, it offers more ro-
bustness against packet loss. In case of Kademlia networks,
it also greatly simplifies the job of crawling.

B. Related Work

As stated earlier, the essence of all existing Kademlia
crawlers is iterative. The crawling process can be summa-
rized as follows. A crawler chooses a target ID and sends
requests to nodes in an initial node set, then adds the new
nodes in the responses into the node set; and then starts a
new round of querying with the updated node set, and so
on, until some pre-determined conditions are satisfied.

Steiner et al. have developed a Kademlia crawler named
Blizzard running in a single machine with 100 Mbps band-
width [7]. This crawler adopted a simple breadth-first search
and utilized an iterative query strategy. It took about 8
minutes and 3 GB of traffic-cost for crawling of the entire
eMule-Kad network, and totally 4.3 million nodes were
found. During the crawling, it has repeatedly crawled lots
of nodes.

Jie Yu et al. made an improvement on the target ID
selection strategy of iterative algorithms [6]. During earlier
iterations for gathering bootstrapping nodes, their algorithm
applies the breadth-first search; once the amount of boot-
strapping nodes is enough, the depth-first search is used.
However, their approach cannot truly guarantee that the
bootstrapping nodes are distributed evenly in the ID space.
Their crawler spent 20 minutes to collect 6.7 million nodes
in the whole BT-DHT network, slower and less than our
crawler’s.

Xiangtao Liu et al. developed another iterative crawler
Rainbow [9]. They theoretically analyzed the Rainbow and
obtained its convergence condition, which determines the
time complexity of crawling. They have measured the ge-
ographical distribution of BT-DHT nodes and found that
the top 3 countries are United States, China and Russia,
respectively. However, our measurement shows a different
distribution, relying on the complete snapshot captured by
our crawler.

The 11th Annual IEEE CCNC - P2P Networking and Cloud-based Content Distribution

328

In [13], Stutzbach et al. have systematically studied the
node churn phenomenon in three typical P2P file sharing
networks, Gnutella, eMule-Kad and BitTorrent. By contact-
ing some specific BitTorrent trackers periodically, they found
that session lengths of nodes comply with a Weibull or log-
normal distributions, not heavy-tailed. Because one tracker is
impossible to hold all nodes, and the tracker does not return
all nodes to the querying node according to BEP15 [14], the
trackers-based measurement is not accurate. In this paper,
we analyze the node churn by capturing consecutive and
complete snapshots of the BT-DHT network using Splider,
and find a different conclusion.

DHT-based P2P networks are vulnerable to kinds of at-
tacks, including the sybil and eclipse attacks. In [1], Douceur
first defined the sybil attack: forging multiple identities on
one physical entity. This attack can break the balance be-
tween nodes, and help other high-level attacks, e.g., eclipse
attacks [2] and pollution attacks [15], to obtain enough
controllable nodes in P2P networks. Subsequently, numerous
sybil defenses were proposed, such as self-registration [16],
net-print [17], Sybillimit [18] and SoK [19].

The eclipse attack intercepts all the requests directed to
a specific resource [2]. Due to the way of locating resources,
to launch an eclipse attack, the attacker first needs to forge
(usually a sybil attack is beforehand needed) or control
several nodes whose IDs are closer to the target ID than
any real nodes. And then the attacker should announce these
forged nodes to the normal nodes, in order to pollute their
routing tables and to attract all lookup requests for the
target ID. Several solutions have been proposed to defeat the
eclipse attack, including ID-selection-based solutions [20]–
[22] and computational-puzzles-based [23], [24]. Most of
these defenses are based on one assumption: abundant sybil
and eclipse attacks exist in these networks. However, no
one measured the prevalence of these attacks under real net-
works. In this paper, we uncover these attacks by analyzing
full BT-DHT snapshots captured by Splider.

III. ALGORITHM AND IMPLEMENTATION

In this section we describe the proposed splitting ap-
proach that mitigates the shortcomings of iterative crawlers.
We start by describing the basic idea of our approach, and
then discuss its algorithm and implementation in detail.

A. Definitions and Observations

All nodes and keys in Kademlia share a 160-bit ID space.
And all nodes in the m-th k-bucket in a node A’s routing
table share exactly an m-bit common prefix with A.

For the sake of discussion, we first introduce several
concepts and present several observations:

Definition 1 (m-bit subspace): A subspace of the orig-
inal ID space, in which all nodes share an m-bit common
prefix, is called an m-bit subspace, or m-bit zone.

For each m (0 ≤ m ≤ 159), there are 2m m-bit
subspaces in the original 160-bit ID space. For instance,
there is only one 0-bit subspace, i.e., the original ID space.

And there are 2160 160-bit subspaces which have only one
node in each.

Observation 1: For any node A, all nodes in its m-th
k-bucket must all belong to one same (m+1)-bit subspace.

Definition 2 (P-prefix subspace): If the common prefix
of nodes in an n-bit subspace is P (in binary representation),
we call this subspace a P -prefix subspace, or P -prefix zone.

There is an exception case, the 0-bit subspace (i.e., the
original ID space) has no common prefix, and we then call
it a NULL-prefix subspace. Of course, if an n-bit subspace
is also a P -prefix subspace, the prefix P must have n bits.
For any given prefix P which has less than 160 bits, there
is only one corresponding P -prefix subspace.

Observation 2: P -prefix zone is a subspace of the Q-
prefix zone, if and only if, Q is a prefix of P .

Definition 3 (Direct subspace): For any prefix P , the
P0-prefix zone and the P1-prefix zone are called the direct
subspaces of the P -prefix zone, where P0 is a bit pattern
prefixed with P and postfixed with a 0, so does P1.

Observation 3: For any node A in any P -prefix zone (an
m-bit zone) Z, and n ≥ m, then all nodes in A’s n-th k-
bucket belong to one direct subspace of Z, i.e., a (m+1)-bit
zone.

B. Algorithm of Splider

The core idea behind our crawler Splider is to recursively
split the ID space into smaller ones, and let the crawler
gather specific nodes within each subspace. It works in a
recursive way as follows.

The crawler maintains a list of known IDs and updates
this list dynamically. In round m, the crawler splits these
known IDs into different clusters according to their m-bit
prefixes. Each cluster is then called an m-bit s-bucket, and
must fall into one m-bit subspace.

Then, for any given m-bit s-bucket B (belonging to the
m-bit subspace Z) and any node A in it, the crawler queries
A with two specific IDs, and A will response the crawler
with all nodes in its m-th and (m + 1)-th k-buckets, and
maybe with some nodes in other n-th k-bucket (n ≥ m +
2) if there are no enough nodes in previous two buckets.
According to Observation 3, these returned nodes fall into
subspaces of Z, and thus different from known nodes not in
the s-bucket B. So, the crawler can avoid meeting repeated
nodes when crawling.

After allm-bit s-buckets are traversed, the crawler begins
the m+1 round. In this recursive way, the crawler can reach
even tiny corners of the ID space and traverse the whole
space.

This split process is briefly demonstrated in the Figure 1.
All s-buckets generated in a split process form a binary tree,
called a S-Tree. For any m-bit s-bucket B1 and (m+1)-bit
s-bucket B2, an edge between them exists if and only if B2’s
owner subspace is a direct subspace of B1’s. In a S-Tree,
each node has at most two children nodes.

The 11th Annual IEEE CCNC - P2P Networking and Cloud-based Content Distribution

329

S-
T
re
e

xxxx...x

00xx...x

0xxx...x 1xxx...x

10xx...x 11xx...x01xx...x

100x...x

1001...x

Round

0

1

2

3

4

...

i

Queried k-buckets

0, 1

1, 2

2, 3

3, 4

i, i+1

...

4, 5

s-bucket

Fig. 1. An example of Splider’s split process and crawling

In addition, this crawler can be configured to crawl
arbitrary subspaces rather than the whole ID space by
restricting the split direction. For example, if we only
want to crawl the 1001-prefix subspace (a 4-bit subspace),
the crawler will split along the direction as shown in the
gray s-buckets in Figure 1. And thus, our crawler can be
deployed in a distributed manner by nature. For example,
if each crawler takes charge of an 8-bit subspace, then
256 crawlers can cooperate to crawl the whole ID space.
Unlike other distributed iterative crawlers, e.g., Cruiser [25],
our distributed split-based crawlers do not need synchronize
any information between them when crawling respective
subspaces. It can greatly speed up the crawling process and
save communication resources.

Based on the scheme described above, we present the
pseudo-code of the splitting algorithm in Algorithm 1. The
core recursive function consists of three parts, i.e., a crawl
process, a split process and a recursive invocation process.

C. Implementation

Based on the Algorithm 1, we have implemented a split-
based crawler in the BT-DHT network, called Splider. To
achieve a high degree of accuracy and efficiency, some
concrete problems should be considered, including traffic
shaping, termination condition and so on.

Traffic Shaping: In the SplitAndCrawl function in
Algorithm 1, its crawl process will query all nodes in the
target bucket with two different IDs. And thus there would
be a mass of DHT queries waiting to be sent. As the
split level increases, the number of queries would grow
exponentially. Due to the restriction of our crawler’s Internet
bandwidth, we must adopt some appropriate traffic shaping
and rate limiting policy. Otherwise, some queries which
exceed the bandwidth limit would be dropped inadvertently,
and then break the crawler’s accuracy. To this end, we apply
the classical token bucket algorithm [26]. The algorithm can
effectively limit the rate of sending packets and efficiently
utilize the crawler’s bandwidth.

Termination Condition: Previous work [13] has con-
firmed that P2P networks are very dynamic and have a high
churn rate. So if the crawler consumes too much time, a great
mass of nodes may leave and join in during that time period.
And thus it would compromise the accuracy of the captured
snapshots. On the other hand, if the crawler terminates too
early, it is difficult to capture a complete snapshot. Therefore,

Algorithm 1 The algorithm of our split-based crawler

Define:
node: struct{id, IP, port}
s-bucket: struct{prefix, list of nodes}
// prefix is the common prefix of nodes in this s-bucket.

Output:
knownList: list of known nodes

// get two IDs share an m-bit and (m+1)-bit prefix with node
function CHOOSETARGETID(m, node)

// reverse the specific bit of target ID
id1 = reverse bit at(node.id, m)
id2 = reverse bit at(node.id, m+ 1)
return id1, id2

end function

function SPLITANDCRAWL(s-bucket)
m = s-bucket.prefix.bit len() // split round or level
if m > MAX LEVEL then Exit
end if
temp = s-bucket.nodes
// Crawl process
for all node in s-bucket.nodes do

id1, id2 = CHOOSETARGETID(m, node)
// query target node, and store returned nodes to temp
query node with ID in thread(node, id1, temp)
query node with ID in thread(node, id2, temp)

end for
sleep(1s) // wait for the querying threads to finish
knownList.append(temp)
// Split process: split nodes in temp into (m+1)-bit s-

buckets
new-buckets = split bucket(temp, prefix, m+ 1)
// Recursive invocation:
for all bucket in new-buckets do

SPLITANDCRAWL(bucket)
end for

end function

function ENTRYFUNCTION
initNode = pick up any known node()
s-bucket = {NULL, {initNode}}
SPLITANDCRAWL(s-bucket)
return knownList

end function

how to determine a reasonable termination condition is
the fundamental problem when designing a distinguished
crawler.

Previous crawlers usually adopt a fixed timeout, which
is inflexible for our algorithm. In this paper, we propose
a novel termination condition based on the maximum split
level of the crawling process, referred to as MAX LEVEL in
Algorithm 1. Theoretically, the MAX LEVEL can be up to
159 due to the 160-bit ID space. However, it is impossible
and unnecessary to split so deeply, otherwise a great deal of
traffic would be wasted and the crawler cannot get further
benefits.

In order to determine the optimal value, we first use
the crawler to crawl several subspaces and split as much
as possible. Then the number of captured nodes is counted
as the split level increases. From this statistical data, we can

The 11th Annual IEEE CCNC - P2P Networking and Cloud-based Content Distribution

330

infer the sweet spot of the split level.

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30

Th
e

nu
m

be
r o

f c
ra

w
le

d
no

de
s (

10
6).

The splitting level.

0x4A
0x77

0x19
0xF9

Fig. 2. The growth curve of the number of nodes crawled in an 8-bit
subspace.

For instance, Figure 2 gives the growth curves of the
number of crawled nodes in 4 randomly chosen 8-bit sub-
spaces, i.e., the 0x19-prefix, 0xF9-prefix, 0x77-prefix and
0x4A-prefix subspaces. Although the counts of crawled
nodes in these 4 subspaces are a little different, the trends of
growth are highly consistent. It states clearly that the crawler
is able to converge around the 25-th level, with a little gain
after that. So we can empirically set MAX LEVEL to 25.
Next we will discuss this threshold from another perspective.

On the other hand, the split level has a strong relationship
with the k-buckets in routing tables. For any split level m,
the crawler will query target nodes’ m-th and (m+1)-th k-
buckets, and then tries to get back enough nodes from these
k-buckets. However, the number of nodes in a k-bucket is
dynamic. So, we conduct another experiment to show the
distribution of the number of nodes in each k-bucket.

0 5 10 15 20 25 30 145 150 155 159
0

1

2

3

4

5

6

7

8

Av
er

ag
e

nu
m

be
r

of
 e

nt
rie

s

k-bucket No.

Fig. 3. The average number of entries in each k-bucket.

We randomly choose 2000 nodes from the BT-DHT
network and query all k-buckets in their routing tables. The
experiment has been conducted three times, and then the
average number of entries in each k-bucket is calculated,
as shown in Figure 3. It shows that the last 133 k-buckets
(i.e., from 27 to 159) are almost empty, in consistence
with the structure of routing tables in BT-DHT, and can
be skipped when crawling. So only the 0-th to 26-th k-
buckets need be crawled, and this goal can be achieved by
settingMAX LEVEL to 25. By this setting, 87.5% bandwidth
resources are saved, without affecting the crawling outcome.

Some optimizations: When implementing Splider, we
have introduced some optimizations in consideration of the
practicality, which can be summarized as follows:

First, to reduce the number of unnecessary packets and
save bandwidth resources, we stop sending queries to non-
responsive nodes after two successive queries.

Second, our crawler may be added into the queried
nodes’ routing tables. These nodes may then include the
crawler in their responses, and thus waste bandwidth re-
sources. To avoid such case, we dynamically set the
crawler’s ID to make sure its first bit is different from the
queried node. So, our crawler can only be added into the
queried node’s 0-th k-bucket. From the Figure 3, the 0-th
k-buckets of almost all nodes are full (i.e., have 8 entries).
And thus, our crawler is prevented from being inserted into
queried nodes’ routing tables in most cases.

Finally, if the temp bucket in SplitAndCrawl func-
tion in Algorithm 1 is too small, even after querying all
nodes in the target s-bucket. The following split process (i.e.,
split_bucket) will not split temp directly because the
outcome of following crawling would be limited. Instead,
this split process will query for suitable nodes from some
other adjacent s-buckets, until enough nodes are collected.
Then, it continues the normal split process.

IV. CRAWLING PERFORMANCE EVALUATION

In this section, we evaluate the crawling performance
of Splider, and compare it with the state-of-art iterative
Kademlia crawler Blizzard [27]. Because Blizzard is not
open source, and its original implementation targets another
Kademlia DHT network (i.e., eMule-Kad), and thus we have
re-implemented it targeting the BT-DHT network, according
to its pseudo-code with aforementioned necessary optimiza-
tions. Then we give a brief description of a distributed
version of our crawler Splider.

A. Single Deployment

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 2 4 6 8 10 12 14 16
 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

To
ta

l n
od

es
 c

ap
tu

re
d

(1
06).

N
ew

 n
od

es
 d

is
co

ve
re

d
(1

06).

Crawling time (minutes).

total-iterative
total-splitting

new-iterative
new-splitting

Fig. 4. Performance comparison of these two crawlers.

First, we want to examine the crawling performance
of these two crawlers from a single deployment of view.

The 11th Annual IEEE CCNC - P2P Networking and Cloud-based Content Distribution

331

We have run two crawlers for full crawling lasting 15
minutes from 20:00 on February 25th, 2013, on two separate
servers in the same location, whose configuration is 2.27
GHz Intel(R) Xeon(R) CPUs, 8GB RAM and 10 Mbps
network bandwidth limitation, respectively. The main re-
sults, including total number of nodes captured and new
nodes discovered, are presented in Figure 4. In Table I we
summarize the comparison of the two crawlers regarding
snapshot size, crawling speed, recall ratio and TCE.

Total number of crawled nodes: In the initial stage
(about one minute), the crawling speeds of these two
crawlers are basically identical due to the same initial nodes
set. After that, the total number of nodes captured by the
split-based crawler Splider rises dramatically to 15.7 million
within 10 minutes, while the iterative crawler only gathers
7.3 million nodes. The splitting crawler converges after 12
minutes, with more than 16 million nodes captured in total.
Yet the iterative one cannot converge when we stop the two
crawlers 15 minutes later, and the snapshot size is only about
8 million. Therefore it states clearly that the splitting crawler
does a better job in both snapshot accuracy and efficiency.

TABLE I. THE RECALL RATIOS AND TCES OF TWO CRAWLERS.

Algorithm #Nodes captured #Packets sent TCE Recall ratio

Iterative 8545605 27061701 0.316 66%
Splitting 16388586 26830961 0.611 100%

Further, we introduce a new metric to measure the
completeness characteristic of one crawler, i.e., the recall
ratio. The measurement process is as follows: we evenly
deploy 256 test nodes in different 8-bit subspaces of the
entire network (one in each subspace) before we start our
crawlers, and then compute the percentage of test nodes
captured by each crawler as its recall ratio. The result is
presented in Table I. The column “Recall ratio” shows the
splitting crawler has a 100% recall ratio, while the iterative
crawler has recall ratio of only 66%. It indicates that the
iterative one might miss a substantial portion of ID space
due to the essence of blindly crawling.

To verify our conjecture, we count the nodes received in
each 8-bit subspace, and the result is shown in Figure 5. It
shows that the ID distribution of the iterative crawler’s result
is uneven, with numerous blind areas. Whereas the splitting
algorithm can evenly divide the ID space. It is coincident
with the fact that node IDs are generated under the consistent
hash function, SHA1.

The rate of new nodes discovered: The rate of new
nodes discovered by crawlers is also an important metric
to evaluate crawlers’ outcome. From Figure 4, the rate
of the iterative crawler drops from 2.2 million/min to 0.1
million/min within the first 7 minutes, due to numerous
repetitive responses. Whereas the rate of the splitting crawler
is kept over 1.82 million/min even at the 7-th minute. After
12 minutes, the rate of the splitting crawler becomes lower
due to its convergence.

Traffic-Cost Effectiveness: During the above experi-
ment, the peak bandwidth cost of two crawlers is about 9.3
Mbps, and the average bandwidth cost is 8.1 Mbps. Here, we

N
um

be
r o

f n
od

es
 in

 a
 8

-b
it

zo
ne

 (1
04)

Prefix of the 8-bit zone

(a) Iterative crawler

N
um

be
r o

f n
od

es
 in

 a
 8

-b
it

zo
ne

(1
04)

Prefix of the 8-bit zone

(b) Splitting crawler

Fig. 5. Node ID distribution of the two approaches

introduce another metric to evaluate the traffic effectiveness
of a crawler: TCE (Traffic-Cost Effectiveness). This metric
reflects how many nodes can be captured by consuming a
unit of Internet traffic. The definition of TCE is as follows:

TCE =
total nodes captured

number of FIND NODE packets sent
.

Here, the traffic cost is the number of FIND NODE packets
sent during the crawling process, and the productivity is the
total number of nodes captured. The result is presented in
Table I. It tells that the TCE of the splitting crawler is nearly
twice as much as the iterative crawler. Compared with the
splitting crawler, the iterative one is more likely to waste
a great deal of traffic due to repeated nodes. During this
experiment, 4 million nodes are captured at least twice by
the iterative crawler within the first 3 minutes, while only
150,000 nodes are encountered repeatedly by the splitting
one.

B. Distributed Deployment

We know that the expensive communication overhead
makes the distributed iterative crawler impractical. Since the
splitting crawler can be deployed in a distributed manner
by nature, we build the distributed version of it to greatly
shorten the time of producing a full snapshot for Kademlia
network. Obviously, the more crawlers we have or the small-
er the subspaces are, the faster we obtain a full snapshot.
But the bandwidth and computing resources are limited. To
achieve a good trade-off, we divide the whole ID space
into 256 8-bit subspaces, and assign them to 256 crawlers
respectively.

It takes less than 3 minutes for a crawler to crawl
a 8-bit subspace, and tasks can be executed in parallel.

The 11th Annual IEEE CCNC - P2P Networking and Cloud-based Content Distribution

332

Once finishing that, all crawling results would be merged
into a full snapshot of the whole ID space. It means our
distributed crawler is able to capture a full snapshot in
approximately 3 minutes. For each server, the peak inbound
and outbound traffic cost are 4.12Mbps and 6.12Mbps during
the experiment, and the average inbound and outbound
traffic cost are 2.2Mbps and 3.28Mbps, respectively. Based
on our distributed crawler, we have measured the BT-DHT
network, and some interesting phenomena will be discussed
in the next section.

V. ANALYSIS OF BT-DHT SNAPSHOTS

In this section, we make use of the distributed version of
Splider to continuously crawl the BT-DHT network, lasted
for 24 hours, from 2013/03/12 00:00 to 2013/03/12 24:00
(UTC+8). The average time of capturing a full snapshot is
about 3 minutes, and 481 continuous full snapshots in total
are captured by Splider. To the best of our knowledge, it
is the first comprehensive data set of BT-DHT, especially
remarkable in the completeness and fine-granularity. Based
on the data set, several characteristics of BT-DHT network
are measured, including the spatial and temporal distribution
of nodes, and the existence of stealthy attacks like sybil and
eclipse attacks.

A. Spatial Distribution

Country

Th
e

pe
rc

en
ta

ge
 o

f n
od

es

Fig. 6. The geographic distribution of nodes in BT-DHT seen on
2013/03/12.

Experiment results show that the nodes in BT-DHT are
distributed in more than 200 countries. In Figure 6, we give
the geographic distribution of nodes in top 15 countries. The
IP addresses of nodes are mapped to corresponding countries
using the latest version of Maxmind database [28]. Different
from previous works [11] [9], we find that Russia rather
than United States has the highest percentage of nodes,
followed by United States and China, 23.9%,14.1% and
7.8%, respectively.

B. Temporal Distribution

Using Splider, we measure the temporal distribution of
BT-DHT nodes from network level and node level respec-
tively.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

242220181614121086420

N
um

be
r o

f n
od

es
 (1

0
)

Time

6

Fig. 7. The fluctuation of the BT-DHT network over time on 2013/03/12.

1) Fluctuation in Network Level: Based on our continu-
ous snapshots of the whole network, we can figure out the
fluctuation characteristics of BT-DHT network over time.
In Figure 7, we give the fluctuation of the total number of
BT-DHT nodes seen in a day. The distribution of BT-DHT
nodes is uneven in different countries, as shown in Figure
6. In addition, due to users’ habits, nodes’ online behaviors
likely vary at different moments even in the same country.
So the scale of the BT-DHT network fluctuates over time.
From 8:00 to 18:00 (UTC+8), the number of online BT-
DHT users obviously falls. And between 10:00 and 15:00,
the volume is only about 60% of peek hours’ (21:00–23:00).
To the best of our knowledge, the fluctuation of the whole
BT-DHT network is measured for the first time.

2) Churn in Node Level: Churn is a basic characteristic
of P2P networks, and reflects the collective effect caused by
the independent arrivals and departures of numerous nodes.
Stutzbach et al. measured the churn rate of the BT-DHT
network from the view of trackers (centralized index servers)
and got some preliminary conclusion in [13]. However, this
view is very limited, because one tracker is impossible to
hold all nodes and may not return all nodes to the querying
node according to BEP15 [14]. Therefore it is necessary
to understand churn by getting a full view of the BT-DHT
network.

Fig. 8. The distribution of session lengths in BT-DHT.

We then evaluate the fundamental property of churn:
session length, which means how long a node stays in the
system during one session. In order to eliminate the bias
towards shorter sessions in a limited measurement window,
we adopt the “create-based method” [29] to fairly choose

The 11th Annual IEEE CCNC - P2P Networking and Cloud-based Content Distribution

333

sessions. Specifically, the measurement window is divided
into two. only sessions beginning during the first half are
considered. Moreover, the sessions longer than 24 hours
cannot be measured due to the limited measurement window.
In Figure 8, we plot the CCDF (Complementary Cumulative
Distribution Function) curve of session lengths on log-linear
scale. From the line “Measured value”, we find that less than
30 percent of sessions are longer than two hours and the
average session length is 2.9 hours, which implies a high
churn rate. However, there is an obvious long tail in this
distribution, where about five percent of sessions last for 24
hours.

Using the non-linear least-squares method we fit the
distribution. Figure 8 shows that the Pareto distribution is
more suitable than Weibull distribution. Pareto distribution
is a kind of heavy-tailed distributions, so it is coherent with
the existence of a long tail in line “Measured value”. This
conclusion is different from the research in [13], which
claims that the distribution of session length is Weibull, not
heavy-tailed.

C. Sybil and Eclipse Attacks

1) Sybil Attacks: Normally, a user sets up only one BT-
DHT node on his host. However, the attacker can easily
bypass this limitation and forge multiple sybil nodes by
modifying the client’s source code or configurations. Hence,
if multiple nodes with different IDs are locating on the same
IP, a potential sybil attack is identified.

After analyzing one full captured snapshot, we identify
over 200 simultaneous potential sybil attacks, each holding
more than 100 sybil nodes in one IP.

TABLE II. TOP 10 SYBIL ATTACKS IN THE SNAPSHOT CAPTURED

ON 2013/03/12.

rank #sybil IP country organization
nodes

1 5218 91.218.230.248 Russia eServer.ru

2 565 80.77.168.133 Russia eServer.ru

3 435 184.73.154.187 United States amazonaws.com

4 348 50.18.3.51 United States amazonaws.com

5 309 106.120.108.6 China China Telecom

6 296 149.142.151.3 United States UCLA

7 295 67.215.242.138 United States Secured Private Network

8 295 67.215.242.139 United States Secured Private Network

9 266 54.247.69.34 Ireland amazonaws.com

10 244 27.37.34.32 China China Unicom

Table II presents the top 10 sybil attacks in the snapshot.
Using the Maxmind IP database, the corresponding countries
and organizations are identified. In Table II, the biggest
attack has forged 5218 sybil nodes. Moreover, we can learn
that sybil attackers prefer to rent public resources from
hosting providers or cloud service providers. For example,
the IPs ranked 1st and 2nd come from eServer.ru,
and another two are from Secured Private Network,
both of which are hosting service providers. And three out
of the top ten IPs are from Amazon AWS, a well-known
cloud service provider.

Another interesting finding is that IPs of numerous nodes
are private, e.g., 192.168.1.1 and 192.168.0.1, which hold
3289 and 321 concurrent nodes respectively. It indicates
some BT-DHT clients cannot verify the validity of nodes’

IP addresses when adding them into their routing tables.
An experiment on a real uTorrent client confirms the above
conjecture. Actually, these nodes with private IPs cannot
make any contribution to the routing and content exchanging
processes in the BT-DHT network. Therefore some valida-
tion mechanism should be introduced into BT-DHT clients.

2) Eclipse Attacks: Normal node IDs in BT-DHT are
generated by SHA1, and thus roughly distribute evenly in
the 160-bit ID space. Assume that the total node population
is N , then the expected number of nodes (denoted as n)
locating in an m-bit subspace can be computed as follows:

n =
N

2m
. (1)

During 24 hours, about 132 million unique node IDs in BT-
DHT are captured by Splider. Then in a 27-bit subspace, n
is nearly 1. In other words, it is suspicious that more than
one node is located in the same 27-bit subspace.

On the other hand, according to previous works [23],
[24], 8 nodes are sufficient to successfully conduct an eclipse
attack in P2P networks holding 20 million concurrent nodes.
So, if 8 or more nodes locate in the same 27-bit subspace,
a suspect eclipse attack is identified.

8 12 16 20 24 28 32
0

10

20

30

40

50

Th
e

nu
m

be
r

of
 e

cl
ip

se
 a

tt
ac

ks

The number of eclipse nodes

0x37b22fa9-prefix

Fig. 9. The distribution of the number of eclipse nodes in an attack.

After analyzing the same snapshot used in the analysis of
sybil attacks, 214 suspicious eclipse attacks were identified.
Figure 9 shows the distribution of the these attacks. Actually,
all nodes in over 80% eclipse attacks fall into a 32-bit
subspace, much smaller than the estimated 27-bit subspace.
For instance, the biggest eclipse attack has 32 eclipse nodes
locating in the 0x37b22fa9-prefix subspace.

For each eclipse attack, we further calculate the IP distri-
bution of their eclipse nodes. Then we find out that at least
80 eclipse attacks have some eclipse nodes sharing a single
IP. On the other hand, real nodes sharing a single IP, e.g.
nodes that adopt Network Address Translation (NAT), can
hardly have adjacent node IDs (e.g., with a 32-bit common
prefix), because all IDs are generated by a consistent hash
function SHA1. So, these eclipse nodes sharing a single IP
must be sybil nodes. In other words, these 80 eclipse attacks
are built on sybil attacks.

For instance, the biggest attack in Figure 9 has 32
eclipse nodes, and 27 of them share a common IP address,

The 11th Annual IEEE CCNC - P2P Networking and Cloud-based Content Distribution

334

173.193.32.170, which is owned by an American hosting
service provider SoftLayer Technologies. It is im-
possible that 27 real nodes sharing a single IP can fall into
the same 32-bit subspace. So, we can confirm that these 27
nodes must be sybil nodes.

From this analysis, we can learn that attackers often
make use of sybil attacks to carry out further attacks, such
as eclipse attacks in P2P networks.

VI. CONCLUSION

In this paper, we proposed a split-based crawler S-
plider for taking snapshots of the BT-DHT network. Our
approach addresses the major shortcomings of iterative
crawlers, namely accuracy and efficiency. The experiments
show that our split-based algorithm is much better than
iterative algorithms in all respects, including snapshot size,
recall ratio, time and bandwidth consumption, and traffic-
cost effectiveness. With modest modifications, our approach
can also be applied to other Kademlia networks, e.g. eMule-
Kad.

Our crawler, Splider, can also be deployed in a distribut-
ed manner. Without introducing any additional communica-
tion cost, the distributed crawlers can capture a full snapshot
of the entire network in only about 3 minutes. With the
help of the distributed Splider, we have captured hundreds of
snapshots of the BT-DHT network within 24 hours, resulting
in a data set containing the most comprehensive and fine-
grained measurement of the BT-DHT network, allowing us
to measure BT-DHT’s characteristics (node distribution and
network fluctuation and churn) and detect sybil attacks and
eclipse attacks, more accurately and easily.

REFERENCES

[1] J. R. Douceur, “The sybil attack,” in Proceedings of the 1st Inter-
national Workshop Peer-to-Peer Systems (IPTPS), vol. 1. Springer,
2002, p. 251.

[2] L. Maccari, M. Rosi, R. Fantacci, L. Chisci, M. Milanesio, and L. M.
Aiello, “Avoiding eclipse attacks on kad/kademlia: an identity based
approach,” in Proceedings of ICC Communication and Information
Systems Security Symposium, 2009.

[3] B. Cohen, “Incentives Build Robustness in BitTorrent,” in Proceed-
ings of the 1st Workshop on Economics of Peer-to-Peer Systems,
2003.

[4] The eMule Project. [Online]. Available: http://www.emule-project.
net

[5] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-peer Infor-
mation System Based on the XOR Metric,” in Proceedings of the
1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.

[6] J. Yu, P. Xiao, Z. Li, and Y. Zhou, “Toward an Accurate Snapshot
of DHT Networks,” IEEE Communications Letters, vol. 15, no. 1,
pp. 97–99, January 2011.

[7] S. Moritz, T. En-Najjary, and E. W. Biersack, “A Global View of
KAD,” in Proceedings the 7th Internet Measurement Conference
(IMC), 2007.

[8] M. Steiner, E. W. Biersack, and T. Ennajjary, “Actively Monitoring
Peers in KAD,” in Proceedings of the 6th International Workshop
on Peer-to-Peer Systems (IPTPS), 2007.

[9] X. Liu, T. Meng, K. Cai, and X. Cheng, “Rainbow: a Robust and
Versatile Measurement Tool for Kademlia-based DHT Networks,” in
Proceedings of International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), 2010.

[10] K. Hirata and T. Kato, “Query by visual example,” in Proceedings
of 3rd International Conference on Extending Database Technology
(EDBT), 1992.

[11] P. Salvador and A. Nogueira, “Study on geographical distribution and
availability of bittorrent peers sharing video files,” in Proceedings
of IEEE International Symposium on Consumer Electronics (ISCE),
2008.

[12] B. C. Arnold, Pareto Distribution. Wiley Online Library, 1985.

[13] S. Daniel and R. Reza, “Understanding Churn in Peer-to-Peer Net-
works,” in Proceedings of the 6 th Internet Measurement Conference
(IMC), 2006.

[14] UDP Tracker Protocol for BitTorrent. [Online]. Available: http:
//www.bittorrent.org/beps/bep 0015.html

[15] G. Montassier, T. Cholez, G. Doyen, R. Khatoun, I. Chrisment, and
O. Festor, “Content pollution quantification in large p2p networks: A
measurement study on kad,” in Proceedings of the 11th International
Conference on Peer-to-Peer Computing (P2P). IEEE, 2011, pp. 30–
33.

[16] J. Dinger and H. Hartenstein, “Defending the sybil attack in p2p net-
works: Taxonomy, challenges, and a proposal for self-registration,”
in Proceedings of the 1st International Conference on Availability,
Reliability and Security (ARES). IEEE, 2006, pp. 8–pp.

[17] H. Wang, Y. Zhu, and Y. Hu, “An efficient and secure peer-to-
peer overlay network,” in Proceedings of the 30th Annual IEEE
Conference on Local Computer Networks (LCN). IEEE, 2005, pp.
8–pp.

[18] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A near-
optimal social network defense against sybil attacks,” in Proceedings
of 2008 IEEE Symposium on Security and Privacy. IEEE, 2008,
pp. 3–17.

[19] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and A. Panconesi,
“Sok: The evolution of sybil defense via social networks,” in Pro-
ceedings of 2013 IEEE Symposium on Security and Privacy, 2013,
pp. 382–396.

[20] S. Balfe, A. D. Lakhani, and K. G. Paterson, “Trusted computing:
Providing security for peer-to-peer networks,” in Proceedings of
the 5th International Conference on Peer-to-Peer Computing (P2P).
IEEE, 2005, pp. 117–124.

[21] T. Condie, V. Kacholia, S. Sank, J. M. Hellerstein, and P. Maniatis,
“Induced churn as shelter from routing-table poisoning.” in Proceed-
ings of the 13th annual Symposium on Network and Distributed
System Security (NDSS), 2006.

[22] L. M. Aiello, M. Milanesio, G. Ruffo, and R. Schifanella, “Temper-
ing kademlia with a robust identity based system,” in Proceedings
of 8th International Conference on Peer-to-Peer Computing (P2P).
IEEE, 2008, pp. 30–39.

[23] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,
“Secure routing for structured peer-to-peer overlay networks,” in
Proceedings of the 5th symposium on Operating systems design and
implementation (OSDI). New York, NY, USA: ACM, 2002, pp.
299–314.

[24] R. Zhang, J. Zhang, Y. Chen, N. Qin, B. Liu, and Y. Zhang,
“Making eclipse attacks computationally infeasible in large-scale
dhts,” in Proceedings of 2011 IEEE 30th International Performance
Computing and Communications Conference (IPCCC). IEEE, 2011,
pp. 1–8.

[25] S. Daniel, R. Reza, and S. Subhabrata, “Characterizing Unstruc-
tured Overlay Topologies in Modern P2P File-Sharing Systems,”
IEEE/ACM Transactions on Networking, vol. 16, no. 2, pp. 267–
280, 2008.

[26] The Token Bucket Algorithm. [Online]. Available: http://en.
wikipedia.org/wiki/Token bucket

[27] M. Steiner, T. En-Najjary, and E. W. Biersack, “Long Term Study
of Peer Behavior in the KAD DHT,” IEEE/ACM Transactions on
Networking, vol. 17, no. 5, pp. 1371–1384, October 2009.

[28] An IP Dataase. [Online]. Available: http://www.maxmind.com

[29] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “Measuring and ana-
lyzing the characteristics of Napster and Gnutella hosts,” Multimedia
systems, vol. 9, no. 2, pp. 170–184, 2003.

The 11th Annual IEEE CCNC - P2P Networking and Cloud-based Content Distribution

335

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

