
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

On the Detection of Smart, Self-Propagating
Internet Worms

Jun Li, Devkishen Sisodia, and Shad Stafford

Abstract—Self-propagating worms can infect millions of computers on the Internet in just several minutes. As witnessed by the recent
Mirai and WannaCry worms, worm attacks are real, destructive, and continue to persist. Although many worm detectors exist, most
that we studied suffer from three drawbacks: none systematically consider countermeasures from worm authors, potentially causing
low effectiveness against evasive worms; all focus on outbound worms leaving a network, leaving their efficacy against inbound worms
entering a network unanswered; and many require bi-directional traffic to detect worms, making their placement on the Internet
inflexible. We therefore revisit worm detection in this paper, while avoiding the aforementioned drawbacks of existing work. We describe
our design of SWORD, a new worm detector that focuses on the fundamental behavior of worms. It includes two complementary
modules to monitor connections from and to a protected network, with one module monitoring burst durations and the other ensuring
quiescent periods. Via extensive experiments using both simulated worm traffic and a real-world Mirai worm trace, we demonstrate that
SWORD is superior to existing detectors at not only detecting both classic and evasive outbound worms, but also inbound worms,
especially those that are superspreading or surreptitious.

Index Terms—Internet Worm; Smart Worm; Worm Detection; Behavior-Based Worm Detection; Mirai Worm

F

1 INTRODUCTION

WORMS can propagate themselves rapidly and infect
millions of hosts on the Internet in just several min-

utes and continue to pose a severe threat to the security
of the Internet. In fact, the ground for worms to spread is
potentially more fertile than ever. The number of Internet-
capable devices continues to rise at a stunning rate [1], and
each of these devices is capable of running a diverse range
of software that can be vulnerable to malicious attacks.

While there was a relatively long lull without much
worm activity between the Morris worm in 1988 and the
big wave of many devastating worms in the late 1990s and
early 2000s (e.g., Trinoo, Tribe Flood Network, Code Red,
Nimda, SQL Slammer) [2], worm activity has continued
in the last two decades [3]. For example, in 2008, Con-
ficker [3] infected over a million machines, and between
2010 and 2012, Stuxnet/Duqu/Flame [4] caused devastating
damage to several industrial and energy-producing facilities
in several countries. More recently, the world witnessed
BASHLITE [5] in 2015, along with WannaCry and NotPetya
in 2017 [4].

Worms we look at in this paper are self-propagating
worms, i.e., worms whose code can self-execute whenever a
logic condition for spreading is met and, therefore, can repli-
cate completely autonomously. Even though some might
need manual intervention for initial activation, they do not
require manual intervention from a user for continuous
spreading. One of the widest spreading worms in recent
memory is the Mirai worm. In 2016, the Mirai worm infected
over 300,000 Internet of Things (IoT) and embedded devices

• J. Li, and D. Sisodia are with the Department of Computer and Informa-
tion Science, University of Oregon, Eugene, OR, 97403.
E-mail: {lijun, dsisodia}@cs.uoregon.edu.

• S. Stafford is with Palo Alto Software, Eugene, OR, 97401.
E-mail: shad@techshadow.com.

all over the world. Mirai continues to “thrive” on the In-
ternet, especially in IoT-rich environments [6]. Furthermore,
due to its propagation success, Mirai’s scanning techniques
have been copied by a plethora of newer worms such as
Hajime, IoTroop, and Mozi, among others [7].

There are many existing worm detectors which we study
in this paper [8], [9], [10], [11], [12]. These detectors usually
assume that worms have no knowledge of a worm detector
in place, much less their configurations, and do not observe
legitimate traffic in place and adjust their scanning rate
accordingly to stay undetected. We call such a worm a
classic worm. Unfortunately, a worm can also be smart and
continuously evolve in order to evade existing detectors.
We call such a worm an evasive worm. A worm detector
should continue to function effectively even if a worm is not
a classic worm, but an evasive worm.

Furthermore, all of the existing worm detectors we stud-
ied focus solely on detecting outgoing worm traffic from
a protected network to the Internet, leaving their efficacy
at detecting incoming worm traffic from the Internet to a
protected network unknown. Even if a detector is effective
against outbound worms, we cannot assume it will be ef-
fective against inbound worms. Inbound worm detection is
significantly more difficult than outbound worm detection.
When detecting outbound worms, a detector can be placed
to observe all of the outgoing scans from an infected net-
work. However, when detecting inbound worms, because
the scans from every infected host usually target victims all
over Internet, no matter where a detector is placed, it may
only observe a miniscule portion of all worm scans, making
it significantly harder to detect the inbound worms.

We revisit worm detection in this paper. We treat worm
detection as an arms race in which a worm can be smart and
evasive, and propose a new worm detector called SWORD
(Self-propagating Worm Observation and Rapid Detection).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

Unlike most existing detectors, SWORD is focused on the
fundamental behavior of worms that is hard for any worm
to evade. The only truly fundamental behavior of worms
is that of connecting to new destinations. Behavior-based
detection systems that do not focus on this fundamental
behavior can be evaded successfully by sufficiently smart
worms. Furthermore, SWORD is designed to detect both
outbound worms from, and inbound worms toward a
protected network. It only needs to observe a very small
number of connections from an infected host to detect the
presence of the worm, either outbound or inbound. In addi-
tion, unlike some detectors that require bi-directional traffic
to detect worms in either direction, SWORD only requires
outgoing traffic to detect outbound worms and incoming
traffic to detect inbound worms.

SWORD’s working mechanisms are novel. It includes
two main modules in detecting violations that a worm will
cause in connecting to new destinations, and these two
modules complement each other: If a worm does not wish to
violate one module when connecting to somewhere, it will
inevitably violate the other, leaving little space for a worm
to breathe and forcing it to slow down or freeze.

We have designed an experimental framework for evalu-
ating various behavior-based worm detectors. We measured
the performance of SWORD and compared it to six other
state-of-the-art behavior-based worm detectors, DSC [8],
MRW [9], PGD [10], RBS [11], TRW [12], and TRWRBS [11].
We first evaluate the detectors on outgoing worm traffic,
where all of the detectors are given bi-directional traffic as
if they were deployed at the protected network’s border
router. We found that SWORD can not only effectively detect
classic worms, but also evasive worms, and significantly
outperforms all other detectors.

We then evaluate SWORD and three detectors, MRW,
PGD, and RBS, on incoming worm traffic, where all of the
detectors are only given uni-directional incoming traffic as if
they were deployed at an upstream Internet service provider
(ISP) or exchange point (IXP) to protect multiple down-
stream networks. We exclude DSC, TRW, and TRWRBS from
comparison because they require bi-directional traffic to
detect worms. We leveraged a real-world, Mirai worm traffic
trace collected at a major educational IXP [13], along with a
trace of background traffic collected at the same IXP [14].
Not only does SWORD outperform every other detector in
terms of false negative rates, but it also outperforms them
at detecting surreptitious worm IPs with low total scans or
low incoming scanning rates, and superspreading worm IPs
with high total scans. Compared to its competitors, SWORD
detects significantly more worm IPs that make as low as 5
incoming scans, and unlike any of its competitors, SWORD
can detect worm IPs with incoming scanning rates as low
as 0.002 scans/s. Furthermore, SWORD detects the first
incoming Mirai worm scan the quickest, therefore allowing
the fewest incoming worm scans out of all the detectors
before alerting of the first worm scan.

2 BACKGROUND AND RELATED WORK

2.1 Worm Traffic Detection
A worm running on a host actively scans the network
(or the entire Internet) that the host is connected to and

looks for new victims to infect. A worm can employ a
variety of scanning mechanisms, including random, local
preference, sequential, permutation, topological, and hitlist
scanning [15]. It infects a remote host by gaining sufficient
privileges to copy itself to, and then execute itself on, the
remote host.

We categorize worm detection systems into two cate-
gories: host-based and network-based. Host-based detection
uses information available at the end-host, and example
techniques include buffer overflow detection, correlating
network data to memory errors, and looking for patterns
in system calls (e.g., [16], [17], [18]). But since host-based de-
tection requires deployment on every host to detect if a host
is infected, network-based detection became more desirable
with less overhead to install and maintain. Network-based
systems usually only need a single deployment location,
such as a network gateway, to protect an entire network.
Network-based detection mainly includes content-based de-
tection and behavior-based detection. Content-based detec-
tion observes the content of network traffic to look for byte
patterns that match the signature of a worm. Early content-
based detectors leveraged simple statistical methods (e.g.,
[19], [20], [21]), while recent content-based detectors lever-
age deep learning to detect worms (e.g., [22], [23]). Behavior-
based detection observes the network behavior of end hosts
and identifies patterns that are indicative of the presence
of a worm. Because content-based detection is less capable
against zero-day or polymorphic worms and can incur
a high overhead to inspect traffic payload, we focus on
behavior-based detection in this paper.

Existing behavior-based worm detection has focused
on various types of traffic behaviors, including: how the
outgoing connections from a host correlate to the incoming
connections to that host, how the connection failure patterns
of a host deviate from normal, and what a host’s pattern of
visiting destinations looks like. As we will need to com-
pare SWORD against state-of-the-art behavior-based worm
detectors, we now summarize these detectors below.

DSC [8] detects a worm by correlating an incoming con-
nection on a given port with subsequent outgoing connec-
tions on that port. If the outgoing connection rate exceeds a
threshold established during training, the alarm is raised.

TRW [12] identifies a host as worm infected if its at-
tempts to connect to new destinations result in a high
rate of connection failures. The basic idea is that a worm-
infected host that is scanning the network randomly will
have a higher connection failure rate than a host engaged in
legitimate operations.

The multi-resolution approach [9], which we refer to as
MRW, supposes that when there is no worm, the growth
curve of the number of distinct destinations over time is
concave, but not so when a worm is present since worm
scanning will lead to many destinations. This hypothesis can
be leveraged by monitoring over multiple time windows
with different thresholds for each window. If the number of
new destinations for a host within a given window exceeds
the threshold, an alarm is raised.

The Protocol Graph detector [10], which we refer to as
PGD, is targeted at detecting slowly propagating hitlist or
topologically aware worms. It works by building protocol-
specific graphs where each node in the graph is a host,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

and each edge represents a connection between two hosts
over a specific protocol. It assumes that during legitimate
operation over short time periods, the number of hosts in
the graphs is normally distributed and the number of nodes
in the largest connected component of each graph is also
normally distributed. During a worm infection, however,
both numbers will become abnormal, thus indicating the
presence of a worm.

RBS [11] measures the rate of connections to new desti-
nations, similar to MRW. It assumes that a worm-infected
host contacts new destinations at a higher rate than a
legitimate host does. It measures this rate by fitting the
inter-arrival time of new destinations to an exponential
distribution.

TRWRBS [11] combines the TRW and RBS detectors
into a unified scheme, and observes both the connection
failure rate and the first contact rate. It performs sequential
hypothesis testing on the combined likelihood ratio to detect
worms.

All aforementioned detectors are focused primarily on
classic worms, without considering the countermeasures
that a smart, evasive worm may employ. Research in [24]
have also evaluated and compared their performance, but
only against classic worms. Although a detector may appear
to perform well by only considering classic worms, their
performance against sophisticated evasive worms remains
to be seen.

Furthermore, all aforementioned detectors are focused
solely on detecting outbound worms from a network. While
each detector may be applied to also detect inbound worms
toward a network without significant changes, each detector
was evaluated only against outbound worms.

Lastly, DSC, TRW, and TRWRBS require bi-directional
traffic to detect worms. DSC needs to observe both incoming
and outgoing traffic in order to correlate the two, TRW
needs to observe incoming traffic in order to determine
which outgoing connections led to connection failures, and
TRWRBS leverages TRW and therefore also needs to observe
incoming traffic. In some scenarios in the real world, the
requirement of bi-directional traffic may be impossible to
meet, due to the deployment location of a detector, hard-
ware limitations, privacy considerations, and other con-
straints.

2.2 Content-Agnostic Traffic Analysis

The aforementioned behavioral-based worm detectors, in-
cluding SWORD, are content-agnostic because they do not
need to observe the content of the network traffic. There
is a plethora of content-agnostic traffic anomaly detection
approaches in literature, especially in two areas related to
worm detection: bot detection and DDoS detection.

While somewhat similar, bot detection differs from
worm detection in that typical bot detection approaches
attempt to detect communication between bots and their
command and control (C&C) servers, instead of detecting
scanning behavior of the bots. Content-agnostic bot detec-
tion approaches leverage flow-level information, instead of
deep packet inspection, to identify key features of C&C
communication and develop detection frameworks (e.g.,
[25], [26]). In many cases, worms are used to create botnets

Unmonitored Traffic
Monitored Outgoing Traffic
Monitored Incoming Traffic

ISP/IXP
Router

Protected Network

Possible SWORD placement locations

Gateway
Router

Internet

...

Fig. 1: Placement of the SWORD detector.

that ultimately launch DDoS attacks. Over the last couple
decades, content-agnostic DDoS detection has been a fertile
ground for network security research (e.g., [27], [28]).

Some of the same shortcomings that apply to the pre-
viously investigated behavioral-based worm detectors also
apply to the content-agnostic anomaly detection approaches
in bot and DDoS detection. All of the investigated ap-
proaches require a relatively comprehensive view of the
network in which they are deployed, which includes being
able to observe bi-directional traffic. While content-agnostic
approaches claim to be easier to deploy in the real-world
due to not needing network traffic content, the requirement
of comprehensive input data may render them infeasible for
many networks on the Internet.

3 THE SWORD DETECTOR

3.1 Placement of SWORD
SWORD can detect both outgoing and incoming worm
traffic from and toward a protected network. In other words,
to detect outgoing worm traffic, SWORD needs to be placed
where it can monitor the network’s outgoing traffic; no
incoming traffic is needed. To detect incoming worm traffic,
it needs to be placed where it can monitor the network’s
incoming traffic; no outgoing traffic is needed.

A SWORD detector can be placed either at or away from
a protected network. As depicted in Figure 1, a typical de-
ployment position of SWORD is the gateway of a protected
network where SWORD can monitor all of the outgoing and
incoming traffic. Alternatively, SWORD could also run at an
ISP/IXP that is en route of the outgoing traffic from and/or
incoming traffic to the network. If the network is single-
homed (i.e., connected to the Internet with just one ISP/IXP)
and SWORD is deployed at its direct ISP/IXP, SWORD can
monitor all the outgoing and incoming traffic. However, if
the network is multihomed (i.e., connected to the Internet
with more than one ISP/IXP), SWORD may not see all of the
outgoing or incoming traffic and thus only detect outgoing
or incoming worm traffic traversing the ISP/IXP where it
is installed. This is also true if SWORD is deployed at an
ISP/IXP multiple hops away from the protected network
(regardless if the network is single-homed or multihomed).
A distributed version of SWORD that runs multiple in-
stances of SWORD at more than one location can also be
deployed to collectively monitor all the outgoing/incoming
traffic; in this work we focus on the single-instance version
of SWORD.

To monitor outbound worms departing from a protected
network, it is often preferable to deploy SWORD at a loca-
tion where it can observe all the outgoing traffic, such as
the network gateway or its direct ISP/IXP if the network is
single-homed, so that the network can minimize its liability

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

of leaking worms to the Internet. Moreover, if SWORD is
deployed at a location not able to monitor all the outgoing
traffic, the worms that have infected the network may also
learn the location of SWORD, and bypass it such that the
protected network may not even know the presence of the
worm.

To monitor inbound worms toward a protected network,
SWORD can also be deployed at the network gateway or its
direct ISP/IXP if the network is single-homed such that it
can see all the incoming traffic to maximize the detection
of all worm traffic. However, as inbound worms can travel
toward the network along multiple incoming paths, even
if SWORD is only deployed on one of the incoming paths,
such as when SWORD is deployed at one of the protected
network’s ISP/IXPs, SWORD will still be able to detect the
presence of the worm, for two reasons: First, even though in
such a deployment scenario SWORD may only see incoming
traffic to the network, SWORD only needs uni-directional
traffic to detect worms. Second, although SWORD is not
deployed on every incoming path, worm traffic usually ap-
pears on every incoming path toward the network. Running
SWORD at an ISP/IXP can be more cost efficient compared
to running SWORD at each network downstream, but far
more difficult, as explained in Section 1, especially when
only partial incoming traffic is observed.

3.2 BDD: Preventing Fast Scanning via the Burst Dura-
tion Detector

The behavior of contacting new destinations seeking new
victims to infect simply cannot be avoided by a worm that
is looking to propagate. So, to detect a worm one should
look for anomalies in the rate at which a host contacts new
destinations, i.e., the rate of first-contact connections. The key
is then to determine whether or not a host is making first-
contact connections at a rate faster than usual.

Two previous detectors relied on heuristic of this flavor:
the MRW detector and the RBS detector. However, they both
have their deficiencies. The MRW detector counts the num-
ber of first-contact connections in a series of time windows
of different length, but it only uses a relatively small set of
windows, typically fewer than 10. An intermediate window
size might produce a detection window that would detect a
worm more quickly than the bigger or smaller sizes in use,
but due to the limited number of windows, MRW cannot
take advantage of this. RBS, on the other hand, computes
a threshold for every different window size, and it uses
the number of connections instead of time to describe the
window. However, it suffers from sub-optimal thresholds,
and thus a poor performance even against classic worms
(Section 5.1). RBS attempts to fit a single curve to the
distribution of inter-connection intervals and uses this curve
to generate the thresholds, but in practice the distribution
does not map well to a single curve.

BDD avoids the drawbacks in the MRW and RBS ap-
proaches. Rather than using a small number of time win-
dows of different sizes like MRW, it uses RBS’s method of
creating a window for every different size of connection
burst. Moreover, BDD derives a threshold for every burst
size (from a two-connection burst size to a maximum-
connection burst size). We introduce a training process,

during which we measure multiple different durations ob-
served for each burst size and use the minimum duration
observed for each burst size to determine the threshold
for a burst of that size. Different from RBS using a single
curve to derive thresholds, this process allows for a more
complex distribution of inter-connection interval times for
connections in a burst, thus obtaining more accurate thresh-
olds. As a result, BDD has the advantages of supporting a
large number of window sizes and obtaining an accurate
threshold for every burst of a different size.

Another advantage of BDD is that even if a worm only
makes a small number of connections, these connections will
be verified against the thresholds for bursts of a small size,
and if any threshold is violated, BDD can detect the worm.
This advantage is especially useful in detecting inbound
worm traffic from a worm-infected host toward a protected
network, since the host, while scanning everywhere on
the Internet, may only launch a small number of worm
connections toward the network.

The potential drawback to this new method is greater
overhead for storing different thresholds and greater com-
putational requirements for examining a recent connection
history to determine if it violates any of the thresholds.
However, a truism is that computational power and storage
space are constantly increasing, and this additional load is
of a less concern.

3.3 QPD: Ensuring Quiescent Periods via the Quies-
cent Period Detector

A normal host will exhibit regular quiescent periods where
it does not make any first-contact connections. In other
words, legitimate traffic is typically bursty, with first-contact
connections occurring in groups and quiet periods between
them. Figure 2(a) shows an example pattern of legitimate
connections. Point A in the figure shows a quiescent period
with no worm traffic, followed by a burst of connections.

After a worm infects a host and tries to spread itself, if
it scans at a fixed rate, it will make connections during the
middle of a legitimate burst, which will raise the overall ob-
served connection rate from the host. Figure 2(b) shows the
legitimate traffic with the addition of classic worm traffic.
Point B indicates a spot of increased connection rate due
to the worm connections adding to the burst of legitimate
traffic. If BDD is in place, it can detect the worm.

The worm, however, could be adaptive and avoid this
additive effect. Specifically, the worm can dynamically ad-
just its first-contact rate so that it is always lower than the
detection threshold. If the host makes bursts of legitimate
first-contact connections, the worm can simply slow down
to keep from adding too many of its connections to the le-
gitimate connections, thus avoiding exceeding the detection
threshold. When the host is otherwise idle, however, as long
as the worm does not exceed the BDD thresholds, it is then
free to make first-contact connections. Figure 2(c) shows the
legitimate traffic with an adaptive worm overlaid. By scan-
ning mostly when the host is in the middle of a quiescent
period, the adaptive worm avoids having a scanning rate
greater than the legitimate traffic, even at a higher scanning
rate than the classic worm (with eight worm scans instead
of five in Figure 2(b)).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

Time

A

(a) Legitimate connections

Time

B

(b) Legitimate connections plus clas-
sic worm connections

Time

(c) Legitimate connections plus rate-
adaptive worm connections

Fig. 2: Examples of observed connections over time.

Preventing or limiting this adaptive behavior of worms
would then help to reduce the achievable scan rate of a
worm, and is the basis for QPD. Basically, if a host does
not display quiescent periods as it typically does, and has
been “active” for overly long, QPD then determines that the
host is infected by a worm that is scanning the network.

QPD thus detects worms by measuring the duration of
active periods during a training phase. An active period
is defined as the duration of a period during which first-
contact connections happen with no more than the specified
quiescent period between them. QPD uses a series of dif-
ferent quiescent periods. For every quiescent period size,
it measures the mean and standard deviation of all the
active periods that are separated by a quiescent duration
of at least that length. These values are used to generate
a threshold duration for active periods, which is the mean
plus β times the standard deviation. β can be tweaked for
different environments to fix the false positives at a specific
value. If a host has an active period exceeding the threshold
duration for any of the quiescent period, it is likely infected
with a worm. For example, we can apply QPD to Figure 2(c)
where the host is active all the time and does not exhibit any
quiescent period at all to detect the presence of the worm.

Note that, similar to BDD, QPD also has the advantage
that it is sensitive to worms that only make a small number
of connections, which, again, is particularly useful in detect-
ing incoming worm traffic despite that there may be only a
small number of scans from a worm IP. Among the different
quiescent periods QPD uses, some of them can be extremely
short, and the active period based on a short quiescent
period will also be short and contain only a small number of
connections. Therefore, even if a worm only makes a small
number of connections, it could cause certain active periods
to exceed their threshold values, causing QPD to detect the
worm.

3.4 Clustering

Existing behavior-based detection systems employ the same
threshold for all hosts in a protected network or on the
Internet. This is a poor choice because hosts show widely
divergent behaviors. As more devices (e.g., IoT devices)
connect to the Internet, they also come with even more
divergent behaviors [29]. Desktop computers used primarily

for web surfing make connections in a different pattern than
a department email server would, for example. If a desktop
computer started making connections at the same rate as the
email server, it is likely an anomalous event and something
strange must have happened to that computer. But if the
desktop computer applies same thresholds as the email
server does, its behavior would not appear to be anomalous
because those thresholds must allow it as normal behavior
to avoid constantly flagging the email server as infected.

We applied existing clustering techniques to automati-
cally categorize the hosts such that different thresholds can
be applied to different groups of hosts. We examined a
range of clustering techniques, behavior characteristics to
cluster against, and number of clusters to create. We have
found that using k-means clustering to separate the hosts
into groups allows us to improve overall performance. In
our current design we cluster based on a single feature of
the hosts, the number of destinations contacted during a
training period.

3.5 Design of SWORD
We have combined the above principles into a new worm
detector, i.e., SWORD. It uses the BDD and QPD detectors
outlined above, and declares a host to be infected with a
worm when either BDD or QPD raises an alarm. SWORD
observes legitimate network activity for a period of time to
cluster hosts into groups and generate thresholds for each
cluster.

The co-existence of BDD and QPD makes it extremely
hard for a worm to avoid being caught. If a worm wants
to escape BDD but still makes new connections, it cannot
shorten the duration of a burst of any size; it will then
have to lengthen active periods, but doing so will get it
caught by QPD. On the other hand, if a worm wishes to
escape QPD while still making new contacts, it then has to
ensure the quiescent periods; it will then have to insert its
connections into active periods, which however will cause
certain connection bursts to have a shorter duration than
permitted, thus triggering the alarm from BDD. Therefore,
this combined, collective detection of SWORD captures
the fundamental behavior of worm detection, preventing a
worm from quickly spreading to many destinations.

4 EXPERIMENT METHODOLOGY FOR OUTBOUND
WORM DETECTION

4.1 Procedure Overview
Our objective is to evaluate and fairly compare the per-
formance of different detectors, including SWORD, against
outbound worms with various different parameters. We
developed a custom testing framework that allows us to
easily set up an evaluation environment with both back-
ground traffic and worm traffic, plug in any behavior-based
detector, and run the same set of experiments for each
detector against the same traffic to measure its performance.
We implemented SWORD in this framework, as well as
all detectors described in Section 2, i.e., DSC, TRW, RBS,
MRW, PGD, and TRWRBS. We place every detector, when
evaluated, at the gateway of the protected network. This
placement ensures every monitor to be able to observe all

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

the outgoing traffic, as desired for monitoring outbound
worms (see Section 3.1); this placement also enables DSC,
TRW, and TRWRBS to monitor all the incoming traffic, as
they need complete bi-directional traffic.

For each worm detector, including SWORD, we first
run it against classic worms. We measure its accuracy (i.e.,
false positives and false negatives) and detection latency at
different scanning rates. We then run every detector against
evasive worms, and see how resilient a detector is against
evasive worms. We describe evasive worms in Section 4.2,
and detail the metrics and parameters for measuring against
both classic and evasive worms in Section 4.3.

We run each detector in four distinct environments:
campus, enterprise, department, and wireless. Every environ-
ment includes background traffic from a real source, and
worm traffic with a variety of worm scanning strategies
generated using the GLOWS worm simulator [30] that is
tailored to that environment. Note, we ensure the worm
traffic is unbiased toward SWORD. As the traffic behavior
in each environment is different, such as the durations of
traffic bursts and durations of active periods, SWORD may
demonstrate different performance under different environ-
ments. We detail them in Section 4.4.

4.2 Evasive Worms

For a worm to evade detection, it must know the underlying
details of the detector being used, then leverage its capa-
bilities to adjust its behavior in order to avoid triggering
detection. We define several terms to refer to capabilities
of evasive worms. A worm with no knowledge of the
legitimate network traffic on an infected host is said to be
blind, whereas if it can observe the traffic it is perceptive.
A worm that does not know the parameters of the detector
deployed against it is described as speculative, whereas one
that knows the actual deployed parameters is said to be in-
formed. We consider all permutations of these capabilities.

An evasive worm against SWORD must ensure that it
has sufficient quiescent periods to evade QPD, while also
limiting its bursts of connections to avoid triggering BDD.
The combination of these two mechanisms puts significant
constraints on the ability of the worm to scan. More specifi-
cally, the worm runs internal versions of both the QPD and
BDD detectors. For every scan to initiate, it first checks to see
whether the scan will violate any of the QPD constraints. If
it will, the worm waits long enough to end the current active
period for the QPD constraint in question. After eliminating
QPD as a constraint, it checks the BDD durations to ensure
that the BDD detector will not be triggered either. Note,
while an evasive worm may be able to see legitimate con-
nections already sent from its infected host, it cannot predict
future legitimate connections from the same host. Based on
the legitimate connections seen so far, the worm may decide
it can make one or multiple worm connections that would
not cause any threshold to be violated, but the subsequent
legitimate connection(s) could.

We also implemented a different type of evasive worm
against every other type of worm detector we evaluate. The
evasive worm against DSC adds a delay between infecting a
host and the beginning of scanning from that host to avoid
any causality connection; the evasive worm against TRW

contacts a list of known hosts to avoid connection failures;
the evasive worms against MRW and PGD both scan at
the maximum sustained rate that will not be detected; and
the evasive worm against TRWRBS is a combination of the
evasive worms against TRW and RBS (we do not consider
evasive worms against RBS because RBS does not even per-
form well against classic worms, as shown in Section 5.1).

4.3 Metrics and Parameters
For each detector in each environment, we first run it against
benign traffic with no injected worm activity. The false
positive rate is the number of hosts misidentified as infected
per hour. We then run 16 experiments for every permutation
of the worm parameters (e.g., we run 16 experiments to
measure a random-scanning worm at every scanning rate).
Each experiment consists of running the detector for 10
minutes of the experiment trace to warm up the connection
histories, then injecting the simulated worm traffic into the
trace, and running until either an hour has elapsed or the
worm is detected. Each of the 16 experiments that we run
for a given set of worm parameters has a different host in the
protected network being infected first and uses a different
random seed. The false negative rate is then the percentage
of experiments where the worm is not detected, and the
detection latency is the mean number of worm connections
that have left the network at detection time.

For each evasive worm we vary a parameter ζ between
zero and one that controls its aggressiveness of scanning.
A value of zero means that the worm will generate traffic
so that it has a 0% chance of being caught, which may
mean that it may not scan at all. A value of one means that
the worm’s scanning traffic is the most aggressive possible
without being detected (such as by not surpassing the worm
detection thresholds) when there is no legitimate traffic
present. Note, an infected host may also generate legitimate
traffic; when the worm traffic from the host is not alone
but interleaved with the legitimate traffic, a worm with a
load factor of 1 or less may still be detected. Therefore,
a worm’s ability to evade detection is based not just on
the load factor, but on a combination of the load factor,
the worm’s distribution of scanning traffic over time, the
legitimate traffic generated by the infected host, and the
worm’s capabilities.

We run each evasive worm once in each environment
for 1 hour for each of 16 different randomly selected first
infected hosts, for 10 different values of ζ in the range [0.1–
1.0], and with an upper bound of scanning rate at 10 scans
per second.

We use three metrics to evaluate the success of an evasive
worm. As we vary the load factor, we measure the worm’s
ability to evade detection: its evasion rate. This represents
the percentage of experiments where the evasive worm is
not detected by the worm detector in place. Clearly, the
evasion rate of the worm is equivalent to the false negative
rate of the corresponding worm detector.

The second metric is the effective scanning rate. This is
the average number of worm scans per second the evasive
worm is able to make during the one hour experiment for a
given environment and value of ζ . The higher the value of
ζ , the faster the evasive worm will scan, thus increasing its
effective scan rate (but also reducing the evasion rate).

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

An evasive worm author’s goal is to scan as quickly
as possible while maintaining a high chance at evasion.
As the load factor of a worm increases, its scanning rate
also increases, but its evasion rate decreases. By choosing
a minimum evasion rate, we then can find the maximum
effective scanning rate. For this experiment we choose the
minimum evasion rate to be 0.90, meaning the worm can
survive if the false negative rate of detection is 90% or
higher. The maximum effective scanning rate is the ultimate
determination of a worm detector’s effectiveness. The lower
the maximum effective scanning rate allowed, the more
effective a detector is. This single metric is the best metric for
comparing detectors, as it reveals the damage that a worm
can cause without being detected.

4.4 Evaluation Environments

The campus environment is built from a trace collected at
the border of Auckland University [31]. It contains over a
month of traffic from the entire university with two /16 and
several /24 networks. We randomly select 200 hosts and
construct an environment using traffic to and from those
hosts, where the training and experiment segments each
contain approximately 25,000 connections.

The enterprise environment is built from a trace collected
at LBNL [32]. Heavy scanners were removed from the trace
before it was released. It has 139 active hosts and the training
and experiment segments each also contain roughly 25,000
connections.

The wireless and department environments are built from
traces collected at the University of Massachusetts [33].
The department environment is built from a trace cap-
turing all traffic to and from the wired computers in the
CS department. It has 92 active hosts and approximately
30,000 connections in each training or experiment segment.
The wireless environment comes from a trace capturing
all wireless network traffic from the university. It has 313
active hosts and approximately 120,000 connections in each
segment.

5 OUTBOUND WORM DETECTION EVALUATION

5.1 Performance of SWORD vs. Classic Worms

We report the following results using random-scanning worms
as the classic worms. Our experiments show that in detect-
ing other classic worms of different scanning types (such
as local-preference worms, topological-scanning worms, or
hitlist worms), SWORD’s performance is similar to its per-
formance against random-scanning worms, whereas the
performance of other detectors is similar to or worse than
their performance against random-scanning worms.

Figure 3(a) shows the false negative rate that SWORD
achieved against a classic worm. The worm was detected
at a scanning rate of 0.05 connections per second in every
scenario except for a single host in the wireless environ-
ment. To make the direct head-to-head comparison between
SWORD and other detectors easier, Figure 4 further plots
SWORD and the other detectors all on the same graph. All
these detectors are adjusted to have the same false positive
rate (two falsely identified hosts per hour). In the campus
environment (Figure 4(a)), we can see that compared to

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

campus
enterprise

department
wireless

(a) False negatives

 0
 50

 100
 150
 200
 250
 300

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

campus
enterprise

department
wireless

(b) Detection latency

Fig. 3: False negative and detection latency of SWORD when
running against classic worms.

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

SWORD
DSC

MRW

PGD
RBS
TRW

TRWRBS

(a) Campus

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

(b) Enterprise

 0
 20
 40
 60
 80

 100
 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

(c) Department

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

(d) Wireless

Fig. 4: False negatives for every detector when running against
classic worms.

SWORD, the TRW detector is able to detect some worms
at slightly slower scanning rates. However, it is the only
detector that is able to do so, and it does not detect 100%
of the infections with a slower scanning rate. The enterprise
environment shows similar results (Figure 4(b)), again with
TRW showing slightly better sensitivity and this time PGD
just barely beating SWORD on worms at 0.005 and 0.02
scans per second. The other two environments, however,
show SWORD with the best sensitivity, detecting worm
infections at slower scanning rates than any other detector
(Figures 4(c) and 4(d)).

Figure 3(b) shows the detection latency of SWORD. In
the campus, enterprise, and department environments, the
average detection latency is under 40 scans for all worm
scanning rates but one, where the average detection latency
is under 50 scans. We do not see much of the latency
performance in the wireless environment, because we only
plot detection latency for combinations of environment and
scanning rate where the worm was detected in 100% of the
experiments. However, if we were to relax our restriction
and show the detection latency for those scenarios at each
scanning rate where the worm was detected in the wireless
environment, we would see that the latency is under 67 for
all scan rates under 0.2, and under 327 for all worm scan
rates. In Table 1, we present the average detection latency
across all scanning rates where the worm was detected for
each detector and environment (if a detector is faster than
SWORD its latency is underlined). Clearly, in most cases
SWORD is faster than the other detectors.

Overall, in detecting classic worms, the only two detec-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

TABLE 1: Average detection latency for all detectors.

Detector Campus Enterprise Department Wireless
SWORD 21.73 24.97 22.99 264.94
DSC 2.00 22.00 19.00 15.93
MRW 28.88 51.70 43.64 1014.16
PGD 93.80 28.11 25.81 621.76
RBS 17.36 4.25 26.44 349.53
TRW 4.23 11.13 24.75 49.93
TRWRBS 57.97 30.39 58.66 167.95

tors that sometimes beat SWORD are PGD (in one environ-
ment only) and TRW (in two environments). SWORD has
a lower average detection latency than PGD in all environ-
ments here, including a latency of less than half in the wire-
less environment. The TRW detector has a lower detection
latency in three of the four environments. However, a clever
worm can evade the TRW detector by employing known
neighbors to befuddle the detector. In the next section we
show that the SWORD detector is dramatically better once
evasive worms are taken into account. Against all other
detectors, SWORD has either better sensitivity or detection
latency, and in many cases both.

5.2 Performance of SWORD vs. Evasive Worms

5.2.1 Effective Scan Rate and Evasion Rate of Evasive
Worms against SWORD

The blind speculative version of the worm cannot achieve
an effective scan rate of greater than 0.03 scans per second in
any scenario (Figure 5(a)). In the department environment,
when the load factor is 1, a scan rate even this low still
gives an evasion rate of 0% (Figure 6(a)). The percep-
tive speculative version of the worm does not improve
the effective rate at all (Figure 5(c)), but does improve
the evasion rate in all but the department environment
(Figure 6(c)). In the wireless environment, the informed
versions of the worm are able to achieve an effective rate
nearly 10x greater than the speculative worms were able
to (Figures 5(b) and 5(d)). However, the speculative worms
(Figures 6(a) and 6(c)) overall achieve better evasion rates
than the informed worms (Figures 6(c) and 6(d)). This is
because the speculative worms, while uninformed of the
detection parameters, scan at a much lower rate to evade
detection, as shown in Figure 5. Overall, SWORD works
effectively against evasive worms and can limit both the
effective scanning rate and evasion rate of evasive worms.

5.2.2 Maximum Effective Scan Rate of Evasive Worms
Against SWORD and Existing Detectors

The best evaluation of a detector is the maximum effective
rate achieved by the evasive worm while running less than
a small chance (we use 10%) of being detected. In Figure 7,
we plot the maximum effective rate achieved by the evasive
worms against respective detectors.

For the campus and department environments (Fig-
ures 7(a) and 7(c), respectively), the benefits of the SWORD
detector are pronounced. In the campus environment,
SWORD beats all other detectors by at least a factor of 2. In
this environment, no other detector came close to limiting
the maximum effective rate of the evasive worms as well
as SWORD did. In the department environment, SWORD

0.00

0.01

0.01

0.01

0.02

0.03

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(a) Blind speculative

0.00

0.10

0.20

0.30

0.40

0.50

0.60

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(b) Blind informed

0.00

0.01

0.01

0.01

0.02

0.03

0.03

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive speculative

0.00

0.10

0.20

0.30

0.40

0.50

0.60
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive informed

Fig. 5: Effective scanning rate of evasive worms vs. SWORD.

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind speculative

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(b) Blind informed

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive speculative

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive informed

Fig. 6: Evasion rate of evasive worms vs. SWORD.

outperforms all other detectors by at least a factor of three
for all evasive worm varieties.

For the enterprise and wireless environments (Fig-
ures 7(b) and 7(d), respectively), PGD is the only detec-
tor that outperforms SWORD in some scenarios, while all
the other detectors continue to perform significantly worse
than SWORD. And even when PGD outperforms SWORD,
SWORD’s performance is fairly good and stays very close
to PGD’s.

Therefore, among all four environments that totally in-
clude 16 evasive worm scenarios, other than PGD, SWORD
outperforms every other detector in all 16 scenarios. This
includes TRW that slightly beats SWORD against the classic
worms in two out of four test environments; in 13 scenarios
an evasive worm can scan 60+ times faster when it’s against
TRW rather than SWORD. For PGD, we can see SWORD
outperforms PGD in 11 evasive worm scenarios while PGD
outperforms SWORD in 5 scenarios. To further compare
PGD vs. SWORD, we therefore introduce the “aggregated
maximum effective rate” of evasive worms against a de-
tector, which is the average maximum effective rate of
evasive worms over all 16 scenarios. We found SWORD’s
and PGD’s aggregated maximum effective rate are 0.06 and
0.10, respectively, indicating on average an evasive worm
can scan about 67% faster when it is against PGD rather
than SWORD.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

MRW DSC PGD TRW RBS TRWRBS SWORD

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
11

10
.0

0.
22

1.
33

0.
66

1.
05

0.
020.

14

10
.0

0.
27

1.
45

0.
66

1.
05

0.
040.
10

10
.0

0.
12

1.
33 3.

30

0.
83

0.
030.

14

10
.0

0.
10

1.
45 3.

30

0.
92

0.
05

(a) Campus

MRW DSC PGD TRW RBS TRWRBS SWORD

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
05

10
.0

0.
00

1.
26

5.
95

1.
05

0.
020.
05

10
.0

0.
00

1.
26

5.
00

1.
05

0.
020.
06

10
.0

0.
03

1.
26

5.
94

0.
70

0.
020.
06

10
.0

0.
03

1.
26

4.
98

0.
56

0.
02

(b) Enterprise

MRW DSC PGD TRW RBS TRWRBS SWORD

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
07

10
.0

0.
15

1.
33

5.
95

1.
09

0.
010.
07

10
.0

0.
15

1.
37

5.
99

1.
09

0.
010.

09

10
.0

0.
10

1.
33

5.
94

0.
90

0.
020.
09

10
.0

0.
09

1.
37

5.
97

0.
92

0.
03

(c) Department

MRW DSC PGD TRW RBS TRWRBS SWORD

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
11

10
.0

0.
15

1.
33 3.

31

1.
13

0.
02

3.
15

10
.0

0.
00

1.
35 3.

38

1.
08

0.
17

0.
09

10
.0

0.
00

1.
33 3.

28

0.
72

0.
02

3.
26

10
.0

0.
19

1.
36 3.

39

0.
90

0.
44

(d) Wireless

Fig. 7: Maximum effective rate of evasive worms.

5.3 Summary
We have shown that in detecting outgoing worm traffic from
a network, the SWORD detector significantly outperforms
all other detectors. The TRW detector does perform slightly
better than SWORD against classic worms in two out of the
four environments, but against evasive worms it was out-
performed in every scenario and outperformed by a factor
of more than 60 in 13 scenarios. This significant superiority
against evasive worms offsets any minor advantage TRW
has over SWORD against classic worms. The PGD detector
does outperform SWORD in 5 of the 16 evasive worm
scenarios (four evasive worm types by four environments),
but is dominated in the remaining 11 scenarios. Overall
PGD is completely outperformed by SWORD against classic
worms and it allows an evasive worm to scan about 67%
faster than SWORD. The only other detector to come close
is the MRW detector, which is consistently outperformed
by SWORD against classic worms, and is soundly beaten
in every scenario against evasive worms. None of the other
detectors present even an appreciable level of competition.

5.4 Limitations and Open Issues
The evasive worm against every detector could be im-
proved. For example, the current design of the evasive
worm against TRW assumes that the worm can always
find a list of known hosts to contact, but sometimes it may
be impossible. Also, the experimentations assume that the
training is reliable, but if the background traffic is infected
by a worm, it can introduce noise into the results.

6 EXPERIMENT METHODOLOGY FOR INBOUND
WORM DETECTION

6.1 Procedure Overview
Our objective is to evaluate and fairly compare the perfor-
mance of different detectors, including SWORD, against in-
bound worms. We chose to place each detector at a protected
network’s upstream ISP/IXP, a challenging deployment sce-
nario where the detector is not guaranteed to be able to ac-
cess all the incoming traffic, to study how effective SWORD
and the other detectors are under such a realistic scenario.
Moreover, such placement does not guarantee a detector to
be able to access both incoming and outgoing traffic of a

protected network either, a requirement for DSC, TRW, and
TRWRBS to detect worms as explained in Section 2; we thus
exclude them from comparison for inbound worm detec-
tion. The incoming traffic at the ISP/IXP is composed of (1)
background traffic that we collected at a major IXP called
FRGP [14] that does not contain worm traffic, and (2) the
real-world Mirai worm traffic also collected at FRGP [13].

Different from the evaluation against outbound worms
where we evaluated both classic worms and evasive worms,
we do not assume inbound worms can be evasive. While an
outbound worm, as it originates from a network already
compromised, may have the knowledge of the legitimate
traffic of the network and/or the parameters of the detector
in place to become evasive, we do not expect the same
knowledge for inbound worms.

For each worm detector, we first train it on 1-hour worth
of background traffic. Specifically, we set the threshold
values of each detector as aggressive as possible without
triggering a false positive during the 1-hour period. Then on
a different 1-hour period of background traffic that is mixed
with worm traffic, we test each detector and measure its
accuracy (total number of detected worm IPs, false positive
rate, and false negative rates) and latency.

6.2 The Mirai Worm
We use the Mirai worm as a case study for this evaluation.
As Mirai’s code will continue to be the basis of future
worms [7], the detection of Mirai traffic should be con-
sidered a baseline for worm detectors striving to achieve
success in today’s Internet. Hosts infected by the Mirai
worm are diverse: Some only make a very small number
of scans during a period or scan with an extremely slow
scanning rate, which we call running a surreptitious worm;
some scan a large number of targets, which we call running
a superspreading worm. The ability to detect surreptitious
worms potentially can alert a protected network of a worm
infection otherwise unnoticed, while superspreading worms
are clearly too dangerous not to detect.

6.3 Metrics and Parameters
The key metrics we will focus on in this evaluation are num-
ber of Mirai IPs detected, false positive rate, false negative
rate, and detection latency. We denote TP as the number
of Mirai IPs correctly detected as Mirai, FP as the number
of legitimate IPs incorrectly detected as Mirai, TN as the
number of legitimate IPs correctly detected as legitimate,
and FN as the number of Mirai IPs incorrectly detected
as legitimate. Then the number of Mirai IPs detected is
TP + FP and we define the false positive rate as FP

FP+TN

and false negative rate as FN
FN+TP . The detection latency

is in terms of the number of worm scans allowed before
detection. A Mirai IP’s detection latency is thus the number
of incoming scans the Mirai IP made before it is detected. On
the other hand, the Mirai worm is detected when detecting
the first Mirai IP, so the detection latency of the Mirai worm
is the total number of all incoming worm scans made by all
the Mirai IPs before detecting the first Mirai IP.

We also define two parameters associated with each
Mirai IP: W that is the number of incoming worm scans
made by the Mirai IP during the testing period and R that is

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

the worm scanning rate of the Mirai IP, which is particularly
useful when we inspect slowly scanning, surreptitious Mirai
IPs. If a Mirai IP is detected, say after makingmworm scans,
assuming its first scan is at time t1, the m-th scan is at time
tm, R = m

tm−t1
; otherwise R = W

tW−t1
where tW is the time

of the last scan from the Mirai IP.

6.4 Evaluation Environment

The Mirai traffic trace are Argus flow records and was
collected at FRGP during four days in September of 2016
(8th, 9th, 10th, 12th) [13]. These days coincide with Mirai’s
first major growth phase in early September 2016 [34]. The
background traffic was also collected at FRGP in September
2016, across the entire month [14]. Both are uni-directional
traffic collected at a single router at FRGP towards its
downstream customers; as such traffic is not guaranteed to
be all the incoming traffic toward a customer, it creates a
more challenging deployment scenario.

We trained the detectors on 1-hour worth of FRGP back-
ground traffic (∼3 GB of records) collected on 9/8/2016 at
6:20 PM—7:20 PM (MST). We verified that no incoming Mi-
rai connections are present during this time window (there
were no incoming connections to destination ports 23/2323
from random source ports). Once trained, the detectors were
tested on 1-hour worth of Mirai scanning traffic mixed with
FRGP background traffic (totaling ∼8 GB), both collected at
FRGP on 9/9/2016 at 6:20 PM—7:20 PM (MST).

0 100 200 300 400
Total # of Worm Scans

1

10

100

1000

of

 M
ira

i I
P

s

(a) W.r.t. total number of
worm scans (W)

0.001 0.01

1

10

100

1000

of

 M
ira

i I
P

s

0.1
 Worm Scanning Rate (scans/s)

1 5

(b) W.r.t. worm scanning
rate (R)

Fig. 8: Number of Mirai IPs in the 1-hour testing period.
There was a total of 45,291 unique Mirai IPs present

in the 1-hour testing period, along with 45,903 unique
legitimate source IPs making incoming connections to FRGP
customer IPs. Figures 8(a) and 8(b) show the total number of
Mirai IPs (log scale) for differentW andR values (defined in
Section 6.3) in the 1-hour testing period, respectively. From
Figure 8(a) we can see that a large portion of the Mirai
IPs made fewer than 50 connections to FRGP customer IPs.
Detecting such IPs is almost impossible for any detector. Fig-
ure 8(b) shows a large number of worm IPs had extremely
slow scanning rates between 0.001 and 0.030 incoming scans
per second, also almost impossible to detect.

7 INBOUND WORM DETECTION EVALUATION

7.1 Total Number of Mirai IPs Detected

We list the total number of Mirai IPs detected by each
detector in the 1-hour testing period: SWORD: 8882, MRW:
5797, PGD: 9100, and RBS: 1041. By setting the threshold
values of each detector without triggering a false positive

during training, we found during testing that every detec-
tor’s false positive rate is also 0, and therefore, all detections
are true positives. PGD detected slightly more Mirai IPs than
SWORD, while MRW and RBS detected around 35% and
88% less Mirai IPs than SWORD, respectively.

0 60 120 180 240 300 360 420
0

50

100

150

200
SWORD

0 60 120 180 240 300 360 420

MRW

0 60 120 180 240 300 360 420
0

50

100

150

200
PGD

0 60 120 180 240 300 360 420

RBS

Total # of Worm Scans

 #
 o

f M
ira

i I
P

s
D

et
ec

te
d

(a) # of Mirai IPs detected w.r.t. W

0 10 20 30 40 50
0

2

4

6
SWORD

0 10 20 30 40 50

MRW

0 10 20 30 40 50
0

2

4

6
PGD

0 10 20 30 40 50

RBS

Total # of Worm Scans

 #
 o

f M
ira

i I
P

s
D

et
ec

te
d

(b) # of Mirai IPs detected w.r.t. to W ≤ 50

Fig. 9: # of Mirai IPs detected.
Figure 9(a) provides us with a more detailed view of

the number of Mirai IPs detected by grouping the Mirai IPs
based on their number of scans, i.e., their W values as de-
fined in Section 6.3. First, for all of the detectors, most Mirai
IPs that were detected made anywhere from around 120 to
250 scans (120≤W≤250). Second, there is a dip in detections
between around 250 and 300 scans (250≤W≤300); this is
because there was only a small number of Mirai IPs (less
than 10) that fell within this range, as shown in Figure 8(a).
Third, although there were many Mirai IPs whose number
of scans were relatively low with W ≤ 120, it was difficult
to detect them; without enough incoming Mirai traffic, a
detector has difficulty in distinguishing between incoming
legitimate and malicious connections.

Nonetheless, if we take a closer look at surreptitious
Mirai IPs with a low number of incoming scans (e.g., no
more than 50 scans or W ≤ 50), as shown in Figure 9(b),
we see that SWORD significantly outperformed the other
three detectors, and shows that it has the ability to detect
some worm IPs with very low number of scans. While other
detectors did not detect any Mirai IPs making less than 10
scans in the entire 1-hour period, SWORD was even able
to detect a Mirai IP that only made 5 scans in the period.
The main reason for SWORD’s superior performance here
is that even with an extremely low number of scans, some
surreptitious worm IPs will exhibit bursty behavior, and will
therefore be caught by SWORD’s BDD module.

7.2 False Negative Rate
Figure 10(a) shows a granular view of the false negative
rates for each detector. We first binned Mirai IPs based
on their total number of scans, i.e., their W values, at 10-
scan increments and then calculated every detector’s false

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

[1,
10]

[51,
60]

[101,
110]

[151,
160]

[201,
210]

[251,
260]

[301,
310]

[351,
360]

[401,
410]

450+

Total # of Worm Scans (binned)

0

20

40

60

80

100

F-
 R

at
e

(%
)

SWORD
MRW
PGD
RBS

(a) False negative rates w.r.t. W

0 10 20 30 40 50

Total # of Worm Scans

99.970

99.975

99.980

99.985

99.990

99.995

100.000

F-
 R

at
e

(%
)

SWORD
MRW
PGD
RBS

(b) False negative rates w.r.t. W ≤ 50

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Worm Scanning Rate (scans/s)

93

94

95

96

97

98

99

100

F-
 R

at
e

(%
)

0.002 0.004 0.006

99.8

99.9

100.0
SWORD
MRW
PGD
RBS

(c) False negative rates w.r.t. R ≤ 0.03

Fig. 10: False negative rates.

negative rate for each bin. Overall, SWORD outperformed
MRW, PGD, and RBS. Specifically, while SWORD’s false
negative rates were lower than MRW and RBS over all
the Mirai IPs, PGD had a slightly lower false negative rate
than SWORD for Mirai IPs that made from 121 to 240 total
scans, which further led PGD to detect slightly more Mirai
IPs than SWORD over all Mirai IPs. However, PGD was
not as effective as SWORD against Mirai IPs that were
superspreading or surreptitious, which are of particular
importance for worm detection.

For superspreading Mirai IPs, which are clearly damag-
ing when left undetected, we can observe at which point
a detector reached 0% false negative rate to gauge its ca-
pability in detecting them. From Figure 10(a), we can see
for Mirai IPs with more than 240 scans, PGD remained at
about a 20% false negative rate, while SWORD approaches
0%. SWORD reached a 0% false negative rate when Mirai
IPs made more than 270 scans. PGD, MRW, and RBS, on the
other hand, did not reach a 0% false negative rate until 371,
391, and 401 scans, respectively, allowing Mirai IPs 100, 120,
and 130 more scans than SWORD, respectively, before they
were guaranteed to be detected.

For surreptitious Mirai IPs, we look at every detector’s
performance against them in two complementary measure-
ments. We first view every detector’s false negative rates
against Mirai IPs that made no more than 50 scans during
the entire 1-hour testing period. Figure 10(b) shows for the
most part SWORD’s false negative rates were clearly lower
than those of every other detector compared. Note that
although the false negative rates here were fairly high, so
long as they were not 100%, given the false positive rates
were 0%, even if only one Mirai IP was detected, a reliable
early warning could be issued against the worm. On the

TABLE 2: Mirai worm detection latency of each worm detector.

Detector First Detection Allowed IPs Allowed Scans
SWORD 7.87s 102 IPs 5380 scans
MRW 19.77s 272 IPs 13728 scans
PGD 18.20s 235 IPs 12641 scans
RBS 12.50s 169 IPs 8674 scans

other hand, we also notice the false negative rate curves
oscillated as the number of scans increased. This is because
a surreptitious worm IP that made less scans than the other
surreptitious worm IPs could have just scanned within a
smaller time window, thus achieving a higher scanning rate
and potentially a lower false negative rate. We therefore
also look at every detector’s performance against Mirai IPs
using every worm’s scanning rate, as defined in Section 6.3.
Figure 10(c) shows every detector’s false negative rates
against surreptitious Mirai IPs at different scanning rates
between 0.001 and 0.030 scans/s. Now, the false negative
rate curve decreases as the worm scanning rates increase.
Again, clearly SWORD outperformed all of the other detec-
tors at detecting surreptitious worms. For example, SWORD
was even able to detect at least some Mirai IPs with scanning
rates as low as 0.002 scans/s, while MRW, PGD, and RBS did
not detect any worms with scanning rates less than 0.004,
0.004, and 0.005 scans/s, respectively.

7.3 Detection Latency
Table 2 shows for each detector when it detects the first
worm scan and the number of unique worm IPs allowed
to scan the protected network before the detection. It also
shows the total number of worm scans that occurred before
the detection, which is the detection latency of a worm
detector, as defined in Section 6.3. For the given 1-hour
testing period, SWORD detected the first worm scan more
than twice as fast as PGD and MRW, and 1.5 times faster
than RBS. Out of a total of 45,291 unique Mirai IPs present
in this 1-hour period, SWORD only allowed 102 unique
Mirai IPs undetected to scan the protected network before
the first worm scan was detected, which accounted for 5,380
total worm scans in a 7.87-second period. SWORD therefore
allowed around 57% less worm scans than PGD, 61% less
worm scans than MRW, and 38% less worm scans than RBS
before detecting the occurrence of the Mirai worm. While
5,380 allowed incoming scans may seem high, this accounts
for only 0.23% of all of the incoming Mirai scans in the 1-
hour testing period (in other words, SWORD detected the
presence of Mirai before 99.77% of the Mirai scans reached
the protected network). While PGD detected slightly more
Mirai IPs overall, SWORD’s ability to detect Mirai IPs faster
could be a more valuable attribute to a network operator
who may want to perform mitigative and preventative steps
as soon as possible to limit the damage of the worm.

We further measured the detection latency of every Mirai
IP detected, as shown in Figure 11(a). Recall the latency is
measured in terms of the number of worm scans allowed
before detection, as defined in Section 6.3. Among all Mirai
IPs detected by SWORD (8,882), 98.87% of them were all
detected before they could make more than 50 scans. The
next best detector in terms of latency was RBS, none of the
Mirai IPs detected (1,041) made more than 140 scans. For
all the Mirai IPs that PGD and MRW detected (9,100 and

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

0 50 100 150 200 250
of Worm Scans Allowed Before Detection

0

20

40

60

80

100

C
D

F
(%

 o
f M

ira
i I

P
s

D
et

ec
te

d)

SWORD
MRW
PGD
RBS

(a) Detection latency (i.e., # of scans before
detection) CDF of the Mirai IPs detected

0 10 20 30 40 50
0

500

1000

1500
SWORD

0 10 20 30 40 50

MRW

0 10 20 30 40 50
0

500

1000

1500
PGD

0 10 20 30 40 50

RBS

of Worm Scans Allowed Before Detection

 #
 o

f M
ira

i I
P

s
D

et
ec

te
d

(b) # of Mirai IPs detected for low latency values

Fig. 11: Detection latency of Mirai IPs detected.

5,797, respectively), they made no more than 230 and 250
scans, respectively. In fact, SWORD was able to detect 80%
of all of its detected Mirai IPs each within 20 scans. When
compared to MRW, which detected less than 40%, and PGD
along with RBS, which detected less than 10% of all of their
detected Mirai IPs each within 20 scans, clearly SWORD can
detect individual Mirai IPs faster than the other detectors.

Finally, Figure 11(b) details how many Mirai IPs each de-
tector detected with very low latency (i.e., 50 scans or less).
For SWORD, the majority of low latency detections occurred
within 10 scans, and a large portion of detections occurred
even within just 5 scans. MRW’s low latency detections
were spread across 10 to 30 scans, and PGD’s low latency
detections were spread fairly evenly across the 5 to 50 scans
range. Both MRW and PGD detected a significantly lower
number of Mirai IPs with 5 scans, as compared to SWORD.
RBS had such a low number of detected Mirai IPs for each
latency that it is difficult to eyeball, but it too follows an
even distribution similar to PGD, with its detections spread
across the 10 to 30 scans range like MRW; it does not detect
any Mirai IPs until 8 scans. Clearly, compared to other
detectors, SWORD can detect many more Mirai IPs within a
very small number of scans (e.g., 5 allowed scans); this fact
is consistent with SWORD’s lowest detection latency of the
Mirai worm among all detectors evaluated.

7.4 Summary
As with outbound worm detection, SWORD again signifi-
cantly outperformed all of the other detectors in inbound
worm detection. While PGD detected slightly more total
Mirai IPs than SWORD, SWORD outperformed PGD in
terms of false negative rates and detection latency. SWORD
also outperformed MRW and RBS in all three metrics. Fur-
thermore, SWORD detected far more superspreading Mirai
IPs with relatively high total scans, and surreptitious Mirai
IPs with relatively low total scans and relatively low scan-
ning rates than the other three detectors. In fact, SWORD
was even able to detect some surreptitious Mirai IPs with
extremely low scanning rates, unlike MRW, PGD, and RBS.

7.5 Limitations and Open Issues
It is possible that worm traffic may be present in the 1-hour
training dataset. While we verified that no incoming Mirai
scans were present, it may be possible that other strands of
worms are present. Also, we only tested the detectors on one
1-hour period. While the results may vary across different 1-
hour periods, we doubt that we will arrive at vastly different
conclusions as the ones presented in this section.

8 FUTURE WORK

There are several open issues that warrant future work.
First, as described in Section 3.1, a distributed version of
SWORD can be studied, where multiple SWORD instances
are distributed throughout the network to collectively mon-
itor traffic. Further, in evaluating SWORD against outbound
worms, rather than placing SWORD at the gateway of a
protected network, one may place SWORD upstream where
it can only observe a fraction of the outgoing traffic from
the protected network. Also, in evaluating SWORD against
inbound worms, there are several Mirai worm variants [7],
and SWORD can be evaluated against these variants. Fi-
nally, SWORD could be deployed and evaluated in a real-
world network on the Internet to verify the findings in this
paper.

9 CONCLUSIONS

We identify two principles that an effective worm detection
solution must follow: (1) Worm propagation and worm
detection are in an arms race, and a detector must con-
sider potential countermeasures from worm authors; and
(2) Behavior-based worm detection must focus on the fun-
damental behavior of worm propagation that worms cannot
avoid. Although there are many existing worm detectors,
they are inadequate in following these two principles.

In this paper, we revisited behavior-based worm detec-
tion. We identified that the fundamental behavior of worm
propagation is that of connecting to new destinations, and
designed SWORD, a detector that encompasses two comple-
mentary modules that can detect violations that a worm will
cause in connecting to new destinations. With one module
monitoring burst duration and the other ensuring quiescent
periods, SWORD is extremely hard for a worm to evade.

Furthermore, unlike previous behavior-based worm de-
tectors which only focus on outbound worm detection, we
designed SWORD such that it not only can detect outbound
worms, but also inbound worms, even though detecting
inbound worms is difficult given that a detector usually
observes only a fraction of scans from worm-infected hosts.
Additionally, unlike some worm detectors that require bi-
directional traffic to detect worms, SWORD can detect
worms solely from uni-directional traffic.

As demonstrated in our evaluation, the SWORD detector
significantly outperforms all other detectors. For outbound
worm detection, SWORD is not only as competitive as
the best detector for detecting classic worms, but is also
highly resilient against evasive worms. Furthermore, we
evaluated SWORD and its competitors against the inbound
Mirai worm using only uni-directional real-world incoming
traffic, and demonstrated that SWORD is most effective
at inbound worm detection, especially in detecting super-
spreading and surreptitious worm IPs.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

ACKNOWLEDGMENTS

This material is partially based upon work supported by the
National Science Foundation under Grant No. 0644434. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] S. Sinha, “State of IoT 2021,” https://iot-analytics.com/number-c
onnected-iot-devices/, 2021.

[2] P. Li, M. Salour, and X. Su, “A Survey of Internet Worm Detection
& Containment,” in IEEE Communications Surveys & Tutorials, 2008.

[3] M. Ward, “Why some computer viruses refuse to die,” https://
www.bbc.com/news/technology-44564709, 2018.

[4] C. Cimpanu, “A decade of hacking,” https://www.zdnet.com/ar
ticle/a-decade-of-hacking-the-most-notable-cyber-security-even
ts-of-the-2010s/, 2019.

[5] ——, “A decade of malware,” https://www.zdnet.com/article/
a-decade-of-malware-top-botnets-of-the-2010s/, 2019.

[6] R. Hummel, C. Hildebrand, H. Modi et al., “NETSCOUT Threat
Intelligence Report: DDoS in a Time of Pandemic,” https://www.
netscout.com/threatreport/, 2021.

[7] O. Alrawi, C. Lever, K. Valakuzhy et al., “The Circle Of Life:
A Large-Scale Study of The IoT Malware Lifecycle,” in USENIX
Security Symposium, 2021.

[8] G. Gu, M. Sharif, X. Qin et al., “Worm Detection, Early Warning
and Response Based on Local Victim Information,” in Annual
Computer Security Applications Conference, 2004.

[9] V. Sekar, Y. Xie, M. K. Reiter et al., “A Multi-Resolution Approach
for Worm Detection and Containment,” in International Conference
on Dependable Systems and Networks, 2006.

[10] M. P. Collins and M. K. Reiter, “Hit-List Worm Detection and
Bot Identification in Large Networks Using Protocol Graphs,” in
Symposium on Recent Advances in Intrusion Detection, 2007.

[11] J. Jung, R. Milito, and V. Paxson, “On the Adaptive Real-Time
Detection of Fast-Propagating Network Worms,” in Conference on
Detection of Intrusions & Malware & Vulnerability Assessment, 2007.

[12] S. E. Schechter, J. Jung, and A. W. Berger, “Fast Detection of
Scanning Worm Infections,” in Symposium on Recent Advances in
Intrusion Detection, 2004.

[13] “FRGP Continuous Flow Dataset, IMPACT ID: USC-
LANDER/Mirai-FRGP-scanning-20160908/rev10326,”
USC/LANDER. http://www.isi.edu/ant/lander, 2016.

[14] “FRGP Continuous Flow Dataset, IMPACT ID: USC-
LANDER/FRGPContinuousFlowData-20090729/rev3998,”
USC/LANDER. http://www.isi.edu/ant/lander, 2016.

[15] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet
in Your Spare Time,” in USENIX Security Symposium, 2002.

[16] Z. Liang and R. Sekar, “Fast and Automated Generation of At-
tack Signatures: A Basis for Building Self-Protecting Servers,” in
Conference on Computer & Communications Security, 2005.

[17] J. Crandall, Z. Su et al., “On Deriving Unknown Vulnerabilities
from Zero-Day Polymorphic & Metamorphic Worm Exploits,” in
Conference on Computer & Communications Security, 2005.

[18] J. Newsome and D. Song, “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on
Commodity Software,” in Network and Distributed System Security
Symposium, 2005.

[19] H.-A. Kim and B. Karp, “Autograph: Toward Automated, Dis-
tributed Worm Signature Detection,” in USENIX Security Sympo-
sium, 2004.

[20] S. Singh, C. Estan et al., “Automated Worm Fingerprinting,” in
Symposium on Operating System Design and Implementation, 2004.

[21] Z. Li, L. Wang, Y. Chen, and Z. Fu, “Network-based and Attack-
resilient Length Signature Generation for Zero-day Polymorphic
Worms,” in International Conference on Network Protocols, 2007.

[22] H. Zhou, Y. Hu, X. Yang, H. Pan, W. Guo, and C. C. Zou, “A Worm
Detection System Based on Deep Learning,” IEEE Access, 2020.

[23] S. M. Sohi, J.-P. Seifert, and F. Ganji, “RNNIDS: Enhancing Net-
work Intrusion Detection Systems through Deep Learning,” Com-
puters & Security, 2021.

[24] S. Stafford and J. Li, “Behavior-based Worm Detectors Compared,”
in Symposium on Recent Advances in Intrusion Detection, 2010.

[25] G. Gu, R. Perdisci, J. Zhang et al., “BotMiner: Clustering Analysis
of Network Traffic for Protocol- and Structure-Independent Botnet
Detection,” in USENIX Security Symposium, 2008.

[26] L. Bilge, D. Balzarotti et al., “Disclosure: Detecting Botnet Com-
mand and Control Servers through Large-scale Netflow Analysis,”
in Annual Computer Security Applications Conference, 2012.

[27] R. Doshi, N. Apthorpe, and N. Feamster, “Machine Learning
DDoS Detection for Consumer IoT Devices,” in Security and Pri-
vacy Workshops, 2018.

[28] A. Procopiou, N. Komninos, and C. Douligeris, “ForChaos: Real
Time Application DDoS Detection using Forecasting and Chaos
Theory in Smart Home IoT Network,” Wireless Communications and
Mobile Computing, 2019.

[29] O. Alrawi, C. Lever et al., “SOK: Security Evaluation of Home-
Based IoT Deployments,” in Symposium on Security & Privacy, 2019.

[30] S. Stafford, J. Li, T. Ehrenkranz, and P. Knickerbocker, “GLOWS: A
High Fidelity Worm Simulator,” Tech. Rep. CIS-TR-2006-11, 2006.

[31] WAND Group, “WAND WITS: Auckland-IV trace data,” http://
wand.cs.waikato.ac.nz/wand/wits/auck/4/, 2001.

[32] Lawrence Berkely National Laboratory, “LBNL/ICSI enterprise
tracing project,” http://www.icir.org/enterprise-tracing/, 2005.

[33] University of Massachusetts Amherst, “Umass trace repository,”
http://traces.cs.umass.edu/, 2008.

[34] M. Antonakakis, T. April, M. Bailey et al., “Understanding the
Mirai Botnet,” in USENIX Security Symposium, 2017.

Jun Li is a Professor in the Department of
Computer and Information Science and founding
director of the Center for Cyber Security and
Privacy at the University of Oregon. He received
his Ph.D. from UCLA in 2002 (with Outstanding
Doctor of Philosophy honor), M.E. from Chinese
Academy of Sciences in 1995 (with Presidential
Scholarship), and B.S. from Peking University in
1992, all in computer science. His research is
focused on networking, distributed systems, and
network security, with about 100 peer-reviewed

publications. He has served on US National Science Foundation re-
search panels and more than 70 international technical program com-
mittees, including chairing six of them. He is a senior member of ACM
and IEEE and an NSF CAREER awardee in 2007.

Devkishen Sisodia is a Ph.D. student in the
Department of Computer and Information Sci-
ence at the University of Oregon (UO), and con-
ducts research at the Center for Cyber Security
and Privacy (CCSP). He received his B.S. de-
gree from the University of Texas at Arlington
(UTA) in Computer Science. His research inter-
ests include distributed denial-of-service (DDoS)
attacks and defenses, Internet of Things (IoT)
security and privacy, and network measurement.

Shad Stafford is a Principal Engineer at Palo
Alto Software, where he’s been building software
to help small businesses for more than 10 years.
He earned his Ph.D. in Computer Science from
the University of Oregon in 2012.

