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Abstract—Despite various distributed denial-of-service

(DDoS) �ltering solutions proposed and deployed throughout

the Internet, DDoS attacks continue to evolve and successfully

overwhelm the victims with DDoS tra�c. While current DDoS

solutions in general employ a �xed �ltering granularity (e.g.,

IP address, 4-tuple �ow, or service requests) with a speci�c

goal (e.g., maximum coverage of DDoS tra�c), in this paper we

investigate adaptive DDoS �ltering. We design and experiment

algorithms that can generate and deploy DDoS-�ltering rules

that not only adapt to the most suitable and e�ective �ltering

granularity (e.g., IP source address and a port number vs. an

individual IP address vs. IP pre�xes at di�erent lengths), but

also adapt to the �rst priorities of victims (e.g., maximum

coverage of DDoS tra�c vs. minimum collateral damage from

dropping legitimate tra�c vs. minimum number of rules). We

evaluated our approach through both large-scale simulations

based on real-world DDoS attack traces and pilot studies. Our

evaluations con�rm that our algorithms can generate rules

that adapt to every distinct �ltering objective and achieve

optimal results.

Index Terms—distributed denial-of-service; DDoS; DDoS �l-

tering; DDoS �ltering rule; adaptive DDoS �ltering

I. Introduction

Despite years of research and industry e�orts that have led

to a myriad of defense approaches, the Internet continues to

be severely susceptible to distributed denial-of-service (DDoS)

a�acks and see DDoS a�acks increase in both the amount and

scale [1]. Among the most common DDoS a�acks are high-

volume DDoS that overwhelm a victim’s bandwidth, in which

such a�acks can reach as high as 1.2 Tbps [2], 1.35 Tbps [3],

2.4 Tbps [4], or even 3.47 Tbps [5], with largest ever recorded

packet per second-based DDoS at 809 Mpps [6].

Continuous improvement of DDoS defense is therefore

critical. DDoS defense is usually composed of three comple-

mentary (and o�en combined) processes: DDoS detection and

DDoS tra�c classi�cation that detects DDoS a�ack and clas-

si�es DDoS tra�c and legitimate tra�c; DDoS path discovery

that discovers the paths of DDoS tra�c; and DDoS mitigation

that �lters, thro�les, or redirects DDoS tra�c. �is paper is

focused on DDoS mitigation via �ltering.

Depending on the solution in place, DDoS �ltering can hap-

pen at the victim end, the sources of DDoS, or in network. A

key challenge facing DDoS solutions is the proper granularity
of DDoS tra�c �ltering. For example, although it is probably

suitable to �lter tra�c from an entire IP pre�x when a victim

is under a severe DDoS a�ack, if the volume of DDoS tra�c

from the pre�x is low and the volume of legitimate tra�c

from the pre�x is high, it may be more preferable to only

�lter tra�c from individual IP addresses of DDoS bots instead

to minimize collateral damage, which however will incur a

higher overhead.

Or, for another example, if there are two tra�c �ows

appearing from the same IP address, one of which is benign

tra�c and the other is DDoS tra�c spoo�ng the source,

�ltering tra�c from the IP address becomes a dilemma unless

it happens only on the paths of the DDoS �ow, or the �ltering

must use both IP address and port numbers if the two �ows

share the same path but use di�erent port numbers. Interest-

ingly, as shown in this example, the �ltering granularity can

be di�erent depending on the location of �ltering.

Of further challenge is that there can be thousands of DDoS

�ows at pre�x level, millions of DDoS �ows at IP address level,

and potentially even more at IP address plus port number

level. It will be prohibitively expensive to monitor tra�c for

every granularity. Furthermore, while in general one cannot

accomplish all objectives simultaneously, every victim may

have di�erent �rst priorities, such as maximum coverage of

DDoS tra�c, minimum collateral damage to legitimate tra�c,

or minimum overhead—which we use number of �ltering

rules to represent in this paper.

While numerous research has been conducted on detecting

and mitigating DDoS, �ltering DDoS has basically based on a

single granularity, such as IP address, IP pre�x, or IP address

and port number, or a �ow (which is usually a 4-tuple �ow

de�ned by the source IP and port and destination IP and port).

If DDoS defense is at the application layer, the granularity can

also be the user requests to a service. �e �ltering has not

been considered to be adaptive to �ltering locations, either.

Moreover, rigorous study and approach has been lacking in

terms of �nding the best tradeo� between di�erent objectives,

particularly DDoS tra�c coverage, collateral damage from

dropping legitimate tra�c, and the number of DDoS-�ltering

rules.

In this paper, we investigate adaptive DDoS �ltering. We

allow a DDoS defense to adaptively generate DDoS-�ltering

rules at the proper granularity and then deploy them at

the most suitable �ltering nodes along the paths of DDoS

tra�c. We develop e�cient rule-generation algorithms that

can not only generate rules with di�erent granularities toward

di�erent objectives, but also help determine where to deploy

generated rules for the best e�cacy. We then evaluate our

system that embraces the algorithms. We �rst use large-scale

simulations based on real-world DDoS a�ack traces to study

the e�cacy of rules generated, then study their deployment

success rate under di�erent distributed Internet-scale �ltering



pro�les, and also experiment the e�cacy and scalability of

the entire system for DDoS mitigation in real time against

real-world DDoS a�ack traces.

�e rest of this paper is organized as follows. We �rst

describe related work in Section II. We then describe our

design of adaptive DDoS-�ltering rules in Section III, followed

by the implementation in Section IV. We detail our results

from evaluating our solution through simulations and pilot

studies in Section V and conclude the paper in Section VI.

II. Related Work

Di�erent solutions in �ltering DDoS can be based on a

di�erent granularity. DDoS �ltering in early days is primarily

based on IP addresses. An exemplary approach is AITF ([7]),

which �lters DDoS tra�c based on individual IP addresses of

DDoS bots as close to the source as possible. However, because

IP addresses can be spoofed, a great deal of research has

been devoted to IP traceback, such as those discussed in [8],

[9], [10], [11]. Before long �ow-based DDoS �ltering also

became common, in part due to the development of network

telemetry which supports network tra�c data collection and

analysis at a �ner granularity. While most solutions are

at the victim end (e.g., FastNetMon [12], some are at the

source end (e.g., [13]). �e development of so�ware-de�ned

networking further strengthened this trend, as exempli�ed

by FlowGuard [14]. Lastly, DDoS �ltering can also happen

at application layer, in which the �ltering is usually about

discarding illegitimate requests to a service under DDoS

a�ack, as demonstrated by research in [15] and [16]. In all

these cases, DDoS �ltering has basically based on a �xed

granularity. What set our research apart from the previous

work is that our research studies how a DDoS defense can

adapt its �ltering granularity based on various factors for the

best e�cacy and tradeo�, and choose the granularity that is

most e�ective or is the best tradeo� to �lter DDoS tra�c.

Filtering DDoS has also mostly focused on maximizing

the amount of DDoS tra�c �ltered. While DDoS �ltering

research has primarily been focused on the accuracy, i.e.,

�ltering DDoS tra�c without falsely �ltering legitimate tra�c,

as those in [17], [18], [19], recent studies have been also on

boosting the throughput of �ltering DDoS tra�c [20], [21].

Nonetheless, less has been studied in detail on DDoS �ltering

methodologies if the top priorities of �ltering change. In this

paper we develop DDoS-�ltering rule generation algorithms

corresponding to di�erent top priorities, including maximum

DDoS tra�c �ltered, minimum collateral damage, or smallest

number of �ltering rules, while still imposing constraints on

secondary priorities.

III. Design

A. Assumptions

We focus on a distributed �ltering model as a basis for

our adaptive �ltering, where the DDoS mitigation happens

in multiple di�erent locations. As a DDoS a�ack is to launch

DDoS tra�c from DDoS bots throughout the Internet towards

a victim along many di�erent paths, the DDoS tra�c can be

�ltered along these paths before they reach the victim, so

long as on the paths there are nodes that are set to help �lter

DDoS tra�c and know what tra�c are DDoS tra�c to �lter.

Our study is centered on deploying e�ective DDoS �ltering

rules at e�ective nodes along DDoS paths, including adaptively
determining these e�ective rules and nodes.

We assume a DDoS defense system is constantly running on

behalf of a DDoS victim and can employ a third-party DDoS

detection so�ware such as FastNetMon [12] with a usable

accuracy to detect DDoS a�acks and classify “�ows” to be

DDoS �ows or legitimate �ows.

We also assume a DDoS defense can track the DDoS tra�c,

such as knowing the paths of a DDoS �ow before they reach

the victim, so it can select the most suitable �ltering nodes

along the paths to �lter the DDoS tra�c. Example solutions

include those using marking techniques [8], [22], [23] and

those based on logging [9], [24], [25].

B. Rationale

Once a DDoS defense detects DDoS “�ows”, it then can

request �ltering nodes on the path(s) of these �ows to �lter

them. Certain types of DDoS tra�c are straightforward to

�lter, including those �ows de�ned by the Protocol, TCP �ags,

and/or Destination a�ributes. However, �ows that are de�ned

by di�erent source a�ributes, with or without other a�ributes,

are challenging to handle. Such �ows correspond to three

di�erent �ltering granularities:

• IP-pre�x-based �ltering that discards all tra�c from an IP

pre�x.

• IP-address-based �ltering that discards all tra�c from an

IP address.

• IP-and-port-based �ltering that discards all tra�c from an

IP address with a given source port number.

All three �ltering granularities have their advantages and

disadvantages. IP-pre�x-based �ltering results in the least

number of DDoS “�ows” to �lter, i.e., the least number of

�ltering rules as every DDoS �ow maps to a �ltering rule. It

thus in turn leads to least networking, storage, and manage-

ment overhead. It could also lead to faster deployment of all

the rules and, with less rules to search, be�er performance

in matching every DDoS packet to a rule and taking ac-

tions. However, IP-pre�x-based �ltering may lead to collateral

damage, sometimes perhaps even severe, when tra�c from a

legitimate IP in an IP pre�x is �ltered. Nonetheless, certain

amount of collateral damage may be still acceptable, especially

when the victim is under a severe DDoS a�ack. IP-address-

based �ltering will cause less collateral damage, but it can

still happen if there is also legitimate tra�c from the same

IP address of a DDoS bot, or worse, if a DDoS bot spoofs the

IP address of a benign host who happens to be also sending

tra�c to the victim. IP-and-port-based �ltering has the least

possibility of collateral damage. It also makes IP spoo�ng hard

to succeed, unless a DDoS bot can spoof both the IP address

and the source port number of an active legitimate �ow with



the victim, the chance of which is extremely slim. However,

IP-and-port-based �ltering usually does not scale.

We thus introduce adaptive �ltering to seek the best trade-

o� among all the competing factors. In particular, a DDoS

defense can enforce �ltering at di�erent granularities. A

simple adaptive �ltering strategy could be as follows. For

an IP pre�x that originates DDoS tra�c, if the volume of

legitimate tra�c from the pre�x is low, assuming the victim

is under a severe DDoS a�ack and can a�ord losing some

legitimate tra�c, a rule that �lters the entire IP pre�x is

probably applicable. Otherwise, we can look at every sub-

pre�x of the pre�x. We can generate a rule for every sub-

pre�x that primarily originates DDoS tra�c, skip every sub-

pre�x that primarily originates legitimate tra�c, and apply

the same �ltering strategy here recursively on every sub-

pre�x that originates both DDoS and legitimate tra�c. If in

this recursive process a sub-pre�x becomes an IP address that

originates both DDoS and legitimate tra�c, we can check

which ports of the IP address originates DDoS tra�c, and

only �lter tra�c from those ports of the IP address.

With such an adaptive �ltering, the DDoS defense is not

limited to a single granularity of �ltering DDoS tra�c. Instead,

it is able to elect to use di�erent �ltering granularities

as needed. �is simple strategy, however, leaves many key

questions unanswered. A major challenge is that there can be

thousands of DDoS �ows from di�erent IP pre�xes, millions of

DDoS �ows from di�erent IP addresses, and potentially even

more from di�erent IP address and port number combinations.

It will be prohibitively expensive to monitor tra�c for every

granularity and then determine �ltering rules accordingly.

Also, for a �ow from an IP pre�x or IP address, it does

not take advantage of the paths of the �ow. For example, if

tra�c from an IP address consists of DDoS tra�c from one

path and legitimate tra�c from another distinct path, we can

employ IP-address-based �ltering at a node that is on the

former path but not on the la�er path, without resorting to

the more speci�c but less scalable IP-and-port-based �ltering.

Moreover, it does not consider the preferences of a DDoS

defense, such as its objectives and constraints in terms of

DDoS tra�c coverage, collateral damage, and the number of

DDoS-�ltering rules. Ideally, a defense wants to generate rules

that are optimal for three objectives, including a full coverage

of DDoS tra�c, no collateral damage from dropping legitimate

tra�c, and only using a small number of rules. In practice,

however, a DDoS defense must compromise one or two

objectives in order to optimize for another objective, and each

DDoS defense may have di�erent prioritized objectives. In our

design, we allow a defense to optimize for one objective, but

it must also meet the constraints for other objectives.

Finally, the simple adaptive �ltering strategy is a top-

down approach, moving from IP pre�xes to sub-pre�xes to

IP addresses and then to ports. However, DDoS detection

and classi�cation solutions usually classi�es tra�c �ows

into a �ne granularity such that every �ow is either DDoS

tra�c or legitimate tra�c (rather than a mixture of both)

(Section III-A). To run adaptive �ltering on top of DDoS

classi�cation, it is more natural for it to be bo�om-up instead.

We incorporate all these observations next.

C. Problem Formulation

We now formulate the problem of rule generation. For a

given rule r, we de�ne d(r, T ) and l(r, T ) to be respectively

the DDoS tra�c and legitimate tra�c that rule r �lters

from the tra�c set T , respectively. As such, if we have

a set of rules R={ri|i=1, . . . , n}, where ri is a rule, we

have d(R, T )=
∑n

i=1 d(ri, T ) and l(R, T )=
∑n

i=1 l(ri, T ) to

respectively represent the DDoS tra�c coverage and collateral

damage of the rule set R over tra�c T . Assuming the DDoS

defense’s constraints for the minimal amount of DDoS tra�c

that must be �ltered is D, the maximal amount of legitimate

tra�c that could be �ltered is L, and the maximal number of

rules that is allowed to generate and deploy, which we also call

rule budget, is M , we de�ne three distinct single-objective

rule-generation problems as follows:

• Rule-generation Problem 1: In case the defense is most

concerned about �ltering as much DDoS tra�c as possible,

for tra�c T , output a set of rules R={ri|i = 1, ..., n}
that maximizes d(R, T ), whereas l(R, T )≤L and |R|≤M .

Example scenario 1: the victim is overwhelmed by a severe

DDoS a�ack and eager to have as much DDoS tra�c as

possible �ltered.

• Rule-generation Problem 2: In case the defense is most

concerned about avoiding collateral damage due to the

�ltering of legitimate tra�c, for tra�c T , output a set of

rules R={ri|i = 1, ..., n} that minimizes l(R, T ), whereas
d(R, T )≥D and |R|≤M ; Example scenario 2: the DDoS

a�ack is not that severe, and the victim does not wish

legitimate tra�c to be �ltered by mistake.

• Rule-generation Problem 3: In case the defense is most

concerned about minimizing the number of generated rules,

for tra�c T , output a set of rules R={ri|i = 1, ..., n}
that minimizes |R|, whereas l(R, T )≤L and d(R, T )≥D.

Example scenario 3: deploying �ltering rules costs a certain

amount of money, and the defense may have a limited

budget to defend against an a�ack.

�e defense then can choose which problem to solve,

depending on which metric to optimize and which metrics

to impose constraints.

D. F -tree

We now describe a data structure called F -tree, which

we will use to generate DDoS-�ltering rules as described in

Section III-E. An F -tree is a tree in which every node records

a tra�c source and every parent node records an aggregated

source that aggregates all the sources represented by its

child nodes. Speci�cally, every node in an F -tree records the

following information of a source:

• S: �e source of tra�c. It can be an IP source address

and a port number, an IP address, or an IP pre�x. We

call all packets from S toward the victim a “�ow” from



S. Note the source is not necessarily a single end point

on the Internet. Even if it is a single IP address, because

of IP spoo�ng, there may be more than one path.

• F : A set of candidate �ltering nodes on the path(s) of the

�ow that may be used to �lter packets from the �ow.

• d: �e amount of DDoS tra�c from the �ow in terms of

number of bytes, packets, or TCP or UDP connections,

that can be �ltered by F . �is is also the DDoS coverage

when using a node from F to �lter tra�c from S.
• l: �e amount of legitimate tra�c from the �ow that can

be �ltered by F . �is is also the collateral damage when

using a node from F to �lter tra�c from S.

Basically, every node N on an F -tree can be mapped to a

rule that requires tra�c originating from N.S to be dropped,

with a DDoS coverage of N.d and collateral damage of N.l.
�e rule must be deployed on any one of the nodes in N.F
to be able to intercept the tra�c. Figures 1(a) and 1(b) show

two toy F -tree examples.

N1

c1 c2

N1.S = 10.0.0.0/24

N1.F = {3}

c1.S = 10.0.0.1

c1.F = {3,4}

c2.S = 10.0.0.128

c2.F = {1,2,3,5}

(a) Parent node (N1) with two children

(c1, c2) via union aggregation

N2

N2.S = 10.0.0.1
N2.F = {3,4}

c3 c4
c3.S = 10.0.0.1:2222
c3.F = {1,2,3,4}

c4.S = 10.0.0.1:3333
c4.F = {1,2,6}

(b) Parent node (N2) with two children (c3, c4)
via di�erence aggregation

54

63

2

1

victim

bot bot

host

10.0.0.1:2222

10.0.0.1:3333

10.0.0.128

: filtering node

(c) �e distributed �ltering topology behind

the two F -tree examples above

Figure 1. F-tree for DDoS-�ltering rule generation.

Every node N with a set of child nodes c1, ..., cn (in a

binary tree n is 1 or 2) derives its four values from those

of its children through aggregation. First, the source value

of N is the aggregation of the source values of all its child

nodes. Speci�cally, N.S=pre�x(c1.S, . . . , cn.S), where pre�x()
is a function to extract the longest common pre�x from input

pre�xes. For example, in Figure 1(a), if node N1 has two chil-

dren c1 and c2, c1.S = 10.0.0.1 and c2.S = 10.0.0.128, then
N1.S = 10.0.0.0/24. Or for another example, in Figure 1(b), if

node N2 has two children c3 and c4, c3.S = 10.0.0.1 : 2222,
c4.S = 10.0.0.1 : 3333, where 2222 and 3333 are source port

numbers, then N2.S = 10.0.0.1.
�ere are two types of aggregation: union aggregation

or di�erence aggregation. Both can only happen if they do

not lead to an empty N.F . A union aggregation is to derive

information for �ltering all the �ows represented by child

nodes. It is as follows:

• N.F = ∩ni=1(ci.F );
• N.d =

∑n
i=1(ci.d); and

• N.l =
∑n

i=1(ci.l).

Assume node N1 above is derived via a union aggregation.

If c1.F = {3, 4} and c2.F = {1, 2, 3, 5}, then N1.F = {3},
N1.d = c1.d+ c2.d, and N1.l = c1.l + c2.l.

A di�erence aggregation is to derive information for �lter-

ing only certain �ows represented by child nodes and avoid

�ltering certain �ows represented by child nodes. Assume

among child nodes c1, ..., cn, we want to �lter �ows from

c1, ..., ck but not �ows from ck+1, ..., cn, a di�erence aggre-

gation is as follows:

• N.F = ∩ki=1(ci.F ) - ∪ni=k+1(ci.F );

• N.d =
∑k

i=1(ci.d); and

• N.l =
∑k

i=1(ci.l).

Assume nodeN2 above is derived via a di�erence aggregation.

If c3.F = {1, 2, 3, 4}, c4.F = {1, 2, 6}, and N2 wants to �lter

tra�c from c3 but not c4, then N2.F = {3, 4}, N2.d = c3.d,
and N2.l = c3.l.

Finally, if we combine our above examples for nodes N1

and N2 and map N2 to c1 (they have the same values), we

can obtain a bigger F -tree. Figure 1(c) shows the underlying

topology. We can see if we want to �lter DDoS tra�c from

10.0.0.1 : 2222 (c3) and 10.0.0.128 (c2) without a collateral

damage on tra�c from 10.0.0.1 : 3333 (c4), we will obtain a

rule represented by N1, i.e., �lter tra�c from 10.0.0.0/24, to
be deployed in one of nodes in N1.F , i.e., node 3.

E. Rule Generation Algorithms
We now describe how a defense generates rules using an

F-tree. First, as a DDoS victim continuously receives tra�c,

the defense acting on behalf of the victim can classify/label

incoming tra�c �ows to be DDoS �ows or legitimate �ows,

and also know the nodes on the path(s) of the �ows that

can �lter tra�c (Section III-A). With such information for

every incoming �ow, the defense can accordingly initialize

all the leaf nodes in the F-tree. For all labeled tra�c from

the same source, the defense casts them into a leaf node,

say N , on the F-tree, where N.S is the source, N.F are

all the �ltering nodes on the path of tra�c from N.S, and



N.d and N.l are the amount of DDoS and legitimate tra�c

from N.S, respectively. (N.d and N.l are respectively zero

for legitimate and DDoS �ows.) It then runs a loop process

which recursively aggregates leaf nodes to generate parent

nodes, using the procedure in Section III-D. �e key at every

iteration of the loop is to determine which nodes to aggregate

based on the rule-generation problem in place, as follows.

For the rule-generation problem 1 (which maximizes the

DDoS coverage), in each iteration, the algorithm �rst �nds

leaf nodes, if aggregated, that will bring the highest increase

of the DDoS coverage without violating the collateral damage

constraint. It then derives their parent node as described in

Section III-D, prunes the leaf nodes, and makes the parent

node a new leaf node. Note while a union aggregation can

lead to a higher d value per node, a di�erence aggregation can

aggregate leaf nodes into a parent node to further run a union

aggregation with other nodes. �e loop process continues

until no further aggregation can be done. �e defense then

maps the top up to M leaf nodes with the highest d-values
to the rules to use.

For the rule-generation problem 2 (which minimizes the

collateral damage), in each iteration, the algorithm �rst �nds

leaf nodes, if aggregated, that will introduce the least collateral

damage. It then derives their parent node, prunes the leaf

nodes, and makes the parent node a new leaf node. �e loop

process continues until in the current F-tree there are M or

fewer leaf nodes whose sum of d values are at least D. It then

maps these M or fewer leaf nodes to the rules to use.

Finally, for the rule-generation problem 3 (which minimizes

the number of rules), in each iteration, the algorithm �rst

�nds the largest number of leaf nodes whose aggregation into

a parent node, whether a union aggregation or a di�erence

aggregation, will not violate the collateral damage constraint.

It then derives their parent node, prunes the leaf nodes, and

makes the parent node a new leaf node. �e loop process

continues until no such aggregation can be done. It then

returns the least number of leaf nodes whose total collateral

damage is less than L and total DDoS coverage is at least D,

and maps these leaf nodes to the rules to use.

F. Rule Placement
Once rules are generated, the defense can inspect all the

rules and deploy them. For every rule, it can look at the F -tree

node that corresponds to the rule, say N , and choose one of

the �ltering nodes in N.F to place the rule. It then can contact

the node for rule placement; if the node is unavailable, the

defense can choose another node in N.F for rule placement.

If no node in N.F can place the rule, this rule cannot be

placed. �e defense can �rst try to deploy rules that only

have a single possible deployment location (|N.F | = 1), and
then those with two locations, and so on.

IV. Implementation

A. Adaptive DDoS Filtering So�ware Suite
We have developed an adaptive DDoS �ltering so�ware

suite composed of a set of independent applications, including

the �ltering-rule application and the �ltering-node appli-

cation. �e �ltering-rule application takes classi�ed/labeled

tra�c as input and includes modules on rule generation and

rule placement. �e �ltering-node application can interact

with a wide range of �ltering capabilities, including BGP

FlowSpec, Cisco ACL, and all major SDN controller so�ware

(e.g., OpenDaylight[26], ONOS[27], and Ryu[28]). Due to

space limitations we skip the complexity analysis of our

implementation here.

B. Adaptive Filtering Protocol
We developed a protocol to de�ne the messages between

a �ltering-rule application and any �ltering node. �e most

important message type is rule submission. It includes a

version number, a message type, the rule ID, and the rule

itself that is de�ned by the four �elds (source, protocol, TCP

�ags, and destination). Further, it includes a starting time

�eld regarding when the rule should start taking e�ect and

an ending time �eld indicating when the rule should expire.

Also, we de�ne a type of message called rule submission

acknowledgment, which is sent in response to a rule sub-

mission message. It also contains a version number, a message

type, a rule ID that is the ID of the rule being acknowledged.

Moreover, it includes an error code that indicates either the

rule is installed successfully (with error code being zero), or

what error has occurred, such as veri�cation error, timing

error, out of rule space, or internal error.

C. Security and Privacy Considerations
To ensure our system is not misused or abused, we tackle

the following security and privacy issues:

Privacy: �e most essential information sharing in the

system is that when a DDoS defense runs the rule generation

process, it may learn newly detected DDoS �ows and their

paths from the DDoS detection, classi�cation and tracking

components. It may also learn who the �ltering nodes are on

each path. However, as these paths are the same paths meant

to be announced and propagated for packet routing on the

Internet, there is thus no privacy concern here.

Authentication: Every party in the system (�ltering nodes,

DDoS defense, or DDoS victim) must have a signed, veri�able

certi�cate so that other parties can verify its identity, IP

address(es), public key, and other metadata. If it does not

have a certi�cate signed by a public-key infrastructure (PKI)

that our system recognizes, it can obtain a certi�cate from an

internal PKI of our system through a registration process.

Tra�c Ownership: When a DDoS defense requests a �ltering

node to deploy a rule, the rule must only �lter tra�c to

the victim that the defense protects. To ensure this, our

system mandates that the defense have a tra�c control

authorization (TCA) ticket issued and signed by the victim

to prove that the defense is allowed to issue rules against

tra�c to the victim. �e defense must also sign the rule.

�is design also allows our system to protect any link of an

ISP from the Cross�re DDoS [29]: the ISP can contact each

downstream network beforehand for a TCA ticket to become



its defense and then generate and deploy rules to �lter the

Cross�re tra�c toward each downstream network.

Message Protection: Communication within our system must

achieve con�dentiality, integrity, and authentication. To do

so, each communication channel will leverage the certi�cate

obtained from the PKI to open an HTTPS connection.

V. Evaluation

A. Overview
We built a simulation platform consisting of the actual

implementation of our system and a simulation of the Internet

data plane. We measured our system’s ability at the Internet

scale to defend a victim against real-world, large-scale DDoS

a�acks. We replayed three real-world DDoS a�acks of dif-

ferent sizes and a�ack dynamics: RADB-DDoS [30] with the

DNS protocol and ∼16,000 DDoS sources, Booter1-DDoS [31]

with the DNS protocol and ∼4,500 DDoS sources, and CAIDA-

DDoS [32] with the ICMP protocol and ∼7,000 DDoS sources.

Note that we have yet to �nd DDoS solutions that are based

on assumptions similar to ours (Section III-A) to be able to

compare.

We �rst evaluated rule generation in Section V-B, focusing

on the e�cacy and tradeo�s of di�erent rule generation

objectives, and rule deployment in Section V-C, focusing

on the percentage of rules for which suitable locations are

found (i.e., success rate). In Section V-D, we assessed our

system’s e�cacy in mitigating DDoS in real time. Lastly, in

Section V-E we deployed and evaluated our system on the

GENI testbed [33] and two real-world IXPs.

B. Rule Generation
We evaluated the rule generation algorithm and measured

the resulting DDoS coverage, collateral damage, and number

of generated rules for each of the rule-generation problems,

and compared the tradeo�s of di�ering rule generation strate-

gies. We focused on rules based on source IP addresses of the

tra�c. While rule generation is a continuous process running

in real time and handles a batch of DDoS and legitimate �ows

each time, we focused on one batch of tra�c over a second

composed of 1000 a�ack sources and 500 legitimate sources,

all randomly generated. �e size of the batch is not too big

to cause a slow response with many DDoS �ows, but not too

small either to result in too many batches.

We found the algorithm achieves optimal results for all

three rule-generation problems (1, 2 and 3). We �rst exam-

ined our algorithm for rule-generation problem 1 described

Section III. Here, the goal is to maximize the DDoS coverage,

while satisfying constraints on the maximum number of rules

M and the maximum amount of acceptable collateral damage

L. We vary the values for L and M and examine the DDoS

coverage. As shown in Figure 2(a), 100% DDoS coverage is

achieved easily, except when L and M are both low. In these

cases, however, the DDoS coverage is still maximized subject

to the stringent constraints on L and M .

We then examined our algorithm for rule-generation prob-

lem 2 described in Section III. �e goal of this algorithm is
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Figure 2. Rule generation with constraints (D: minimum DDoS coverage;

L: maximal collateral damage; M : rule budget).

to minimize the collateral damage, subject to constraints on

the minimum DDoS coverage and maximum number of rules.

Figure 2(b) shows that the collateral damage vary as expected

according to the values of the minimal DDoS coverage D
and the maximum number of rules M . In particular, collateral

damage is indeed minimized, and is zero in most cases. When

D is high and M is low, some collateral damage is incurred,

since the only way to cover a large percentage of unwanted

�ows with a relatively small number of rules is to allow some

collateral damage to occur.

Finally, we examined our algorithm for rule-generation

problem 3 described in Section III. �e goal of this algorithm

is to minimize the number of rules, while satisfying the

constraints on the minimum DDoS coverage and maximum

acceptable collateral damage. Figure 2(c) shows the results. We

can see that in most cases only one or a small number of rules

are generated, except when the minimum DDoS coverage (D)



is high and the maximum collateral damage (L) is low.

C. Rule Deployment
Continuing with rules generated in Section V-B, we eval-

uated the distributed deployment of DDoS-�ltering rules

against a number of distinct, Internet-scale distributed �lter-

ing pro�les. Each pro�le represents di�erent rates of ASes

on the Internet that participate distributed �ltering of DDoS

tra�c, as shown in Table I. �e total number of ASes in tiers 1,

2, and 3 is 89, 8442, and 47052, respectively. Full-participation

pro�le is clearly unrealistic, but we use this pro�le as a

baseline. �e “victim only” pro�le serves as another baseline,

in which the victim’s ISP is the only AS that �lters DDoS

tra�c and all rules must be deployed there.

Table I

Distributed filtering profiles for rule deployment

experiments. (These numbers are the same as the real Internet.)

Name Tier 1 Tier 2 Tier 3 Total #

Full-participation 100% 100% 100% 55583

Tier-1-only 100% 0% 0% 89

Top-centered 100% 50% 0% 4310

Middle-centered 0% 80% 20% 16163

Bo�om-centered 0% 20% 80% 39330

Victim-only 0% 0% 0% 1

We evaluated the rule deployment success rate, i.e., the

percentage of rules for which suitable locations are found.

With rules from Section V-B as input, Figure 3 depicts the

success rate under each pro�le. �e �rst and most obvious

trend displayed is that the success rate for all pro�les either

remains stable or generally increases as we increase the per-

AS rule limit from 1 to 1000. Another trend is the impact of a

higher overall rate of ASes participating the distributed DDoS

�ltering. Overall, the rule deployment success rate increases

with a higher rate of participating ASes, though increasing

the participation rate for some AS tiers has di�erent e�ects

than for others. As expected, the lowest success rate belongs

to the victim-only pro�le, while the highest rate is achieved

by the full-participation pro�le. �e four pro�les in between

generally perform much be�er than the victim-only pro�le,

and slightly or moderately worse than the full-deployment

pro�le, where the top-centered pro�le is the only pro�le of

these four to reach nearly 100% success rate, and generally

performs be�er than the others. �e middle-centered pro�le

is not far behind, however, and actually reaches higher success

rates than the top-centered pro�le when the number of rules

per AS is low. �e tier-1-only pro�le is the most sensitive

to the per-AS rule limit, as with only 89 tier-1 ASes each

AS faces pressure to deploy more rules than other pro�les; it

thus has a lower success rate than other pro�les (except for

victim-only) when the per-AS rule limit is low, but gradually

improves as the limit gets higher.

D. DDoS Mitigation
We also evaluated the overall e�cacy of adaptive dis-

tributed �ltering as we defend in real time against real-
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Figure 3. Rule deployment success rates.

world DDoS a�ack traces with continuous rule generation

and placement. Figure 4 shows two representative time series

for our defense against two DDoS a�acks with dissimilar

dynamics (CAIDA-DDoS and RADB-DDoS). For each a�ack,

we show the number of DDoS �ows �ltered at each second

during the a�ack as well as the number of �ows that arrive

at the victim when no �ltering is performed; although not

shown, no legitimate �ows are ever �ltered.

More speci�cally, Figure 4(a) applies rules that are gener-

ated based on source addresses of the tra�c toward maximal

DDoS coverage under zero collateral damage requirement

and three di�erent rule budgets (100, 200, and 500, which

represent roughly 1.5%, 3%, and 7%, respectively, of the total

approximately 7,000 DDoS sources). Here, even with a tight

budget of 100 source-based rules, which is only 1.5% of DDoS

sources, 60-70% of DDoS �ows will be �ltered, and a higher

value for the rule budget leads to more e�ective �ltering.

Figure 4(b) instead applies rules that are generated to-

ward minimum number of rules under zero collateral damage

requirement and three di�erent requirements on minimum

DDoS coverage (100%, 70%, and 50%). �e generation and

placement of rules tracks very closely the spikes in the

a�ack tra�c, demonstrating the overall accuracy of our rule

generation algorithm. In particular, with rules required to

cover 100% DDoS, although initially not all DDoS �ows are

�ltered, it takes only about 13 seconds to begin �ltering all
DDoS �ows at every second a�erwards.

E. Pilot Studies

We have deployed and tested a distributed DDoS �ltering

pilot system on the GENI (Global Environment for Network

Innovations) testbed [33]. Based on a recent Internet topology

that consists of all Internet ASes, we chose a subgraph of 1

tier-1 AS, 18 tier-2 ASes, and 31-tier3 ASes where each of

the total 50 ASes participates the �ltering of DDoS tra�c.

We also a�ached a local machine to one of the 50 ASes as a

DDoS victim running a DDoS defense. Each of these 50 ASes

is supported with two virtual machines provided by GENI. �e

�rst virtual machine for each AS runs a Ryu controller as an

SDN controller and an Open vSwitch[34] as an SDN switch
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Figure 4. Time series of �ltering of DDoS �ows. �e “total” curve shows

DDoS �ows without �ltering.

that can deploy OpenFlow rules to �lter tra�c. �e Open

vSwitch is populated with a forwarding table by running the

OSPF routing protocol [35]. �e second virtual machine for

each AS acts as an end-host in the AS that can generate benign

tra�c toward a destination from di�erent IP addresses of the

AS. More, in order to emulate large-scale DDoS a�acks on

the topology, we installed a DDoS agent on each AS’s second

virtual machine. It can receive commands about a variety of

DDoS a�acks from a bot master that we deployed on GENI

and generate DDoS tra�c toward a victim at a scheduled time

from di�erent IP addresses of the AS.

Our system runs smoothly on this platform with good

performance and low network overhead. It also runs fast

with rule generation at 105 milliseconds on average and the

network overhead is no more than 10 kilobytes each round

for rule deployment.

Below we exemplify our system’s e�ective �ltering of

DDoS tra�c by launching an emulated 100-Gbps DDoS a�ack

toward the victim from ∼1000 source addresses, together

with 40- to 60-Gbps legitimate tra�c to the victim from

∼200 sources. �e DDoS defense will then generate rules

based on the newly incoming DDoS tra�c and have these

rules eventually converted to OpenFlow rules and deployed

at selected Open vSwitches to �lter the DDoS tra�c.

Figure 5 shows our defense in two di�erent scenarios. In the
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Figure 5. Volume of legitimate and DDoS tra�c over time before and

during distributed �ltering of DDoS tra�c during a pilot study.

�rst scenario (Figure 5(a)) where the defense begins at second

48, it takes only about 3 seconds for the �ltering of DDoS

tra�c to reach 100%. Since we are using source-based �ltering,

and the number of a�ack sources (1000) is relatively high

compared to the rule budget (150), some collateral damage

has to happen, preventing the volume of legitimate tra�c

since second 48 from fully recovering; nonetheless, relative

to the sharp dip of DDoS tra�c, the legitimate tra�c does

recover to be between 30 and 40 Gbps. In the second scenario

(Figure 5(b)), we increase the rule budget to 200 and minimize

the collateral damage. Although we no longer �lter as much

of the DDoS tra�c as the �rst scenario, we �lter enough to

relieve the link congestion, while all the legitimate tra�c can

continue to �ow at its previous rate.

Finally, we conducted a pilot study with major IXPs to test

the scalability of our system in the wild against real, large-

scale DDoS a�acks. �e results are promising. For example,

over a month at one IXP, our system was able to generate

rules towards minimal collateral damage that covered 90%

of the a�ack tra�c from all 46,552 a�ack IPs in less than

7 seconds.

VI. Conclusion

DDoS a�acks are notorious for the damage they can cause

to network users and services. In this paper we focused

on making DDoS �ltering adaptive. We depart from the

state of the art in which �ltering DDoS is usually based

on a �xed granularity and enabled the �ltering of DDoS to

adapt to the most e�ective granularity. Further, we designed

rule-generation algorithms that correspond to di�erent top



priorities in DDoS �ltering, including maximizing the DDoS

coverage, minimizing the collateral damage, and minimiz-

ing the number of rules. A DDoS defense can run a rule-

generation algorithm to derive an F -tree which, by tracking

the tra�c toward the victim and strategically aggregating

�ows from di�erent sources, can help derive tra�c-�ltering

rules that are adaptive to di�erent objectives and deploy the

rules at the most e�ective �ltering nodes.

We thoroughly evaluated our system through large-scale

simulations based on real-world DDoS a�ack traces, including

(i) the quality, quantity, and the tradeo� of rules generated

with di�erent objectives; (ii) rule deployment success rates

with di�erent Internet-scale �ltering pro�les; and (iii) the

system’s overall e�cacy. We also conducted pilot studies on a

large-scale testbed as well as major IXPs, showing our system

can �lter the DDoS tra�c from large-scale DDoS a�acks with

as li�le as zero collateral damage within several seconds.

Future work may include revisiting the assumptions of this

work, performing more theoretical analysis of the algorithms,

and comparing performance with other approaches to DDoS.
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