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Abstract—Self-propagating worms can infect millions of com-
puters on the Internet in just several minutes. Although there are
already many existing worm detectors, none of them systemati-
cally consider the countermeasures from worm authors, leaving
them potentially ineffective against smart, evasive worms. We
therefore revisit worm detection in this paper. We treat worm
detection as an arms race, and study how to most effectively
detect not only classic worms (i.e. worms that do not have the
knowledge of worm detectors), but also evasive worms that know
the worm detector in place, know its configurations, and can
even adjust their scanning rate by observing legitimate traffic.
We describe our design of a new worm detector called SWORD,
conduct extensive experiments using realistic trace with different
parameters of worms, and demonstrate that SWORD is superior
to existing detectors for detecting both classic and evasive worms.
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I. INTRODUCTION

Worms can spread themselves and infect millions of hosts
on the Internet in just several minutes. Even though there have
been fewer outbreaks of computer worms in recent years, they
continue to pose a severe threat to the security of the Internet.
In fact, the ground for worms to spread in is more fertile than
ever. The number of Internet-capable devices continues to rise
at a stunning rate, and each of these devices is capable of
running a diverse range of user-installable software that can be
vulnerable to malicious attacks. Very often these attacks can
even penetrate firewalls or NAT boxes if they exist. History
also shows that prior to the sudden occurrence of large-scale
worms, there can be a relatively long lull without much worm
activities. It was more than a decade between the Morris worm
in 1988 and a big wave of many devastating worms in early
2000’s.

There are many existing worm detectors. These detectors
usually assume that worms have no knowledge of a worm
detector in place, much less their configurations, and do not
observe legitimate traffic in place and adjust their scanning
rate accordingly to stay undetected. Such an assumption would
be fine if the objective is only to detect classic worms that
agree with the assumption. Unfortunately, it is often dangerous
to make such assumptions about malware. Ideally, a worm
detector should continue to function effectively even if a worm
is smart and evasive. In the same way that we cannot assume
worms are forever gone, we cannot assume worms will just
wait to be caught by one of the existing detectors without
taking any evasive actions.

We revisit worm detection in this paper. We focus on
worms that propagate by themselves, treat worm detection
as an arms race, and propose a new worm detector called

SWORD (Self-propagating Worm Observation and Detec-
tion). Unlike most existing detectors that relied on all sorts
of behavior to detect worms, SWORD is focused on the
fundamental behavior of worms and is hard to avoid. As
a self-propagating worm is defined as code that scans the
network to find and infect new hosts, we believe the only
truly fundamental behavior of worms is that of connecting
to new destinations. Behavior-based detection systems that do
not focus on this one fundamental behavior can be evaded
successfully by sufficiently smart worms.

SWORD’s working mechanisms are simple and novel. It
includes two main modules in detecting violations that a worm
will cause in connecting to new destinations, and these two
modules complement each other: If a worm does not wish
to violate one module when connecting to somewhere, it will
inevitably violate the other, leaving little space for a worm to
breathe and forcing it to slow down or freeze.

We have designed an experimental framework for evaluat-
ing various behavior-based worm detectors. We measured the
performance of SWORD and compared it with other detectors.
We found that SWORD can not only effectively detect classic
worms, i.e., worms that do not have the knowledge of worm
detectors, but also evasive worms, i.e., worms that actually do.
It significantly outperforms all other detectors. For example,
while it is as competitive as the TRW detector in most
effectively detecting classic worms, it outperforms TRW by a
factor of 60 in most environments in detecting evasive worms
(i.e., an evasive worm against TRW can scan 60 times faster
than an evasive worm against SWORD).

II. BACKGROUND AND RELATED WORK

A self-propagating worm running on a host will actively
scan the network (or the entire Internet) that the host is
connected to and look for new victims to infect. A worm
can employ a variety of scanning mechanisms, including
random, local preference, sequential, permutation, topological,
and hit-list scanning [1]. It infects a remote host by gaining
sufficient privileges (typically by exploiting a flaw, such as
buffer overflow, in software running on the remote host) to
copy itself to, and then execute itself on, the remote host.

There have been a variety of worm detection systems
proposed, either host-based or network-based. Host-based de-
tection uses information available at the end-host, and example
techniques include buffer overflow detection, correlating net-
work data to memory errors, and looking for patterns in system
calls (e.g., [2], [3], [4], [5]). But since host-based detection
requires deployment on every host to detect if a host is
infected, network-based detection became more desirable with
less overhead to install and maintain. Network-based systems



usually only needs a single deployment location—such as
a network gateway—to protect an entire network. Network-
based detection mainly includes (1) content-based detection
which observes the content of network traffic to look for byte
patterns that match the signature of a worm (e.g., [6], [7], [8],
[9], [10]), and (2) behavior-based detection which observes
the network behavior of end hosts and identify patterns that
are indicative of the presence of a worm. Because content-
based detection is less capable against zero-day or polymorphic
worms and can incur a high overhead to inspect traffic payload,
we focus on behavior-based detection in this paper.

Existing behavior-based worm detection has focused on
various types of traffic behaviors, including: how the outgoing
connections from a host correlate to the incoming connections
to that host, how the connection failure patterns of a host
deviate from normal, and what a host’s pattern of visiting
destinations looks like. As we will need to compare our
detector SWORD against state-of-the-art behavior-based worm
detectors, we now summarize these detectors below. We chose
the same set of detectors used in comparing the performance
of behavior-based worm detectors against classic worms [11].

DSC [12] detects a worm by correlating an incoming
connection on a given port with subsequent outgoing connec-
tions on that port. If the outgoing connection rate exceeds a
threshold established during training, the alarm is raised.

TRW [13] identifies a host as worm infected if its attempts
to connect to new destinations result in many connection
failures. The basic idea is that a worm-infected host that is
scanning the network randomly will have a higher connection
failure rate than a host engaged in legitimate operations. Note
TRW is based on the rate of connection failures rather than the
total number of connection failures, and it only counts connec-
tions to new destinations (not counting repeated connections to
a single destination). Even with the IPv4 address space getting
closer to complete allocation, the majority of addresses will not
respond to a connection attempt on any given port. Randomly
targeted connections (as in worm scanning) will likely fail.

The multi-resolution approach [14], which we refer to as
MRW, assumes that when there is no worm the growth curve
of the number of distinct destinations over time is concave,
but not so when a worm is present since worm scanning will
lead to many destinations. This can be leveraged by monitoring
over multiple time windows with different thresholds for each
window. If the number of new destinations for a host within
a given window exceeds the threshold, the alarm is raised.

The Protocol Graph detector [15], which we refer to as
PGD, is targeted at detecting slowly propagating hit-list or
topologically aware worms. It works by building protocol-
specific graphs where each node in the graph is a host, and each
edge represents a connection between two hosts over a specific
protocol. It assumes that during legitimate operation over short
time periods, the number of hosts in the graphs is normally
distributed and the number of nodes in the largest connected
component of each graph is also normally distributed. During a
worm infection, however, both numbers will become abnormal,
thus indicating the presence of a worm.

RBS [16] measures the rate of connections to new destina-
tions, similar to MRW. It assumes that a worm-infected host
contacts new destinations at a higher rate than a legitimate host

does. It measures this rate by fitting the inter-arrival time of
new destinations to a exponential distribution.

TRWRBS [16] combines the TRW and RBS detectors into
a unified scheme, and observes both the connection failure rate
and the first contact rate. It performs sequential hypothesis
testing on the combined likelihood ratio to detect worms.

All aforementioned detectors are focused primarily on
classic worms, without considering the countermeasures that
a smart, evasive worm may employ. Stafford and Li have
also evaluated and compared their performance [11], but only
against classic worms. Assuming that worms will behave in
this fashion may lead to some detectors appearing to perform
well, despite the fact that they could be easily evaded by a
worm with a more sophisticated behavior pattern.

III. THE SWORD DETECTOR

A. Overview
The definition of a self-propagating network worm is code

that scans the network to find and infect new hosts. With this
definition, the only truly fundamental behavior of worms is that
of connecting to new destinations. Behavior-based detection
systems that do not focus on this one fundamental behavior
can be evaded successfully by sufficiently smart worms (which
will be validated with the results in Section V). Therefore,
the one behavior that we must include to improve worm
detection is that of visiting destinations. Are there techniques
for detecting anomalous destination visiting patterns that have
not been explored yet and that could help to reduce the
effective scanning rate of worms?

We depart from existing approaches by focusing on what
is essential for a worm to propagate, and devise a new worm
detector, SWORD, with superior performance characteristics
to the detectors described in Section II. It is positioned at
the gateway of a protected internal network as a monitor, as
shown in Figure 1. It includes two main modules: a Burst
Duration Detector (BDD) that encompasses a burst detection
algorithm to prevent fast worm scanning, and a Quiescent
Period Detector (QPD) that ensures the quiescent periods in
network activity do not disappear because of constant worm
scannings. A key innovation here is that these two modules
complement each other: If a worm does not wish to violate
one module when connecting to somewhere, it will inevitably
violate the other, leaving little space for a worm to breathe
and forcing it to slow down or freeze. Finally, rather than
applying a single threshold to an entire network of hosts,
SWORD employs a clustering method to group hosts based on
their recent activity profile and establish different thresholds
for different groups of hosts.

Below we describe BDD, QPD, clustering, and SWORD
itself in detail.

B. BDD: Preventing Fast Scanning via the Burst Duration
Detector

The most fundamental behavior of self-propagating net-
work scanning worms is the behavior of contacting new des-
tinations seeking new victims to infect. This behavior simply
cannot be avoided by a worm that is looking to propagate. So,
to detect a worm one should look for anomalies in the rate
at which new destinations are contacted, i.e., the rate of first-
contact connections. The key is then to determine whether or



Fig. 1: SWORD detector running as a traffic monitor at the
gateway of a protected network.

not a host is making first-contact connections at a rate faster
than usual.

Two previous detectors relied on heuristic of this flavor:
the MRW detector and the RBS detector. However, they both
have their deficiencies. The MRW detector counts the number
of first-contact connections in a series of time windows of
different length (hence the “multi-resolution” in the method’s
title), but it only uses a relatively small set of windows,
typically fewer than 10. An intermediate window size might
produce a detection window that would detect a worm more
quickly than the bigger or smaller sizes in use, but due to the
limited number of windows, MRW cannot take advantage of
this. RBS, on the other hand, computes a threshold for every
different window size, and it uses the number of connections
instead of time to describe the window. However, it suffers
from sub-optimal thresholds, and thus a poor performance even
against classic worms (Section V-A). RBS attempts to fit a
single curve to the distribution of inter-connection intervals
and uses this curve to generate the thresholds, but in practice
the distribution does not map well to a single curve.

BDD avoids the drawbacks in the MRW and RBS ap-
proaches. Rather than using fixed time-limited window sizes
like MRW, we use RBS’s method of creating a window for
every different size of connection burst. There is a threshold
for a 2-connection burst, a 3-connection burst, a 4-connection
burst, and so on, up to a maximum burst size. We also
introduce a training phase, during which we measure multiple
different durations observed for each burst size and base our
threshold on the minimum duration observed for a given burst
size. This has the advantages of giving us a threshold for every
different size burst (a large number of window sizes), while
allowing for a more complex distribution of inter-connection
interval times (more accurate thresholds).

The potential drawback to this new method is greater over-
head for storing different thresholds and greater computational
requirements for examining a recent connection history to
determine if it violates any of the thresholds. However, a truism
is that computational power and storage space are constantly
increasing, and we feel that this additional load is relatively
inconsequential.

C. QPD: Ensuring Quiescent Periods via the Quiescent Period
Detector

A normal host will exhibit regular quiescent periods where
it does not make any first-contact connections. In other
words, legitimate traffic is typically bursty, with first-contact
connections occurring in groups and quiet periods between
them. Figure 2(a) shows an example pattern of legitimate
connections. Point A in the figure shows a quiescent period
with no worm traffic, followed by a burst of connections.

Time

A

(a) Legitimate Connections

Time

B

(b) Legitimate Connections Plus Classic Worm Connec-
tions

Time

(c) Legitimate Connections Plus Rate-Adaptive Worm
Connections

Fig. 2: Examples of observed connections over time

Below we first see how the presence of a worm may affect
a host’s quiescent periods, especially if it is adaptive and may
evade BDD, and then describe our QPD module.

After a worm infects a host and tries to spread itself,
if it scans at a fixed rate, it will make connections during
the middle of a legitimate burst, which will raise the overall
observed connection rate from the host. Figure 2(b) shows
the legitimate traffic with the addition of classic worm traffic.
Point B indicates a spot of increased connection rate due to
the worm connections adding to the burst of legitimate traffic.
If BDD is in place, it then can detect the worm.

The worm, however, could be adaptive and avoid this
additive effect. Specifically, the worm can dynamically adjust
its first-contact rate so that it is always lower than the detection
threshold. If the host makes bursts of legitimate first-contact
connections, the worm can simply slow down to keep from
adding too many its connections to the legitimate connections,
thus avoiding exceeding the detection threshold. When the
host is otherwise idle, however, as long as the worm does not
exceed the BDD thresholds, it is then free to make first-contact
connections. Figure 2(c) shows the legitimate traffic with an
adaptive worm overlaid. By scanning mostly when the host is
in the middle of a quiescent period, the adaptive worm avoids
having a scanning rate greater than the legitimate traffic, even
at a higher scanning rate than the classic worm (with eight
worm scans instead of five).

Preventing or limiting this adaptive behavior of worms
would then help to reduce the achievable scan rate of a worm,
and is the basis for QPD. Basically, if a host does not display
quiescent periods as it typically does, and has been “active”
for overly long, QPD then determines that the host is infected
by a worm that is scanning the network.

QPD thus detects worms by measuring the duration of
active periods during a training phase. An active period is
defined as the duration of a period during which first-contact
connections happen with no more than the specified quiescent
period between them. QPD uses a series of different quiescent
periods. For every quiescent period size, it measures the
mean and standard deviation of all the active periods that are



separated by a quiescent duration of at least that length. These
values are used to generate a threshold duration for active
periods, which is the mean plus � times the standard deviation.
� can be tweaked for different environments to fix the false
positives at a specific value. If a host has an active period
exceeding the threshold duration for any of the quiescent
period, it is likely infected with a worm. For example, we
can apply QPD to Figure 2(c) where the host is active all the
time and does not exhibit any quiescent period at all to detect
the presence of the worm.

D. Clustering
Existing behavior-based detection systems employ the

same threshold for all hosts in a protected network. This is
a poor choice because the hosts in a network show widely
divergent behaviors. As more devices (e.g., handheld devices)
connect to the Internet, they also come with more divergent
behaviors. Desktop computers used primarily for web surfing
make connections in a different pattern than a department
email server would, for example. If a desktop computer started
making connections at the same rate as the email server, it is
likely an anomalous event and something strange must have
happened to that computer. But if the desktop computer has
same thresholds applied to it that the email server does, its
behavior would not appear to be anomalous because those
thresholds must allow it as normal behavior to avoid constantly
flagging the email server as infected.

In fact there has been substantial research effort in cluster-
ing entities based on their expressed characteristics in both the
realm of statistics and computer science. We have leveraged
this body of work and applied existing tools to automatically
categorize the hosts in a network such that different thresholds
can be applied to different groups of hosts. We examined
a range of clustering techniques, behavior characteristics to
cluster against, and number of clusters to create. We have
found that using k-means clustering to separate the hosts
into groups allows us to improve overall performance. In our
current design we cluster based on a single feature of the hosts,
the number of destinations contacted during a training period.

E. The SWORD Worm Detector
We have combined the above principles into a new worm

detector, i.e., SWORD. It uses the BDD and QPD detectors
outlined above, and declares a host to be infected with a worm
when either BDD or QPD raises an alarm. SWORD observes
legitimate network activity for a period of time to cluster hosts
into groups and generate thresholds for each cluster.

The co-existence of BDD and QPD makes it extremely
hard for a worm to avoid being caught. If a worm wants
to escape BDD but still makes new connections, it cannot
shorten the duration of a burst of any size; it will then have
to lengthen active periods, but doing so will get it caught by
QPD. On the other hand, if a worm wishes to escape QPD
while still making new contacts, it then has to ensure the
quiescent periods; it will then have to insert its connections into
active periods, which however will cause certain connection
bursts to have a shorter duration than permitted, thus triggering
the alarm from BDD. Therefore, this combined, collective
detection of SWORD captures the fundamental behavior of
worm detection, preventing a worm from quickly spreading to

many destinations.

IV. EXPERIMENT METHODOLOGY

We now describe how we evaluate a worm detector, es-
pecially its performance against evasive worms. Our objective
is that we can use realistic trace to evaluate the performance
of different worm detectors against all kinds of worms with
various different parameters.

A. Procedure Overview
We developed a custom testing framework that allows us to

easily plug in a behavior-based detector, set up an evaluation
environment with both background traffic and worm traffic,
and run the detector to measure its performance in detecting
the existence of the worm traffic. We implemented SWORD in
this framework, as well as all detectors described in Section II,
i.e., DSC, TRW, RBS, MRW, PGD, and TRWRBS.

For each worm detector, including SWORD, we first run
it against classic worms, which are not aware of the detector
against it at all. We measure its accuracy (i.e., false positives
and false negatives) and detection latency at different scanning
rates. We then run every detector against evasive worms which
are designed specifically to evade the detector, and see how
resilient a detector is against evasive worms. We describe
evasive worms in Section IV-B, and detail the metrics and
parameters for measuring against both classic and evasive
worms in Section IV-C.

We run each detector in four distinct environments: cam-
pus, enterprise, department, and wireless. Every environment
includes background traffic from a real source, and worm
traffic with a variety of worm scanning strategies generated
using the GLOWS worm simulator [17] that is tailored to
that environment. Note we ensure the worm traffic is unbiased
toward SWORD. As the traffic behavior in each environment
is different, such as the durations of traffic bursts and dura-
tions of active periods, SWORD may demonstrate different
performance under different environments. We detail them in
Section IV-D.

To evaluate SWORD’s performance against other detectors,
we perform the same set of experiments using the same
network traces and worm simulations, allowing us to fairly
compare different detectors and objectively assess their per-
formance.

B. Evasive Worms
For a worm to evade detection, it must know the underlying

details of the detector being used, then leverage its capabilities
to adjust its behavior in order to avoid triggering detection.
We define several terms to refer to capabilities of evasive
worms. A worm with no knowledge of the legitimate network
traffic on an infected host is said to be blind, whereas if it
can observe the traffic it is perceptive. A worm that does
not know the parameters of the detector deployed against it is
described as speculative, whereas one that knows the actual
deployed parameters is said to be informed. We consider all
permutations of these capabilities.

For each worm detector we evaluate, we implemented a
different type of evasive worm against it. Specifically, the
evasive worm against DSC adds a delay between infecting a
host and the beginning of scanning from that host to avoid any



causality connection; the evasive worm against TRW contacts
a list of known hosts to avoid connection failures; the evasive
worms against MRW and PGD both scan at the maximum
sustained rate that will not be detected; and the evasive worm
against TRWRBS is a combination of the evasive worms
against TRW and RBS. (We do not consider evasive worms
against RBS because RBS does not even perform well against
classic worms, as shown in Section V-A.) For details on how
an evasive worm with regard to a specific worm detector
functions, readers can refer to [18].

C. Metrics and Parameters
For each detector in each environment, we first run it

against benign traffic with no injected worm activity. The false
positive rate is the number of hosts misidentified as infected
per hour. We then run 16 experiments for every permutation
of the worm parameters (e.g., we run 16 experiments to mea-
sure a random-scanning worm at every scanning rate). Each
experiment consists of running the detector for 10 minutes of
the experiment trace to warm up the connection histories, then
injecting the simulated worm traffic into the trace, and running
until either an hour has elapsed or the worm is detected. Each
of the 16 experiments that we run for a given set of worm
parameters has a different host in the protected network being
infected first and uses a different random seed. The false
negative rate is then the percentage of experiments where
the worm is not detected, and the detection latency is the
mean number of worm connections that have left the network
at detection time.

For each evasive worm we vary a parameter ⇣ between
zero and one, controlling the aggressiveness of the scanning.
A value of one means that the worm will modulate its own
scanning traffic to bring the detector exactly to its threshold. A
value of zero would cause the worm to modulate its traffic so
that it presents no signature of the worm (if possible), which
of course might mean that the worm would not scan at all.
We call this parameter load factor because the worm traffic is
additional load against the detector threshold beyond whatever
legitimate traffic originates from the host.

We run each evasive worm once in each environment for 1
hour for each of 16 different randomly selected first infected
hosts, for 10 different values of ⇣ in the range [0.1–1.0], and
with an upper bound of scanning rate at 10 scans per second.

We use three metrics to evaluate the success of an evasive
worm. As we vary the load factor, we measure the worm’s
ability to evade detection: its evasion rate. This represents
the percentage of experiments where the evasive worm is not
detected by the worm detector in place. Clearly, the evasion
rate of the worm is equivalent to the false negative rate of the
corresponding worm detector.

The second metric is the effective scanning rate. This
is the average number of worm scans per second the evasive
worm is able to make during the one hour experiment for a
given environment and value of ⇣. The higher the value of
⇣, the faster the evasive worm will scan, thus increasing its
effective scan rate (but also reducing the evasion rate).

An evasive worm author’s goal is to scan as quickly
as possible while maintaining a high chance at evasion. As
the load factor of a worm increases, its scanning rate also
increases, but its evasion rate decreases. By choosing a min-

imum evasion rate, we then can find the maximum effective
scanning rate. For this experiment we choose the minimum
evasion rate to be 0.90, meaning the worm can survive if
the false negative rate of detection is 90% or higher. The
maximum effective scanning rate is the ultimate determination
of a worm detector’s effectiveness. The lower the maximum
effective scanning rate allowed, the more effective a detector is.
This single metric is the best metric for comparing detectors,
as it reveals the damage that a worm can cause without being
detected.

D. Evaluation Environments
The campus environment is built from a trace collected

at the border of Auckland University [19]. It contains over
a month of traffic from the entire university with two /16
and several /24 networks. We randomly select 200 hosts and
construct an environment using traffic to and from those hosts,
where the training and experiment segments each contain
approximately 25,000 connections.

The enterprise environment is built from a trace collected
at LBNL [20]. Heavy scanners were removed from the trace
before it was released. It has 139 active hosts and the training
and experiment segments each also contain roughly 25,000
connections.

The wireless and department environments are built from
traces collected at the University of Massachusetts [21]. The
department environment is built from a trace capturing all
traffic to and from the wired computers in the CS department.
It has 92 active hosts and approximately 30,000 connections in
each training or experiment segment. The wireless environment
comes from a trace capturing all wireless network traffic
from the university. It has 313 active hosts and approximately
120,000 connections in each segment.

V. EVALUATING THE SWORD DETECTOR

Having described SWORD in Section III, we now evaluate
its ability to detect worms and compare it with the detectors we
described in Section II. Not only do we consider SWORD’s
performance against classic worms, we also measure its perfor-
mance against evasive worms that attempt to avoid exhibiting
the behaviors that SWORD relies on. We measure evasive
worms’ effective scanning rate, evasion rate, and maximum ef-
fective scanning rate against SWORD and show that SWORD
is more effective at limiting an evasive worm’s spread than the
state-of-the-art detectors.

A. Performance of SWORD vs. Classic Worms
We now describe the performance of the SWORD detector

against classic worms in terms of its accuracy and detection
latency. We report the results using random-scanning worms
as the classic worms. Our experiments show that SWORD
has similar performance in detecting other classic worms of
different scanning types, such as the local-preference worms,
topological-scanning worms, or hitlist worms, whereas other
detectors demonstrate either similar performance in detecting
other classic worms, or worse.

Figure 3(a) shows the false negative rate that SWORD
achieved against a classic worm. The worm was detected
at a scanning rate of 0.05 connections per second in every
scenario except for a single host in the wireless environment.
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Fig. 3: False negative and detection latency of SWORD when
running against classic worms infecting randomly selected hosts.

To make the direct head-to-head comparison between SWORD
and other detectors easier, Figure 4 further plots SWORD
and the other detectors all on the same graph. All these
detectors are adjusted to have the same false positive rate (two
falsely identified hosts per hour). In the campus environment
(Figure 4(a)), we can see that the TRW detector is able to
detect some worms at slightly slower scan rates than SWORD.
It is the only detector to do so, however, and does not detect
100% of the infections at any scan rate slower than SWORD
does. The enterprise environment shows similar results (Fig-
ure 4(b)), again with TRW showing slightly better sensitivity
and this time PGD just barely beating SWORD at 0.02
scans per second. The other two environments, however, show
SWORD with the best sensitivity, detecting worm infections
at slower scanning rates than any other detector (Figure 4(c)
and Figure 4(d)).

Figure 3(b) shows the detection latency of SWORD. In the
campus, enterprise, and department environments, the average
detection latency is under 40 scans for all worm scanning
rates but one, where the average detection latency is under 50
scans. We do not see much of the latency performance in the
wireless environment, because we only plot detection latency
for combinations of environment and scanning rate where the
worm was detected in 100% of the experiments. However, if
we were to relax our restriction and show the detection latency
for those scenarios at each scanning rate where the worm was
detected in the wireless environment, we would see that the
latency is under 67 for all scan rates under 0.2, and under 327
for all worm scan rates. In comparing SWORD and the other
detectors in terms of their detection latency, it is hard to plot
a graph similar to Figure 4 with good legibility because of the
wide ranging latency values. Instead, we present a simplified
view, with the average taken across all scanning rates where
the worm was detected for each detector and environment.
These results are presented in Table I. (If a detector is faster
than SWORD its latency is highlighted.) Clearly, in most cases

TABLE I: Average detection latency for all detectors.

Detector Campus Enterprise Department Wireless

SWORD 21.73 24.97 22.99 264.94
DSC 2.00 22.00 19.00 15.93
MRW 28.88 51.70 43.64 1014.16
PGD 93.80 28.11 25.81 621.75
RBS 17.36 4.25 26.44 349.53
TRW 4.23 11.13 24.75 49.93
TRWRBS 57.97 30.39 58.66 167.95

SWORD is faster than other detectors.
Overall, in detecting classic worms, the only two detectors

that sometimes beat SWORD are PGD (in one environment
only) and TRW (in two environments). SWORD has a lower
average detection latency than PGD in all environments here,
including a latency of less than half in the wireless environ-
ment. The TRW detector has a lower detection latency in three
of the four environments. These tests make the TRW detector
appear to be a better detector than SWORD. However, a
clever worm can evade the TRW detector by employing known
neighbors to befuddle the detector. In the next section we show
that the SWORD detector is dramatically better once evasive
worms are taken into account. Against all other detectors,
SWORD has either better sensitivity or detection latency, and
in many cases both.

B. Performance of SWORD vs. Evasive Worms
A good worm detector must be effective not only against

classic worms, but also against worms that are actively trying
to evade detection. We now evaluate SWORD against evasive
worms. We test SWORD against blind/perceptive and specu-
lative/informed worms and measure the worms’ effective scan
rate and evasion rate. We then measure the maximum effective
scan rate achieved with a less than 10% chance of detection.

1) Evading the SWORD Detector: An evasive worm
against SWORD must ensure that it has sufficient quiescent
periods to evade QPD, while also limiting its bursts of con-
nections to avoid triggering BDD. The combination of these
two mechanisms puts significant constraints on the ability of
the worm to scan. More specifically, the worm runs internal
versions of both the QPD and BDD detectors. For every scan
to initiate, it first checks to see whether the scan will violate
any of the QPD constraints. If it will, the worm waits long
enough to end the current active period for the QPD constraint
in question. After eliminating QPD as a constraint, it checks
the BDD durations to ensure that the BDD detector will not be
triggered either. Recall if the worm is perceptive rather than
blind, it knows the legitimate traffic; and if it is informed rather
than speculative, it know the parameters of SWORD.

2) Effective Scan Rate and Evasion Rate of Evasive Worms
against SWORD: The blind speculative version of the worm
cannot achieve an effective scan rate of greater than 0.03 scans
per second in any scenario (Figure 5(a)). In the department
environment, when the load factor is 1, a scan rate even
this low still gives an evasion rate of 0% (Figure 6(a)). The
perceptive speculative version of the worm does not improve
the effective rate at all (Figure 5(c)), but does improve the
evasion rate in all but the department environment (Fig-
ure 6(c)). The informed versions of the worm do much better
in the wireless environment, with the worm able to achieve
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Fig. 4: False negatives for SWORD and other detectors when
running against classic worms infecting randomly selected hosts. All
these detectors are adjusted to have the same false positive rate (two
falsely identified hosts per hour), so they can be compared against
each other head-to-head.
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Fig. 5: Effective scanning rate of evasive worms vs. SWORD as
a function of Load Factor.

an effective rate nearly 10x greater than the speculative worm
was able to (Figure 5(b) and Figure 5(d)). Overall, SWORD
works effectively against evasive worms and can limit both the
effective scanning rate and evasion rate of evasive worms.

3) Maximum Effective Scan Rate of Evasive Worms Against
SWORD and Existing Detectors: The best evaluation of the
detector is the maximum effective rate achieved by the evasive
worm while running less than a small chance (we use 10%) of
being detected. In Figure 7, we plot the maximum effective rate
achieved by the evasive worms against respective detectors.

For the campus environment (Figure 7(a)), the benefits of
the SWORD detector are very pronounced, beating all other
detectors by at least a factor of 2. In this environment, no other
detector came close to limiting the maximum effective rate of
the evasive worms as well as SWORD did.
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Fig. 6: Evasion rate of evasive worms vs. SWORD as a function
of Load Factor

In the enterprise environment (Figure 7(b)), the maximum
effective rate allowed by the SWORD detector to any variety of
evasive worm was 0.02 scans per second. The PGD detector is
the only one competitive against SWORD, while the other de-
tectors all perform significantly worse. PGD detected the blind
evasive worm varieties in every scenario in this environment
because of the window that had a threshold that was only one
scan over the legitimate traffic for this period. However, the
perceptive variant of the worm was able to achieve a maximum
effective rate of 50% greater against the PGD detector than
against the SWORD detector.

Figure 7(c) shows similar results for the department envi-
ronment. SWORD outperforms all other detectors by at least
a factor of three for all evasive worm varieties.
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Fig. 7: Maximum effective rate of evasive worms against their
detectors.

Finally, Figure 7(d) shows that again, the PGD detector
was able to outperform SWORD in some scenarios. But even
here, SWORD outperforms PGD by a factor of 7 against blind
speculative worms.

C. Summary
In this section we have shown that the SWORD detector

significantly outperforms all other detectors. The TRW detec-
tor does perform slightly better than SWORD against classic
worms, but against evasive worms it was outperformed by a
factor of 60 in most environments against most evasive worm
types. TRW’s best performance against evasive worms was
coming within a factor of 3 against a perceptive informed
worm in the wireless environment. This significant superiority
against evasive worms offsets any minor advantage TRW had



over SWORD against classic worms. The PGD detector does
outperform SWORD in 5 of the 16 evasive worm scenarios
(four evasive worm types by four environments), but is dom-
inated in the remaining 11 scenarios. It is also outperformed
by SWORD against classic worms. The only other detector
to come close is the MRW detector, which is consistently
outperformed by SWORD against classic worms. MRW’s best
performance against evasive worms is to get within a factor
of two of the SWORD detector. It is soundly beaten in
every scenario. None of the other detectors present even an
appreciable level of competition.

VI. LIMITATIONS AND OPEN ISSUES

The evasive worm against every detector could be further
improved. For example, the current design of the evasive
worm against TRW assumes that the worm can always find
a list of known hosts to contact, but sometimes it may be
impossible. Also, the experimentations above assume that the
training is reliable, but if the background traffic is infected
by a worm, it can introduce noise to detection results. Lastly,
it will also be interesting to more closely analyze why every
detector, including SWORD, tends to perform differently under
a different environment.

VII. CONCLUSIONS

We identify two principles that an effective worm detection
solution must follow: (1) Worm propagation and worm detec-
tion are in an arms race, and a detector must consider potential
countermeasures from worm authors; and (2) Behavior-based
worm detection must focus on the fundamental behavior of
worm propagation that worms cannot avoid. Although there
have been already many existing worm detectors, they are all
inadequate in following these two principles.

In this paper, we revisited behavior-based worm detection.
We identified that the fundamental behavior of worm propaga-
tion is that of connecting to new destinations, and designed a
new detector SWORD that encompasses two complementary
modules that can detect violations that a worm will cause in
connecting to new destinations. With one module monitoring
burst duration and the other ensuring quiescent periods, we
show SWORD is extremely hard for a worm to evade. As
demonstrated in our evaluation, the SWORD detector signifi-
cantly outperforms all other detectors. SWORD is not only as
competitive as the best detector for detecting classic worms,
but is also highly resilient against evasive worms.
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