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Abstract—Due to operational malpractice or security attacks, Another common prefix anomaly areute leaks where a
an IP prefix (i.e., a block of IP addresses) can undergo many misconfigured ISP advertises illegitimate routes for peafix
types of routing anomalies. Perhaps the most well-known of such |, past history, such incidents have caused anomalies on a
anomalies is prefix hijacking, where an attacker hijacks traffic ’ . .
meant to reach the legitimate user of a prefix. Anomalies can monumental scale [6], [7]. A well-publicized 'nStance oced
also easily occur through route leaks, which can disrupt trafic  On April 8, 2010, when an AS operated by China Telecom
for numerous prefixes at once. While various solutions have been falsely originated nearly 37,000 prefixes, and mis-routeffi¢
proposed to detect such anomalies, these solutions are limited andto those prefixes for about 15 minutes [8]. Route leaks also
susceptible to attacker countermeasures. In this paper we prest continue to plague today’s Internet, with events occurisg

Buddyguard, a new approach to detecting prefix anomalies -,
including prefix hijacking and route leaks. Buddyguard compares recently as February 2012 when Australia’s Telstra ISP exus

the behavior of a monitored prefix with the behavior of a set of outages for nearly 1400 prefixes [9].
numerous buddy prefixes. The system detects anomalies when
the behavior of the monitored prefix significantly diverges from These anomalies are a real threat avery prefix on the
that of its buddies. Our evaluation results show that Buddyguard [nternet, whether commercial or private, is vulnerableertv
provides fast, accurate and lightweight monitoring of IP prefix more disturbing, users or operators of a prefix cannot easily
ol s roducion a1 e o L e €021 ot auch ncident. Th leimate ser of @ prof may o
expect any incoming traffic at all while its traffic is being
|. INTRODUCTION mis-routed; or in a more complex form of IP prefix hijacking
A. Routing Anomalies with an IP Prefix called prefix interception an attacker_n(_)t only hi_jacks tra_ffi(_:,
. . but also forwards that traffic to the victim—Ileaving the wiati
An IP prefix (i.e., a b.|OCk of IP gddresses) can be SUbJeCt% tirely unaware that its traffic is being hijacked.
to many types of routing anomalies. A prefix may suddenly
become unreachable, reachable only through a path with pooUnfortunately, it is unlikely that these prefix anomaliedl wi
routing performance, or it may experience pathologicating pe resolved in the near future. While there exist proposais su
dynamics (e.g., oscillation between different paths). Weet as S-BGP [10] to secure Border Gateway Protocol (BGP), the
a prefix is used by major online businesses (such as Googlejer facto inter-domain routing protocol, their high overhead
YouTube) or ordinary end users (e.g., Alice and Bob), theggst has prevented actual deployment. In fact, research has
prefix anomalies can cause loss of revenue, identity theft, fgund that even these proposals are deployed, they will stil
many other devastating consequences. fail in certain circumstances [11]. It is therefore critica

One of the most infamous of such anomaliespigfix monitor prefixes and detect prefix anomalies as they occur.
hijacking, in which an attacker hijacks traffic meant to reach
the legitimate user of a prefix. Real world cases of prefix But in the domain of monitoring prefixes and detecting
hijacking have occurred repeatedly ([1], [2]), includinget anomalies, the outlook is still bleak. The current stat¢het
well-known Pakistan Telecom hijack of YouTube in 2008 [3]art monitoring schemes ([12], [13], [14], [15]) are narrgwl
These events have been reported as recently as January 2@tused on prefix hijacking alone, leaving other forms of
when INDOSAT-INP-AP hijacked traffic to nearly 3000 preprefix anomalies undetected. Furthermore, as we will detail
fixes [4]. Furthermore, executing this kind of attack is nasection Il, a fundamental limitation with the current systeis
difficult. Theoretical studies show that a prefix can be higat that none of them fully address the range of countermeasures
by a tier 1 autonomous system (AS) with around a 50-80®at an intelligent attacker could employ to avoid detettio
probability, a tier 2 AS with around a 30—-70% probabilitydanFor example, a hijacker might bypass monitoring schemes by
a tier 3 AS with around a 5-30% probability [5]. performingsub-prefix hijackingleaving the monitored prefix

_ o o unaffected but hijacking traffic to its subspace. Even refer
o e e e g S pOINt monitoring approaches (13], 14]), which adsre
conclusions or recommendations expressed in this materiahese of the Many deficiencies in earlier designs, are still vulneralole t
authors and do not necessarily reflect the views of the Nalti@cience resourceful attackers. Given these issues, there costitiue
Foundation. be a pressing need for more flexible and resilient solutions
978-1-4673-2447-2/12/$31.00 2012 IEEE than what are currently available.



B. Buddyguard: A Buddy-Based Prefix Monitoring Solutionnegatives and false positives.
In addition to the introduction and use of a buddy system

In this work, we present a new approach to prefix mon- ) X ) e i
P PP b r?or prefix anomaly detection, the major contributions ofsthi

itoring that fills this missing gap. DubbeBuddyguard, it X
surrounds a prefix with a buddy system composed of budw)rk further include:

prefixes, orbuddies and monitors the behavior of the prefix (i) A training algorithm for finding and selecting well-
against that of its buddies. Not only does Buddyguard quickl ~ matched buddies from multiple ASes for a given prefix;
and accurately detect various prefix anomalies includirgiypr (i) A buddy-based monitoring algorithm that provides fast

hijacking and route leaks, but it is also lightweight to dspl accur_gte, and reliable detection of prefix anomalies; a_nd
and resilient against circumvention by attackers. (iii) A resilient and scalable system design that could lgasi
Key to monitoring an IP prefix is knowing what is normal ~ be deployed for today’s Internet.

behavior and what is not, and a buddy system makes this task’he rest of the paper is organized as follows. In Section Il
feasible. When inspecting a prefix in isolation, it is difficulwe highlight the background and related work for this resiear
to know what behaviors are abnormal. For example, whé&ke then describe our design of Buddyguard in Section Il and
the path to a prefix from a vantage point suddenly disappeitss resiliency to attacker countermeasures in Section V. |
or changes, it can be either a normal routing change, or 8action V we detail how we evaluate Buddyguard through
abnormal misconfiguration, or that an attacker has justesisimonitoring prefix hijacks and route leaks. In Section VI
routers to adopt a new path under the control of the attackere discuss our results and future work, and present our
In contrast, a buddy system provides a more reliable basiscanclusions in Section VII.
determine if anything is abnormal with a prefix. By ensuring
that there are enough buddies for the prefix, and under normal
conditions a prefix is similar to most of its buddies (in terms A number of works have dealt with understanding BGP
of the behaviors being monitored) but no so if under abnorm@ynamics [17], [18], [19], [20], [21], as well as detectinGB
situations, we can use these buddies to determine whetheagomalies [22], [23], [24] and monitoring BGP in general][16
not the prefix is experiencing anomalies. [25], [26], [27]. In this section, we focus on the limitati®n
This methodology has the following advantages: of current prefix monitoring systems, one of the primary

(i) It is flexible and extensibleNo matter what anomalous Motivations of our work. Although various approaches have
behavior of a prefix we want to monitor and detect, wBeen proposed to monitor routing behaviors of IP prefixes, th
can always first determine the type of behavior and hodgst we have are some solutions for detecting prefix hijackin
to measure it, and then select buddies in terms of tH#td even these solutions are very limited:
behavior for monitoring. (i) They each can only detect certain prefix hijacking cases;

(i) It is resilient. We depart from existent approaches by (ii) Intelligent attackers can circumvent them; and
emphasizing the need to be resilient against attackéii) These solutions are specific to prefix hijacking and-can
countermeasures. A key feature of Buddyguard is that not be easily extended to address other prefix anomalies.
a prefix is allowed to havéundredsor eventhousands  gych limitations are in large part due to the underestimatio
of buddies. As our results indicate, our system is capalie jnadequate modeling of what prefix hijackers can do. Early
of finding buddies from multiple different ASes, makingso|utions monitored prefix origin changes to detect prefix
it difficult to locate and simultaneously attack e”OUQHijacking [22], [28], assuming that an attacker must claim
buddy prefixes to circumvent Buddyguard. Even if thiself as the new origin of a victim prefix in order to hijack
attacker is successful in doing so, an attempt to attagk gyt an attacker can hijack a prefix by merely stating it
that many prefixes at once would itself appear suspicioys. close to the real origin of the victim prefix, invalidating

(iii) Itis scalable and easy to deplouddyguard requires this assumption. Later solutions recognized this fact,they
only passive measurement using existing BGP collectigBquired the owner of a prefix to verify the paths to its prefix,
systems and its input are publicly available routing dat@utting a heavy burden on human users [29], [12]. Recent
Our results show that our system maintains very littlgo|utions set up monitors, probe them from a monitored prefix
overhead, so little that it may scale to monitor hundredgg watch and analyze responses to determine if the prefix is
or even thousands of prefixes simultaneously. hijacked [15]. However, in the case of prefix interceptidre t
We demonstrate the efficacy of Buddyguard by testinmgefix will simply receive responses as usual.
our system on well-known prefix hijacks and route leaks. An alternative monitoring solutiorreference point compar-
For these anomalies, the behavior in question is the routiisgpn, addresses several of these deficiencies. This approach
paths to a given monitored prefix. With monitors being BGR evidenced in [5] and [13], as well as the current leading
speakers that peer with RouteViews [16] collectors, wentraapproach described in [14]. To detect whether a prefix is
Buddyguard by observing routes from these monitors to thgacked, it uses monitors distributed throughout the rimé
prefix and select buddies that best match these routes. @urcheck whether each monitor's route to the prefix deviates
evaluations show that monitoring prefixes with these bugdisignificantly from its route to a topologically nearbgference
provides fast, accurate, and reliable detection with lolsefa point This system has many advantages; it is both lightweight

II. RELATED WORK



and capable of detecting prefix interception, since the gsefi
route will still deviate from the reference point’s route.
However, even these solutions fail to address a fundamental
issue: the ability of prefix hijackers to circumvent defenise
An attacker can discover which IP prefix(es) likely contain
the IP address of the reference point, and hijack these pgefix
and the monitored prefix altogether, causing the hijack to go
undetected. In particular, if the reference point sharestme
origin AS as the monitored prefix, hijacking both in one fell
swoop is trivial. Indeed, following the reference pointestion
process in [14], we found it very common for a monitor to use
such a reference point. More specifically, using tracerdata
from the iPlane project [30] for about 91,019 prefix atoms,

v;/]here hevEryatom IS a grOL;p of plrlelﬂxes_ that grle reac?ablg ecific types of anomalies affecting that prefix. Buddydusr
through the same routes from all locations [31], we foun ble to monitor multiple prefixes in parallel (as we demaatstr

0 S !
54.6% of atoms share the same origin with their referenﬁg our evaluations, up to hundreds or thousands of prefixes

point, while 31.8% of atoms do so froml momto'rs and at once). We define the remaining components, monitors and
45.5% of atoms do so from 90% or more of the monitors. Moﬁhddies as follows

current solutions are also susceptible to sub-prefix hijegk 1) Monitors: A monitor is defined as a networked entity

\(’)\;hZrepraeﬁ?(”?gkizjaiivirrt:; e?thn slE\tl)zgicrt)aéﬂl]z\:ﬁﬂi)fsegﬁ(taertshat can obsgrve a prefix and its buddigs in conjunctipn. tUnde
maintain a correct route to the prefix, due to the preferenn(ca)rrnal gondltlons, the observed behavpr of the monitored p
for more specific routes, they will adopt this invalid route tﬁx a’?‘?' its buddies should match. Mon_ltors Qetect _an(_)malous
the subspace ' conditions When the. behavior of a prefix dgwates ggmfi_gant
O - . from that of its buddies. We leave the details of the monitgri
Lastly, if we inspect how these hijack detection approachg@orithm for a later section
may translate to monitoring other prefix routing anomalies, What behaviors should .monitors observe and compare?

he situation is still n imistic. On one han he. )
the situation is still not optimistic. On one hand, due to t gmce every prefix anomaly we are concerned with is within

scale and complexity of Internet routing, the cause of rmuti X . .
anomalies is often very complicated and their symptoms az%e domain of BGP, such behaviors should be the properties of

rarely predictable. Most of the time, network administrato ZTyrzaphic',apgi?r?0gnrgI?;E?et%:krsnciﬂgorggtgéegéF|>notheena(1:t?ose
have to handle them on ad hog case by case basist-an i t%e annojuncer%ent of a new atr,1 to that prefix, and E)he main
anomaly is even noticed or reported. Rather than focusing on P P !

specific cases of routing anomalies such as prefix hijackirqroperty we inspect is the difference between this new path

. . ' _ %d the paths to the prefix’s buddies. Different anomalids wi
or interception, a prefix monitoring system must be exten-

sible enough to cover any prefix anomaly, both known aﬁ\éi;(;?:ﬁgtr ?ﬁ:?;’:)onr;égéd trhe?ir)((afore require a diffesen
unknown. Given that the above approaches fail to do so, there P '

still exists a significant gap between the state of the artaanc%_ Since m_(:n'tOTS must ?e abl_vta_ tol rr|1deas|:1re theie Bfanbopera-
truly effective prefix monitoring solution. lons, monitor placement Is critical. ldeally, monitors e

able to hear conversations between BGP routers as close to
I1l. DESIGN OFBUDDYGUARD real-time as possible. One solution involves peering noogit
&vith existing BGP data collection systems such as Route¥iew

In this section, we present our design of Buddyguar hd RIPE 251 coll BGPMon 1321 which coll |
a control-plane prefix monitoring system that addresses i [25] collectors or on [32], which co ?Ct rea-
e BGP updates from routers around the globe. This deploy-

shortcomings of existing systems described in the previoﬂg1 t sch has the advant ¢ ina | head
section. We introduce the general architecture, cover ouent scheme has the advantage of cosling low overnead, as

strategy for finding and selecting buddies, define how BuH-doeS not require continuous data-plane queries likerothe

dyguard performs monitoring, and explain how the system §§>Iut|ons. We return to the efficacy of this monitor placetnen

maintained. While the introductory use of a buddy systeﬁ‘rategy in.ou.r discussion section. , )
allows Buddyguard to handle any prefix anomaly, we use2) Buddies: A buddy can be defined as IP prefix that
prefix hijacking in particular as means of illustrating hdwet behaves similarly to the monitored prefix under normal condi

e prefix (p) /buddy () AS — ASlink
Fig. 1. Buddyguard architecture.

system works. tions, and d_iver_ges when anomak_)us conditions occur. Repal
that for prefix hijacking, the behaviors we are concernedh wit
A. System Overview are path updates associated with the prefix and its buddies.

At its core, the Buddyguard architecture includes the mof© detect whether a prefix is hijacked, we compare paths to a
itored prefix, a set ofmonitors, and thebuddies of every bPuddyb and a monitored prefiy such that:
monitored prefix (Figure 1). The monitored prefix is any (i) Under normal circumstances, the path from a monitor to
IP prefix whose owner requests the Buddyguard service for b is similar to the path from that monitor ta



arent AS
AZ Sibling AS

Origi

f e o T
(a) n=0 (b) n=1 (c) n=2

e prefix (p) / buddy candidate (T)AS = AS path from@top — link to an adjacent AS

Fig. 2. Finding buddies using path similarity principle. n determines the number of shared AS hops between the two patigs dmmpared.

(ii) If a legitimate routing change occurs so that the manitand selecting buddies for a monitored prefix, a buddy-based
has a new path tp, the monitor will also have a similar monitoring algorithm for detecting prefix anomalies, and a
new path tob; and maintenance algorithm to ensure that a prefix always has good

(i) If p is hijacked, the monitor will switch to a “bad” new buddies. Without losing generality, we describe each with
path top, but will still use the old path té, causing the respect to prefix hijacking in the following sections.
two paths to be dissimilar.

Clearly, if b perfectly meets these standards tipesill only
need that single buddy. However, in many situations buddiesThe success of Buddyguard lies in having the best possible
can only partially meet the above conditions. Sometimessat of buddies for a given monitored prefix. To meet this
buddy may experience the same anomaly as the monitogjective, we define algorithms for finding buddy candidates
prefix; for example, a hijacker could co-hijack a prefix arsl itthat match the behavior of the monitored prefix and selecting
buddy, leaving the anomaly undetected. Therefore, hauvireg dhe best matching candidates to be actual buddies. We &ll th
buddy for a prefix is typically not sufficient. bootstrapping phaséraining .

To solve this, we must obtain many buddies for a monitored 1) Finding Good Buddy Candidate®Vhere should Buddy-
prefix, where enough buddies are similar to the prefix whengtiard look for buddy candidates for a given monitored prefix?
is behaving normally, and at most a small number of buddié&teally, we want buddies to be distributed across multiple
may experience the same anomaly together with the monito&fles, making it difficult for a hijacker to co-hijack enough
prefix. Therefore, if a prefix deviates from enough of itbuddies to evade detection. Yet buddies must be well-mdtche
buddies, we can determine that it is behaving abnormally. order for subsequent monitoring to be accurate. Theeefor
When detecting if a prefix is hijacked, for example, we modifgur task becomes finding well-matching buddy candidates
the conditions 4)—(ii7) above to: from a diverse set of ASes.

(i) Each monitorm must have a seB,, = {b} of buddies = We can achieve this by using a simple path similarity
such thatm will have similar paths to all of them, principle. Consider the AS path updatg(¢;) from a monitor
including p; to a prefixp, which consists of an ordered list of autonomous

(i) If a legitimate routing change occurs so that has a systems (ASes) from the monitor goWe can define an update
new path top, enoughof its buddies will also switch to w; as similar tow, (u; ~ u,) if both share the firstu,| — n

B. Training: Finding and Selecting Good Buddies

a similar new path fromn; and AS hop. For definition purposes, we ukg to designate the
(iii) If the p is hijacked,m will switch to a “bad” new path length or size of: both here and in the remainder of this work.

to the p, but enoughof p's buddies will not switch. Figure 2 shows how < n < 2 may affect the distribution
We leave the definition oénoughfor a later section. of buddy candidates, or which ASes may be eligible to offer

Due to the decentralized nature of BGP, it is likely (bubuddies. Clearly, whem is O, buddies can only be from the
not necessary) that each monitor will have a distinct set shme AS (the origin AS) as the monitored prefix (Figure 2(a)).
buddies for the monitored prefix. The specific location of But whenn is 1, buddies can be also from the so-called parent
monitor will determine which BGP updates it is able to heagnd sibling ASes (Figure 2(b)), and so on.
indeed, certain updates may never reach a given monitok. at al Using this notion of path similarity, we can find well-
The advantage of a per-monitor buddy system over a commmiatching buddy candidates for a given prefithrough obser-
buddy system (where a prefix has the same buddies for alttion. Buddyguard observesover a training period, during
monitors) is that each monitor need only be concerned witthich each monitor listens for AS path updates regarding
the BGP updates to which it is privy. For a given monitorm and an AS path update,(t;) to

To build this architecture, we must employ three majgr withessed at time;, m checks for similar path updates
classes of algorithms: training algorithms for discoverinu.(t; = A) to any candidate: that occur at roughly;. We



) thana/|B,,| of the buddies eventually switch over to the new
: path, or (2)p later switches to a good path.

@ @ Defining this per-monitor warning thresholdwould seem
@ e to be a difficult task. How can Buddyguard know how many
buddies will typically match the monitored prefix? The answe
9 9 R lies in using data from training, and here again the skewerin
t L, Lot ta o mechanism becomes exceedingly useful. Consider a set of

Fo 3 Budd ection th Ti”r:e he sk hanismA. <k skewerssS,, from training, which correspond to paths from
. 3ty selecton irough the skewer mechaisn A SKe4e! monitor 1 10 p. If buddies are normally distributed across
represents a buddy candidate these skewers, then we can defime= © — 30 wherep and
o are the mean and standard deviation of buddies per skewer,
specifyt; £ A to allow time for BGP convergence [33], andrespectively. In other words, based pB behavior witnessed
useA = 3 minutes as a conservative measure for this workoy m, the probability of havingy/|B,,| or less buddies match
After this period, each monitarn will have setC,, = {c} of p is roughly0.1%. More plainly, the set op's buddies for a
buddy candidates that matched paths frento p. given monitor should match well enough for the majority of
2) Buddy SelectionThe most frequently matching candi-p’s normal behavior. Of course, it may be the case that buddies
dates found during this training period are clearly the bestre not normally distributed across,. For these instances,
matching, but how can Buddyguard select buddies such theg define a conservative base case threshold: at least a third
(1) enough buddies always match the monitored prefix, and (#)the buddies must matgh or a warning is raised.
the buddies are distributed across multiple ASes, andftvere  However, it is not enough to say that the prefix was hijacked
resilient to co-hijacking? For this task, we emplogk&wering if only one monitor raises a warning. The entire Buddyguard
mechanism When monitorm hears a path update,(t;), system must correlate warning flags from all monitors to
Buddyguard creates skewer data structure for timeé;. By decide whether the prefix was hijacked. If more th&f¥
the end of training, we have a set of skewsys = {s;,} for of the monitors have a warning flag raised at any given time,
every u,(t;) thatm witnessed (Figure 3). We then “skewerthe system issues a hijacking alert. The alert state canmnly
candidates by sorting them by frequency of matching (bedtopped if the percent of monitors with warning flags raised
to worst), and place the best-matching candidaten each drops below threshold(. Given a set of well-matched and
skewers,;, wherew,(t;) ~ u.(t; £ A). widely distributed buddies, this system-wide alert thodgh
The skewering mechanism enables Buddyguard to selecw becomes the deciding factor in determining prefix anoma-
buddies according to the above criteria. We continue to ekewies. The precision of this threshold is critical—too highues
candidates until all of the skewers are full, or more forprall will result in false negatives, where Buddyguard fails teedé
an anomaly; and too low values will result in false positivas
false alarms. We discuss the proper calibration of thisstiwkel
for some lower bound capacity (we will wait to definew in our evaluation section.
until section V-B). This ensures that buddies can account fo Finally, the accuracy of a buddy-based monitoring scheme
the full range of normal behavior for the monitored prefixis dependent upon the ability to acquire the right set of egld
We can also ensure that buddies are widely distributed Byring our training period. A careful reader might ask, wiat
skewering candidates until they cover multiple ASes. On@ anomaly occurs during this training period? Clearly Wilk
these conditions are met, Buddyguard selects all skeweféduce the well-matching quality of the selected buddies. W
candidates as buddies. The training methodology describ®dst therefore ensure that our training period is “clean”—no
thus far can be summed up in Figure 4. anomalies can occur for the monitored prefix during this time
window. While this seems like a difficult task, we can exploit a
simple principle to make it manageable. If Buddyguard finds
Buddyguard provides accurate and fast detection of piedddies for the monitored prefix on the basis of anomalous
fix anomalies using the buddies selected from training. Thehavior during training, then subsequent monitoring with
detection procedure is straightforward—again, using prefikose buddies will trigger false alarms for clearly validipa
hijacking as an example. If a monitor hears a new path tpdates. When this occurs, we simply re-train the prefix until
a prefix p, it will check whether this is one of the “good” we obtain a clean training period. In this manner, we can
paths that is has already seen. If not, the monitor will wait f ensure that our system uses buddies that best matciothel
a short period, and then check if more thaf| B,,,| (for some behavior of a monitored prefix.
value of«) of p's buddies also switch to a similar new path. If .
so, the monitor can record that path as a good path for futdfe Buddy Maintenance
reference. If not, the monitor raises a warning flag, indncat ~ After a monitor selects a set of buddies for a prefix, it is
that the prefix may be hijacked. In this way, buddies helpot guaranteed every buddy will always stay a good buddy.
the system determine both normal behavior and anomalddsw can we maintain a good buddy system after the initial
events. Warning flags can be lowered in two ways: (1) moselection? Yet again, the information that Buddyguardextd

vsti S Sma |5ti‘ > w

C. Monitoring: Detecting Prefix Anomalies



Algorithm [ll.1: TRAININGALGORITHM(p, m)

local C,, candidates, B,, buddies, S,, skewers
for each u,(t;) seen by m
find candidates ¢ where
do < append c to C,,
create skewer s,
append s¢; to Sp,

to the victim, such an attack can easily go undetected. But
from the perspective of a Buddyguard monitor, the path to the
victim prefix still changes, and the path comparison with the
victim’s buddies will reveal the hijack and enable our syste
to detect the attack.

B. Sub-prefix Hijack

Buddyguard is particularly good at handling sub-prefix
hijacking, a case that thwarts most existing solutions. If a
monitor has never heard a sub-prefix of a monitored prefix,

this monitor will use exactly the same path to reach the sub-
prefix and the prefix all the time. Therefore, Buddyguard can
view the buddies of the monitored prefix as the buddies of
the sub-prefix, and use these buddies and the same detection
procedure to determine whether the sub-prefix is hijacked.

sort Cp, by frequency of matching
while |s;,| < w Vs, € Smy
and B,, is not diverse
place top matching c on every s;;, € Sp,
do where uc(t; £ A) ~ u,(t;)
append c to By,
return (B,,)

C. Targeted attacks

What would happen if an attacker was aware of Buddy-
Fig. 4. Training algorithm. p is the monitored prefix aneh is a monitor. guard, and specifically attempted to thwart our monitoring
scheme? For example, an attacker could try to co-hijackrall o
during training is invaluable for this task. Consider a givemost of a prefix’s buddies to eliminate the effectivenessatiip
monitor m with buddiesb € B,, who matchedS,, skewers comparison. However, each prefix we monitor has numerous
for the monitored prefixp during training. We can define thebuddies distributed across multiple ASes, and discovering
minimum qualitymin(B,,) to be the minimum number ofs enough buddies to co-hijack would be an enormous under-
path updates matched during training by any budldy B,,, taking. An attacker might try to guess enough surrounding
and|S,,| to be the number of skewers. During monitoring, waSes and hijack all prefixes within those ASes, but a hijack
can re-evaluaté,, after|S,,| path updates, and if arlyc B,,, on that scale would itself be blatantly suspicious. Furtiee,
matched less paths thanin(B,,), we dropb. Similarly, at if Buddyguard is monitoring numerous prefixes each with
any point during monitoring we can re-trginreplacing poorer their own buddies, then it is possible that some buddies of
quality buddies with better buddies found during re-tna@ni a target prefix are also being monitored. An attacker would
In this way, we can maintain and improve the quality/®f, have to hijack that prefix's buddies plus their own buddies, a
to ensure that Buddyguard can effectively monitor possibly their buddies’ buddies, resulting in a tediousirsive

Another concern that one might raise is the occurrence gfocess. In effect, our buddy-based monitoring scheme is
policy changes that cause the monitored prefix to legititpateresilient against attackers who know how Buddyguard works.
deviate from its buddies. For example, a prefix may becomeAn attacker could also try to exploit BGP routing policies
multihomed or enter a new peering agreement with anotherlimit the visibility of the hijack. For example, if a hijker
AS, while its buddies do not. However, even though thes@ew which ASes contained Buddyguard monitors, it might
changes may occur at arbitrary times, such changes do ngiert those ASes into illegitimate path announcementgeSi
pose a serious problem for Buddyguard. Given that our syst@GP routers discard path updates that contain their AS to
would be run as a service, we can simply require prefix ownexgoid routing cycles, these attacks would not be noticed by
to report such events when they occur. At that time, we cauir monitors. But to do so, a hijacker would have to insert the
re-train the prefix according to its newly defined behaviad a ASes of many or all of our monitors into an illegitimate path,
continue monitoring with a new set of buddies. which would greatly increase its length. Since BGP routers
also prefer shorter routes, it is statistically improbathat
this path would ever be adopted.

As we alluded to previously, one of the primary advan-
tages of the buddy system is that it allows Buddyguard to
withstand intelligent attacks. With respect to prefix hijag, We evaluate Buddyguard in terms of the effectiveness of
there are several measures that a hijacker could employtraining (how well it can find and select good buddies), and
avoid detection by monitoring schemes. We now discuss sothe accuracy and performance of monitoring. For the later w
countermeasures that remain unaddressed in current systdook specifically for cases of false negatives (where théesys
and explain how our system handles them. fails to detect an event) and false positives (false alar@s)
results demonstrate that using a system-wide alert thigsho
X = 20%—recall that this means i20% or more monitors

When a prefix is intercepted, the hijacked traffic is forhave a warning raised, issue an alert—gives a proper balance
warded on to the victim prefix. Since traffic is still routedor minimizing both false positives and false negativesaifig

IV. RESILIENCY OF BUDDYGUARD

V. EVALUATION

A. Prefix Interception



without losing generality, we use prefix hijacking and routannounced path that is not part of a routing path oscillation
leaks as a means of demonstrating our system. (for an explanation of this phenomenon, see [21]). We then
used the skewering mechanism to select the best buddies from
A. Setup these candidates, and after verifying that the trainingoper

To test Buddyguard, we developed an initial testbed @fas clean, we monitored the prefix with the selected buddies.
monitors, prefixes, and all routing path updates concernifgorder to prove the efficacy of using buddies from outside of
those prefixes during various time periods of interest. WRe prefix's origin ASes, we show the results of monitoring a

built this testbed by processing real world BGP updates apgkfix with origin, parent, and sibling buddies separat&he

RIB table dumps from the RouteViews collection [16], whicHollowing sections summarize our test results.

allowed us to generate a set of over 600,000 prefixes and their

associated BGP routing paths. For monitors, we used B@P Evaluating Training

speakers peered with RouteViews collectors, as theseesntit . oo : S
X : . An important criteria for the effectiveness of training is

would have the same view of BGP routing data as seen in . :

. : whether Buddyguard can find numerous well-matched buddies
our test data (the coverage of this monitor placement glyate . . . -
o N . . . across multiple ASes. Figure 5 depicts our training results
is discussed in section VI). This generated set of prefixes . . .

) acrpss all the prefixes that we tested. With respect to baddie
monitors, and BGP updates enables us to evaluate Buddyguarpo . . ) .
ected per monitor for a given prefix, we see that in most

' o se
on today's Internet topology and routing infrastructure. cases Buddyguard is able to find hundreds or thousands of

B. Defining Thresholds eligible buddies (Figure 5(a)). However, we note that a very

Our next step was to define threshold values for our trainifgh@!! portion of our samples (abotfo) have insufficient
algorithms. To recap, these key thresholds are: buddies. Fortunately, these edge cases can be attributed to
. o conservative definition ofi = 1 for path similarity. Most of

(i) Path similarity n. The number of AS hops to compare . .
Lo them come from very small ASes (tier 3+), where there is a
(Jup(t:)| — n) when checking ifu, (t;) ~ u.(t; £ A). . : s - .
. 4 deficiency of potential origin, parent, and sibling cantkda
(i) Skewer lower bound capacity. The number of buddy : .
. : ; Increasingn adaptively would enable Buddyguard to search
candidates required to fill a skewer. : X
i . for candidates beyond those small ASes, allowing our system
(i) Resiliency factorsThe number of buddies needed for .. . . . -
. . . to find sufficient buddies for all cases. We discuss in sedtion
a monitored prefix and the minimum number of ASesS . ) L
. why we did not use this strategy, and for now are satisfied that
covered by these buddies.

, n = 1 gives us enough buddies in the majority of cases.
To demonstrate the efficacy of our system, we take a0ur results are very similar when we look at the mean

conservative approach toward defining the training thrielsho |\ ber of buddy or candidate ASes per monitor, as shown

For path similarity, we use = 1 such that Buddyguard may, rigure 5(b). Though we restrict candidate searching to
only find buddy candidates from the so-called origin, parenfiqin parent, and sibling ASes, this is still a large numbe
a.nd. sibling ASes. We use the tgrmn;lgm, parent, and _of eligible ASes. In many cases Buddyguard had hundreds or
sibling buddies to reference buddies from these respectivg, sands of ASes to choose from. and again, we can fix the
ASes. Restricting our seargh algorithm in this way forc%w exceptions by relaxing for path similarity. Therefore,
Buddyguard to rely on a minimal search space when |00kiRg, j,itia| evaluations show that even under conservative
for well-matched candidates (= 0 excludes all but the origin oqyrictions, Buddyguard is able to find numerous and widely
AS, and therefore is too strict for our purposes). For the iihuted buddies for monitoring prefixes

remaining two thresholds, we set= 30 and require at least It is also worth noting the general quality of the buddies

90 buddies for a given monitor. By intuition, this stipulate | Fi h he CDE of l ith
that at least a third of the buddies should match the behavfgereaed' lgure 5(c) shows the CDF of buddy quality wit

. : : =~ 'respect to the percentage of prefix paths matched during
of the monitored prefix during training, and that each mcmltcl?raining. The results are not exceptional—less than half of
has a reasonably large set of buddies. Lastly,

we require,al samples match their respective prefix with any degree of

least 30 O.f the buddies for a given .momtor tp be frpm.s'b“n%gularity. While this may seem problematic, we demonstrate
ASgs, which ensures Fhat the budd|g_s are widely dlst”b‘ﬂe‘jin the following sections that Buddyguard is able to acalyat
again, a key contribution T[O the resiliency (.Jf our system. W(?etect anomalies even when some buddies are mediocre.
evaluate these conservative benchmarks in the next section
and_discuss in section VI how they might be better calibra_lteg_ Accuracy

Given these values, we proceeded with our tests accordingly _ o
First we selected prefixes randomly from diverse locatighs o 1) Detecting Prefix HijackingWe evaluated Buddyguard's
the network topology, including tier 1, tier 2, and tier 3+ ¢S ablll_ty to detect prefix huac_lgng by testing our prototypa 0
For testing a specific event, we used the prefix(es) involvédwide manner of known huacks.“For .breV|ty, we only show
in that event. Each prefix we monitored was trained overtde results for three well-known hijacking events:
period of one week, during which we tried to find origin, « Cogent’s hijack of one of Google’s prefixes [2].
parent, and sibling buddy candidates for each legitimate pa « Con Edison’s hijack of 30+ prefixes, including some
update to the prefix. We define a legitimate update as an belonging to their customers [1].
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Fig. 6. Percentage of monitors raising warning signals for Google, Mdha Stewart Living, and YouTube hijacking events.

o Pakistan Telecom’s hijack of a sub-prefix of YouTube'sur system was able to detect the hijack witloine second
prefix [3]. of seeing the first invalid path announcement. Taken togethe

Our results from these three hijacking events (Figure gae results ShOW oursys_tem__s agcurate anc_l resilient mmgo
show that Buddyguard is well-suited to detecting prefix hfiCross a variety of prefix hijacking scenarios.
jacks. For all tested events, a system-wide alert threshold?) Detecting Route LeaksiVe also tested Buddyguard on
X = 20% monitors with warnings raised (represented in owanother well-known recent event: the April 4, 2010 China
figures by the dashed horizontal line) suffices for detectinigglecom route leaks. We randomly selected 100 prefixes from
these hijacks. While in many case$ could be a smaller those affected by the route leaks, and monitored them from
percentage, we point out that this conservative measurkswot5:30 UTC to 16:30 UTC (the route leaks began at roughly
for all tested events. We will also show that this observeth:54 UTC and lasted until about 16:10 UTC). Figure 7
threshold is effective for route leakmd maintains low false illustrates the percentage of monitor warnings raisedssctioe
positives when monitoring normal prefix behavior. aggregated sample. Once again, an alert thresRold 20%

When we inspect results from individual events, the efficadjonitors proves to be effective, detecting’% of the (100)
of our monitoring system is clearly demonstrated. Looking &ute leaks within seconds of the event onset. False negativ
the Cogent event (Figure 6(a)), we see that the percentaiere largely due to not having enough buddies for monitoring
of monitors with raised warnings dramatically increases f@nd as stated before such cases can be fixed by relaxing our
the duration of the event, and each monitor detects thekhijéiaining thresholds. As such, we see that a well-calibrated
within 5 seconds of the event. The Con Edison event, whi€hiiddyguard is adept at handling a variety of prefix anomalies
involved more than 30 hijacked prefixes, was also easil§cluding prefix hijacking and route leaks.
detected. One particularly interesting case here is tlehipf |t is also worth mentioning that for this event, many of
Martha Stewart Living's prefix (Figure 6(b)), the sole prefixhe route leaks co-hijacked multiple origin buddies foresav
within its origin AS. Even without the aid of origin buddies,of the prefixes in our sample set. These co-hijacked origin
Buddyguard was able to raise an alert for this hijack. Thisuddies do not trigger warnings, as their (hijacked) routes
demonstrates that our system can successfully detect prefixtch that of the monitored prefix. Here we see that such
hijacks even when using buddies outside of the origin AS. events cannot be detected by origin buddies or referencgspoi

Our monitoring scheme is also proven to be effective amone; a topologically diverse set of buddies outside tligiror
sub-prefix hijacks. Using the YouTube hijacking as a ca®€S was needed to detect the event. By maintaining enough
study (Figure 6(c)), we see that when the attacking A&lid points of comparison to the monitored prefix, Buddy-
announced an invalid path to a sub-prefix of YouTube’s prefiguard remains resilient to such large scale route leakss Thi
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route leaks. Time 0O is 4/8/10 at 15:30:00 UTC.

Route leaks began at approx. 15:54:00 UTC.

underscores the importance of topologically diverse budd@ Performance: Latency and Overhead

selection, a critical component of our system. Finally, we evaluate Buddyguard with respect to its overall
o ) ) L performance—namely, the latency and overhead involved.
3) Monitoring Normal Prefix Behavior:While it is im-  gjnce Byddyguard analyzes BGP updates in close to real time,
portant that Buddyguard can quickly and accurately detegliecting anomalies can be achieved with little latencyhtn
prefix anomalies, we also must ensure that our system raiggs i and misconfiguration cases described above, detecti
minimal false alerts for normally behaving prefixes. To tegecyrs within minutes (and often seconds) of the event. This
false positives, we randomly selected 10 prefixes each fiq@ g crycial point; prefix anomalies must be detected and
tier 1, tier 2, and tier 3 ASes. Each prefix was trained ovefjqressed immediately. Our system provides fast detection

the week of March 29-April 5, 2010, after which we verifiedyt anomalous events, giving prefix owners the chance to
that training was clean and training thresholds were met. FQinimize the damage done.

cases where Buddyguard was able to find enough buddies, wey system design also maintains low storage cost, an
then monitored prefixes during a clean two-day period froff,nortant measure when considering how Buddyguard might
April 5-7, 2010. We can reasonably ensure that this t'mmﬂe”scale to monitor numerous IP prefixes. During the monitoring
was clean from an absence of known hijacking events and pal s the storage cost for every monitored prefix is mainl
mismatches from origin buddies that matched perfectlyrdyri (1) the current AS path from the monitor to the prefix and

training. Our reasoning for the latter is that .a.ttackers do n(z) a set of buddy prefixes. One bit of auxiliary data that the
yet know about Buddyguard, thus the probability that an Ve nitor may also store for the monitored prefix is (3) its det o

occurred which co-hijacked all origin buddies is minimal. good AS paths to that prefix. Assuming the average length of

Our metric for false positives is the number of warningdn AS path is 4, a prefix has 1,000 buddies on average, and a
raised by a given monitor divided by the number of decisidpf€fix has on average 10 AS paths known to be legitimate, the

windows, or distinct times when that monitor decided wheth&t@l storage cost per monitored prefix will be approximatel
to raise a warning. Figure 8 shows the distribution of fals®?2 KB. Therefore, monitoring 100 prefixes would only cost
positives across all samples. We see immediately that wRROUt 400 KB, and 1,000 prefixes only about 4 MB. Thus, itis

sufficient buddies, our system can monitor IP prefixes wilffry feasible for Buddyguard to monitor even every prefix on
very low false warnings. In fact, nearl§0% of our monitors the Internet. When coupled with pre-existing BGP monitoring
raise no warnings at all. systems like RouteViews, Buddyguard is lightweight, solela

and easily deployable for today’s Internet.

Furthermore, a warning raised by a single monitor does not
translate directly to a false alert. Figure 9 shows the pdrce
of monitors with warnings raised over the two day monitoring Using our conservative approach toward defining the path
period across all samples. If we use the previously obsengdilarity thresholdn = 1, we were not able to find enough
system-wide alert threshol& = 20%, only about6% of buddies for a small number of prefixes. However, these edge
the decision windows actually peak above this thresholdases can be addressed by definingdaptively: ifn = 1
Moreover, all of these instances occurfeda single prefix— is not sufficient, continue incrementing and searching for
in other words, only one prefix would have raised falseandidates. Proceeding in this manner, we can easily find
alerts. While we discuss later how this observed threshadtiough buddy candidates for all prefixes. Howeverhas
might be better calibrated, for now it is enough to say that direct effect on how well buddy candidates match the
X = 20% works to minimize both false negatives and falsenonitored prefix. For a given prefix and two buddies
positives. Therefore, our monitoring tests on prefix hijagk andb; that are 0 and 5 AS hops away frgnrespectively, the
route leaks, and normal prefix behavior show that our systgrath comparison betweem and b, is much more strict; the
provides accurate and resilient monitoring of IP prefixes. paths top andby will need to share 5 more AS hops than the

V1. DIScUSSION ANDFUTURE WORK



paths top and bs. Furthermore, if an attacker is close o  [6]
what is the chance that the path#pwill even change ifp is 7
hijacked? Investigating the intricacies of searching foddy

candidates adaptively is beyond the scope of this work and
is a topic for future study. (8]

In addition, many of the other metrics that we use foryg
this work could also be further optimized. The thresholds
used for training are by no means absolute; we use thétfl
to demonstrate Buddyguard’s effectiveness under constiai
conditions. Moreover, while the observed system-widetalgt1]
threshold X = 20% works to minimize false negatives and
false positives during monitoring, it is certainly not thely [12]
or best threshold for this purpose. A better design might
involve using a “gradient” alert scale, where we determir}%]
system-wide alert status using ranges for inert, suspsgiou
and anomalous monitor warning levels. An entire study
could be dedicated to optimizing this threshold, makinghsud!4!
calibrations beyond the scope of this work.

Another important question rising out of this work is the15]
extent of coverage provided by RouteViews collectors. A pre
vious work by Zhang et al. [34] examined this issue, thoughg)
not with respect to a buddy-based monitoring system. Avollo[17]
up study to our work would be to compare coverage of oth
monitoring systems such as RIPE [25] and BGPMon [32],
investigating other monitor placement options such asipger[19]
with BGP speakers directly.

r
ig
L]

[20]
VII. CONCLUSIONS

The current state of prefix-level monitoring leaves mucﬂgll
to be desired; today’s systems are limited in scope and
underestimate the capacity of intelligent attackers. Wthike
eventual deployment of S-BGP could address many of thdéd
problems, widespread adoption is years away and we will stil
need tools for understanding and diagnosing prefix routinzg
behavior and routing anomalies. (23]

In this work we introduce Buddyguard, a lightweight prefix
monitoring system that provides fast and accurate detd24]
tion of various prefix anomalies and is resilient to targeted
countermeasures. Using our buddy-based monitoring scheips
Buddyguard is able to detect all manner of prefix hijacks ari¢fl
route leaks, and remains highly extensible to new anomaliéé
as they emerge. We rigorously evaluated Buddyguard against
known hijacking events and route leaks, and demonstrate tA¥
accuracy and efficacy of our buddy system design. This w
represents a major step forward in the accurate and resilig]
monitoring of IP prefixes and prefix-level anomalies.
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