A Resource Management Approach to Web
Browser Security

Jun Li
University of Oregon
Carlos III University of Madrid
Institute IMDEA Networks
Email: lijun@cs.uoregon.edu

Abstract—While today’s web browsers support multiple prin-
cipals (i.e., web frames with embedded JavaScript code, or plug-
ins) from many different origins at the same time, they do not
have a clear resource management model, and the loose control
on resource access has led to various types of web-based attacks.
In this paper, we present a resource management framework
for web browsers that allows both users of a web browser and
the owner of a web page to specify their resource access control
policies—which are then enforced by the framework’s resource
reference monitor. With our resource management framework,
a web browser can become more secure, and we show that
popular web attacks such as frame hijacking, cross-site request
forgery, and DNS rebinding attacks, can all be addressed easily
by deploying correct security policies. We also discuss how our
resource management approach may be deployed and what a
new paradigm it can bring to counter web-based attacks.

Index Terms—web browser security; web resource access
control; web reference monitor; web security

I. INTRODUCTION

Traditionally, web documents are entirely static content, and
a web browser is a client for downloading and rendering such
content from remote web sites. Two features later developed,
however, complicated matters. One is that a web browser can
concurrently load documents from different origins, each into
a different frame. The other feature is that a web document can
include program code written in JavaScript to be interpreted by
the browser, effectively converting the web document into an
executable. As a combined result of these two features, inside
a web browser there can be multiple principals, each principal
corresponding to either a frame loaded with an executable web
document or a plug-in.

This new paradigm makes a web browser a common en-
vironment shared by principals from all different origins. A
principal not only has access to resources of the browser
and its own, but also the resources of other principals. As a
result, a malicious principal (e.g., www.attacker.com) could
launch various attacks toward other principals or the browser
itself. For example, a malicious frame can cause another
frame to navigate a phishing site instead of a legitimate site.
A malicious gadget in a mashup site (e.g., iGoogle) can
replace another benign gadget with a spoofed one. Or, in a
cross-site request forgery (CSRF) attack, a malicious web site
www.malicious.com can invoke the browser to send a request

Email:

Dongting Yu, Luke Maurer
University of Oregon
dongtingyu@gmail.com, maurerl@cs.uoregon.edu

to another web site www.honest.com in the name of the user,
effectively impersonating the user by “hijacking” the browser.

Clearly, it is critical that all principals be protected from
one another. The key to achieving the protection is two-sided:
(1) Different principals must be isolated from each other, each
with its own resources; and (2) the web browser must support
the classical reference monitor concept, and access policies
must be defined and enforced so that access to resources can
be controlled systematically.

For isolating principals, one of the most important security
policies in place today is the Same-Origin Policy (SOP): Two
web documents or scripts can access each other if and only if
they are from the same origin, where an origin is defined by
a tuple <protocol, host, port>.The Google Chrome
browser [1], and research browsers such as Gazelle [2],
Tahoma [3], and the OP browser [4], have further proposed
new browser architectures to support multiple principals and
allow each principal to have its own protection domain.

Related to the “reference monitor” concept, what have been
studied or deployed are mostly security policies that specify
how principals may interact with each other under certain cir-
cumstances. For example, in determining which other frames a
frame can navigate, one such policy is the descendant policy:
A frame can navigate only its descendants [5], i.e., frames
contained in it at any depth. Or, in determining if a web page
from one server can include contents from another server,
a mutual-approval policy can be adopted that requires both
web servers to endorse each other for inclusion and being
included [6]. These are worthwhile policies, but they are ad
hoc solutions to particular problems.

In contrast, a modern operating system is able to separate
processes cleanly and ensure every process executes within
its own logical space. A process can only access a system
resource if the resource is explicitly made available to the
process. This allows processes to be protected from each other.

A principal in a web browser can be treated similarly to a
process except that a process is loaded from hard disk by an
operating system while a principal is loaded by a web browser
from a remote server. Just as an operating system is a resource
allocator for processes, a web browser should also be viewed
as a resource allocator for its principals.

Few studies have systematically looked at how a browser

should define, allocate, and manage resources for principals,
and how a resource management approach may improve the
security of a browser. In this paper, we propose a resource
management approach for a browser to protect its principals
from each other while supporting inter-principal interaction
and communication. Our contributions are mainly to:
« Identify resources typically associated with a principal;
¢ Define a resource management framework in browsers;
o Outline a language for describing resource policies;
« Illustrate how proper policies can secure a principal from
various vulnerabilities; and
e Promote a new approach to addressing web-based attacks
by installing correct security policies, as opposed to
patching web browsers and web sites.

Our discussion does not target a specific web browser; it can
apply either to new browsers or to upgrades of existing ones.
The rest of the paper is organized as follows: We first
describe our resource management approach to web browser
security in Section II. We sketch the semantics of the language
specifying access control policies in Section III. We then ex-
emplify how the proposed approach can address several well-
known web security problems in Section IV. In Section V we
discuss important issues related to our resource management
approach, and we conclude our paper in Section VI.

II. DESIGN

We propose in this section our resource management ap-
proach to protecting principals from each other and improving
web browser security. We propose a resource management
framework for a web browser. In this framework (Fig. 1),
the resource allocation process must be coupled with security
policy enforcement: whenever a principal is obtaining access
to a resource, a resource reference monitor will verify the access
against both mandatory and discretionary resource access
control policies. The policies are specified using a language
whose semantics we outline in Section III.

A. Resource Allocation Model in Web Browser

A principal in the web browser can be either a frame or
plugin content: both can perform actions and interact with
resources. A frame can include JavaScript, display rendered
HTML code, or include other frames as well as plugin content.
Plugin content runs in a user-installed browser plugin with the
privileges of the plugin.

Every principal in a web browser has its own logical space,
including its resources. Resource allocation happens when a
principal is created and instantiated:

e When the browser first loads a page, it loads the page into
a top-level frame, displaying it and processing any JavaScript
code it contains. This frame is a principal in the browser,
which will allocate certain resources to this principal.

e The top-level frame can further specify child frames or
plugin components using HTML and JavaScript code. When
invoked, each of these child frames or plugin components is
also a principal, and a child frame can have its own child
frames or plugin components recursively. In doing so, the

child principal can inherit certain resources from the parent
principal (e.g., a subset of the display area the parent uses)
and obtain new resources from the browser.

Fig. 2 shows two principals and their creation and resource

allocation in a web browser.

Web Server i Web Server j

TN

Child Principal

L..>@
Resources

Parent Principal

Other Principals

Web Browser

Fig. 2. Resource allocation example in a web browser. The web browser
loads a web page from a web server 4, creating a (parent) principal together
with its resources. This principal then requests another web page from a web
server j, creating a child principal together with its resources.

B. Global and Local Resources

Among the resources that a principal may access, some are
global in that they are not bound to a specific principal; some
are local as they are tied to specific principals. Below we list
typical global and local resources. Our resource management
framework can easily add new types of resources when needed.

Typical global resources include:

o File system: The file system of the computer that the web
browser is running on.

o Display: The display associated with the browser window.

o Inbound network channel: The network channel for re-
ceiving inbound data or commands.

o Outbound network channel: The network channel for
sending outbound data or commands.

o JavaScript engine: The engine that is responsible for
interpreting and running JavaScript code. If a principal
does not have access to the JavaScript engine, all its
JavaScript code will be ignored.

e Plugins: Similar to the JavaScript engine, a plugin can
interpret plugin content from a web page. Examples of
plugins in current web browsers include the Adobe Flash
add-on, the Java virtual machine, and QuickTime.

Typical local resources include:

e Display area: A specific area from the browser display
that is allocated to a principal to use.

o Inbound network channel from a specific site(s): A prin-
cipal’s network channel for receiving inbound data or
commands from a specific site(s).

o Network outgoing channel to a specific site(s): A prin-
cipal’s network channel for sending outbound data or
commands to a specific site(s).

o Cookies associated with a specific site: Local data (usu-
ally name-value pairs) that record a user’s identity, status,
or other information of a web site.

e Principals: A parent principal can treat its child principals
as a local resource.

Mandatory
Resource Access
Control Policy

Y
Global Resources:
Principal 7 |--- - T -
Discretionary
Resource Access
Control Policy File System Display
Local Resources:
Principalnf--------—-—-~--——-___ @
P Discretionary %]
H(::soutrcels :clc.ess Display Area Inbound
ontrol Folicy - Network Channel
Resource

Reference Monitor .
Fig. 1.

C. Mandatory and Discretionary Resource Access Control

If a principal can access a resource, such access must
be permitted by both the mandatory resource access control
policy at the web browser level and the discretionary resource
access control policy specified by relevant principals.

The mandatory control applies to all principals and can-
not be modified by any individual principal. A browser’s
mandatory resource access control policy comes from the
specification and configuration of the user. First, the user
of the web browser can specify whether certain principals
can have access to certain resources; and if so, what type
of access rights a principal may have. The user can also
specify the default access rights for various principals on
different resources. Second, the user of a web browser can
also configure its preferences related to resource management.
The configuration can be as simple as a list of preferences.
For example, the user can indicate whether he wants the
browser to silently reject some types of action without an
appropriate permission, or to prompt the user to manually
override exceptions on a case-by-case basis. Finally, the web
browser translates the user’s specification and configuration
into a mandatory resource access control policy.

At an individual principal level, a principal may specify a
discretionary policy regarding how other principals may access
its resources, i.e., discretionary resource access control. For
example, a principal may allow its child principals to have read
permission of its display area, but may not allow its grandchild
principals to have the same access.

D. Resource Policy Enforcement

Following the resource access control policies, the resource
reference monitor maintains each principal’s access rights over
resources. Any resource access must be permitted by the
resource reference monitor. The policies are written in a rule-
driven language that we consider in the next section.

III. LANGUAGE

We now outline what the policy language might consist of.
A policy handles three types of objects: principals, resources,

Network Channel

w @ JavaScript Plugin Engine) ---
En

Inbound

Outbound
Network Channel

Principal

Outbound

Network Channel Cookies

Framework overview of our design.

and actions. It defines rules that decide whether a principal
can take specific actions on a resource. We call a (principal,
action, resource) triple a permission, and the policy’s job is to
consider each permission and either grant or deny it.

A. Principals

In our policy language, a principal is merely a type of
resource. This simplifies reasoning about them: E.g., in con-
sidering whether to let one frame navigate another, we have
one frame acting as a principal and another as a resource.

B. Resources

A resource has the following properties:

class A standardized name distinguishing the resource by
its role, or a sequence of them. Possible classes
might include: document, text, stylesheet, script, me-
dia (image, video, audio), frame, and cookie. For
example, an HTML page would have the class doc-
ument, while an image loaded into the page should
have both the media and image classes.

type The MIME type of the resource, when applicable.

protocol, domain, port
These collectively define the origin of the resource,
in the same sense as in the Same-Origin Policy. For
Web content, this is the origin from which the content
was loaded. For a JavaScript function, this is the
origin of the script that defined it. For client objects
such as frames, these properties may be undefined.

path Similarly, a resource representing Web content has
the path part of the URL as a property.
document A frame (i.e. a principal with the frame class)

sets this property to the document it’s displaying.
parent When a resource is the child of another, this property
is set to the parent. For instance, if a document A
contains a frame F' with a document B loaded, we
have that B’s parent is F' and F’s parent is A.

C. Actions

An action could have the following properties:

The principal has the class script
o The principal’s protocol, domain, and port match
those of the resource
o Verdict: allow
2) e The principal has the class script
o Verdict: deny

Fig. 3. Rules implementing the Same-Origin Policy. In practice, such rules
would have stipulations for browser Chrome and other nuances.

1) o The resource has the class image
o The resource’s protocol is http or https
o The resource’s domain is images.x.edu
e The resource’s port is 80 or 443
o Verdict: allow

2) e The resource has the class image
o Verdict: deny

Fig. 4. A discretionary policy for a site www . x . edu allowing those images,
and only those images, served from images.x.edu.

class A well-defined name or sequence of them, as for
resources. Action classes would be generalizations of
HTTP methods, such as get or post, as well as others
such as call to call a JavaScript function and read-
cookie and write-cookie for cookie management.

protocol This is also likely specified in a resource, but
there may be cases where a resource is loaded using
a protocol other than that in its URL (perhaps some
sort of caching protocol).

security Information about the security of the action
in question. This could allow a policy to deny
permissions to load documents using obsolete or
compromised encryption algorithms, for instance.

D. Rules

Now that we have defined the three components of a
permission— principles, resources, and actions, we use rules
to reason about it and decide whether to grant or deny it. A
rule is a list of predicates and a verdict. The verdict is either
grant or deny, and a permission matching all the predicates is
then granted or denied, respectively. The precise syntax of the
predicates is unimportant here; in giving examples, we will
simply use English.

E. The Policy

Finally, a policy is simply a list of rules. Each rule is tried
in order until one of them gives a verdict, and accordingly the
permission is either granted or denied.

F. Examples

Many common security mechanisms have natural expres-
sions in this language. E.g., the Same-Origin Policy can
be enforced by two simple rules (Figure 3). Discretionary
policies, tailored to particular sites, would also be easy to
implement. If www . x . edu serves all images on its pages from
images.x.edu, it can use a policy like that in Figure 4.

1) o The action has the class navigate
o The principal is an ancestor of the resource
o Verdict: allow

2) e The action has the class navigate
o Verdict: deny

Fig. 5. A policy specifying that a frame can only navigate its descendants.

IV. SECURITY EFFECTIVENESS ANALYSIS

We now demonstrate how our approach can be used to
address typical web security problems. We look at three pop-
ular web attacks: frame hijacking, cross-site request forgery
(CSRF), and DNS rebinding attack. We show as long as the
resource management framework is in place, all we need is to
specify robust security policies to secure web-based activities.

A. Frame Hijacking

A frame often contains content from sources of different
trustworthiness, e.g., hosted advertisements, Flickr albums,
Google Maps, or PayPal account pages. Each such content
fragment is inside a separate sub-frame. One special access
right among frames is the navigation right, by which one
frame can direct another frame to load its contents from an
arbitrary URL. However, it is dangerous if one frame can
freely navigate another frame; for example, a malicious frame
can send another frame to a phishing site, or replace a gadget
in a mashup site with a similar-looking but malicious gad-
get. Researchers have studied both cross-window and same-
window frame navigation attacks [5].

In resource management framework, every frame is a prin-
cipal, and also a resource (see Section III-A). If a frame wants
to navigate another frame, the former as a principal must have
the navigation right over the latter as a resource.

The navigation right can be specified either at the browser
level or by individual frames. The specified policies then can
be enforced by the resource reference monitor. For example, as
proposed in [5], the browser may enforce a policy that allows
a frame to navigate only its descendants. Fig. 5 shows how
this policy might be written in our language.

B. Cross-Site Request Forgery (CSRF)

A CSREF attack occurs when a malicious web page serves a
piece of HTML or JavaScript code that causes a web browser
to issue a separate request to a target web site, which leads to
unintended side effects without the web user’s knowledge. A
few current practices to prevent this attack include examining
the referrer header in the HTTP request, or enforcing shorter
expiration time for a session so that a user is likely logged
out from a privacy-sensitive web site. But these measures are
to be taken on the target web server and require web sites to
cooperate. There has not been much that the user of a web
browser can do to effectively prevent this attack.

With our resource management framework, we can stop the
CSREF attacks by specifying the correct policy. We require that
each cookie to be sent in a request pass a permission check
by the resource manager. This permission triple will include:

principal The page being accessed.

e The action has class read-cookie

o The action’s referrer either is not set or does not have an
origin matching that of the principal

o Verdict: deny

Fig. 6. A rule preventing CSRF by allowing some cookies to be read only
when following internal links.

resource The cookie to be sent to the page.

action An action object with the class property being read-
cookie and the referrer property being the page that
provided the link.

Given these provisions, a policy could use the rule in
Fig. 6 to filter certain cookies, such as security-sensitive login
credentials, from being passed along when a cross-site request
occurs. In fact, a similar rule could be applied to any resource
that we want to avoid sending across origin boundaries.

For instance, an attacker’s web page includes a cross-site re-
quest <img src=bank.com/transfer?to=Malloryé&
amount=100>. Even if the victim is logged onto bank .com
and has an active session, that cookie will be filtered out and
the transaction will be forbidden. Normal clicks on links in
the bank’s own pages, however, will function as usual.

C. DNS Rebinding Attack

A DNS rebinding attack happens as follows: First, a mali-
cious web site, say attacker.com, answers DNS queries
for attacker.com with the IP address of its own server,
and serves visiting clients malicious JavaScript. Then, when
the script sends another DNS query for attacker.com, the
attacker will return the IP address of a victim server instead.
The browser will treat the victim server to have the same origin
as attacker.com, and the script therefore can read freely
from the victim. A common solution to this attack is DNS
pinning: a browser should always return the same IP address
for a given host name. DNS pinning, however, has been hard
to enforce because a browser and its plug-ins all have its own
pinning record, leading to a multipin vulnerability.

A suggested solution is to have a database of host name to
IP pinnings shared by a browser and all its components [7].
With our resource management framework, implementing this
solution is straightforward: We can include this database as
a global resource available to all principals. When resolving
a host name, a principal will check this database first; if the
name is already pinned to an IP address, no DNS queries will
be sent out, effectively addressing the multipin vulnerability.

V. DISCUSSION

Our resource management framework is general enough that
both a newly designed browser and an existing browser can
consider supporting the framework. Individual browsers can
implement it differently while considering cost and perfor-
mance overhead. It may also be possible to implement the
framework as a library or micro-kernel for a browser to consult
for all its resource-management-related operations.

Incremental deployment is also easy. Call web browsers
and sites that support our approach new browsers and sites,

respectively. If a new browser visits a site, it will simply
assume the latter does not implement discretionary resource
access control, and continue to apply its mandatory resource
access control policies and the discretionary resource control
policies from new sites. If an old browser visits a new site, the
browser will not recognize the special language for specifying
discretionary access controls and will simply ignore it.

Our resource management framework requires precise spec-
ification for its resource access control policies. While in this
paper we outlined the basic structure and semantics of the
language, a more concrete policy specification language will
be needed in order for a web browser to understand a web
site’s resource access control policy.

VI. CONCLUSIONS

As web browsers have evolved from static content viewers
to a common environment often shared by multiple principals
(documents, JavaScript code, plug-ins, and other web compo-
nents) from different origins, the security of the web browser,
and even the Web itself, becomes shaky. While security
patches have been distributed and new browser architectures
have also been proposed, our position is that a web browser
should be treated as a resource allocator in order to secure
principals from one another and secure web-based operations.

In this paper we proposed a resource management frame-
work that a web browser can use to control the access of
various resources by any principal. Not only a user or a
system administrator can enforce a mandatory resource access
control policy at the browser level, but the writer of a web
page can also specify its discretionary resource access control
policy. With the security policies enforced by a resource
reference monitor, we further showed that web attacks can
be successfully prevented, as exemplified by the prevention of
the frame hijacking attacks, cross-site request forgery, as well
as the DNS rebinding attack.

Our resource management approach to web browser security
is advantageous in that the framework is general enough for
various browsers to implement, is incrementally deployable,
and is effective and light-weight in addressing new web attacks
because of the ease to install new security policies.

REFERENCES

[1]1 A. Barth, C. Jackson, C. Reis, and Google Chrome Team, “The security
architecture of the Chromium browser,” Stanford Univ., Tech. Rep., 2008.

[2] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and
H. Venter, “The multi-principal OS construction of the Gazelle web
browser,” Microsoft Research, Tech. Rep., 2009.

[3] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen, “A safety-
oriented platform for web applications,” in Proc. of the IEEE Symposium
on Security and Privacy, 2006, pp. 350-364.

[4] C. Grier, S. Tang, and S. T. King, “Secure web browsing with the OP
web browser,” in Proc. of the IEEE Symposium on Security and Privacy,
2008, pp. 402-416.

[5] A. Barth, C. Jackson, and J. Mitchell, “Securing frame communication in
browsers,” in Proc. of the USENIX Security Symposium, 2008, pp. 17-30.

[6] T.Oda,G. Wurster, P. C. van Oorschot, and A. Somayaji, “SOMA: mutual
approval for included content in web pages,” in Proc. of the Conference
on Computer and Communications Security, 2008, pp. 89-98.

[7]1 C. Jackson, A. Barth, A. Bortz, W. Shao, and D. Boneh, “Protecting
browsers from DNS rebinding attacks,” in Proc. of the Conference on
Computer and Communications Security, 2007, pp. 421-431.

