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Abstract— Disruptive events such as large-scale power outages,
undersea cable cuts, or Internet worms could cause the Internet
to deviate from its normal state of operation. This deviation from
normalcy is what we refer to as the “impact” on the Internet,
or an “Internet earthquake.” As the Internet is a large, complex
moving target, to date there has been little successful researchon
how to observe and quantify the impact on the Internet, whether
it is during specific event periods or in real time.

In this paper, we devise an Internet seismograph, orI-
seismograph, to provide a “Richter scale” for the Internet. Since
routing is the most basic function of the Internet and the Border
Gateway Protocol (BGP) is thede facto standard inter-domain
routing protocol, we focus on BGP. After defining what “impact”
means with respect to BGP, we describe how I-seismograph
measures the impact, exemplify its usage with several disruptive
events, and further validate its accuracy and consistency. We
show that we can evaluate the impact on BGP during an arbitrary
period, including doing so in real time.

Index Terms—Internet seismograph; Internet earthquake; Bor-
der Gateway Protocol (BGP); BGP impact measurement

I. I NTRODUCTION

The Internet has become a critical infrastructure of our soci-
ety, yet little has been studied on how to monitor the Internet as
a whole and how to quantify the impact that disruptive events
may have on it. Although events such as security attacks, large-
scale power outages, hurricanes, undersea cable cuts, and other
kinds of natural disasters may cause observable disturbances to
the normal operation of the Internet, we know little about the
kind of impact each event might cause and how big it might be;
the lack of such knowledge also makes it difficult to conduct
effective network diagnosis, recovery, or other operationtasks.
In fact, there is not even an established criteria for classifying
different kinds of impacts or for quantifying what “big” or
“small” means.

This paper aims to fill this gap. We have designed an
Internet seismograph, orI-seismograph, to measure “Internet
earthquakes.” It not only reports the magnitude of the impact
during an event period, i.e., a “Richter scale” of an Internet
earthquake, but also characterizes the nature of the earthquake.
During a period when everything is normal, I-seismograph will
simply report zero or close-to-zero impact; during a security
attack, a natural disaster, or some other large-scale incident,
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if the regular operations of the Internet go awry, it can then
indicate how badly the Internet got hit. Not only can we use
I-seismograph to measure the impact over a period in the
past, during which a disruptive event is suspected to have
affected the Internet, but we also can use it to measure an
Internet earthquake in real time. (Note that I-seismographdoes
not identify the root cause if any impact on the Internet is
observed. Root cause analysis is beyond the scope of this
paper.)

The main design idea of I-seismograph is hinged upon
discovering the “normal” state of the Internet, and then mon-
itoring a given period to measure how the Internet activity
deviates from it. Since routing is the most basic function on
the Internet and the Border Gateway Protocol (BGP) is the
de facto standard inter-domain routing protocol, our approach
uses BGP data to discover the normal and abnormal states.
This presents a challenge since BGP is very dynamic and BGP
data are full of outliers. Furthermore, BGP has evolved greatly
over the years and the definition of normal is ever-changing.
To handle this dynamic nature, we have designed a two-phase
clustering method that can discover what is normal and what
is abnormal over a wide time span.

In this paper, we first present our definition of impact
(Sec. II). We then describe how I-seismograph addresses
various challenges in order to measure the impact that BGP
receives during any period (Sec. III). We not only show
the results when using I-seismograph against several dis-
ruptive events (Sec. IV), but also validate I-seismograph
to make sure it possesses some key properties (Sec. V).
Limitations certainly exist with this work (Sec. VI), but we
show I-seismograph is clearly different from the related work
(Sec. VII), and our conclusions about this work are strong
(Sec. VIII).

II. D EFINING IMPACT

We define an impact on BGP as any deviation from BGP’s
normal profile. The deviation consists of amagnitude and a
direction. Assume we use a set ofn distinct BGP attributes
to inspect BGP,A1, A2, · · · , An. Also assume we have
defined a normal profile of BGP by identifying the normal
values of those attributes. At any timet, if the values of
these attributes of BGP area1(t), a2(t), · · · , an(t), and they
deviate from the normal profile asδ1(t), δ2(t), · · · , δn(t),



the impact that BGP receives att is then a vector as follows:
i(t) =< δ1(t), δ2(t), ..., δn(t) >.

If looking at the impact on BGP over a time window, such
as during the period of an event, we can define the impact
during this window, say[t1, t2], as: I(t1, t2) =

∫
t2

t1
i(t)dt or

t2∑

t1

i(t), depending on whetheri(t) is continuous or discrete.

III. D ESIGN OFI-SEISMOGRAPH

Having defined BGP impact as a deviation from the normal
profile of BGP, we now describe how we design I-seismograph
to measure it. Not only must it discover what the normal profile
of BGP is, it must also be able to calculate any deviation from
the normal.

A. Requirements and Challenges

I-seismograph must collect and process a very large amount
of BGP data, be able to identify what data are normal
and what are not, and be able to accurately quantify their
difference. In doing so, it must consider both the spatial and
temporal aspects of BGP. From the space dimension, BGP is
a complex routing protocol concerning IP prefixes from the
entire IP address space and involving BGP routers from all
over the Internet. From the time dimension, the BGP protocol
is constantly evolving to accommodate the growth of the
Internet; accordingly, what is considered normal at one time
may be abnormal at another time (and vice versa).

I-seismograph must also have good usability. Not only
should it be easy to use, but it should also be flexible enough to
allow for the impact calculation for any given period. It should
be able to calculate the impact during a historical event, such
as when the Slammer worm spread, as well as the impact that
BGP is currently experiencing.

I-seismograph must also be consistent, stable, and reliable.
Of key importance is that once it has sampledenough BGP
data from different periods, the definition of the normal profile
of BGP should be stable; I-seismograph should output the
same impact results for a given period no matter what BGP
data input it has for other periods.

We show how I-seismograph meets the first two require-
ments in the rest of this section, and demonstrate its consis-
tency in Sec. V.

B. Methodology Overview

I-seismograph’s basic data processing unit is BGPdatabin,
which is simply a summary of the values of a set of distinct
BGP attributes over a period of one minute.

To measure the impact during a monitoring period, our
basic idea is to check every databin from that period, and see
whether it is associated with anormal cluster composed of a
set of normal databins, or anabnormal cluster composed of a
set of abnormal databins. At any point there is only one normal
cluster but there can be multiple abnormal clusters. The normal
cluster represents the normalcy of BGP, and the abnormal
clusters represent different types of BGP abnormalities. Once
we know every databin’s associated cluster, we then can
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Fig. 1. Two modes of I-seismograph.

calculate the impact of the databin as well as the impact during
the entire period.

I-seismograph employs two different modes for measuring
BGP impact: the heavyweight mode and the lightweight mode.
The two modes are depicted in Figures 1(a) and 1(b), respec-
tively. The latter requires that the normal and abnormal clusters
be known a priori, while the former uses an unsupervised
method to discover them automatically.

Both modes include aData Collection and Preprocessing
component that collects BGP data and pre-processes them into
distinct databins, and anImpact Calculation component that
uses the normal cluster and abnormal clusters to calculate
the impact of every databin and the aggregate impact during
monitoring periods. In addition, the heavyweight mode also
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includes aTwo-Phase Clustering Process that discovers the
databins which make up the normal cluster, and discovers
abnormal databins and groups them into one or multiple
abnormal clusters according to their similarity.

The lightweight mode is suitable for real-time Internet
earthquake monitoring, or quickly checking the impact on
BGP during a given period. The heavyweight mode is slower,
but can be used to generate the normal and abnormal clusters
that the lightweight mode will need.

C. Data Collection and Preprocessing

1) Data Collection and Cleaning: We collect BGP data
from two types of periods:monitoring periods and reference
periods. A monitoring period is a time window for which we
want to measure the impact on BGP. It can be an arbitrary
period, say[T1, T2], that we want to monitor; or, to monitor an
event that occurred from timet1 to t2, the monitoring period
may be[T1, T2], whereT1 ≤ t1 ≤ t2 ≤ T2 (as we often do not
know the accurate values oft1 and t2, the monitoring period
can be noticeably larger than the real duration of an event).

Every monitoring period is associated with a reference
period. As we will see later, a reference period provides
reference data to help normalize BGP data as well as run the
two-phase clustering process. The reference period is chosen
to be close to the monitoring period, so the BGP data from
the two periods are directly comparable without worrying
about data normalization. It also must be long enough to
reflect the trend of BGP behavior at the close proximity to
the monitoring period (we use four weeks in our experiments
as we will describe in Sec. IV). While a short period may
be full of outliers, a long one should only have at most a
small portion, implying the majority data of the reference
period can reflect what is normal during the reference and
the monitoring periods. We also make sure a reference period
is free of any known disruptive events to further lower its
likelihood of containing too many abnormal databins. Note
we do not require a reference period to only consist of normal
data; instead, a reference period, like any period, can still be
noisy and we need to process it.

The BGP data we collect are BGP updates. The BGP
updates are the conversation records between BGP routers,
and are the firsthand data about BGP. We collect BGP updates
from RIPE [1] and RouteViews [2], the two organizations
that maintain a number of BGP collectors. We then clean
the updates by removing those that are caused by session
resets between a BGP monitor and its peers. We borrow the
algorithm described in [3] to filter out table dumps resulting
from BGP session resets.

2) Data Organization: With the BGP updates from a given
period, we convert them minute by minute into BGP databins.
Because if an event has an impact on BGP, it will affect the
dynamics of BGP, we choose every databin’s attributes to be
those that can reflect the dynamics of BGP. Based on previous
studies on BGP instability and dynamics, including those from
[4], [5], we have identified ten distinct BGP attributes to
summarize every minute of BGP activities (Table I).

Attribute Description
Announcement # of BGP announcements
Withdrawal # of BGP withdrawals
Update # of BGP updates
WADiff # of new-path announcements after withdrawing

an old path to the same IP prefix
AADiff # of new-path announcements to the same IP prefix

(thus implicit withdrawals)
WWDup # of duplicate withdrawals to the same IP prefix
AADupType1 # of duplicate announcements to the same IP prefix

where all fields of the announcements are unchanged
AADupType2 # of duplicate announcements to the same IP prefix

where only the AS-PATH and NEXT-HOP fields of
the announcements are the same

WADup # of re-announcements after withdrawing the same
path

AW # of withdrawals after announcing the same path

TABLE I
NAMES AND DESCRIPTIONS OF SELECTEDBGP ATTRIBUTES.

3) Data Normalization: To discover the normal profile and
different abnormal profiles of BGP, the BGP data collected for
this study will span a long period (the experiments that we will
report in Sec. IV involve BGP data over eight years). On one
hand, we must ensure all BGP databins are comparable to each
other; on the other hand, BGP is known to be evolving over
time. Therefore, we must normalize the BGP databins.

Our basic idea in normalizing any given databin is to find
the baseline value of every attribute of the databin, and then
use the ratio of the original value of the attribute versus its
baseline value as the normalized value of the attribute.

To find the baseline value for every attribute of a databin,
our first step is to find a set ofreference databins for the
databin in question. Whether a databin to normalize is from a
monitoring period or its associated reference period, we always
select its reference databins from the reference period. While
the majority of databins from the reference period are normal
(Sec. III-C1), we must first remove outliers from the reference
period. We run the K-Medoids (PAM) clustering algorithm
to partition all the databins from the reference period into
two clusters, and remove the databins from the cluster that is
smaller—i.e., outliers. Then with the remaining databins—i.e.,
those belonging to the bigger cluster, we choose those databins
that are of the same minute of the day as the databin in
question. These databins then serve as the reference databins.

As the reference databins are from the reference period and
hence their values are comparable to the databin to normalize,
we simply calculate the median of each attribute of all the
reference databins, and use that as the baseline value for the
attribute of the databin to normalize.

D. Impact Calculation

I-seismograph calculates impact from two levels: the impact
of a single databin, and the impact during a monitoring
period. Its input includes a normal cluster and multiple ab-
normal clusters. (We describe how we obtain these clusters
in Sec. III-E.) The impact of an individual databin is based
on the databin’s relation with the normal cluster. The impact
during a monitoring period checks how all the databins from
the period deviate from the normal cluster collectively.
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Every databin from a monitoring period will be assigned
into either the normal cluster or one of the abnormal clusters.
In the lightweight mode, the procedure is straightforward:with
the normal and abnormal clusters as input, I-seismograph com-
pares every databin’s distance to the medoid of every cluster—
i.e., the most centrally located databin in that cluster—and
assigns the databin to the cluster with the nearest medoid. In
the heavyweight mode, this is achieved through the two-phase
clustering which we describe in Sec. III-E.

We introduce the following concepts to measure the impact
of a databin or the impact during a monitoring period:

• Impact value (of a databin). It measures thedistance of
a databin from the normal. We define every databin in the
normal cluster has an impact value 0, and here we focus
on those not in the normal cluster. Denote the databin as
d =< d1, d2, · · · , dn >. We take the following steps: (1)
For every attributeAi (i = 1, 2, ..., n) of d, we use all the
databins from the normal cluster to determine their meanµi

and standard deviationσi of Ai. (2) We then calculate the
difference betweendi and(µi±σi), denoted asδi. It is either
di−(µi+σi) if di is greater than(µi+σi), or (µi−σi)−di
if di is smaller than(µi − σi). (3) We normalizeδi to be in
the range of [0, 1] by dividing the maximum recorded value
of δi. In the followingδi always refers to a normalized value.
(4) Then finally, we use the sum of the differences for all
attributes, i.e.,

∑
n

i=1
δi, as the distance ofd from the normal.

This distance is also called Manhattan distance. Since our
study currently uses exactly 10 BGP attributes, every impact
value will thus be between 0 and 10.
• Impact direction (of a databin). It measures thedirec-
tion that a databin deviates from the normal. Following
the discussion of impact value above and using the same
notations, we define the impact direction of a databin using
the deviation vector< δ1, δ2, · · · , δn >.
• Impact curve (of a monitoring period). This is the plot
of the impact values of all the databins from a monitoring
period over time.
• Dominant and peak impact directions (of a monitoring
period). The abnormal cluster that has more databins from
the monitoring period than any other abnormal clusters is
what we call thedominant abnormal cluster for the period.
We define the impact direction of this cluster’s medoid (i.e.,
its most centrally located databin) as thedominant impact
direction for the monitoring period in question. In addition,
we define the impact directions of those databins from a
monitoring period that have a peak impact value as thepeak
impact directions of the period. Note that those databins
may or maynot belong to the dominant abnormal cluster.
The dominant direction represents the overall trend during
a monitoring period, and the peak direction indicates the
behavior during the maximum impact.

E. Two-Phase Clustering Process

With BGP databins from one or multiple monitoring pe-
riods, I-seismograph in heavyweight mode includes a two-
phase clustering process to discover a normal cluster of normal

databins and multiple abnormal clusters of abnormal databins.
The two-phase clustering is based on our concept of two-

level normality:short-term normal , or s-normal; and long-
term normal , or l-normal . S-normal refers to what is normal
during a specific monitoring period and its associated reference
period. L-normal refers to what is normal during a much
longer period. Similarly, we uses-abnormal and l-abnormal
to mean short-term and long-term abnormal, respectively. As
such, the two-phase clustering process will take databins as
input from multiple monitoring periods and their associated
reference periods—which altogether spread over a long pe-
riod, and process them in two different phases:short-term
clustering and long-term clustering.

The short-term clustering serves as a filtering process; by
discarding certain databins, it will ensure that every databin
from a reference period is s-normal, whereas none of the
databins from a monitoring period is. The long-term clustering
then takes the result from the short-term clustering as its input,
and clusters all the databins; it will discover databins that are
l-normal and those that are not, and group them based on
their similarity into the normal cluster and multiple abnormal
clusters, respectively. Below we describe each phase in detail.

1) Short-Term Clustering Phase: We take two steps in
processing the databins from a monitoring period and its
associated reference period: first, we process databins from
the reference period; second, we use the result to help process
databins from the monitoring period.
Processing Databins from Reference Period: Assuming a
reference period spans over multiple days, for each day of
databins, we run a clustering algorithm, calledN-clustering,
to see if it generates an s-normal cluster that contains only
s-normal databins. If it does, we retain databins from the s-
normal cluster and discard all other databins; otherwise, we
discard the entire day.

N-clustering is a divisive hierarchical clustering algo-
rithm [6]. It relies on two rules: the majority rule and the
tightness rule. It assumes that the s-normal cluster—if it ever
exists—must consist of more than 50% of the databins from
the initial input, and these databins must be tightly clustered.

As shown in Figure 2(a), N-clustering works as follows: (1)
It begins with all the input databins as the root cluster, and
uses K-Medoids to recursively split a cluster into two child
clusters. K-Medoids is used because it creates non-overlapping
clusters and is more resilient to outliers than other clustering
algorithms such as K-Means. (2) Upon every split, it discards
the smaller child because it has less than 50% of the databins
and cannot be or lead to an s-normal cluster. (3) If the bigger
child meets both the majority rule and the tightness rule, it
is exactly the s-normal cluster to generate! If it meets the
majority rule but not the tightness rule, it will be split again.
If it does not meet the majority rule, however, no s-normal
cluster will be found and N-clustering simply stops.

To determine whether or not a cluster is tight, we check its
intra-distance and inter-distance [7]. The intra-distance shows
how far apart databins within a cluster are, and the inter-
distance is the distance between a cluster and its sibling cluster.
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When the intra- and inter-distance of a cluster reaches aknee
or inflection point, we determine that this cluster is tight and
does not need to be further split. (We choose 20% as the
knee since the knee typically occurs when the intra-distance
becomes no more than 20% of the inter-distance.)
Processing Databins from Monitoring Period: Now that
databins from the reference period are all s-normal, we further
process the databins from the monitoring period to only retain
those that are s-abnormal. However, doing so is more difficult
than retaining s-normal databins from the reference period. In
the latter, every time we split a cluster of databins into two
child clusters, we can discard the smaller child since this child
is guaranteed not to contain s-normal databins. Now, because
the majority databins from the monitoring period could be
either s-normal or s-abnormal, if we run a clustering algorithm
to split databins from the monitoring period, we do not know
between the bigger and the smaller child clusters, which one
to discard and which to further inspect.

We overcome this difficulty by designing a new clustering
algorithm, A-clustering, to discover a cluster of s-abnormal
databins (Fig 2(b)). Like N-clustering, it is also a divisive
hierarchical clustering algorithm. It begins with one initial
cluster with all the databins from the monitoring period, and
also uses K-Medoids to split a cluster into two new child
clusters. But, every time we split a cluster, we inflate it
with s-normal reference databins obtained earlier! Specifically,
every time we split a cluster withn databins, including the
very initial cluster, we randomly choose more thann s-
normal reference databins, and inject them to the cluster, thus
creating an inflated cluster. The inflated cluster will have a
key property: Its s-normal databins are the majority, and
the s-abnormal databins to discover are the minority. The
majority here includes not only the injected, s-normal databins,
but also those from the monitoring period that are also s-
normal. As a result, after a binary split of the inflated cluster,
we will be certain that the s-abnormal databins will go to
the smaller child. The bigger child will not only include
injected, s-normal databins, but will also act like a sticking
ball to pick up as many s-normal databins as possible from
the monitoring period. If the bigger child cannot pick up anys-
normal databins from the monitoring period, the smaller child
is already a cluster with all the s-abnormal databins and we are
done; otherwise, we can continue to split the smaller child—
again with s-normal reference databins injected first—untilwe
finally find a child cluster with only s-abnormal databins.

2) Long-Term Clustering Phase: After we use short-term
clustering to filter the databins for every monitoring period and
its associated reference period, we can compare the databins
from a monitoring period and those from its associated refer-
ence period, and see how abnormal the former are compared
to the latter. However, such abnormality is based on the short-
term normality, and will not indicate the impact during a
monitoring period over a long term. It is also hard to compare
the impact from different monitoring periods that may be far
from each other.

To address this limitation, we introduce the long-term clus-
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Fig. 2. Short-term clustering. (Each circle represents a cluster, the dashed
circle represents an inflated cluster, and a cluster with darker shade contains
a higher percentage of s-abnormal databins.)

l-normal l-abnormal

normal cluster

abnormal clusters

input

Fig. 3. Long-term clustering. (Its input is the output from the short-term
clustering, and its output are the normal cluster and multipleabnormal clusters
(5 in this figure)).

tering phase to derive the long-term normality, discover how
abnormal the databins from different monitoring periods are
from a long-term perspective, and group databins according
to their long-term normality as well as long-term abnormality.
The long-term clustering enables us to discover a common,
long-term normality of BGP, and compare the impact from all
the monitoring periods in the same context.

Same as our two short-term clustering algorithms, the long-
term clustering algorithm is also a divisive hierarchical cluster-
ing algorithm. As shown in Figure 3, it will generate a normal
cluster of long-term normal databinsand multiple abnormal
clusters of long-term abnormal databins. The initial inputis a
root cluster of all the s-abnormal and s-normal databins from
multiple pairs of monitoring and reference periods. Every time
we process a cluster, including the root cluster, we first check
whether or not the cluster is tight by calculating its intra-
distance, and compare it with the intra-distance of its parent
cluster. If the two intra-distances differ by less than 1%, i.e.,
clustering helps little in further packing databins in thiscluster,
the cluster is tight, and it is a leaf cluster and we do not split it.
Otherwise, we continue to use K-Medoids to split it into two
child clusters. We then begin processingevery child cluster,
following the same procedure just mentioned. This recursive
procedure will eventually stop, creating a tree of clusters. If
the largest leaf cluster contains more than 50% of the databins

5



in the initial input, i.e., conforming to the majority rule,this
leaf cluster is then the normal cluster; other leaf clustersare
various abnormal clusters.

IV. I MPACT RESULTS AND ANALYSIS

In this section, we apply I-seismograph to measure the
impact on BGP, i.e., the Internet earthquake, during different
monitoring periods that cover a wide time span. We report the
impact results during these periods, and analyze their patterns
and characteristics.

A. Setup

We have identified a number of events that may or may not
have disrupted the normal operation of BGP. We selected these
events from a wide time span since we want I-seismograph
to apply to all times. They are Code Red worm [8], Nimda
worm [9], Slammer worm [10], East Coast blackout [11],
Hurricane Katrina [12], LA blackout [13], Taiwan undersea
cable cut [14], Mediterranean undersea cable cut [15], and
Mediterranean undersea cable cutagain [16].

We associate every event with a two-day monitoring period
that begins when the event began. I.e., we monitor an event’s
likely impact on BGP during a two-day period. We further
associate every event with a reference period that lasts four
weeks and happens exactly before the monitoring period.

B. Results Overview

We measured the impact on BGP during these nine events
using the heavyweight mode, with all nine monitoring periods
as the input. Our impact results include both the impact
curves and the impact directions, allowing us to analyze the
impact that BGP receives during each monitoring period. In
the next section (Sec. V) where we evaluate the accuracy of
our methodology, we further compare the results here with the
impact results obtained using the lightweight mode.

C. Impact Curves

Figure 4 shows the impact curves during the nine events.
We can categorize the impact curves into three categories:

• Short-lived impacts. The curve is typically a spike, whereas
the spike may be of a high value or a low value. Except for
the spike, the rest impact values are close to 0. The Code Red
curve (Fig 4(b)), for example, has a small spike and the peak
impact value is 0.44. The Hurricane Katrina curve (Fig 4(g)),
on the other hand, has a much taller spike with the peak
impact value reaching 2.75.
• Long-lived impacts. When the impact during a period is
long-lived, the impact curve can further have different forms.
It can subside from a peak value gradually over time, as
shown in the Slammer curve (Fig 4(d)); or it can be bursty
with numerous spikes, as in the Nimda, Taiwan and Mediter-
ranean curves (Fig 4(c), 4(h) & 4(i), respectively). All impact
curves subside toward zero as the impact diminishes, but the
trend can be either gradual, as shown in the Slammer and
Mediterranean curves (Fig 4(d) & 4(i)), or up-and-down, as
in the Nimda and Taiwan curves (Fig 4(c) & 4(h)).
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(d) Slammer Worm: Jan. 25, 2003
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(e) East Coast Blackout: Aug. 14,
2003

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

0 12 24 36 48

Time (Hours)

(f) LA Blackout: Sep. 11, 2005
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Jan. 30, 2008
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(j) Mediterranean Cable Cut, Again:
Dec. 19, 2008

Fig. 4. Impact curves during nine different monitoring periods plus a
reference period. (Every period’s starting date is also shown.)
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• None or barely existent impact. In this category, the impact
during a period is almost none, as shown in both the East
Coast and LA blackout impact curves (Fig 4(e) and 4(f)),
or not much, as shown in the Mediterranean Again curve
(Fig 4(j)). This category is the most frequently seen category,
including most reference periods.

D. Dominant and Peak Impact Directions

An impact direction can indicate which attributes deviate
from normal. Some attributes (e.g., AADiff and WADiff) show
forwarding dynamics of BGP that reflect topological changes,
some (e.g., WWDup and AADupType1) show pathological
behavior due to redundant updates, and some (e.g., WADup)
could mean both. Readers can refer to our earlier work [4] to
see how we can analyze different BGP attributes to understand
BGP dynamics. (See Table I for attribute definitions).

We first look at the dominant impact directions. We have
found that the Slammer and Nimda worms, the Taiwan under-
sea cable cut and the East Coast blackout all map to the same
dominant impact direction. The main BGP attributes deviating
from normal include Announcement, Withdrawal, Update,
AADiff, and WADiff. It shows more BGP announcements
and withdrawals were sent during those periods (Announce-
ment, Withdrawal, Update), and this higher level of dynamics
is mostly due to forwarding dynamics (AADiff and WAD-
iff). The Code Red worm, LA blackout, Mediterranean, and
Mediterranean Again share another dominant impact direction,
where the main deviating BGP attributes include Announce-
ment, Update, AADiff, and AW. The BGP dynamics is mostly
forwarding dynamics, but there are not extra withdrawals as
in above cases. The dominant impact direction for Katrina
is perhaps the most interesting, where Announce, Update,
AADupType1, AADiff, WADiff, and WADup all deviate from
normal, showing both forwarding dynamics (AADiff, WADiff,
WADup) and pathological behavior (AADupType1, WAdup).
(Note WADup could be contributing to both.)

Analyzing the peak impact directions over these periods,
we found every peak corresponds to a much higher amount
of BGP announcements, but a normal amount of withdrawals.
Some peaks simply show a higher level of benign forwarding
dynamics (the peak of Code Red, the 1st and 4th peaks of
Nimda, the 1st peak of Taiwan, the 2nd peak of Mediter-
ranean); some peaks show pathological behavior (the 2nd peak
of Nimda and the 1st peak of Mediterranean); and some peaks
show both (the 3rd peak of Nimda, the peaks of Slammer
and Katrina, and the 2nd peak of Taiwan). These peak impact
directions show the maximum impact during a period, and do
not necessarily agree with the dominant impact direction.

V. VALIDATING I-SEISMOGRAPH

In this section we validate I-seismograph. In particular, we
compare its heavyweight mode against its lightweight mode
to see if they lead to equivalent results, and investigate its
consistency to see how impact results may vary when we vary
the input to I-seismograph.
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(b) Mediterranean Cable Cut: Jan.
30, 2008 (lightweight)

Fig. 5. Impact curves produced in lightweight mode.

A. Heavyweight Mode vs. Lightweight Mode

If I-seismograph works correctly, it should generate equiv-
alent results whether it is used in heavyweight mode or
lightweight mode. In Sec. IV we have shown impact results
from the heavyweight mode for nine different monitoring
periods. Here, we use the Taiwan earthquake and Mediter-
ranean cable cut as two example events, and compare their
impact results from lightweight mode with those from the
heavyweight mode.

We first use the other seven events as input to I-seismograph,
and run I-seismograph in heavyweight mode to generate the
normal cluster and abnormal clusters. Then we use the Taiwan
earthquake monitoring period as the input to I-seismograph,
run it in lightweight mode to obtain the impact results for the
period. We also do this similarly for the monitoring period
associated with the Mediterranean cable cut event.

Fig 5 shows the results for these two monitoring periods
from the lightweight mode. Let us look at the difference
for the Taiwan earthquake monitoring period. Between the
heavyweight mode and the lightweight mode, the cumulative
impact difference over the 48-hour period is 27.68, which
on average is 0.010 (i.e. 27.68/(48*60)) per databin. Recall
the impact value for every databin has a range from 0 to
10, this difference is clearly insignificant. The difference for
the dominant impact direction is 0.116, which is the sum of
the difference at every one of the ten BGP attributes. This
difference is also clearly small.

The comparison of the Mediterranean undersea cable cut is
more striking. Their cumulative impact difference over the48-
hour period is only 0.81, i.e., 0.0003 on average per databin.
The difference between the dominant impact direction is also
as small as only 0.002.

From these two events we can see that we can feed past
BGP data into the heavyweight mode to generate normal
and abnormal clusters, then switch to lightweight mode to
more easily measure impacts for future monitoring periods,
including real-time monitoring.

As the correctness of the lightweight mode is hinged upon
the correctness of the normal and abnormal clusters generated
from the heavyweight mode, the result above also demon-
strates that the heavyweight mode is good at discovering and
distinguishing the normal and the abnormal.
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B. Consistency

Another key property that I-seismograph must possess—if
its methodology is valid—is that it must be consistent with
different input; namely, it must derive a normal cluster that
defines the same normalcy of BGP as well as the same impact
on BGP for any given monitoring period.

Using the same nine monitoring periods from Sec. IV, we
design an iterative procedure to check the consistency:

1) Pick n random permutations of the nine monitoring pe-
riods, and repeat steps 2) and 3) below for every permutation.
There are 362,880 different permutations, and we randomly
pick n = 40 from them.

2) Denote the current permutationmx1,mx2, · · · ,mx9. Run
I-seismograph in heavyweight mode nine times: first time with
mx1 as the only monitoring period, then every following time
add the next monitoring period in sequence, until the last time
that includes all nine monitoring periods.

3) Each time after adding a monitoring period, compare
the results from I-seismograph in terms of three consistency
metrics (see below), and record the difference.

4) Gather all the stepwise consistency check results from 3)
and conduct the statistical analysis to see if I-seismograph has
the consistency property.

We use the following three consistency metrics:

• Normal cluster difference. Assuming the derived normal
clusters from two different runs of I-seismograph areN and
N ′, their difference is the sum of their difference along each
BGP attributeAi (i = 1, 2, ..., n). Assuming the mean and
the standard deviation ofAi for N ’s databins areµi andσi,
and those forN ′ areµ′

i
andσ′

i
, the difference ofN andN ′

alongAi is 1

2
|(µ′

i
+σ′

i
)−(µi+σi)| + 1

2
|(µ′

i
−σ′

i
)−(µi−σi)|.

• Impact curve difference. Assuming the impact curves for a
monitoring period[t1, t2] arei(t) andi′(t) from two different
runs of I-seismograph, their difference is

∑
t2

t1
|i′(t)− i(t)|.

• Dominant impact direction difference. Assuming the dom-
inant impact directions for a monitoring period[t1, t2] are
d and d′ from two different runs of I-seismograph, their
difference is the sum ofd andd′’s absolute difference along
each attribute.

Fig 6 shows our results. Clearly, as more monitoring periods
are added, all three consistency metrics converge to 0, meaning
our results will be consistent or almost the same when even
only a small number of monitoring periods are used.

VI. D ISCUSSIONS ANDOPEN ISSUES

Performance of I-seismograph. The performance of I-
seismograph depends entirely on the mode of operation. Even
on a laptop computer (Intel Core 2 Duo T5550 @ 1.83 GHz,
3GB RAM), it takes less than a minute for I-seismograph
in lightweight mode to analyze the impact of a two-day
period. I-seismograph in heavyweight mode would need much
longer time, approximately 40 minutes for each two-day period
when processing a total of nine such periods simultaneously.
However, I-seismograph in heavyweight mode can run offline,
and does not need to be invoked often.

2 3 4 5 6 7 8 9
# of monitoring periods

0.0
0.1
0.2
0.3
0.4
0.5
0.6

No
rm

al
 c

lu
st

er
 d

iff
er

en
ce

(a) Normal cluster difference

2 3 4 5 6 7 8 9
# of monitoring periods

0

500

1000

1500

Im
pa

ct
 c

ur
ve

 d
iff

er
en

ce

(b) Impact curve difference

2 3 4 5 6 7 8 9
# of monitoring periods

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

D
om

in
an

t i
m

pa
ct

 d
ire

ct
io

n 
di

ffe
re

nc
e

(c) Dominant impact direction difference

Fig. 6. The consistency of I-seismograph.

Data Sources. I-seismograph currently relies on BGP col-
lectors from RouteViews and RIPE to gather BGP updates
as its input. As these collectors are in specific locations and
probably cannot collect all the BGP updates over the Internet,
they probably cannot provide I-seismograph with the most
comprehensive view w.r.t. how BGP may be affected. One
investigation is to study how the observed impact changes
when the input is from different sets of BGP collectors.

What does it mean when BGP receives an impact? Depend-
ing on which BGP attributes deviate from the normal state,
receiving an impact is not necessarily a bad thing! For exam-
ple, while a lot of WWDup is pathological, a higher number
of BGP updates could simply mean BGP is doing its job.

Receiving an impact during an event does not necessarily
mean that the impact is caused by the event, either. There
could be other things happening simultaneously that cause the
impact. While I-seismograph can report the impact that BGP
is experiencing, it cannot replace root cause analysis on what
exactly has caused the impact.

I-seismograph and root cause analysis. On the other hand,
I-seismograph probably can facilitate root cause analysisby
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providing key information such as the attributes of BGP that
look abnormal, the pattern of the impact curve during a period,
and even the specific databins that map to an abnormal impact.
It may even further help trace which autonomous systems
or prefixes contributed or were involved when BGP experi-
ences an unusual impact. Designing an interface between I-
seismograph and all such usage is therefore very useful.

Deploying I-seismograph. We have set up I-seismograph
for real-time monitoring of Internet earthquakes, and
we are making it available through our web site
(http://netsec.cs.uoregon.edu/research/rf.shtml). Itwill be
interesting to see how it performs in real situations. We will
be able to learn, for example, how often we need at least to
update the normal and abnormal clusters. As we can update
normal and abnormal clusters offline and can obtain BGP
data in real time through services such as BGPMon [17], we
can use I-seismograph as a smooth online monitoring tool.

VII. R ELATED WORK

Monitoring the routing infrastructure, especially BGP, has
largely focused on its dynamics such as instability or patho-
logical behavior. Researchers have not only measured BGP
dynamics (e.g., [18], [4]), but have also attempted to in-
vestigate their origin (e.g., [19], [20]). There are also tools
such as BGPlay [21], iBGPlay [22], and LinkRank [23] to
visualize BGP dynamics. However, none of these studies or
tools can help quantify how much the routing infrastructure,
or BGP in particular, deviates from its normal state when
certain dynamics happen. In fact, because most previous BGP
measurement work focuses on a specific period, they do not
even offer what normal might be in a long-term sense.

Many works (e.g., [24], [11], [14]) also investigated the ef-
fects of certain Internet worms, electricity outage, or undersea
cable cut and other events on BGP. These works discovered
that the Internet could experience a much higher level of
dynamics under severe conditions. As every investigation is
specific to a specific event, these studies cannot be unified to
provide a uniform approach to measuring the impact on BGP.

In our own previous studies, we have also investigated an
Internet routing forensics framework to try to detect and clas-
sify anomalies of BGP when certain events occur. Research
in [25] also analyzes BGP updates to detect several types of
anomalies. All these studies did not attempt toquantify those
anomalies and make them comparable across different periods.

VIII. C ONCLUSIONS

While the Internet is a critical infrastructure of our society,
little has been done to monitor it as a whole and report the
impact—or what we call an “Internet earthquake”—that it may
be experiencing at any time. The fact that the Internet is a
large, complex moving target makes this task challenging.

To address this problem, we devised a measurement tool
called I-seismograph. It focuses on the most essential function
of the Internet—routing, and thede facto inter-domain routing
protocol—BGP. It uses a two-phase clustering method to dis-
cover the normal and abnormal states of the Internet, measures

how much the BGP dynamics deviate from its normalcy during
any time, and reports both the magnitude of the deviation—
i.e., the “Richter scale” of an Internet earthquake—and the
direction of the deviation.

I-seismograph is easy to use, and can measure an Internet
earthquake either during an arbitrary period from the past or
in real time. We have demonstrated its usage and shown the
results from applying I-seismograph during different monitor-
ing periods. We have also validated it, and found it is both
accurate and consistent.
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