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Abstract— Disruptive events such as large-scale power outages,if the regular operations of the Internet go awry, it can then
undersea cable cuts, or Internet worms could cause the Interre jndicate how badly the Internet got hit. Not only can we use
to deviate _from its normal state of operf_ltlon. T”hIS deviation from I-seismograph to measure the impact over a period in the
normalcy is what we refer to as the “impact” on the Internet, t duri hich a di ti ti ted to h
or an “Internet earthquake.” As the Internet is a large, complex past, during which a disruptive event 1S su_spec ed to have
moving target, to date there has been little successful researcm ~ affected the Internet, but we also can use it to measure an
how to observe and quantify the impact on the Internet, whether Internet earthquake in real time. (Note that I-seismog s
it is during specific event periods or in real time. not identify the root cause if any impact on the Internet is

In this paper, we devise an Internet seismograph, orl-  ghserved. Root cause analysis is beyond the scope of this
seismograph, to provide a “Richter scale” for the Internet. Since

routing is the most basic function of the Internet and the Border paper,) ) . ) o

Gateway Protocol (BGP) is thede facto standard inter-domain The main design idea of I-seismograph is hinged upon
routing protocol, we focus on BGP. After defining what “impact”  discovering the “normal” state of the Internet, and then mon
means with respect to BGP, we describe how I-seismographtoring a given period to measure how the Internet activity
measures the impact, exemplify its usage with several disruptive yoiate from it. Since routing is the most basic function on
events, and further validate its accuracy and consistency. We ) .
show that we can evaluate the impact on BGP during an arbitrary the Internet and the Border Gateway Protocol (BGP) is the

period, including doing so in real time. de facto standard inter-domain routing protocol, our approach
Index Terms—Internet seismograph; Internet earthquake; Bor-  uses BGP data to discover the normal and abnormal states.
der Gateway Protocol (BGP); BGP impact measurement This presents a challenge since BGP is very dynamic and BGP

data are full of outliers. Furthermore, BGP has evolvedttyea
over the years and the definition of normal is ever-changing.
The Internet has become a critical infrastructure of oui-sodo handle this dynamic nature, we have designed a two-phase
ety, yet little has been studied on how to monitor the Intease clustering method that can discover what is normal and what
a whole and how to quantify the impact that disruptive evenis abnormal over a wide time span.
may have on it. Although events such as security attaclgedar In this paper, we first present our definition of impact
scale power outages, hurricanes, undersea cable cutstterd (Sec. 1I). We then describe how I-seismograph addresses
kinds of natural disasters may cause observable distuglsdnc various challenges in order to measure the impact that BGP
the normal operation of the Internet, we know little about threceives during any period (Sec. Ill). We not only show
kind of impact each event might cause and how big it might bitie results when using I-seismograph against several dis-
the lack of such knowledge also makes it difficult to conducuptive events (Sec. IV), but also validate I-seismograph
effective network diagnosis, recovery, or other operata®mks. to make sure it possesses some key properties (Sec. V).
In fact, there is not even an established criteria for chgisgj  Limitations certainly exist with this work (Sec. VI), but we
different kinds of impacts or for quantifying what “big” or show I-seismograph is clearly different from the relatedkwvo
“small” means. (Sec. VII), and our conclusions about this work are strong
This paper aims to fill this gap. We have designed gSec. VIII).
Internet seismograph, drseismograph, to measure “Internet
earthquakes.” It not only reports the magnitude of the irhpac Il. DEFINING IMPACT
during an event period, i.e., a “Richter scale” of an Intérne
earthquake, but also characterizes the nature of the eakthq ~ We define an impact on BGP as any deviation from BGP’s
During a period when everything is normal, |-seismograph winormal profile. The deviation consists ofnaagnitude and a
simply report zero or close-to-zero impact; during a seguridirection. Assume we use a set af distinct BGP attributes
attack, a natural disaster, or some other large-scaledntid to inspect BGP,A;, A,, ---, A,. Also assume we have
defined a normal profile of BGP by identifying the normal

This material is based upon work supported by the USA NatiGeénce yglues of those attributes. At any timte if the values of
Foundation under Grant No. 0520326. Any opinions, findiagsl conclusions

or recommendations expressed in this material are those ofuthera and (1€S€ attributes of BGP arg (t), az(t), -- -, aa(t), and they
do not necessarily reflect the views of the National SciermenBation. deviate from the normal profile a& (¢t), d2(t), -+, 0n(t),

I. INTRODUCTION



. . itori jods:(m.,
the impact that BGP receives tis then a vector as follows: Monitoring Periods:(my m .. M)

i(t) =< 01(t),02(), ..., 05 (L) >. ;
If looking at the impact on BGP over a time window, such Data Collection
as during the period of an event, we can define the impact & Preprocessing
during this window, sayt1, 2], as: I(t1,t2) = fttf i(t)dt or -
t2 020 PR '3
Zi(t), depending on whethelt) is continuous or discrete. o go. 80%',3
h T
I11. DESIGN OFI-SEISMOGRAPH
Two-Phase
Having defined BGP impact as a deviation from the normal Clustering
profile of BGP, we now describe how we design I-seismograph
to measure it. Not only must it discover what the normal peofil @e- O
of BGP is, it must also be able to calculate any deviation from
the normal. S
A. Requirements and Challenges oo
I-seismograph must collect and process a very large amount Calculation
of BGP data, be able to identify what data are normal ,
and what are not, and be able to accurately quantify their l
difference. In doing so, it must consider both the spatial an Impacts during m,, m, ... m_
temporal aspects of BGP. From the space dimension, BGP is
a complex routing protocol concerning IP prefixes from the () Heavyweight mode
entire IP address space and involving BGP routers from all Monitoring Periods:(m,, m, ..., m,)
over the Internet. From the time dimension, the BGP protocol
is constantly evolving to accommodate the growth of the Normal v
Internet; accordingly, what is considered normal at oneetim Cluster Data Collection
may be abnormal at another time (and vice versa). O & Preprocessing
I-seismograph must also have good usability. Not only e o
should it be easy to use, but it should also be flexible enonigh t Abnormal e e
allow for the impact calculation for any given period. It st Clusters o o
be able to calculate the impact during a historical everthsu o i
as when the Slammer worm spread, as well as the impact that . Impact
BGP is currently experiencing. : Calculation
I-seismograph must also be consistent, stable, and reliabl [ I
Of key importance is that once it has sampkwugh BGP I
data from different periods, the definition of the normalfibeo Impacts during m., m . ..., m
of BGP should be stable; I-seismograph should output the Bt
same impact results for a given period no matter what BGP (b) Lightweight mode
data input it has for other periods. o normal databin m, monitoring period k

@ abnormal databin r, reference period k

We show how I-seismograph meets the first two require-
ments in the rest of this section, and demonstrate its consis
tency in Sec. V.

Fig. 1. Two modes of I-seismograph.
calculate the impact of the databin as well as the impachduri

B. Methodology Overview the entire period.

I-seismograph’s basic data processing unit is Bfarbin, I-seismograph employs two different modes for measuring
which is simply a summary of the values of a set of distindGP impact: the heavyweight mode and the lightweight mode.
BGP attributes over a period of one minute. The two modes are depicted in Figures 1(a) and 1(b), respec-

To measure the impact during a monitoring period, odively. The latter requires that the normal and abnormadteits
basic idea is to check every databin from that period, and de@ knowna priori, while the former uses an unsupervised
whether it is associated withreormal cluster composed of a method to discover them automatically.
set of normal databins, or abnormal cluster composed ofa  Both modes include ®ata Collection and Preprocessing
set of abnormal databins. At any point there is only one nbrmzomponent that collects BGP data and pre-processes them int
cluster but there can be multiple abnormal clusters. Thmabr distinct databins, and almpact Calculation component that
cluster represents the normalcy of BGP, and the abnormumles the normal cluster and abnormal clusters to calculate
clusters represent different types of BGP abnormalitiesceD the impact of every databin and the aggregate impact during
we know every databin’s associated cluster, we then caronitoring periods. In addition, the heavyweight mode also



Attribute Description
Announcement|| # of BGP announcements

includes aTwo-Phase Clustering Process that discovers the

databins which make up the normal cluster, and discoversyithdrawal # of BGP withdrawals
abnormal databins and groups them into one or muItipIel\fvrAdStﬁe zO; BGP UPﬁates « hd
H . . . I (0] new—pat announcements after witl rawing
abnormgl clust_ers accordlng to .thelr similarity. . an old path to the same IP prefix
The lightweight mode is suitable for real-time Internet aapift # of new-path announcements to the same IP prefix

earthquake monitoring, or quickly checking the impact N o ght:tsdim?licit Withgcrjawalsl) ) P orei
- . . . . L up of duplicate withdrawals to the same IP prefix

BGP durlng agien perlod. The heavywelght mode is slower, DupTypel # of duplicate announcements to the same IP prefix

Is

but can be used to generate the normal and abnormal cluste where all fields of the announcements are unchanged

that the lightweight mode will need. AADupType2 # of duplicate announcements to the same IP prefix
where only the AS-PATH and NEXT-HOP fields of

C. Data Collection and Preproc ng the announcements are the same

WADup # of re-announcements after withdrawing the same
1) Data Collection and Cleaning: We collect BGP data path
from two types of periodsmonitoring periods and reference LAY # of withdrawals after announcing the same path
periods. A monitoring period is a time window for which we TABLE |

want to measure the impact on BGP. It can be an arbitrary NAMES AND DESCRIPTIONS OF SELECTEBGP ATTRIBUTES.
period, say{T}, T»], that we want to monitor; or, to monitor an
event that occurred from timg to ¢,, the monitoring period 3) Data Normalization: To discover the normal profile and
may be[Ty, Ty], whereT; < t; < t3 < T5 (as we often do not different abnormal profiles of BGP, the BGP data collected fo
know the accurate values of andt,, the monitoring period this study will span a long period (the experiments that wie wi
can be noticeably larger than the real duration of an eventyeport in Sec. IV involve BGP data over eight years). On one

Every monitoring period is associated with a referendeand, we must ensure all BGP databins are comparable to each
period. As we will see later, a reference period provideather; on the other hand, BGP is known to be evolving over
reference data to help normalize BGP data as well as run titee. Therefore, we must normalize the BGP databins.
two-phase clustering process. The reference period isechos Our basic idea in normalizing any given databin is to find
to be close to the monitoring period, so the BGP data frothe baseline value of every attribute of the databin, and then
the two periods are directly comparable without worryingse the ratio of the original value of the attribute versss it
about data normalization. It also must be long enough baseline value as the normalized value of the attribute.
reflect the trend of BGP behavior at the close proximity to To find the baseline value for every attribute of a databin,
the monitoring period (we use four weeks in our experimentair first step is to find a set afeference databins for the
as we will describe in Sec. IV). While a short period maglatabin in question. Whether a databin to normalize is from a
be full of outliers, a long one should only have at most eonitoring period or its associated reference period, weys
small portion, implying the majority data of the referenceselect its reference databins from the reference periodlénnhi
period can reflect what is normal during the reference atite majority of databins from the reference period are nbrma
the monitoring periods. We also make sure a reference peri&ec. I11-C1), we must first remove outliers from the referen
is free of any known disruptive events to further lower itperiod. We run the K-Medoids (PAM) clustering algorithm
likelihood of containing too many abnormal databins. Not® partition all the databins from the reference period into
we do not require a reference period to only consist of normia¥o clusters, and remove the databins from the cluster that i
data; instead, a reference period, like any period, cahbgtil smaller—i.e., outliers. Then with the remaining databing—i.
noisy and we need to process it. those belonging to the bigger cluster, we choose thoseidatab

The BGP data we collect are BGP updates. The BG@PRat are of the same minute of the day as the databin in
updates are the conversation records between BGP routgrsstion. These databins then serve as the referencerdatabi
and are the firsthand data about BGP. We collect BGP update#s the reference databins are from the reference period and
from RIPE [1] and RouteViews [2], the two organizationdience their values are comparable to the databin to noraliz
that maintain a number of BGP collectors. We then cleame simply calculate the median of each attribute of all the
the updates by removing those that are caused by sessiefierence databins, and use that as the baseline valueefor th
resets between a BGP monitor and its peers. We borrow titribute of the databin to normalize.
algorithm described in [3] to filter out table dumps resgtin _
from BGP session resets. D. Impact Calculation

2) Data Organization: With the BGP updates from a given I-seismograph calculates impact from two levels: the inhpac
period, we convert them minute by minute into BGP databingf a single databin, and the impact during a monitoring
Because if an event has an impact on BGP, it will affect theeriod. Its input includes a normal cluster and multiple ab-
dynamics of BGP, we choose every databin’s attributes to hermal clusters. (We describe how we obtain these clusters
those that can reflect the dynamics of BGP. Based on previdnsSec. 1lI-E.) The impact of an individual databin is based
studies on BGP instability and dynamics, including thosenfr on the databin’s relation with the normal cluster. The intpac
[4], [5], we have identified ten distinct BGP attributes taluring a monitoring period checks how all the databins from
summarize every minute of BGP activities (Table ). the period deviate from the normal cluster collectively.



Every databin from a monitoring period will be assignedatabins and multiple abnormal clusters of abnormal dasabi
into either the normal cluster or one of the abnormal clgster The two-phase clustering is based on our concept of two-
In the lightweight mode, the procedure is straightforwavih  level normality: short-term normal, or s-normal; andlong-
the normal and abnormal clusters as input, I-seismograph caerm normal, or I-normal. S-normal refers to what is normal
pares every databin’s distance to the medoid of every aluste during a specific monitoring period and its associated esfes
i.e., the most centrally located databin in that cluster—anriod. L-normal refers to what is normal during a much
assigns the databin to the cluster with the nearest medwid.ldnger period. Similarly, we usg-abnormal andl-abnormal
the heavyweight mode, this is achieved through the twog@has mean short-term and long-term abnormal, respectivedy. A

clustering which we describe in Sec. IlI-E. such, the two-phase clustering process will take databéns a
We introduce the following concepts to measure the impaaput from multiple monitoring periods and their assoadiate
of a databin or the impact during a monitoring period: reference periods—which altogether spread over a long pe-

e Impact value (of a databin). It measures thelistance of 1od, and process them in two different phassbort-term

a databin from the normal. We define every databin in trdustering andlong-term clustering. o

normal cluster has an impact value 0, and here we focusThe short-term clustering serves as a filtering process; by
on those not in the normal cluster. Denote the databin @iscarding certain databins, it will ensure that every hiata

d =< di,ds, -+ ,d, >. We take the following steps: (1) from a reference period is s-normal, whereas none of the
For every attributed; (i = 1,2, ...,n) of d, we use all the databins from a monitoring period is. The long-term clustgr
databins from the normal cluster to determine their mean then takes the result from the short-term clustering asigist]

and standard deviation; of A4;. (2) We then calculate the and clusters all the databins; it will discover databing tra
difference betweed; and(x;+0,), denoted a§;. It is either [-normal and those that are not, and group them based on
d; — (i +04) if d; is greater tharu; +0;), or (u; —o;) —d;  their similarity into the normal cluster and multiple abrmad

if d; is smaller thar(y; — o). (3) We normalizey; to be in  clusters, respectively. Below we describe each phase aildet
the range of [0, 1] by dividing the maximum recorded value 1) Short-Term Clustering Phase: We take two steps in
of §;. In the followingd; always refers to a normalized valueprocessing the databins from a monitoring period and its
(4) Then finally, we use the sum of the differences for afssociated reference period: first, we process databims fro
attributes, i.e.y""" , &;, as the distance af from the normal. the reference period; second, we use the result to help ggoce
This distance is also called Manhattan distance. Since dl@tabins from the monitoring period. _

study currently uses exactly 10 BGP attributes, every impdgrocessing Databins from Reference Period: Assuming a
value will thus be between 0 and 10. reference period spans over multiple days, for each day of
e Impact direction (of a databin). It measures thelirec- databins, we run a clustering algorithm, calleclustering,

tion that a databin deviates from the normal. FollowingP see if it generates an s-normal cluster that contains only
the discussion of impact value above and using the sagm@ormal databins. If it does, we retain databins from the s-
notations, we define the impact direction of a databin usifprmal cluster and discard all other databins; otherwise, w
the deviation vectok 4y, ds, - -+, 0, >. discard the entire day. . _ .

e Impact curve (of a monitoring period). This is the plot ~ N-Clustering is a divisive hierarchical clustering algo-

of the impact values of all the databins from a monitoringithm [6]. It relies on two rules: the majority rule and the
period over time. tightness rule. It assumes that the s-normal cluster—ifér ev

o Dominant and peak impact directions (of a monitoring €Xists—must consist of more than 50% of the databins from
period). The abnormal cluster that has more databins frof€ initial input, and these databins must be tightly cleste

the monitoring period than any other abnormal clusters isAs shown in Figure 2(a), N-clustering works as follows: (1)
what we call thedominant abnormal cluster for the period. It begins with all the input databins as the root cluster, and
We define the impact direction of this cluster's medoid (i.euses K-Medoids to recursively split a cluster into two child
its most centrally located databin) as theminant impact clusters. K-Medoids is used because it creates non-oyenigp
direction for the monitoring period in question. In addition,clusters and is more resilient to outliers than other clirsge

we define the impact directions of those databins from a&gorithms such as K-Means. (2) Upon every split, it dissard
monitoring period that have a peak impact value aspi  the smaller child because it has less than 50% of the databins
impact directions of the period. Note that those databin@nd cannot be or lead to an s-normal cluster. (3) If the bigger
may or maynot belong to the dominant abnormal clusterchild meets both the majority rule and the tightness rule, it
The dominant direction represents the overall trend durifg exactly the s-normal cluster to generate! If it meets the
a monitoring period, and the peak direction indicates tHBajority rule but not the tightness rule, it will be split aga

behavior during the maximum impact. If it does not meet the majority rule, however, no s-normal
_ cluster will be found and N-clustering simply stops.
E. Two-Phase Clustering Process To determine whether or not a cluster is tight, we check its

With BGP databins from one or multiple monitoring peintra-distance and inter-distance [7]. The intra-distasbows
riods, I-seismograph in heavyweight mode includes a twbhew far apart databins within a cluster are, and the inter-
phase clustering process to discover a normal cluster ofiaor distance is the distance between a cluster and its siblirggesl
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When the intra- and inter-distance of a cluster reachkizea

or inflection point, we determine that this cluster is tightla

does not need to be further split. (We choose 20% as the

knee since the knee typically occurs when the intra-digtanc

becomes no more than 20% of the inter-distance.)

Processing Databins from Monitoring Period: Now that

databins from the reference period are all s-normal, wééurt

process the databins from the monitoring period to onlyimeta A

those that are s-abnormal. However, doing so is more difficul R .//’

than retaining s-normal databins from the reference petiod i

the latter, every time we split a cluster of databins into twd s-nomal s-abnormal

child clusters, we can discard the smaller child since thiklc °**** [ output

is guaranteed not to contain s-normal databins. Now, becal® N-clustering for processing (b) A-clustering for processing

the majority databins from the monitoring period could bﬁgg"b'”s from areference pe- databins from amonitoring period

either s-normal or s-abnormal, if we run a clustering aldponi

to split databins from the monitoring period, we do not knowwig: 2. Short-term clustering. (Each circle representsuatef, the dashed

between the bigger and the smaller child clusters, which Ogéclilehrepresent? an |nfflafeg clustelr,dar:dbg cluster withedashade contains
gher percentage ol s-abnormal data |ns.)

to discard and which to further inspect.

We overcome this difficulty by designing a new clustering -normal
algorithm, A-clustering, to discover a cluster of s-abnormal [T
databins (Fig 2(b)). Like N-clustering, it is also a divisiv
hierarchical clustering algorithm. It begins with one i@lit
cluster with all the databins from the monitoring perioddan
also uses K-Medoids to split a cluster into two new child
clusters. But, every time we split a cluster, we inflate it
with s-normal reference databins obtained earlier! Spoedigi,
every time we split a cluster with, databins, including the abnormal clusters
very initial cluster, we randomly choose more thans-
normal reference databins, and inject them to the cludtas, t Fig. 3.. Long-_term clustering. (Its input is the output frohetshort-term
creating an inflated cluster. The inflated cluster will have C“isntetﬂinsg]:igﬂfe')t)s output are the normal cluster and mulgpleormal clusters
key property:Its s-normal databins are the majority, and '
the s-abnormal databins to discover are the minority. The tering phase to derive the long-term normality, discovewr ho
majority here includes not only the injected, s-normal dmts, abnormal the databins from different monitoring periods ar
but also those from the monitoring period that are also om a long-term perspective, and group databins according
normal. As a result, after a binary split of the inflated adust to their long-term normality as well as long-term abnortyali
we will be certain that the s-abnormal databins will go tdhe long-term clustering enables us to discover a common,
the smaller child. The bigger child will not only includelong-term normality of BGP, and compare the impact from all
injected, s-normal databins, but will also act like a stigki the monitoring periods in the same context.
ball to pick up as many s-normal databins as possible fromSame as our two short-term clustering algorithms, the long-
the monitoring period. If the bigger child cannot pick up @y term clustering algorithm is also a divisive hierarchidaister-
normal databins from the monitoring period, the smalletdchiing algorithm. As shown in Figure 3, it will generate a normal
is already a cluster with all the s-abnormal databins andree @luster of long-term normal databirsd multiple abnormal
done; otherwise, we can continue to split the smaller child-elusters of long-term abnormal databins. The initial injsu&
again with s-normal reference databins injected first—umil root cluster of all the s-abnormal and s-normal databinsifro
finally find a child cluster with only s-abnormal databins. multiple pairs of monitoring and reference periods. Evénet

2) Long-Term Clustering Phase: After we use short-term we process a cluster, including the root cluster, we firstkhe
clustering to filter the databins for every monitoring pdramd whether or not the cluster is tight by calculating its intra-
its associated reference period, we can compare the dataliistance, and compare it with the intra-distance of its piare
from a monitoring period and those from its associated fefaruster. If the two intra-distances differ by less than 1%.,i
ence period, and see how abnormal the former are compacigstering helps little in further packing databins in tbigster,
to the latter. However, such abnormality is based on thetshdhe cluster is tight, and it is a leaf cluster and we do not #pli
term normality, and will not indicate the impact during @therwise, we continue to use K-Medoids to split it into two
monitoring period over a long term. It is also hard to compawhild clusters. We then begin processiegry child cluster,
the impact from different monitoring periods that may be fdbllowing the same procedure just mentioned. This recarsiv
from each other. procedure will eventually stop, creating a tree of clustdrs

To address this limitation, we introduce the long-term ¢lushe largest leaf cluster contains more than 50% of the dagabi

V\"p

|-abnormal

normal cluster



in the initial input, i.e., conforming to the majority ruléis

0.8 0.8
leaf cluster is then the normal cluster; other leaf clustees 0.7 | 0.7 +
various abnormal clusters. 8:? I 8;?, i
0.4t 0.4t
IV. IMPACT RESULTS AND ANALYSIS 8.2 i 8.2 i
In this section, we apply I-seismograph to measure th@% S 0:(1) ]
impact on BGP, i.e., the Internet earthquake, during difier
o . A 12 24 36 48 0 12 24 36 48
monitoring periods that cover a wide time span. We report the Time (4 Time (4
impact results during these periods, and analyze theienpeitt ime (Hours) ime (Hours)
and characteristics. (a) Reference: Dec. 12-14, 2008 (b) Code Red Worm: Jul. 19, 2001
A. Setup 0.8 0.8
. e 0.7 t 0.7 t
We have identified a number of events that may or may nofpg | 06 |
have disrupted the normal operation of BGP. We selecteethesi-> | 021
events from a wide time span since we want I-seismograplv.3 | 0.3 '
to apply to all times. They are Code Red worm [8], Nimda 32 | 221
worm [9], Slammer worm [10], East Coast blackout [11], © 0

Hurricane Katrina [12], LA blackout [13], Taiwan undersea 0 12 24 36 48 0 12 24 36 48
cable cut [14], Mediterranean undersea cable cut [15], and Time (Hours) Time (Hours)
Medlterranef'in undersea Cable. egain [16]. o () Nimda Worm: Sep. 18, 2001 (d) Slammer Worm: Jan. 25, 2003
We associate every event with a two-day monitoring period
that begins when the event began. l.e., we monitor an event'’s g 0.8
likely impact on BGP during a two-day period. We further 0.7 ¢ 0.7
. . . 0.6 0.6 |
associate every event with a reference period that lasts foug's | 05 |
weeks and happens exactly before the monitoring period. 8-;‘ I 8-‘31 I
. 0.2t 0.2 |
B. Results Overview N R P 01}
We measured th_e impact on _BGP dgrlng thgse_nme eyents 12 24 36 48 0 12 o4 36 48
using the heavyweight mode, with all nine monitoring pesiod Time (Hours) Time (Hours)

as the input. Our impact results include both the impact
curves and the impact directions, allowing us to analyze thfz-fé))o?'f‘"St Coast Blackout: Aug. 14, (f) LA Blackout: Sep. 11, 2005
impact that BGP receives during each monitoring period. In
the next section (Sec. V) where we evaluate the accuracy of

0.8
our methodology, we further compare the results here wih th 25 | 0.7 |
impact results obtained using the lightweight mode. 27 8:2 I

15 0.4 t
C. Impact Curves 11 8_2 :
01 f

0

Figure 4 shows the impact curves during the nine events9> |
We can categorize the impact curves into three categories: © 0

e Short-lived impacts. The curve is typically a spike, whereas

the spike may be of a high value or a low value. Except for _ . _ _

the spike, the rest impact values are close to 0. The Code Réuéo;umcane Katrina: Aug. 29(h) Taiwan Cable Cut: Dec. 26, 2006
curve (Fig 4(b)), for example, has a small spike and the peak
impact value is 0.44. The Hurricane Katrina curve (Fig 4(g)) o.
on the other hand, has a much taller spike with the pealg-
impact value reaching 2.75. 0.
e Long-lived impacts. When the impact during a period is 8-
long-lived, the impact curve can further have differennisr 0. —
It can subside from a peak value gradually over time, asd: M
shown in the Slammer curve (Fig 4(d)); or it can be bursty ;= 15 5, 36 48 0 12 24 36 48
with numerous spikes, as in the Nimda, Taiwan and Mediter-
ranean curves (Fig 4(c), 4(h) & 4(i), respectively). All iegt
curves subside toward zero as the impact diminishes, but ttﬁ'
trend can be either gradual, as shown in the Slammer and
Mediterranean curves (Fig 4(d) & 4(i)), or up-and-down, ag9. 4. Impact curves du_ring nine different monitoring pesioplus a
in the Nimda and Taiwan curves (Fig 4(c) & 4(h)). reference period. (Every period’s starting date is alsavshp

| -

12 24 36 48 12 24 36 48
Time (Hours) Time (Hours)

o
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e None or barely existent impact. In this category, the impact 0.8 0.8
during a period is almost none, as shown in both the Easg:z3 I 82% [
Coast and LA blackout impact curves (Fig 4(e) and 4(f)), 0.5 0.5 |
: . : 0.4 t 0.4 |
or not much, as shown in the Mediterranean Again curveys | 0.3 |
(Fig 4(j)). This category is the most frequently seen catggo 8% 8% i
including most reference periods. 0 0

_ o 0 12 24 36 48 12 24 36 48
D. Dominant and Peak Impact Directions Time (Hours) Time (Hours)

o

An impact direction can indicate which attributes deviatea) Taiwan Cable Cut: Dec. 26, 20qB) Mediterranean Cable Cut: Jan.
from normal. Some attributes (e.g., AADIff and WADIff) show (lightweight) 30, 2008 (lightweight)
forwarding dynamics of BGP that reflect topological changes Fig. 5.
some (e.g., WWDup and AADupTypel) show pathological
behavior due to redundant updates, and some (e.g., WAD%P)Heavyweight Mode vs. Lightweight Mode
could mean both. Readers can refer to our earlier work [4] to
see how we can analyze different BGP attributes to undetstan If [-seismograph works correctly, it should generate egquiv
BGP dynamics. (See Table | for attribute definitions). alent results whether it is used in heavyweight mode or
We first look at the dominant impact directions. We haviightweight mode. In Sec. IV we have shown impact results
found that the Slammer and Nimda worms, the Taiwan undérom the heavyweight mode for nine different monitoring
sea cable cut and the East Coast blackout all map to the sgmgods. Here, we use the Taiwan earthquake and Mediter-
dominant impact direction. The main BGP attributes dengti ranean cable cut as two example events, and compare their
from normal include Announcement, Withdrawal, Updatdémpact results from lightweight mode with those from the
AADIff, and WADIff. It shows more BGP announcementsheavyweight mode.
and withdrawals were sent during those periods (Announce-We first use the other seven events as input to I-seismograph,
ment, Withdrawal, Update), and this higher level of dynamicand run I-seismograph in heavyweight mode to generate the
is mostly due to forwarding dynamics (AADiIff and WAD- normal cluster and abnormal clusters. Then we use the Taiwan
iff). The Code Red worm, LA blackout, Mediterranean, andarthquake monitoring period as the input to I-seismograph
Mediterranean Again share another dominant impact deecti run it in lightweight mode to obtain the impact results foe th
where the main deviating BGP attributes include Announcperiod. We also do this similarly for the monitoring period
ment, Update, AADIff, and AW. The BGP dynamics is mosthassociated with the Mediterranean cable cut event.
forwarding dynamics, but there are not extra withdrawals aSFig 5 shows the results for these two monitoring periods
in above cases. The dominant impaCt direction for Katrlrfﬂ)m the ||ghtwe|ght mode. Let us look at the difference
is perhaps the most interesting, where Announce, Updafgs the Taiwan earthquake monitoring period. Between the
AADupTypel, AADIff, WADiIff, and WADup all deviate from heavyweight mode and the lightweight mode, the cumulative
normal, showing both forwarding dynamics (AADiff, WADIff, impact difference over the 48-hour period is 27.68, which
WADup) and pathological behavior (AADupTypel, WAdUp)on average is 0.010 (i.e. 27.68/(48%60)) per databin. Recal
(Note WADup could be contributing to both.) the impact value for every databin has a range from O to
Analyzing the peak impact directions over these periodsQ, this difference is clearly insignificant. The differentor
we found every peak corresponds to a much higher amowRé dominant impact direction is 0.116, which is the sum of
of BGP announcements, but a normal amount of withdrawaife difference at every one of the ten BGP attributes. This

Some peaks simply show a higher level of benign forwardingifference is also clearly small.

dynamics (the peak of Code Red, the 1st and 4th peaks oOfrhe comparison of the Mediterranean undersea cable cut is
Nimda, the 1st peak of Taiwan, the 2nd peak of Meditefore striking. Their cumulative impact difference over #g
ranean); some peaks show pathological behavior (the 2rid p&gyr period is only 0.81, i.e., 0.0003 on average per databin

of Nimda and the 1st peak of Mediterranean); and some peaks difference between the dominant impact direction is als
show both (the 3rd peak of Nimda, the peaks of Slammgg sma| as only 0.002.

a_nd Katrina, and the an_ peak.of Taiwan). These Peak impacﬁ;rom these two events we can see that we can feed past
directions show the maximum impact during a period, and P data into the heavyweight mode to generate normal

not necessarily agree with the dominant impact direction. and abnormal clusters, then switch to lightweight mode to
more easily measure impacts for future monitoring periods,
including real-time monitoring.

In this section we validate I-seismograph. In particulag, w As the correctness of the lightweight mode is hinged upon
compare its heavyweight mode against its lightweight modkee correctness of the normal and abnormal clusters geerat
to see if they lead to equivalent results, and investigate ftom the heavyweight mode, the result above also demon-
consistency to see how impact results may vary when we vatyates that the heavyweight mode is good at discovering and
the input to I-seismograph. distinguishing the normal and the abnormal.

Impact curves produced in lightweight mode.

V. VALIDATING |-SEISMOGRAPH



B. Consistency § 06
Another key property that I-seismograph must possess—if S 025
its methodology is valid—is that it must be consistent with £ 0.4
different input; namely, it must derive a normal cluster that 8 03 .
defines the same normalcy of BGP as well as the same impact é 0.2 T
on BGP for any given monitoring period. T 0.1} . — -
Using the same nine monitoring periods from Sec. IV, we § oo T - LN
design an iterative procedure to check the consistency: = 2 3offnoni5torir§g pgriod% 9
1) Pick n random permutations of the nine monitoring pe-
riods, and repeat steps 2) and 3) below for every permutation (@) Normal cluster difference
There are 362,880 different permutations, and we randomly
pick n = 40 from them. g
2) Denote the current permutation, , mys, - - - , Mag. RUN g 1500
I-seismograph in heavyweight mode nine times: first timdawit £ 1000 N
mg1 as the only monitoring period, then every following time e !
add the next monitoring period in sequence, until the laseti 3 500 i '
that includes all nine monitoring periods. S . - 1 s ..
3) Each time after adding a monitoring period, compare £ o~ - LI R R
the results from I-seismograph in terms of three consigtenc B ;’ofﬁwnﬁorir?g pe7riodi 9
metrics (see below), and record the difference. _
4) Gather all the stepwise consistency check results from 3) (b) Impact curve difference
and conduct the statistical analysis to see if I-seismdyles
the consistency property. 0 X0
We use the following three consistency metrics: E% g:g H
e Normal cluster difference. Assuming the derived normal Eg 25 1 7T
clusters from two different runs of I-seismograph afeand £2 20 .
N’, their difference is the sum of their difference along each £5 1(5) I T, X
BGP attributeA; (i = 1,2, ...,n). Assuming the mean and 8% 05 I ! T+
the standard deviation of; for N's databins are:; ando;, 0.0= = [ ! B
and those fotV’ are i, ando;, the difference ofV and N’ 2 ﬁofﬁon}r’torir?g pgriod% o
alongA; is 5 |(w; +07) = (i +0i)| + 5|(k; —0f) = (i —03)]. (c) Dominant impact direction difference
e Impact curve difference. Assuming the impact curves for a
monitoring periodty, to] arei(t) andi’(¢) from two different Fig. 6. The consistency of I-seismograph.

runs of I-seismograph, their difference‘Esif i’ (t) — i(¢)].

e Dominant impact direction difference. Assuming the dom-  Data Sources. I-seismograph currently relies on BGP col-
inant impact directions for a monitoring peridti, t,] are lectors from RouteViews and RIPE to gather BGP updates
d and d’ from two different runs of I-seismograph, theiras its input. As these collectors are in specific locations an
difference is the sum of andd”’s absolute difference along probably cannot collect all the BGP updates over the Intgrne
each attribute. they probably cannot provide I-seismograph with the most

Fig 6 shows our results. Clearly, as more monitoring periog§@mMpPrehensive view w.r.t. how BGP may be affected. One
are added, all three consistency metrics converge to 0,imgarinvestigation is to study how the observed impact changes
our results will be consistent or almost the same when ev&jen the input is from different sets of BGP collectors.

only a small number of monitoring periods are used. What does it mean when BGP receives an impact? Depend-
ing on which BGP attributes deviate from the normal state,
VI. DiscussIONS ANDOPEN ISSUES receiving an impact is not necessarily a bad thing! For exam-

Performance of |-seéismograph. The performance of I- ple, while a lot of WWDyp is pathological,. a higher ngmber
seismograph depends entirely on the mode of operation. EBGP updates could simply mean BGP is doing its job.
on a laptop computer (Intel Core 2 Duo T5550 @ 1.83 GHz, Receiving an impact during an event does not necessarily
3GB RAM), it takes less than a minute for |-seismograpfean that the impact is caused by the event, either. There
in lightweight mode to analyze the impact of a two-dagould be other things happening simultaneously that céese t
period. I-seismograph in heavyweight mode would need muttApact. While I-seismograph can report the impact that BGP
longer time, approximately 40 minutes for each two-dayqakri iS experiencing, it cannot replace root cause analysis cat wh
when processing a total of nine such periods simultaneougiactly has caused the impact.
However, I-seismograph in heavyweight mode can run offline, I-seismograph and root cause analysis. On the other hand,
and does not need to be invoked often. I-seismograph probably can facilitate root cause analygis



providing key information such as the attributes of BGP th&iow much the BGP dynamics deviate from its normalcy during
look abnormal, the pattern of the impact curve during a merioany time, and reports both the magnitude of the deviation—
and even the specific databins that map to an abnormal impaet., the “Richter scale” of an Internet earthquake—and the
It may even further help trace which autonomous systerdgection of the deviation.
or prefixes contributed or were involved when BGP experi- I-seismograph is easy to use, and can measure an Internet
ences an unusual impact. Designing an interface betweere&rthquake either during an arbitrary period from the past o
seismograph and all such usage is therefore very useful. in real time. We have demonstrated its usage and shown the
Deploying |-seismograph. We have set up |-seismographresults from applying I-seismograph during different ntoni
for real-time monitoring of Internet earthquakes, anthg periods. We have also validated it, and found it is both
we are making it available through our web sitaccurate and consistent.
(http://netsec.cs.uoregon.edu/research/rf.shtml). wifl be
interesting to see how it performs in real situations. Wd wil
be ab'e to |earn, for examp|e' hOW often we need at |east ][é] R|PE NCC, “RIPE routing information service raw data,‘tmt/data.ris.
update the normal and abnormal C_IUSterS' As we Car_] upd lrJlaie\}hg;jbregon, “Route Views Project,” http://www.rteviews.org/.
normal and abnormal clusters offline and can obtain BGI&] L. wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, Su,vsind

data in real time through services such as BGPMon [17]' we L. Zhang, “Observation and analysis of BGP behavior undesst’ in
can use I-seismograph as a smooth online monitoring tool. ,,; ~rocaings of ACM IMW, November 2002.
grap g tool. [4] J. Li, M. Guidero, Z. Wu, E. Purpus, and T. Ehrenkranz, ‘B@uting
dynamics revisitedACM SIGCOMM Computer Communication Re-
VIl. RELATED WORK view, vol. 37, no. 2, pp. 7-16, April 2007.
S : . . [5] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet nogiinstability,”
Monitoring the ro.utmg mfrgstructure, espema!l_y BGPsha ™ |Zeg/acM Trams. on Networking, vol. 6, no. 5, pp. 515-528, 1998.
largely focused on its dynamics such as instability or pathge] J. Han and M. KamberData Mining: Concepts and Techniques, 2/e.

logical behavior. Researchers have not only measured BG[7F]> XO{QiE,KaU&m?n PlﬂblisheéséZ%QSt- Vi iesing ta
. . . Lakhina, M. Crovella, an . Diot, “Mining anomaliesing traffic
dynamics (e.g., [18], [4]), but have also attempted to in®"" . e gistributions,” ikACM SIGCOMM ' 05, 2005, pp. 217-228.

vestigate their origin (e.g., [19], [20]). There are alsol$0 [8] Computer Emergency Response Team, “CERT advisory CA-2801-
such as BGPlay [21], iBGPlay [22], and LinkRank [23] to  Code Red worm exploiting buffer overflow in IIS indexing sesvDLL,"

visualize BGP dynamics. However, none of these studies gy http:”X‘(’:V"Evéie;zﬁgé?g‘gi"_g%%’lc_gézﬁ?rﬁ;jgg\;\tgm,,Jﬁtmmﬂmrg,

tools can help quantify how much the routing infrastructure ~ advisories/CA-2001-26.html, September 2001.
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. . - cert.org/advisories/CA-2003-04.html, January 2003.
certain dynamics happen. In fact, because most previous Bﬁﬁ J. Cowie. A. Ogielski, B. Premore, E. Smith, and T. Undesdidimpact

measurement work focuses on a specific period, they do not of the 2003 blackouts on Internet communications,” http:Maenesys.
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. . [12] “Hurricane Katrina chronology of events,” http://wwfid.com/storm/
Many works (e.g., [24], [11], [14]) also investigated the ef Katrina chronology.shtm.
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