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1 Introduction

One key factor that ensures smooth data delivery over the Internet and keeps
the Internet healthy is the well-being of the Internet’s inter-domain routing. In
today’s Internet, the de facto standard inter-domain routing protocol is the Bor-
der Gateway Protocol, or BGP, that keeps every BGP router updated about
which BGP router is the next hop in reaching a particular network and which
autonomous systems (AS), in order, it has to cross. Unfortunately, various ab-
normal events—such as fast-spreading worms or large-scale power outages—can
affect the normal operation of BGP. Not only can these events cause routers or
BGP sessions between routers to go down—a denial-of-service attack, but they
can also create havoc as the scale of damage rises.

It is therefore critical to investigate how such events may impact BGP and
whether or not different events can be classified into different types so that
proper actions can be taken. Some may argue that the occurrence of such events
is uncommon, and once they occur, people will easily know them anyway because
of their large-scale damage. However, even if BGP anomalies may be uncommon
today, they can have disastrous results once they occur tomorrow. It is also likely
that the increased Internet complexity and the continuing challenges to make
BGP secure and robust will cause future BGP anomalies both more common
and more damaging.

We have designed an Internet Routing Forensics framework to provide a new,
systematic approach to detecting the occurrence of abnormal events that impact
BGP [1]. Basically, we are able to apply data mining techniques to BGP data
corresponding to already-known abnormal events, discover rules about how BGP
data may differ from the norm during those events, and then further use those
rules to detect the occurrence of abnormal events from the past or in the future.

What remains unclear, then, is whether different abnormal events can be
further differentiated from each other, and if so, how. In addition to obtaining
rules to effectively capture the existence of anomalies in BGP data (BGP updates
in particular), it is important to learn whether we can also obtain rules to indicate
the disparity—as well as commonality—between, say, a large-scale power outage
and a fast-spreading worm, or between different worms.
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2 Approach

In [2], we have studied a data-driven approach to identifying the specific type
of an abnormal event without knowledge of BGP. In this paper, we devise an
approach that relies on BGP knowledge to classify different abnormal events
that impact BGP, i.e., a knowledge-driven approach. As events at the global
level tend to affect the largest number of networks over the Internet, in this
paper we focus on these events, and study how to develop accurate classification
rules to describe each individual class of them. In order to support real-time
applicability, our basis for classification is the observable impact on BGP from
abnormal events that can be measured in real time.

Knowledge-based classification requires knowledge of abnormal BGP events
before we try to obtain rules of different classes of these events. The knowledge
can be simply the class name of a particular type of events. In this case, we
can treat all classes of abnormal events at the same level and conduct i.e., flat
classification. Or, our knowledge about abnormal BGP events can be enriched
by knowing the hierarchical relationship of different classes of abnormal BGP
events, allowing us to obtain and test rules for a hierarchy of abnormal event
classes, i.e., hierarchical classification.

Our BGP data are BGP updates from the periods of the events as well as
normal periods, archived by RouteViews [3] or RIPE [4]. We calculate the per-
minute values of the most relevant attributes (selected through information gain
measure) about these BGP updates, and arrange these values in a chronological
sequence of 1-minute bins. If a 1-minute bin is known to correspond to a specific
class of abnormal event, we label it with the name of that class.

We then conduct a training process to obtain rules for different classes of
abnormal events, using the C4.5 classification algorithm [5].

In applying these rules against testing bins from a certain event period, we
use a probabilistic approach. As a rule is not typically 100% accurate, and a
testing bin may match to more than one rule for different classes, or match no
rule at all, we design an alert algorithm as follows: If more than Γ percentage of
testing bins have a probability matching class C higher than ε, we raise an alert
than an event of class C occurs. We use 40% for Γ and 0.5 for ε in this paper.

3 Case Studies

We conduct case studies on six abnormal events: Code Red worm, Nimda worm,
Slammer worm, East Coast blackout, Florida blackout, and Katrina blackout.

With flat classification, we obtain rules for seven classes at the same level:
CODERED, NIMDA, SLAMMER, EAST-COAST, FLORIDA, KATRINA, and
NORMAL. Table 1 shows the percentage of “hits” in a test set for each of the
seven classes, i.e., the γ values (Section 2). Here, the flat classification is ef-
fective in distinguishing the three worm-related classes—CODERED, NIMDA,
SLAMMER—as well as the NORMAL class. However, it is not effective in telling
the three blackout-related classes apart (we explain this toward the end of this
section).
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Table 1. γ values (percentages) for test sets in the case study using flat classification

Test set CODERED NIMDA SLAMMER EAST-COAST FLORIDA KATRINA NORMAL
Code Red worm 82.3 5.4 0.0 0.8 0.0 0.8 13.1
Nimda worm 0.8 84.6 10.8 0.0 0.0 0.0 3.8
Slammer worm 0.0 13.8 86.2 0.8 0.0 0.8 0.8
East Coast blackout 0.0 0.0 0.0 61.5 0.0 47.7 34.6
Florida blackout 0.0 0.0 0.8 0.8 36.9 0.8 49.2
Katrina blackout 0.0 0.0 0.8 0.0 7.7 0.0 40.8
Normal 0.0 0.0 0.8 4.5 7.6 4.5 51.5

Alert Threshold Γ = 25%

Table 2. γ values (percentages) for test sets in the case study using hierarchical clas-
sification at a high level

Test set WORM BLACKOUT NORMAL
Code Red worm 85.4 1.5 14.6
Nimda worm 96.2 0.8 4.6
Slammer worm 99.2 1.5 0.0
East Coast blackout 0 75.4 27.7
Florida blackout 0.77 68.5 25.4
Katrina blackout 2.31 66.9 26.9
Normal 0.0 22.0 45.5

Alert Threshold Γ = 25%

With hierarchical classification, we have two high-level classes—WORM and
BLACKOUT, three sub-classes of the WORM class—WORM.CODERED,
WORM.NIMDA and WORM.SLAMMER, and three sub-classes of the
BLACKOUT class—BLACKOUT.EAST-COAST, BLACKOUT.FLORIDA,
and BLACKOUT.KATRINA. Table 2 shows that the hierarchical classifica-
tion case study can distinguish between WORM and BLACKOUT (and also as
opposed to the NORMAL class). Moreover, the three WORM subclasses can be
distinguished (Table 3), and so can the three BLACKOUT subclasses (Table 4).

As our results above show, the hierarchical classification is more accurate
than the flat classification. It does not need to train many classes altogether, an
advantage when the difference between different classes are small. In our case
studies, as opposed to seven classes in flat classification, the hierarchical classi-
fication only needs to train two or three each time. The hierarchical structure of
classes also helps incorporate a new class more efficiently: We only need to re-
generate rules for classes at the level of the new class on a hierarchy, as opposed
to all classes in the flat classification.

The hierarchical classification is also more efficient as it checks less number of
classes. A simplified comparison is as follows: Assume that the cost of verifying
rules associated with every class is the same. In hierarchical classification, ev-
ery non-leaf class has m sub-classes, level i has mi classes, and there are a total of
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Table 3. γ values (percentages) for each test set in the case study using hierarchical
classification at a specialized level for worm-related classes

Test set WORM.CODERED WORM.NIMDA WORM.SLAMMER NORMAL
Code Red worm 66 1.2 0.6 31.5
Nimda worm 0.6 69.1 14.2 6.8
Slammer worm 0 2.3 95.4 0.8
Normal 0 2.1 0 95.1

Alert Threshold Γ = 25%

Table 4. γ values (percentages) for each test set in the case study using hierarchical
classification at a specialized level for blackout-related classes

Test set BLACKOUT.EAST-COAST BLACKOUT.FLORIDA BLACKOUT.KATRINA NORMAL
East Coast blackout 54.6 0.8 0.0 39.2
Florida blackout 0.0 30.8 0.0 58.5
Katrina blackout 0.0 4.6 40.0 52.3
Normal 13.1 4.6 6.2 64.6

Alert Threshold Γ = 25%

L levels. In flat classification, there are, in total, mL classes (equivalent to the
number of leaf classes in hierarchical classification). During hierarchical classi-
fication, we need to check rules of all m classes from level 1, find the matching
class, check rules of all its m sub-classes, and repeat until we find out which
leaf class matches the testing data. We thus need to check m×L classes. On the
other hand, during flat classification, we need to check against the rules of all
mL classes. Clearly, in most cases, m×L � mL.

4 Summary

In this paper, we proposed a knowledge-based classification approach to dis-
tinguishing abnormal events that affect BGP. We demonstrated that we can
obtain classification rules about every different abnormal event class, and use
the rules to report the occurrence of an abnormal event of a certain class. Our
approach further encompasses two classification methodologies: flat classification
and hierarchical classification, and our case studies show that the hierarchical
classification, in general, is more accurate, efficient, and scalable.

A direct implication of this work is the real-time application in detecting
BGP anomalies caused by certain events, an important but missing component
in today’s Internet. In the future, we will investigate how our studies can com-
plement other work on BGP anomalies and BGP dynamics root cause analysis,
and further explore how to quantify the impact on BGP by abnormal events.
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