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Abstract. In a hybrid peer-to-peer environment, clients can either di-
rectly download data from their server, or share data with each other.
In order to create incentives for clients to share data and decrease server
load, an effective economy model is for the server to credit those provider
clients who provide data to others and offer discounts to those recipient
clients who download data from provider clients instead of the server. To
realize this model, the proof of service between provider and recipient
clients must be provided.

We design and investigate three different schemes and compare them
in terms of scalability, effectiveness, and cost. We emphasize the issues
of lessening the number of proofs which must be provided, avoiding a
heavy load on the server, and ensuring the proof for every piece of data
served. Our study shows our enhanced public-key-based scheme to be
the most effective.

1 Introduction

Sharing data over the network can either be based on a client-server model,
or on a peer-to-peer mechanism. Interestingly, these seemingly contradictory
paradigms can actually complement each other. While a server can indepen-
dently serve data toward multiple individual clients, its clients can form a peer-
to-peer relationship to share data from the server among themselves [TR2IF],
reducing the amount of data clients must directly download from the server.

The combination of peer-to-peer and client-server paradigms creates a new,
hybrid peer-to-peer data service environment. Both a server and its clients can
potentially benefit from this environment: the server does not need to serve
every client directly, and a client may also be able to obtain data from other
peer clients that are closer than the server.

An obstacle to realizing such benefits is whether clients are willing to share
data among each other. In another words, how can a client have incentives to
provide services to its peer clients?

To answer this question, a simple but generic economy model can be intro-
duced as follows: (1) Every client will only pay the server directly, and does not
pay any other client; (2) A client who helps others (a provider client provid-
ing data, also called provider) will receive credits for assisting the server. (3) A
client who is helped by other clients (a recipient client receiving data, also called
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recipient) will pay less for the data, since it does not directly utilize as much
of the server’s resources; (4) By offloading some tasks to provider clients, the
server will serve more clients overall and thus make more profit, even though it
charges each individual client less. Note that a provider may have stronger but
indecent incentives if it violates this model and directly “sells” data illegally to
other clients. Our focus in this paper is to provide positive incentives that will
benefit everyone.

This economy model provides incentives to every entity involved, including
the server, the provider clients, and the recipient clients. However, it also faces
serious challenges with regards to the issue of trust. For instance, what if a client
masquerades as a provider client and cheats the server by claiming that it has
offered other clients a large amount of data, thus requesting credits? What if
a recipient client lies to the server by reporting that it received much less data
than it really received, or that it never received any data at all? Can a recipient
client receive data from hundreds of providers but never acknowledge the service
they provided?

In order to harden the economy model above, a trustworthy, effective proof-
of-service mechanism must be designed. With proof of service, a client can
present to its server a proof about its service to others, a server can verify
whether or not a client has indeed served others, and a recipient cannot deny,
cheat or be cheated about its reception of data from others.

In this paper, we first briefly describe related work, then illustrate the design
of three proof-of-service schemes. We also report our experimental results to show
that under this hybrid environment, effective proof of service can be implemented
with a reasonable cost.

2 Related Work

The proof of service toward a recipient could be realized by obtaining a non-
repudiable receipt about the service from the recipient. So proof of service in
this paper can be regarded as one particular case of non-repudiation service. In
fact, there have been quite a few non-repudiation schemes designed in different
contexts, focusing on non-repudiation of origin, receipt, submission, and delivery
[]. Louridas also provided guidelines for designing non-repudiation protocols [].
Verification of non-repudiation schemes have also been studied [BI7E].

Proof of service is very similar to fair exchange of information, which can be
either without or with a trusted third party (TTP) [4]. In the context of this
paper, fairness would mean for a provider to receive a proof of its service and
for a recipient to receive the desired data. (Note that unlike most fair exchange
protocols, a recipient does not need to obtain the proof about the identity of
the provider.) The most closely related to this paper is the fair exchange with
an offline TTP. While leveraging current schemes, our solution in this hybrid
environment has an important difference in that a server itself can act as a
TTP for its provider and recipient clients. This is also an inherent advantage for
enforcing fairness. Further note that the server is also the original source of the
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data that a provider offers to a recipient, bringing another advantage: If needed,
a server can verify the data without requesting them from other nodes, thus
avoiding a drawback in many TTP-based solutions, especially when the data is
of large size.

Rather than alleviating the load on a TTP as in other fair exchange solutions,
ours will focus on keeping the server lightly loaded. A big challenge in our context
is that there can be thousands of clients of a server, and every recipient client
may be related to a large number of providers. Our solution must scale as the
number of clients grows. Furthermore, in this hybrid environment clients may
collude to attempt to gain illegal proof of service.

3 Overview

Assuming every data object (such as a file) is divided into multiple blocks our
general approach is to enforce an interlocking block-by-block verification mech-
anism between every pair of provider and recipient. (“Block” in this paper is
an abstract concept which can just be an application-specific data transmission
unit.) For every block that a provider has sent to a recipient, the recipient will
verify the integrity of the block (which is through an orthogonal mechanism
that we will not cover in this paper), and send back an acknowledgment to the
provider. On the other hand, the provider will verify the acknowledgment before
providing the next block. Those verified acknowledgments can then be used to
form the proof of the service that the provider has offered to other clients, and
they must be non-repudiable and can be verified by the server.
Three severe problems arise in this basic solution and must be handled:

e Proof Explosion Problem. If a provider has to present a separate proof
for every block it served, it can be a very large number of proofs for its server
to handle. Note that there can also be a large number of providers. So, an
acknowledgment should be able to aggregate the receipts of recent blocks.

e Server Overload Problem. If a recipient has to resort to its server for
composing every non-repudiable acknowledgment, or a provider has to fall back
on the server for verifying every acknowledgment, or if they frequently seek
other help from the server, this will not be a scalable solution. Especially since
a large number of clients may be sharing a single server.

e Last Block Problem. After a recipient receives the last block it needs from a
provider, the recipient could deliberately decide not to send an acknowledgment
for this last block. Note that this last block is not necessarily the last block of a
data object. Except for some simple cases (such as providing the last block of
a data object), the provider has no way of knowing whether a particular block
will be a recipient’s last block to request.

In the following, we first introduce a simple solution based on shared secret
key cryptography. It is not scalable as it heavily relies on the server as an inline
TTP. Then we introduce the second solution based on public key cryptography,
which scales in that the server will be used as an offline TTP. But, while this
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solution normally is effective, in some circumstances the last block problem is a
concern, and we present a third solution.

We assume each client first contacts a server to establish a secure SSL channel
between them. This is done by running the SSL protocol [d], which also helps the
client obtain a certificate of the server’s public key, and set up a secret key shared
between the client and the server. The client then sends its request regarding
particular data objects. While the server can directly serve the data, in this
paper we assume that the server will issue a ticket to the client to authorize the
client to retrieve data from other provider clients. The client then contacts one
or more providers and presents its ticket to them. (A more detailed procedure
on how clients find each other is out of the scope of this paper.) After verifying
the ticket, a provider begins providing data to the client.

4 Shared-Secret-Key-Based Proof of Service

In this scheme, the server acts as an inline TTP. When a recipient sends back
an acknowledgment for a block it received from a provider, the acknowledgment
is protected using the secret key shared between the recipient and the server.
The provider is not able to decrypt the acknowledgment, and it forwards the
acknowledgment to the server. The server then verifies it and returns the verifi-
cation result to the provider.

If the acknowledgment is verified as authentic, the server will also use it as
a proof that the provider just sent a block to the recipient. Furthermore, only
when the acknowledgment is verified as authentic will the provider go ahead and
provide the next block to the recipient.

Figure [I] shows the procedure of this scheme. The recipient r has received
block b;. It verifies the integrity of the block, sends an acknowledgment ack(b;)
to the provider p, and requests the next block b;41. The acknowledgment is in
the following format:

k-{pid, rid, oid, i, timestamp} (1)

(® verifying
ack(b;)

@ @b;

@aCk(bi), req(bi.;)
@ b[+]

Fig. 1. Shared-secret-key-based proof of service
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where k,. is the shared secret key between r and the server S for signing the
acknowledgment; pid and rid are the ids of p and r, respectively; oid and i
specifies which blocks of which data object are being acknowledged; timestamp
records when the request for b; was issued.

This scheme is subject to the proof explosion problem, since a separate proof
must be presented for every block that a provider served. It is also subject to
the server overload problem in that the server has to verify the authenticity of
every acknowledgment resulting from the interlocking verification process, and
every block that a recipient receives will lead to a new acknowledgment. Lastly,
it also does not address the last block problem.

5 Public-Key-Based Proof of Service

In this solution, when a recipient wants to receive data from a provider, it will not
only present a ticket, which is prepared by the server to authorize the recipient
to receive data from other providers, but it will also present the certificate of its
own public key. When a recipient receives a data block, it will then apply the
same procedure as in Section ] except that it will (1) sign the acknowledgment
using its private key, and (2) include a sack field instead of the index of the most
recently received block. The following shows the format of the acknowledgment:

pr{pid, rid, oid, sack, timestamp} (2)

where p, is the private key of the recipient client r.

The sack field solves the proof explosion problem. It is in a format similar to
the SACK options for the TCP protocol [I0]. It can express all the blocks that
the recipient has received from the provider, instead of just the most recent one.
For example, it can be [0 — 56,58 — 99] to confirm the reception of the first 100
blocks of a data object except for the block 57. This way, a provider only needs
to keep the most recent—thus also the most complete—acknowledgment as the
proof of its service to indicate all the blocks it provided.

Figure [ shows an example when r acknowledges its receipt of blocks up to
block b;, and requests the next block b;11. Different from the shared-secret-key-
based solution, here the provider verifies the acknowledgment by itself before
sending block b; 1. Recall it has the public key of the recipient and is thus able
to verify it. Therefore, this solution also solves the server overload problem.

(D ticket + cert (Pr)

QY

Back(by, req (b))
@ verifying +h

ack(b;) @ biy,

Fig. 2. Public-key-based proof of service
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6 Enhanced Public-Key-Based Proof of Service

6.1 The Basic Idea and Its Issues

Neither of the above two solutions solves the problem of last block cheating. We
now introduce a block-key-based mechanism. If a block is not the last block, we
can just use the solution from Section [f} Otherwise, if the provider knows that
the ith block b; from a data object oid is the last block to send to a recipient
rid, it will generate a secret block key kj:

kl = f(pid,rid, oid, i, k;) (3)

where f is a one-way hash function and &, is the secret key shared between the
provider and the server. Then, as shown in Figure [ instead of delivering the
original block b; to the recipient, the provider will encrypt the block with this
block key, and send the encrypted block to the recipient. Upon the receipt of the
encrypted block, the recipient will acknowledge its receipt of this block, using
the same format as in Equation (). Here, the recipient must acknowledge the
receipt of this block in order to receive the block key kI to decrypt kI {b;}.
There are still a few issues to consider, however, given that both the provider
and the recipient may be dishonest. First, this solution assumes that the provider
knows block b; is the last block that the recipient wants to receive. Second, this
solution allows a provider to obtain an acknowledgment of the last block even
if the provider did not provide the recipient with a correctly encrypted block or
an authentic block key. Third, it is possible that the server may be overloaded
with too many (honest or dishonest) requests related to the last block issues—for
example, what if a recipient complains to the server frequently that it did not
receive the block key even if it did? We address these issues in the following.

6.2 Determine the Last Block

The provider can treat every block as potentially the last block that a recipient
would receive from it, and apply to every block the approach shown in Figure Bl
Doing so, the provider will obtain the proof of its service of every block, including
the last block. In case the provider is certain that the current data block is not
the last block (such as via out-of-band knowledge), or if the provider does not
mind missing the proof of just one last block, it can simply apply the original
public-key-based proof-of-service scheme.

(D ticket + cert( Pr)

@ @ ki{bi)

o @aCk(k;{ b,-}), req (bi..p)
(@ verifying

ack(ki{b;}) G kL, kv {biss} (® decrypt ki { b;}
to obtain b;

Fig. 3. Enhanced public-key-based proof of service
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6.3 Ensure the Correctness of Encrypted Block

For acknowledging an encrypted block kI{b;}, we enhance Equation (@) to
also include the digest (using a one-way hash function) of kI{b;}, denoted as
d(kT{b;}), in the acknowledgment ack(k}{b;}):

pr{pid, rid, oid, sack, timestamp, d(k]{b;})}. (4)

The provider p will verify ack(k7{b;}), including the digest, to decide whether
or not to provide the block key k] to the recipient r. This way, when p presents
the server this acknowledgment as the proof of its service, the server can verify
whether r received the correctly encrypted last block, i.e., correct block b; en-
crypted using correct block key k7. Note that the server can use Equation (@)
to calculate the correct block key k.

Also, after r receives kI, it can decrypt k7 {b;} to obtain b;. Furthermore,
it can verify the integrity of b;. Only if b; is integral will r continue with p
for the next block. In case b; appears to be corrupted, r knows that p cannot
use ack(k]{b;}) as a proof of its service. r will not send ack(ky, {biy1}) to p;
otherwise p can use it as the proof of its service, hiding the corrupted delivery
of block b;. The recipient r can either request b; from p again, or decide not to
continue with p.

Unfortunately, this stop-and-go process can have poor performance. To rem-
edy this, we require every acknowledgment to include digests of last m encrypted
blocks, and the server will verify whether the recipient received the correctly en-
crypted blocks for last m blocks (instead of just last one block). In step 5 of
Figure 3] upon the receipt of ki and the encrypted block b;y1 (i.e. ki {bis1}),
r will first immediately acknowledge the receipt of b;41, then invoke a separate
process for decrypting block b; and verifying its integrity. This process can be
repeated for the next m — 1 blocks, greatly improving the performance; in case
that block b; is discovered corrupted, p will still not be able to have a proof that
it successfully delivered b;—since the proof must show correct digests of all last
m blocks. Here, we want to select m carefully such that it is small enough to be
scalable, but large enough to keep a high level of parallelism.

6.4 Ensure the Correctness and Availability of Block Key

To ensure the correctness of a block key, the provider p can sign it with its
private key p,, replacing k] in step 5 of Figure [d with a protected block key:

pp{pid, rid, oid, i, kj }. (5)

The recipient r can decrypt it to obtain k. If r cannot decrypt k7 {b;} correctly,
it can forward the protected block key to the server so that the server can verify
if p sent a wrong block key. In case p did not provide a block key at all (i.e., no
step 5 in Figure[d), r can retrieve it by asking the server to apply Equation (@)
to calculate the block key.
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6.5 Keep Server Lightly Loaded

Throughout the whole design, the server’s load has been kept very light. A
provider can wait until the end of serving a recipient to present a single proof
of its service toward this client. Also, in addition to obtaining the ticket and
certificate at the beginning, the only type of query that a recipient can issue
is to verify or retrieve the block key of a block it receives from a provider (see
Section [64]). Because there can only be one last block between a recipient and
a provider, this kind of query happens only once per recipient-provider pair.

7 Experimental Results

We have implemented a framework to support peer-to-peer data sharing among
clients of a common server, and used this framework to evaluate the cost and
performance when enforcing the public-key-based proof of service solution and
its enhanced version, which we will denote as P and P,, respectively. (Note that
we do not evaluate the shared-secret-key-based solution since it is not feasible.)
In addition, our framework can be configured to enforce a subset of three or-
thogonal security functions: client authentication, data integrity protection, and
data confidentiality protection, denoted as A, I, C, respectively.

We measured several metrics with and without proof of service for compar-
isons. We compared the scenarios AI vs. AIP and AIP,, and the scenarios
AIC vs. AICP and AICP,.. (Note that P or P, always needs to be enforced
together with A and I.) Cryptography parameters are: 112-bit 3DES for secret
key, 1024-bit RSA for public key, and MD5 for message digest.

7.1 Server Capacity

Server capacity is defined as the number of client requests that a server can
serve per time unit. Measuring the server capacity before and after applying a
proof-of-service solution can test whether the solution would significantly impact
the server. For both P and P,, our design requires a server to perform the same
operations; therefore, the server capacity will be exactly the same. We measured
the server capacity of an iBook machine running MacOS X with a 700 MHz
processor and 384 MB of memory. While the server capacity for the Al scenario
is 360 requests per minute on average, it decreases by 93 (26%) to be 267 after
adding P or P.. At the same time, a 23% decrease (330 to 253 requests per
minute) occurs when enforcing P or P, on top of the AIC scenario.

7.2 File Downloading Time

File downloading time is the latency from the time that a client establishes a
connection with a server for requesting a file to the time that it receives the whole
file. It consists of a startup latency, which is the time that the client spends in
handshaking with the server before sending out a request for the first block of
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a file, and data transferring time, which is the rest of file downloading time.
Measuring file downloading time with and without P or P, can indicate how a
user may feel the impact of P or P, when downloading a file.

In our experiment, we use the same server as in our server capacity measure-
ment, and every client machine (either provider or recipient) is a Dell Latitude
D810 machine running Linux 2.6.9-ck3 with a 1.73 GHz Pentium M processor
and 512 MB of memory. We connect all of them on an isolated subnet to avoid
background noise so that our comparison of file downloading times under differ-
ent scenarios can be accurate and consistent.

Regarding the startup latency with and without proof of service, adding P or
P, on top of the AI scenario will increase the startup latency by approximately
0.2 and 0.3 seconds, respectively. The results for the AIC' scenario is similar.
Both are acceptable to users downloading files.
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Fig. 4. Data transferring time (with 95% confidence interval)

We now analyze the data transferring time with and without proof of service.
Since in our design whether or not the data is encrypted does not affect the data
transferring time, we only look at scenarios without confidentiality. Furthermore,
our design makes P and P, have the same amount of data transferring time—
in P,., block encryption and decryption operations at a provider or a recipient
are conducted out of band, and is not part of the data transferring time. As a
result, we can just compare the data transferring times between the AI and AIP
scenarios. Figure Bl shows the results. We can see that for each scenario, while
the size of a file doubles, so does the data transferring time. Furthermore, for
the same file size, adding P will increase the data transferring time, but within
a reasonable range. For instance, adding proof of service can increase the data
transferring time of a 4 MB file from 5.8 seconds to 7.7 seconds.
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8 Conclusions

If clients of a server share data among themselves, great benefits can be obtained
in that the server will have a reduced load and each client can choose close peer
clients to obtain data. With such a hybrid peer-to-peer environment, an economy
model can further be defined to create incentives for peer-level sharing: provider
clients can gain credits, recipient clients can pay less, and the server can still
make profit as it can afford to serve a larger population.

However, in order for the above to be true, a critical prerequisite is to enable
providers to obtain non-repudiable, trustworthy proofs of the service they have
given recipient clients. In this paper, we presented three different proof-of-service
schemes—a shared-secret-key-based scheme, a public-key-based scheme, and an
enhanced public-key-based scheme. While the shared-secret-key-based scheme
is not scalable, we have shown that with the latter two schemes, a server will
only be lightly loaded. The enhanced version can further ensure that a provider
can obtain the proof for all the data it served. Experimental results have also
shown that the final solution is effective and can be applicable for real usage
with a reasonable cost. Future work of this research includes obtaining a formal
verification of the protocol and conducting further studies on actual deployment.
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