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Abstract

Open architecture networks provide applications with fine-grained control over network elements. With this control

comes the risk of misuse and new challenges to security beyond those present in conventional networks. One particular

security requirement is the ability of applications to protect the secrecy and integrity of transmitted data while still

allowing trusted active elements within the network to operate on that data.

This paper describes mechanisms for identifying trusted nodes within a network and securely deploying adaptation

instructions to those nodes while preventing unauthorized access and modification of application data. Promising

experimental results of our implementation within the Conductor adaptation framework will also be presented, sug-

gesting that such features can be incorporated into real networks. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

As computer networks become more heteroge-
neous, applications must increasingly deal with
suboptimal network conditions. Applications can
use open network architectures to provide service
tailored to network conditions, adapting the pro-
tocols used and perhaps altering the actual data
sent. Services such as Protocol Boosters [8] and
Panda [23] allow adaptation to occur at nodes
within the network. Unfortunately, this added
flexibility and control could be used by attackers
to damage or destroy communications, unless the
open architecture is designed to prevent such
misuse.

One security issue is protecting the open archi-
tecture elements from the user. However, protect-
ing the secrecy and integrity of a user’s data from
network elements that might be untrustworthy
is just as important. The existing solution to this
problem is to encrypt the data end to end, but
many useful adaptations, like removal of color
from a video stream, require access to unencrypted
data. Link-level encryption can protect the data
stream while it is on the wire, but this approach
allows any system on the end of the link unlimited
access to the data, without any control by the user.
A good solution should give the user the power to
select which of those elements will be allowed to
view or modify data in plaintext form.
Consider a home with many Internet-capable

devices connected to a wireless LAN. A router
connects that LAN to the Internet by way of a
DSL link. A user on the wireless LAN wishes to
obtain his bank balance over the Web. Clearly
this data should be encrypted, particularly for
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transmission over the Internet and the wireless
LAN. At the same time, other users on the LAN
are downloading software, also using Web proto-
cols. If short jobs were given priority, the inter-
active traffic would not be swamped by the bulk
transmissions. Unfortunately, determining the ex-
pected length of the data stream requires access to
the stream (since it is encoded in the Content-
Length header field). Other possible adaptations,
like reducing the resolution of images, would also
require data access. While an active node provided
by the ISP may be trusted to perform such adap-
tations, many of the other nodes on the path be-
tween the client and server need not be trusted.
One way to protect data from unauthorized

modification within the network is through the use
of a series of signatures [27]. By digitally signing
a transmitted packet and re-signing subsequent
versions of that packet, it is possible for the re-
ceiving application to determine the source of the
data and any modifications to the data. While this
approach detects unauthorized modifications to
data packets, providing signatures on individual
packets is expensive and does not provide secrecy.
The common alternative of end-to-end encryption,
mentioned earlier, provides the desired secrecy and
data integrity. However, by ensuring access to only
the endpoints of the connection, most useful ad-
aptations are disallowed. Link-level encryption
protects both integrity and secrecy across all net-
work links, while allowing adaptation to occur on
any node along the data path. However, every
node in the path is implicitly trusted. A node that
is not trustworthy could easily siphon the data
stream or alter it in an unauthorized manner. In
addition, link-level encryption requires decryption
and re-encryption at every node.
Virtual link encryption provides a compromise

between end-to-end and link-level encryption. A
trusted subset of network nodes is chosen, and
encrypted data is transmitted between those nodes.
The trusted nodes can arbitrarily adapt the unen-
crypted data. Decryption and re-encryption occur
only where adaptation is desired, thereby reducing
overhead.
Providing secure adaptation with the support of

virtual link encryption requires that three activities
be performed securely: selection of trusted nodes,

selection and deployment of appropriate adaptive
algorithms, and key distribution.
The endpoints of a connection can be implicitly

trusted, since they already have full control over
the data stream. Either users trust no other nodes
in the network (in which case they should encrypt
end to end), or they have some way to tell which
nodes are trustworthy. In the latter case, authen-
tication is required to prevent an untrustworthy
node from masquerading as a trustworthy one.
Since there is no ubiquitous infrastructure for
authentication and because different applications
may require different strengths of authentication,
no single authentication mechanism will suffice.
Instead, a pluggable authentication architecture is
needed, allowing the user to determine an appro-
priate authentication mechanism for each stream.
Some streams may require no authentication.
Others may make use of an existing Kerberos
or public key infrastructure. Because multiple au-
thentication mechanisms are supported, the system
must ensure that each node uses an acceptable
mechanism to authenticate other nodes. The re-
sulting chicken-and-egg problem of what mecha-
nism to use to establish one or more acceptable
authentication mechanisms must also be solved.
The decision of which adaptive algorithms to

deploy and where to deploy them is based on in-
formation such as link characteristics, user pre-
ferences, and available node resources. Attackers
could force unnecessary or even undesirable ad-
aptations by falsifying information about condi-
tions, or they could illicitly alter a good plan while
it was being distributed to the trusted nodes. The
process of gathering this information, analyzing it,
and distributing the result must be protected.
Thus, source information and resulting instruc-
tions must be authenticated, ensuring origination
at a trusted node, and analysis must occur on a
trusted node.
Finally, before any user data can flow, session

keys must be securely distributed to those trusted
nodes on which adaptation will be performed.
These session keys provide a shared secret, allow-
ing data to be encrypted for transmission between
each pair of adjacent trusted nodes, the two end-
points of a virtual link. Untrusted nodes will see
only encrypted data.
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This paper will describe an implementation of
virtual link encryption to protect the Conductor
distributed adaptation service. The implementa-
tion includes an extensible authentication service
with several sample authentication modules, a se-
cured mechanism for selecting adaptations, and
a facility for secure key distribution. We provide
measurements of the overheads involved in con-
nection setup, demonstrating the usability of this
approach. Finally, we describe several extensions
to the basic mechanism that allow broader appli-
cability at the cost of somewhat higher overhead.

2. Conductor—a distributed adaptation service

We built the Conductor adaptation service to
demonstrate the value of distributed deployment
of adaptive agents into a network. The portion of
the Conductor design relevant to security is de-
scribed below. Additional detail and performance
results can be found in Ref. [28].
Conductor enables distributed adaptation by

providing an adaptation framework at various
nodes throughout the network. Conductor con-
sists of essentially two parts: adaptors that operate
on a data stream and a runtime environment that
supports adaptors. Adaptors have the ability to
view and modify the data stream in transit.
Adaptors are frequently paired, allowing the data
stream to be converted to an easily transmitted
format and then back to the original format. For
instance, a pair of adaptors might compress and
then decompress a data stream for transmission
across a low-bandwidth link, or encrypt and then
decrypt a data stream for transmission across
insecure links or nodes. Adaptations can be com-
bined as needed to satisfy multiple user require-
ments.
The Conductor runtime environment is meant

to be deployed on various nodes throughout the
network to provide points of adaptation. A given
data stream is intercepted by Conductor and
routed through the Conductor-enabled nodes
between the client and server. The framework is
responsible for monitoring network and node
conditions, routing the data stream, determining
which adaptors to deploy for a particular data

stream, inserting the selected adaptors into a data
stream, and providing any resources required by
an adaptor.
Each node that a data flow passes through may

adapt the data based purely on local conditions,
but such an ad hoc adaptation may not be ap-
propriate. For instance, a pair of compression and
decompression adaptors may be deployed around
a low-bandwidth link, but if there is another low-
bandwidth link upstream, end-to-end compression
is better. Such compression, however, might im-
pede other content-based adaptations. Adaptation
planning is necessary to ensure a set of proper and
compatible adaptations are applied at appropriate
locations [24].
Conductor provides a planning infrastructure

to determine which adaptors to deploy and where
to deploy them (a planning process with four
Conductor-enabled nodes is shown in Fig. 1).
When a new data connection is created, Conduc-
tor discovers a set of Conductor-enabled nodes
along the path between the client and the server.
These nodes are the potential adaptation points
for this connection. Each of these nodes forwards
its identity and planning-related information, such
as local disk and CPU resources and network
conditions, along the path toward one Conductor-
enabled endpoint node. This endpoint, having re-
ceived the planning information from every node,
can now execute a planning algorithm and gen-
erate a plan. The plan, which describes a set
of adaptors to deploy on each node, is then for-
warded to each node along the path. Once the plan

Fig. 1. Planning process in Conductor.
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is delivered to all nodes, adaptors can be deployed,
and data can begin to flow.
Of the Conductor-enabled nodes involved in a

given connection, the endpoints have particular
importance. The Conductor service on the client-
side Conductor-enabled node is called the initia-
tor, since the connection is initiated from this side.
The final decision concerning which adaptations
to employ at each node is made on the opposite
server-side Conductor-enabled endpoint, which is
known as the planner.

3. Design of conductor security

For a given connection, both the client and the
server are initially assumed to be running on top of
a Conductor-enabled node; thus the client is col-
located with the initiator, and the server is collo-
cated with the planner. In the discussions that
follow, client and initiator are interchangeable,
and so are server and planner. We will relax this
assumption in Section 8.
Conductor provides an extensible architecture

for securing both the planning process and the
user’s data. For a given connection, each Con-
ductor-enabled node relies on a security box to
authenticate itself to others or vice versa, protect
planning messages, distribute keys for data stream
secrecy, prevent replay attacks, etc. A variety of
security schemes is possible. Each security box
implements a particular security scheme. Con-
ductor provides a mechanism to ensure that the
right security box is instantiated.

3.1. Security via a security box

3.1.1. Security box functionalities
A security box can be viewed as a security

monitor that is responsible for node authentica-
tion, protection of the planning process, and ses-
sion key distribution. A security box allows a node
to authenticate other nodes or authenticate itself
to another node. A security box protects planning
by ensuring that only authentic planning infor-
mation from authorized nodes can influence plan
formulation, and only an authentic plan can be
deployed. Finally, a security box can aid in data

protection by enabling session key distribution.
We will further discuss these functionalities in the
following sections.
A security box can also be viewed as a message

filter (Fig. 2). All planning-related messages sent
and received must pass through the security box.
Incoming messages are accepted or rejected based
on trust and authenticity. Outgoing messages are
inspected, enhanced with additional authentica-
tion information, and perhaps encrypted.
Many security box implementations are pos-

sible, each providing a different level of node
authentication, message verification, replay pre-
vention, and possibly secrecy. The level of pro-
tection provided depends entirely on the particular
security box implementation.
This architecture allows a user to choose a

specific security scheme based on the desired level
of protection. Flexibility is necessary because there
is no ubiquitous authentication mechanism, nor is
one level of trust appropriate for all situations.
We have constructed several security boxes

based on public key cryptography. They will be
discussed in detail in Section 4. Other crypto-
graphic mechanisms can also be used to implement
different security boxes.

3.1.2. Node authentication
Authentication is fundamental to Conductor

security. Only trusted nodes can participate in
planning and access the plaintext data stream.
To authenticate one Conductor-enabled node

to another, a security box can include authenti-
cation information on behalf of the sender. When
authentication information is received, the security
box on the receiving node can invoke its authen-

Fig. 2. Security box in Conductor.
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ticating functionality to determine whether a node
is trusted.
While many security box implementations are

possible, each security box may enforce a different
authentication mechanism. Each authentication
mechanism may have a different specification for
what cryptographic algorithm to use and how it
should be employed. Each node sends its own
authentication information toward the planner.
Nodes A, B, and C in Fig. 3 will send their au-
thentication information to planner D in the
same way that planning information was sent.
The planner can then authenticate the node. The
planner sends its own authentication information
in the reverse direction in the same manner as plan
distribution, allowing every node to authenticate
the planner.

3.1.3. Planning process protection
Each connection’s planning process must be

protected, including node selection at the planner
node and plan deployment at other Conductor-
enabled nodes. Each node provides authenticating
information for planning information, typically a

digital signature (Fig. 3). The planner node selects
those nodes it trusts, authenticates their incoming
planning information, formulates a plan, and dis-
tributes the plan along the reverse path. The
planner node also provides authenticating infor-
mation for the plan. During plan distribution,
each node verifies the authenticity of the incoming
plan before it is instantiated. Planning messages
can also be encrypted via the security box to
provide secrecy.
Conductor supports a trust management mech-

anism. At the planner node, if a node is trusted to
participate in the planning process according to
the trust management mechanism, and its plan-
ning information is correctly authenticated, its
planning information can be trusted and used in
forming a plan. Similarly, if an intermediate node
trusts the planner node according to the trust
management mechanism, and can authenticate the
plan, the plan can be accepted. This trust man-
agement system will be discussed in Section 3.4.
In the above discussion the planner node has

full control of which nodes can be selected. The
initiator can later reject a plan, but not otherwise
influence node selection. This could be improved
by assigning more control power to the initiator.
For instance, after the planner node selects one
or more nodes, it can negotiate with the initiator
to reach a final agreement on which nodes to
finally select. However, the improvement would be
achieved at the price of more coordination cost.

3.1.4. Data stream protection
If the data stream of a connection needs to be

encrypted to protect the communication secrecy or
integrity between the application client and the
server (perhaps only when crossing a dangerous
area), or to protect the data from unauthorized
adaptation, the planner can select encryption and
matching decryption adaptors to deploy at trusted
nodes. The planner may have several encryption/
decryption pairs to choose from based on the de-
sired encryption strength. Each of these pairs of
adaptors protects the data stream across one vir-
tual link.
Session keys for data encryption and decryption

can be generated on the planner node, which
is implicitly trusted. Typically only one key is

Fig. 3. Secured planning process in Conductor. The security

scheme is dynamically selected.
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required per type of encryption/decryption adap-
tor deployed for each session. The planner needs
to distribute the keys to those nodes where the
keys are needed.
Node authentication is the fundamental basis

for key distribution. Only trusted nodes should
receive session keys, so the session key must be
encrypted in a form that only the target can de-
crypt. Also, the receiver must be able to determine
that the keys originated from a trusted distribution
source, so the planner must provide authentication
information for a session key in the same way it
would for a plan (a digital signature).
The planner may trust some Conductor-enabled

nodes to adapt plaintext data while others nodes
may only be given access to encrypted text. In the
first case, the planner will distribute a session key
to the node along with an adaptation plan. In the
second case, the planner may still distribute an
adaptation plan but no session key.

3.2. Dynamic selection of security schemes

Conductor allows multiple pluggable security
schemes. Since there is no ubiquitous security
scheme, and each connection may require a dif-
ferent level of protection, Conductor allows many
security box implementations. This flexibility
makes it easy to add a new security scheme with a
new security box implementation. For one con-
nection between an application client and a server,
all involved Conductor-enabled nodes use one
particular security scheme. For another connec-
tion, a different security scheme may be employed.
Each Conductor-enabled node may get involved in
more than one connection, and for each connec-
tion it can employ a different scheme.
Conductor ensures that all Conductor-enabled

nodes involved in a connection use the same se-
curity scheme. At the beginning of a planning
process, the user selects an appropriate security
scheme (or one is selected on his behalf) at the
initiator. A security scheme selector message is then
forwarded toward the opposite end point, the
planner node. This message tells which security
scheme should be employed for this data connec-
tion. Each selector message can also include pa-
rameters specific to a particular security scheme,

such as the names of the desired public key en-
cryption algorithm, message digest algorithm,
signature algorithm, and so forth. After receiving
the selector message, each intermediate Conduc-
tor-enabled node will load the appropriate secu-
rity box and forward the message to the next
Conductor-enabled node on the path toward the
planner. As a result, each Conductor-enabled node
on the path, including the planner, will enforce the
corresponding security scheme for this connection.
Furthermore, Conductor provides a mechanism

to ensure that every node of a connection has
indeed used the same security scheme throughout
the planning process. Protection of scheme selec-
tion is done via the security box itself. When a
security scheme selector message is forwarded to-
ward the planner, it is unprotected. However, the
planner node, as the last node to receive the se-
lector message, sends back an indication of the
security scheme that it has used. This time the in-
formation is protected (typically signed) by the
security box (Fig. 3). Each Conductor-enabled
node, including the initiator, can securely deter-
mine whether the planner has used the expected
security scheme. If the planner has used a different
scheme (perhaps through subversion of the scheme
selector during transmission), this will be caught
by the initiator, if not earlier. If other nodes have
used a different scheme, they will not be authen-
ticated by the planner and will therefore not be
selected in the plan.
When a connection crosses multiple domains,

each of which supports different security mecha-
nisms, it may not always be possible to select one
common security scheme. We address this issue in
Section 7.

3.3. Security roles of the initiator and the planner

Conductor is careful in dividing tasks between
the initiator and the planner. Because of their full
access to the data stream, both the initiator and
the planner of a connection are trusted. In prin-
ciple, either of them can be responsible for the
security scheme selection, session key generation,
or a variety of other tasks. Or these two endpoints
could negotiate for these tasks. However, since
Conductor is frequently deployed where network
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conditions are poor, it attempts to minimize data
transfer. Conductor also assumes as little prior
coordination between nodes as possible.
Since the planning process starts at the initiator

of a connection, it is most economical if the initi-
ator is responsible for selecting security schemes. A
security scheme selector message can be delivered
to the planner node along the same route as the
planning information. On the other hand, since the
planner has authentication information for all
nodes, it is in the best position to generate and
distribute session keys.

3.4. Establishing trust in intermediate nodes

After a planner authenticates an intermediate
node, it must decide whether to authorize that
node to adapt the data stream. Similarly, an in-
termediate node also needs to determine whether
to trust the plan from a particular planner node.
Here we focus on the former: that is, establishing a
planner’s trust of intermediate nodes.
Conductor can support a variety of authoriza-

tion mechanisms. In a simple form, each Con-
ductor-enabled node can keep a static list of nodes
that it trusts. At the planner node, this list specifies
those nodes that the planner trusts to adapt the
data stream arbitrarily. Nodes not on the list are
not trusted for any adaptation.
More flexible and dynamic models of trust can

be enforced, typically by leveraging an automated
trust management system. KeyNote is one such
system [3]. It provides a mechanism to determine
whether an action (described by an action attribute
set) by a principal (typically expressed as the
holder of a particular cryptography key) complies
to a security policy (expressed by policy and cre-
dential assertions) by querying a general-purpose
compliance checker.
KeyNote can be used to specify various trust

relationships. For instance, some nodes are au-
thorized by a planner to provide input to the
planning process and to have full access to the
data (and thus adapt plaintext data arbitrarily).
Other nodes may be authorized to participate in
the planning process but may not be allowed to see
the plaintext data stream, instead adapting only
encrypted data. Still other nodes may not be au-

thorized even to provide input to the planning
process. Various degrees of trust may also be pos-
sible. For instance, selective encryption of a
layered encoding may be employed to allow partial
access to (and adaptation of) plaintext data.
In order for Conductor to employ KeyNote,

each Conductor-enabled node will have to enforce
its specific security policy, describe those actions to
check, and interact with the compliance checker.
The security policy itself must be specified by the
user. Several plausible mechanisms for designing
policies are given below:

• The user specifies certain companies (ISPs,
ASPs, content providers, etc.) that are trusted.
Since any IP address is associated with a domain
that is associated with a company, such a policy
can be applied.

• The user assumes that bonded companies will
have a set of Conductor nodes throughout the
network, and the user will have a list of those
companies.

• The user shares with his friends, lists of nodes
that can be trusted.

3.5. Security issues not addressed

We do not intend to address issues of denial of
service in this work. If a Conductor-enabled node
attempts to thwart the planning process by refu-
sing to forward control information to the planner,
the system will fail. However, this result is the
same as a router refusing to forward data in any
stream. This issue is, therefore, beyond the scope
of this research. The safety of adaptor code is also
not addressed. We intend to leverage existing re-
search results on mobile code safety [2,18,26].

4. Authentication schemes

Authentication is the basis of Conductor secu-
rity. Our design allows security boxes with differ-
ent authentication schemes to be plugged in. We
have constructed three security boxes, null, tree
and chain, each with a different authentication
scheme. Different schemes provide different levels
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of protection, require different amounts of infra-
structure (which may or may not be available), and
have different levels of overhead. The null scheme
does not provide any authentication. The other
two schemes adopt authentication mechanisms
based on public key cryptography, but with dif-
ferent assumptions on the structure of certificate
authorities (CAs) and different methods for the
collection and verification of public key certifi-
cates. We will further illustrate the ability to plug
in symmetric cryptosystem-based authentication
scheme using Kerberos.

4.1. Null scheme

The null scheme provides no real authentication
enforcement. It cannot be used when stream pro-
tection (and hence key distribution) is required.
The null scheme is most useful for the case in
which the user does not require security. In addi-
tion, having such a scheme can help demonstrate
the added cost of the security architecture.

4.2. Authentication using public key cryptography

We have designed and implemented two au-
thentication schemes, tree and chain, based on
public key cryptography. Here, the authentication
of a node is, in fact, the authentication of the
public key of that node. The tree scheme assumes
that a certificate hierarchy infrastructure is avail-
able. The chain scheme assumes there is no cer-
tificate hierarchy; instead, CAs are distributed in a
flat topology. In both the tree and chain schemes,
each Conductor-enabled node has one associated
CA (both schemes can be easily extended to allow
each node to have multiple associated CAs, but in
this paper we only discuss the single-CA case).
In a security box with either authentication

scheme, planning information is authenticated
using a digital signature based on public key
cryptography. When a Conductor-enabled node
provides its own planning information, it is signed
with its own private key. When the planner node
receives the planning information, it can check the
authenticity of the planning information based on
the signature, which in turn necessitates the au-
thentication of the public key of that Conductor-

enabled node. The authentication information for
the public key of each Conductor-enabled node is
included in an authenticator message.
Similarly, the authenticity of a plan is assured

with the signature of the planner. When a node
wants to install a distributed plan, it needs to en-
sure that the plan is authentic. The node checks
the signature of the plan with the public key of
the planner node. This operation requires the au-
thentic public key of the planner node. The au-
thentication information for the public key of the
planner node is transmitted in a reverse authenti-
cator message, which is similar to the authentica-
tor.
When the public key of a node can be authen-

ticated, a session key can be securely distributed to
support data secrecy. Before a planner delivers a
session key to a Conductor-enabled node, it can
sign the session key with its own private key and
encrypt with the authenticated public key of the
node. Only the target recipient can decrypt the
session key with its private key. The node can also
verify that the session key is indeed from the
planner after authenticating the public key of the
planner.
Each different authentication scheme has its

own protocol to generate authenticator and re-
verse authenticator messages and use them to do
authentication and select trusted nodes.

4.2.1. Authentication scheme: tree
The tree scheme assumes a certificate hierarchy

infrastructure is available. In this hierarchy, all
CAs are organized in a tree structure, each at a
particular level. The CA at the top (the parent)
produces certificates for the next level down (the
child). This repeats recursively. The public key for
the CA at the root of the tree (level 0) is universally
known.
With such a structure, multiple certificates from

the hierarchy may be required to authenticate a
public key. The authenticator message (or the
reverse authenticator message) sent by a Conduc-
tor-enabled node includes a list of all necessary
certificates to verify the public key of that node. To
build such a message, a node contacts its associ-
ated CA, CA(n), for a certificate of the node’s
public key signed by CA(n), cert(node, CA(n)).
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The certificate shows that CA(n� 1) is the parent
of CA(n). The node then contacts CA(n� 1) for
a certificate of CA(n)’s public key signed by
CA(n� 1). This repeats until a certificate signed by
the root is returned.
Note that the set of certificates needed to certify

a node’s public key is static in this scheme. A node
can therefore cache all of the certificates it will
need to authenticate itself to any other node.
After the planner receives the authenticator

message of a Conductor-enabled node, or a Con-
ductor-enabled node receives the planner’s reverse
authenticator message, the list of certificates is
retrieved from the message. Starting at the root,
for which all nodes have a valid public key, lower-
level CA certificates are authenticated recursively.
Eventually, the certificate of the node in question
is authenticated.

4.2.2. Authentication scheme: chain
4.2.2.1. Chain of trust. The deployment of a CA
hierarchy is not required by the chain scheme.
Instead, CAs are flatly distributed, as shown in
Fig. 4, possibly deployed independently by a va-
riety of administrative authorities.
A CA typically provides certificates for the

nodes in its ‘‘neighborhood’’, but may also contain
a small number of ‘‘distant’’ nodes whose public
keys are frequently queried.
We assume a certain degree of overlap between

‘‘neighboring’’ CAs. A CA may store the public
keys for some ‘‘nearby’’ nodes and CAs.
This certification overlap can allow one node to

authenticate to another by forming a chain of
trust. As in other systems, a chain of trust is a
chain of certificates, in which one end is the cer-
tificate for the public key of the node in question,
the other end is the certificate signed by the CA

associated with the node running the authentica-
tion, and each certificate involved is verified.

4.2.2.2. Certificate collection. In the chain scheme,
each node may add certificates useful in authenti-
cating other nodes. When forwarding authentica-
tion information, each Conductor-enabled node
asks its associated CA for every potentially useful
certificate, and includes them in authenticator or
reverse authenticator messages.
During the information-gathering portion of

planning, each Conductor-enabled node along the
path must authenticate itself to the planner. As
demonstrated in Fig. 5, the data stream from an
application client to an application server is in-
tercepted by four Conductor-enabled nodes, A, B,
C, and D. D is the planner for this connection.
Each Conductor-enabled node (for example nodes
A, B, and C in Fig. 5) initially generates a single-
certificate authenticator. This authenticator con-
tains a certificate for that node from its associated
CA, the identity of the node, and the identity of
the CA. This authenticator is then forwarded to
the next node toward the planner. When an au-
thenticator is received, each downstream Con-
ductor-enabled node contacts its own associated
CA to add two more certificates signed by this CA
(if available): one certificate for the node specified
in the authenticator and one for the CA specified
in the authenticator. This node further forwards

Fig. 4. CAs with flat distribution.

Fig. 5. Certificate collection in the chain scheme along the path

toward the planner.
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the authenticator message toward the planner
node. Each authenticator, therefore, can be en-
hanced as it is forwarded toward the planner node.
While a Conductor-enabled node can ask for a

certificate by contacting its associated CA, certifi-
cate caches can be deployed at Conductor-enabled
nodes to improve performance. A negative certifi-
cate cache might also be employed; if a certificate is
already known not to be contained in its associated
CA, a node does not need to contact that CA.
The planner may receive multiple certificates in

each authenticator message. In Fig. 6, each square
represents a certificate that may be finally available
at the planner D of Fig. 5. For instance, the au-
thenticator for node A could include the certifi-
cates in the rows labeled ‘‘Node A’’ and ‘‘CA-A.’’
The same certificate collection principle is ap-

plied in the reverse direction. However, only a
single reverse authenticator message flows along
the reverse path toward the initiator (node A in
Fig. 7). So, in addition to asking for certificates for
the planner and the planner’s associated CA, each
Conductor-enabled node also asks for a certificate
for every CA listed in the reverse authenticator; for
example, cert(CA-C, CA-B) as shown in Fig. 7.

4.2.2.3. Authentication. Authentication in the
chain scheme requires a search for a valid chain of
trust. Multiple chains are possible for a given
node. Any valid chain to a node that includes only

trusted CAs leads to a trusted public key. So, each
possible chain must be checked until a trusted
chain is discovered.
If the planner node (node D in Fig. 5) receives a

certificate for A signed by CA-D, since D knows
the public key of CA-D, D can authenticate and
obtain A’s public key. This is a chain of trust
composed of only one certificate, cert(A, CA-D).
However, if cert(A, CA-D) is not available, D will
still try to verify A’s public key by searching other
chains of trust. For instance, if node D can get
cert(A, CA-A) and cert(CA-A, CA-D), a chain
of trust (cert(A,CA-A), cert(CA-A, CA-D)) is
formed. D then can authenticate A’s public key:
CA-A’s public key can be verified using cert(CA-
A, CA-D) and CA-D’s public key; CA-A’s public
key can then be used to verify cert(A, CA-A).
The chain can be longer. The longest valid

chain here would be cert(A, CA-A), cert(CA-A,
CA-B), cert(CA-B, CA-C), cert(CA-C, CA-D). As
long as there is a chain of trust in which CA-D is
the last element, the public key certified by the first
certificate of the chain can be verified; otherwise,
the authentication fails.
Along the reverse direction, each Conductor-

enabled node authenticates the planner in the same
way. For instance, in Fig. 7 at node B, planner D’s
public key can be verified if a chain of trust can be
formed as (cert(D, CA-D), cert(CA-D, CA-C),
cert(CA-C, CA-B)).

4.3. Authentication using Kerberos

Integrating Kerberos [21] into Conductor as an
authentication scheme is straightforward.

Fig. 6. All certificates that may be finally available at plan-

ner D.

Fig. 7. Certificate collection in the reverse direction in the chain

scheme.
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4.3.1. The Kerberos model
To authenticate to a service using Kerberos, an

application obtains a ticket and then presents
that ticket to the service for authentication. At an
extremely high level, a client sends a request to
Kerberos to authenticate to a particular service.
The client receives (in the end) a session key for
talking with the requested service, encrypted with
a key it shares with Kerberos, along with a ticket
that it can send to the service. The ticket contains
(among other things) the identity of the nodes in-
volved and a session key for talking with the client
encrypted with a secret that the service shares with
Kerberos.
To authenticate to the service, the client sends a

Kerberos authenticator (a time-stamp, a check-
sum, etc.) encrypted using the session key to the
service along with the ticket. The service can ob-
tain the session key using the key it shares with
Kerberos and use it to decrypt the authenticator
and therefore verify the authenticity of the client.
The server can (optionally) send an authenticator
back to the client, again encrypted with the session
key, allowing the client to authenticate the server.
The session key used for authentication of the

session can now be used by the client and server
for whatever they like (typically encryption).

4.3.2. Integration with conductor
In Conductor, each node along the path needs

to authenticate itself to the planner node by send-
ing an authentication message. Thus, each node
needs to share a secret with Kerberos. At con-
nection setup time, a given node will send a
request to Kerberos to allow the node to authen-
ticate with the planner node. Kerberos will provide
a session key and a ticket for authenticating to that
service.
The authentication message sent from a Con-

ductor-enabled node to the planner will thus con-
tain the Kerberos authenticator (encrypted with
the session key) and ticket. The planner node will
then be able to obtain the session key from the
ticket and verify the authenticity of the sender’s
identity from the authenticator.
The planner’s reverse authentication message

will consist of a Kerberos authenticator (encrypted
using the session key). Again, the client will be able

to use the session key it already has to verify the
identity of the planner node.
Once established, the Kerberos session keys can

also be used to digitally sign both the planning
information and plan distribution messages. Key
distribution can be accomplished by encrypting the
Conductor session keys using the Kerberos session
key. A signature is not required for key distribu-
tion since the Kerberos session key is known only
to a given node and the planner.
Note that Kerberos requires a Conductor-

enabled node to know the identity of the planner,
and vice versa. This is possible because the planner
is assumed to be on the same machine as the server
of the connection in question. (In Section 8 we will
relax this assumption.)

4.3.3. Cross-realm authentication
If a client and planner that wish to communi-

cate are in different domains, they will likely have
different Kerberos servers. The Kerberos infra-
structure is already designed to handle this case.
While the client may have to communicate with
several Kerberos servers, it will eventually end up
with a session key and ticket that have been gen-
erated by the remote endpoint’s Kerberos server.
This is not particularly desirable, because a

given Conductor node may have to go through
several rounds with remote services in order to
obtain the required ticket. Once obtained, how-
ever, no further communication with Kerberos is
required.

4.4. Other authentication schemes

The chain scheme has similarities to PGP/X.509
where the chain of trust principle is also applied
[11]; the tree scheme is similar to the PEM [14]
authentication model, in which a CA hierarchy is
also assumed.
Our design is open to other authentication

models as well, and a new scheme can be easily
plugged in. For instance, researchers at the Uni-
versity of California, Davis, proposed a solar trust
model [5]. With this model, with respect to each
specific CA (the sun), other CAs are ordered based
on the trust degree (planets in orbit around the
sun). Each CA has a rule set determining the
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trustworthiness of information signed by other
CAs. Applying this model to our system, each
authenticator would be formed in the same way as
the chain scheme, but each certificate inside the
authenticator would also have a rule set attached.
To authenticate a public key, a node would need to
apply the corresponding rule set for each involved
certificate.

5. Attacks and countermeasures

In this section we describe possible attacks and
the countermeasures employed by Conductor.
These attacks are independent of the security
scheme selected, but the countermeasures and
the effectiveness depend on specific mechanisms
adopted by security boxes. We will show that the
tree and chain schemes we developed are effective.

5.1. Node impersonation

A node may attempt to impersonate another
Conductor-enabled node in order to send a plan-
ner node fake planning information. A node may
also impersonate the planner to distribute a fake
plan or fake session keys. Recall that planning
messages must pass through the security box at
each Conductor-enabled node. The security box is
responsible for preventing node impersonation.
The protection strength of the security box de-

pends on the power of the adopted security scheme
in the security box. The null scheme does not at-
tempt to protect against node impersonation. In
the tree or chain scheme, assuming the public
key cryptography is not broken and CAs are not
subverted, impersonation is not possible without
knowing the private key of the node being im-
personated. Upon receipt of a message, such an
attack can be detected by obtaining the authentic
public key of the sender and using the key to verify
the signature of the planning messages from that
node.

5.2. Key stealing

The security box at each Conductor-enabled
node aids session key distribution. In Conductor a

session key is generated and distributed from the
planner. The session key must be encrypted to
ensure it is readable only by the intended recipient.
In the tree or chain scheme, when a session key

is distributed to selected nodes, it is encrypted with
each selected node’s public key, which is already
authenticated by the planner. Since the session key
can only be decrypted with the node’s private key,
it cannot be stolen unless the private key of the
node is stolen or unless node authentication is
subverted and the planner uses the wrong public
key to encrypt the session key.

5.3. Replay attack

A Conductor-enabled node that has been se-
lected in the past may execute a replay attack if it
is not selected in the current planning process.
Consider Fig. 8 where both node B and C are se-
lected, and the same session key K1 is to be de-
livered to B and C. C receives encrypted session
key K1 that only C can decrypt. It also receives a
second encrypted K1 in a form such that only B
can decrypt. Node C cannot decrypt the latter one
and forwards it to node B.
Now consider a second connection as shown in

Fig. 9. This time, node C is not selected. It inter-
cepts a new session key K2 destined for B that only
B can decrypt. Instead of forwarding K2 to B,
node C forwards the previous session key K1
destined for B to B. C knows K1, and will be able
to decrypt anything that B sends it. B will not be
able to detect the problem when B receives K1.
This attack is prevented by associating a ran-

dom number with each round of the planning

Fig. 8. Key distribution with C selected.

Fig. 9. Replay attack by C during key distribution (C is not

selected).
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process (Fig. 10). The initiator injects a random
number to each Conductor-enabled node. When a
session key is distributed, the session key and the
random number are encrypted together. Since in
each planning process the random number is dif-
ferent, it is hard for C to provide B with an en-
crypted session key for the current round of
planning.
Other replay attacks may also occur. The replay

of a previous plan, for instance, occurs in a similar
manner to the replay of session keys. We solve this
problem using the method discussed above.

5.4. Security scheme replacement

After a security scheme is specified, a security
scheme selector message is forwarded toward the
planner in plain text. A corrupted node along the
path could forge a different scheme and trick every
node downstream into using that scheme. For in-
stance, a null scheme may be substituted for the
original tree or chain scheme.
The general principle of counteracting such an

attack has been addressed in Section 3.2. Here we
take a further look at how this is done in the tree
or chain scheme. In the chain or tree scheme, the
planner signs the scheme selector message, to-
gether with the ID of the current connection, and
sends back the signature. Each Conductor-enabled
node will verify the signature. If it is inconsistent
with the original scheme, this will be detected at
the initiator, if not sooner. In addition, a replay
attack of the scheme selector signature cannot be
successful since the ID of the current connection is
unique, and it is signed together with the selector
message.

6. Implementation and experiments

The Conductor security architecture is fully
implemented. We have also measured and ana-

lyzed the cost of using Conductor with different
security schemes in terms of plan setup latency and
bandwidth consumption.

6.1. Implementation

The implementation of Conductor security fol-
lows the design discussed above. We implemented
the security box mechanism, and we also imple-
mented the three pluggable security schemes, null,
tree and chain. We used a static list to manage the
trust relationships between Conductor-enabled
nodes. The tools we used include the Java Cryp-
tography Architecture [13] and the cryptix public
domain encryption library 3.0.3 [6].
Additionally, we implemented a public key CA.

A certificate client can send a request to a CA for
the certificate of a node’s public key. The CA in
turn can return a certificate if one is available. We
do not address certificate revocation.

6.2. Experiments

We measured the cost of providing Conductor
security and the cost of different security schemes.

6.2.1. Experiment design
The security costs we consider include the la-

tency to set up a plan and the bandwidth con-
sumed during the plan setup procedure. Each time
an application establishes a connection, a path of a
certain number of Conductor-enabled nodes will
be discovered. Our experiments measured how the
security cost varies with the number of Conductor-
enabled nodes (including the two endpoints).
Neither latency nor bandwidth consumption by

the data stream was measured. The stream starts
after the plan is deployed, and its cost is irrelevant
to setting up the security scheme.
Four different scenarios were measured: none,

null, tree, and chain. In the none scenario, each
Conductor-enabled node along the path has no
security implementation at all. None of the secu-
rity mechanisms discussed in this paper are in
place for the none scenario. In the null scenario,
the entire generic security mechanism is in place,
but no authentication is actually invoked for the
connection. In the null, tree, and chain scenarios,

Fig. 10. Replay counteraction with random number.
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each Conductor-enabled node along the path will
enforce the selected scheme.
In the tree scenario, a three-level CA hierarchy

was composed. The CA associated with each
Conductor-enabled node was at the bottom level.
Costs would vary with certificate hierarchies of
different depths.
In the chain scenario, each Conductor-enabled

node was associated with a different CA (Fig. 11).
Each CA could only certify (1) the node it was
associated with and (2) the CAs associated with
the Conductor-enabled nodes within the immedi-
ate neighborhood (Table 1). Thus, for any pair of
claimant and verifier, the only feasible chain of
trust that we provided is the one containing all the
CAs from the claimant to the verifier, which is the
longest possible chain of trust.
To decrease the cost of obtaining a certificate,

Conductor-enabled nodes can use a certificate
cache, reducing the number of times they must
consult a CA. We compared the chain scenario,
with exactly the same environment setup, in two
different cases. In one case there was no cache at
all. In the other case optimal caching was deployed
at each Conductor-enabled node, so the node
never needed to contact its associated CA.
In both the chain scenario with optimal caching

and the tree scenario, certificate retrieval from CAs

is avoided, and the location of CAs has no impact
on measurement results. But this is not true with
the chain scenario without caching––certificate
retrieval cost varies with the location of CAs.
However, certificate retrieval cost can also signifi-
cantly vary with many other factors. Therefore,
we simply chose to collocate the associated CA
of each Conductor-enabled node on the same
machine.
Only successful cases were measured. Authen-

tication never fails in the chain and tree scenarios.
The RSA algorithm was used for public key en-
cryption [25]. The signature algorithm was RSA-
based with a SHA-1 message digest algorithm [22].

6.2.2. Resources
All Conductor-enabled nodes in these experi-

ments were the same. Each was a Dell Inspiron
3500 machine running Linux Redhat 6.0 and IBM
JDK 1.1.8 [10], with Intel Mobile Pentium II 333
Mhz, 256 kB cache, 64 MB RAM, 4 GB harddrive,
and 100 Mb/s Ethernet connection.
Each CA associated with a Conductor-enabled

node shared the same resources as the Conductor-
enabled node, collocated on the same machine.
For the tree scenario, each non-leaf CA was run-
ning under Linux Redhat 6.0 on an Intel Celeron
300 Mhz with 128 kB cache, 128 MB SDRAM,
and a 100 Mb/s Ethernet connection.
Each Conductor-enabled node was also homo-

geneous in the sense that each machine was kept
under the same workload with the same set of
processes running. Only processes related to the
experiment and normal system processes were
running.

6.3. Results and analysis

6.3.1. Plan setup latency
For each of the four scenarios, Fig. 12 shows

plan setup latency versus the number of Conduc-
tor-enabled nodes between two endpoints. Here, in
the chain scenario, optimal caching is deployed.
The null scenario differs from the none scenario

by including the entire security framework, but
with no actual authentication. The difference be-
tween the performance of the null and none sce-
narios is thus the cost of the security framework

Fig. 11. Configuration of Conductor-enabled nodes and CAs in

the chain scenario.

Table 1

CA and its coverage in the chain scenario

CA Nodes that CA can certify

C1 1, C2
C2 2, C1, C3
. . . . . .

Ci i, Ci�1, Ciþ1
. . . . . .

Cn n, Cn�1
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devoid of cryptographic operations or other au-
thentication mechanisms. That difference is statis-
tically indistinguishable at the 99% confidence
level (Fig. 12).
Use of a security scheme such as the tree or

chain (with optimal caching) introduces greater
latency in plan setup than the null or none sce-
nario (Fig. 12). The increased costs include cryp-
tographic operations and the transmission and
handling of cryptographic messages. Recall that
Conductor uses these cryptographic operations
both to protect planning messages and do node
authentication.
To protect message integrity, every node in a

connection needs to sign its planning information
and have it verified by the planner of the connec-
tion. Also the planner needs to sign both the plan
and security scheme selector, which are verified
afterwards by each node. With n Conductor-
enabled nodes, this leads to ðnþ 1Þ signing oper-
ations and 3ðn� 1Þ verification operations. This
is same for both the chain and the tree scenarios.
Certificate verification distinguishes the chain

scenario from the tree scenario in terms of plan
setup latency. In the chain scenario, with n total
Conductor-enabled nodes (Fig. 11), the planner

needs to verify ðn� iþ 1Þ certificates to verify the
public key of Conductor-enabled node i (i could be
1; 2; . . . ; n� 1Þ. Notice that a planner only needs
to verify each certificate once; it verifies 2ðn� 1Þ
certificates in total. Conductor-enabled node i also
must verify ðn� iþ 1Þ certificates to authenticate
the planner. So, the total number of certificates to
verify before the plan is set up is

2ðn� 1Þ þ
Xn�1

i¼1
ðn� iþ 1Þ ¼ 1

2
ðn2 þ 5n� 6Þ:

In the tree scenario, to authenticate the public key
of each Conductor-enabled node, the planner
needs to verify k certificates, where k is the depth
of the certificate hierarchy. Since we assume the k
certificates of one node do not overlap with those
k certificates of another, the planner needs to do
certificate verification kðn� 1Þ times. Also, each
Conductor-enabled node needs to verify k certifi-
cates to authenticate the public key of the planner.
So, the total number of certificates to verify before
the plan is set up is 2kðn� 1Þ. In our experiment,
k ¼ 3, so the value is 6ðn� 1Þ.
The above analysis shows that as more nodes

are involved, the increased cost due to crypto-
graphic operations varies linearly in the tree sce-
nario and quadratically in the chain scenario (with
optimal caching). This cost is paid once at setup
time, and primarily represents cryptographic op-
erations performed in Java. (In our experimental
setup and using the cryptix library version 3.0.3
[6], the time taken to compute and verify crypto-
graphic signatures of various Conductor messages
varied between a few milliseconds and a few tens
of milliseconds.)
The chain scenario without certificate caching

incurs higher plan setup latency (Fig. 13). In our
experiment, each Conductor-enabled node and its
associated CA are collocated on the same machine;
otherwise, the latency could be even higher. But
certificate retrieval latency is independent of the
security implementation of Conductor.
Although the chain scenario leads to higher

plan setup latency in many cases, it is easier to
deploy than the tree scenario. The tree scenario
requires a certificate hierarchy, and the root of the
hierarchy must be trusted. This is not feasible in

Fig. 12. Plan setup latency with different security schemes or no

security (confidence level: 99%).
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many circumstances. The chain scenario only re-
quires each Conductor-enabled node to have an
associated CA and some level of coverage overlap
between CAs.

6.3.2. Bandwidth consumption
We analyzed bandwidth consumption during

the plan setup procedure for four different
scenarios. In the chain scenario, when optimal
caching is used, no bandwidth is consumed for
certificate retrieval.
To provide a fair comparison, we distributed

the same plan in all four scenarios. We chose a
plan in which every Conductor-enabled node is
selected but no adaptors are deployed.
Fig. 14 shows the bandwidth consumption per

link in the four scenarios. In the null scenario, each
Conductor-enabled node needs to forward the se-
curity scheme selector message to the next Con-
ductor-enabled node, in addition to transmitting
all the same messages as those in the none sce-
nario. In the chain and tree scenarios, there are
also other extra security-related messages con-
suming more bandwidth, such as the authenticator
messages, the signatures of planning messages, and
the signature of the scheme being used.
The difference between the bandwidth con-

sumed in the chain and tree scenarios is caused by
the authenticator messages. An authenticator is
mainly composed of several certificates. With our
experiment setup, every authenticator message in
the tree scenario includes three certificates. In the

chain scenario, however, every authenticator ini-
tially includes one certificate, and increases to two
certificates after the first hop; in particular, the
reverse authenticator of the planner will have one
more certificate after every hop before reaching the
initiator. With n Conductor-enabled nodes in the
connection, the average number of certificates
passing a link is ð1:5nþ 3Þ in the tree scenario, and
ð1:5n� 1Þ in the chain scenario. There are four
certificates less per link on average in the chain
scenario than in the tree scenario. No attempt was
made to compact the data in the authenticator
messages.
Therefore, we believe the bandwidth consump-

tion could be further optimized. Note that even
without optimization with nine nodes, the average
bandwidth usage for any scenario is at most
slightly more than 5000 bytes per link, which is
acceptable for most situations.

7. Multiple security schemes

The discussion thus far has assumed a single
security scheme for each connection selected by the
client node. However, the ability to use multiple
security schemes is desirable to allow authentica-

Fig. 14. Average bandwidth consumption per link.

Fig. 13. Comparison of plan setup latency in the chain scheme

(confidence level: 99%).

362 J. Li et al. / Computer Networks 38 (2002) 347–371



tion of as many intermediate Conductor-enabled
nodes as possible, considering each node may
support a different set of security schemes. In this
section, we revisit the planning procedure and in-
troduce an extended version of the secure planning
procedure that supports multiple security schemes
for a connection, with the cost of one additional
round trip.

7.1. Secure planning algorithm for multiple security
schemes

If multiple security schemes are allowed, each
node must select which scheme it will use to au-
thenticate itself to the planner node, protect its
planning information, and secure the deployment
of a plan. Such scheme negotiation and selection is
done in the first round trip. Each node may sup-
port several schemes. The client and the planner
nodes also have a list of schemes that would be
acceptable for a given type of connection. Note
that a client or planner may choose to accept a
scheme that it does not support. In the following,
we describe the algorithm step by step.
(1) The client node sends a list of acceptable

schemes to the planner node. Each node, including
the client, also sends a list of supported schemes to
the planner node, ordered by its preference. The
intermediate nodes do not need to see this message
(but they may).
(2) The planner node computes the intersection

of (a) the schemes acceptable to the client, (b)
the schemes acceptable to the planner, and (c) the
schemes supported by the planner. The result is the
list of schemes selected for use in this connection.
Because each node specified its level of prefer-

ence for each supported scheme, the planner will
also know which scheme each node will use.
(3) The planner generates a message containing

the list of selected schemes and the client’s ac-
ceptable schemes (literally, the first message from
the client node in step 1). Each selected scheme is
used to generate a signature for this message. The
message and all of the signatures are sent toward
the client, visiting each node in turn.
(4) The planner generates an authenticator

using each of the selected schemes, and sends it
toward the client, visiting each node in turn.

(5) Given the messages from steps 3 and 4, each
node can verify the selected schemes. If a node fails
to verify the scheme, it will not participate. If the
client fails to verify the scheme, or if the copy of
the message returned from step 1 does not match,
the connection will fail (or be reattempted).
If the above verification succeeds, each node

sends its signed planning information and its re-
verse authenticator toward the planner, visiting
other nodes along the way. It will also send a
signature for the list of supported schemes that it
sent in step 1. The scheme used to generate the
signature and the authenticator should be the first
one in the list of supported schemes sent from this
node to the planner that was also selected by the
planner for this connection. Note that the au-
thenticator for a node may be augmented by other
nodes along the way, no matter what scheme the
intermediate node used to authenticate itself.
(6) Upon receipt of the messages from step 5,

the planner will verify the identity of the nodes,
select a set of authorized (trusted) nodes, and
formulate a plan. Any node that cannot be
authenticated or trusted and any planning infor-
mation that cannot be validated will not be con-
sidered in planning.
The signature for supported schemes will also

be verified. The connection will fail if the verifi-
cation does not succeed.
(7) The planner will send a message containing

the plan toward the client, visiting each node in
turn. The planner will generate a set of signatures
using each of the selected schemes and attach them
to the message.
(8) Each node will verify the plan using the at-

tached signature and the authentication informa-
tion received in step 4. If a node cannot validate
the plan, it will not participate. From an adapta-
tion point of view, we can treat this as a node
failure.
Fig. 15 shows an example that involves four

Conductor-enabled nodes. Each node supports a
different set of security schemes (Table 2). Em-
ploying the above steps, both scheme x and scheme
y are used for the connection.
This algorithm is justified as follows: For a

given connection, the client must ensure that its list
of acceptable security schemes was used by the
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planner to select schemes (otherwise the client can
be tricked into using an unacceptable scheme, such
as a scheme not enforcing a desired level of secu-

rity); this is satisfied by steps 3 and 4 above. In
addition, the planner must ensure that the list of
supported schemes from each node is authentic

Fig. 15. Handling multiple security schemes in a single connection with four Conductor-enabled nodes.
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(otherwise a node that supports an acceptable
scheme may be regarded as supporting an unac-
ceptable scheme, and will be thus unable to par-
ticipate the planning process); this is guaranteed
through steps 5 and 6. The planner also must en-
sure that the planning information from each node
is authentic in order to form an effective plan; this
is also enforced through steps 5 and 6. Finally, to
avoid falsified adaptation, every node must be able
to ensure that a plan to deploy is authentic; this is
guaranteed through steps 4, 7, and 8. Every node
also must ensure that a list of selected schemes is
authentic (to avoid using a wrong scheme to au-
thenticate itself to the planner and thus not be
selected); this is implemented in steps 3 and 4.

7.2. Bridging different security schemes

One drawback of the algorithm presented in the
previous section is that it cannot select any scheme
that is not supported by the planner node. This
restriction is enforced in step 2 and ensures that
the planner will be able to form a direct relation-
ship with each participating node. If a node does
not support any scheme supported (and hence se-
lected) by the planner, it cannot participate. This is
particularly troublesome since a group of neigh-
boring nodes are likely to support a common se-
curity scheme, forming an island. If the client
and the planner belong to different islands, secure
communication may not be possible. However,
this restriction can be removed if we allow nodes at
the edges of islands that support more than one
security scheme to act as bridges between security
schemes.
We revise the previous algorithm to support

bridge nodes. Below, we describe additions and
changes to each step in the algorithm from Sec-
tion 7.1.

(1) This step is unchanged.
(2) We add bridge selection to this step. Using

the information in step 1, nodes are identified that
can act as a bridge. A node can be a bridge if it
supports an acceptable scheme not supported by
the planner and also supports either (1) an ac-
ceptable scheme that is supported by the planner,
or (2) an acceptable scheme that is supported by a
bridge between itself and the planner. The list of
selected schemes is then augmented by a list of
bridge nodes and the translations they can per-
form. Note that bridges should only be specified if
they will be useful in translating for another node
between the bridge and the client. Some schemes
that would not have been selected by the previous
algorithm may be selected now because of the in-
troduction of bridge nodes.
A node that is acting as a bridge node has

a greater ability to affect the resulting adapta-
tion than other nodes in the stream. A bridge
node has capabilities similar to the planner. It is
therefore important that the planner have strong
trust in a node before selecting it to act as a
bridge.
(3) The message (and its signature) sent by the

planner in this step will receive special handling at
bridge nodes. When the message reaches a bridge
node, the bridge verifies the message signature and
adds additional signatures for security schemes it
is charged with translating. Note that since this
signature is generated by the bridge node, au-
thentication information for the bridge node will
be required by any node wishing to verify the
signature (see revised step 4).
(4) The authenticator from the planner in this

step will also be handled by a bridge node in a
special manner. When the authenticator reaches
a bridge node, the bridge verifies the identity of
the sender. If the sender is deemed authentic and
trusted by the bridge, the bridge generates a new
authentication message (to authenticate itself) in
the scheme it is charged with translating. Note that
the bridge knows to which nodes it is authenti-
cating, because, like the planner, it can deduce
what scheme each node will use.
(5) Verification of selected schemes is the same

except that the message of selected schemes may be
signed by a bridge node instead of the planner.

Table 2

Accepted and supported schemes by each node

Nodes Schemes

Accepted Supported

A x, y, z x

B z

C y, z

D x, y, z x, y
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Such messages can be verified using the bridge
node’s authenticator in the revised step 4.
Messages sent in this step, including each node’s

signed planning information message, a signature
message of its supported schemes, and its authen-
ticator, will receive special handling by bridge
nodes. When a planning information message that
has been signed in a manner that this bridge has
been charged with translating is received at a
bridge node, the bridge verifies the signature and
replaces it with its own signature in a scheme
supported by the planner or a downstream bridge.
The signature provided for the schemes supported
by a node can be similarly verified and replaced by
a bridge when required. Finally, when an authen-
ticator is received at a bridge node in a scheme that
the bridge is charged with translating, the bridge
verifies the identity of the source and replaces the
message with a new authenticator for itself. Note
that this means that the node providing authenti-
cation information has to authenticate to the
bridge, not to the planner.
(6) This step is unchanged, except that a node’s

planning information and its supported schemes
may be signed by a bridge node, thus requiring
verification based on the bridge’s authenticator
from step 5.
(7) Bridge nodes may attach additional signa-

tures to the plan produced in this step.
(8) This step is unchanged, except that the plan

may be signed by a bridge node, thus requiring
verification based on the bridge’s authenticator
from step 4.
Fig. 16 shows the usage of a bridge node (node

C) for the same connection as in Fig. 15. Node B
can now participate using scheme z, because of the
introduction of bridge node C. Node B can verify
the signature of the scheme selection message
(signed by the bridge node C), authenticate itself
(to bridge node C), have its planning information
signed (verifiable by bridge node C), and finally
verify the plan (signed by bridge node C).
Justification of this revised algorithm follows the

same argument as the earlier algorithm in Section
7.1. In addition, with the introduction of bridge
nodes, each message’s authenticity is now verified
in two ways: either the message must come from a
source as indicated, or the message must come from

a trusted bridge that has already verified the mes-
sage’s authenticity. For the former, the previous
justification can be applied. The latter is compli-
cated by the fact that several bridges may be used
and may form a chain of trust. If each node, in-
cluding bridge nodes, verifies that a received mes-
sage was sent either from the original node or an
authorized bridge, then an appropriate chain can be
formed. Note that every node knows which nodes
are authentic bridges from steps 3 and 4. So long as
each bridge is trusted and verifies the identity of the
previous bridge, the chain will be verified.

8. Non-conductor-enabled client and server

In the preceding sections we have assumed that
both the client and the server of a connection are
Conductor-enabled. We relax this assumption
here. The initiator and the planner will not neces-
sarily be the same node as the client and the server,
respectively.
If the client is not Conductor-enabled, either

because the client doesn’t care about security or
because the client has specifically set up a Con-
ductor node nearby that can be responsible for
security decisions, then the initiator can act on
behalf of the client with respect to security.
If the planner is not on the same node as the

server, in our original algorithm (Sections 3 and 4)
the participating nodes will not know which node
is the planner. While public key-based security
schemes do not require the nodes to know to
whom they are authenticating, some authentica-
tion algorithms (notably Kerberos) do require
such knowledge. In our revised secure planning
algorithm (Section 7), however, the planner authen-
ticates itself to other Conductor-enabled nodes
first (including the initiator), correcting this prob-
lem. The assumption that the planner collocates
with the server can be relaxed if either Kerberos-
like authentication is not employed or the revised
secure planning algorithm is used.

9. Other open architectures

Our design for securing Conductor is applicable
to many other open architectures. In this section,
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Fig. 16. Using bridge nodes to accommodate even more security schemes in a connection. As in Figs. 1 and 3, A, B, C, and D are four

Conductor-enabled nodes involved in a connection, where D is the planner. The parts in shaded area correspond to the additions or

changes from Fig. 15.
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we briefly address how to port the design to several
adaptation systems and active networks.

9.1. Adaptation systems

The Dynamic Proxy architecture developed at
Columbia University [29] relies on a single proxy
node to adapt a data stream. In this system the
client dynamically selects and controls the adap-
tation performed at the proxy. The server plays no
role in proxy management. To provide security for
such a system in which the client also assumes the
role of the planner in Conductor, we propose the
following steps:

1. The client specifies to the proxy node what secu-
rity scheme must be followed.

2. The proxy node, following the specified scheme
in (1), sends to the client its authenticator and a
signed planning information message.

3. The client authenticates the proxy, verifies the
planning information, and forms a plan.

4. The client sends its reverse authenticator and
the signed plan to the proxy node.

5. The proxy node authenticates the client, and
verifies and deploys the plan.

A session key can also be distributed from the
client to the proxy. Using the authentication in-
formation of the proxy node from step 2, the client
can generate a session key, encrypt it, and send
it to the proxy. For instance, if public key-based
authentication is used, the proxy’s public key can
be used to encrypt the session key.
Protocol Boosters [8] adapts protocols by in-

serting boosters into a network. While no planning
procedure has been specified, a policy is needed in
order to deploy protocol boosters. If Conductor’s
planning architecture were ported to Protocol
Boosters, we believe that Conductor’s security
design could also be utilized.

9.2. Active networks

The security design for Conductor can be used
to secure both an active network application and
active packets in general.

9.2.1. Securing an active network application
Consider ‘‘active traceroute’’ as a sample ap-

plication: a message traveling from end 1 to end 2
is stamped with the identity of each active node en
route and returns with a record of the path from
end 1 to end 2. The security task is to ensure the
identities are authentic. Assuming a single security
scheme is enforced, as in Conductor (Section 3),
we can let each active node add its own authenti-
cation information and signature. End 2 can verify
the authentication information, mark which re-
corded identity is authentic, and send the path
information back to end 1; this path information is
signed by end 2, requiring reverse authentication
of end 2 as well. To support multiple security
schemes, similar handling can be enforced as
shown in Section 7.

9.2.2. Securing active packets
An active packet, carrying both data and in-

structions, faces a danger that a malicious node on
the way may corrupt the packet. Again, Conduc-
tor’s security mechanism can be adopted to solve
this problem.
With the goal to only allow trusted nodes to

read/modify an active packet, a basic design fol-
lows, where a single scheme is enforced:

1. The client that is going to run an active applica-
tion sends out its security scheme and an au-
thenticator towards the server.

2. Each active node en route also authenticates it-
self to the server, using the selected scheme by
the client.

3. The server authenticates each node and selects
trusted active nodes.

4. For each selected trusted node, the server sends
a reverse authenticator for itself, the signature
of the client’s security scheme specification mes-
sage, and an encrypted session key.

5. Each node authenticates the server, verifies
that the specified security scheme is indeed en-
forced, and receives the distributed session
key.

6. The client starts sending active packets, en-
crypted with the session key. Only trusted active
nodes will be able to decrypt the packets.
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10. Related work

Security has been identified by many researchers
as a key issue in open architectures. Much research
has focused on protecting network elements from
malicious code [1,19], while comparatively less at-
tention has been paid to protecting data streams
from misbehaving network elements. Murphy no-
ted that in active networks, end-to-end security
strategies do not always work because of the par-
ticipation of intermediate active nodes [20]. Jack-
son proposed a possible packet format in active
networks to support data integrity via signature
[12], but data confidentiality is not addressed, and
the approach is expensive on a per-packet basis.
Researchers at the University of W. Sydney, Aus-
tralia, identified the need for data confidentiality in
active networks, and analyzed the difficulties with
both end-to-end encryption and link encryption in
supporting data confidentiality [27]. Researchers
from NAI Labs proposed a hop-by-hop integrity
model between active nodes that are ‘‘adjacent’’ in
the active network topology, where a secret key
returned from a trusted third-party is associated
with each pair of active nodes; but this work as-
sumes every active node is already trusted [7].
Research on data secrecy in open architecture

has not typically included the notion that some
nodes are trusted and some are not. Secure plan-
ning (together with encryption) can be used to
control modifications of the data stream. Virtual
link encryption, as proposed in this paper, pro-
vides data security in open architecture networks
while still allowing intermediate nodes to adapt the
data with reduced performance overhead. In par-
ticular, node authentication is required (as dem-
onstrated in Conductor), and only those nodes
scheduled to adapt data should receive session
keys in order to access data plaintext.
Applications can require different security poli-

cies in different situations. An application should
be able to select a specific security policy (or com-
pose one as exemplified in Ref. [17]) and enforce
it. Seraphim provides a framework that allows
users or applications to enforce their own security
policies in active networks, but it relies on a trus-
ted third-authority to authenticate the security
policy [4]. Conductor instead relies on one or more

security schemes, selected by the initiator and/or
the planner of a connection, to ensure that only
those schemes are used.
IPsec [15] provides authentication, encryption

and other security services at the IP layer. IPsec is
primarily designed for point-to-point services, in
contrast to virtual link encryption where many
points are involved. If we used IPsec for Con-
ductor security, a channel from each Conductor-
enabled node to the planner (or a bridge node
introduced in Section 7.2) or vice versa, bound
with specific security association (SA) or SA bun-
dles, would need to be independently established
and maintained. ISAKMP [16] provides a frame-
work to establish an SA, but it still requires a key
exchange protocol such as IKE [9]. Via each
channel, a node could authenticate itself or trans-
mit signed planning information to the planner.
Similarly, these channels allow the planner to au-
thenticate itself or transmit a signed plan or en-
crypted session key to each node. As illustrated in
the chain authentication scheme (Section 4.2.2),
intermediate nodes can sometimes provide addi-
tional information, which allows a node to be
authenticated when it otherwise would not. Be-
cause IPsec channels are independent, the inter-
mediate nodes are hidden from an IPsec channel
and cannot provide such help. If IPsec is also to
be used to protect user data transmitted from
one Conductor-enabled node to another, a corre-
sponding IPsec channel needs to be built as well.
An SA must be separately set up for each indi-
vidual virtual link.

11. Conclusions

Open architecture systems will not always con-
sist of fully trusted nodes. Data transmissions of
differing sensitivity will have different requirements
about which adaptation nodes can be trusted to
handle their data. The complexity of open archi-
tectures and the speed required for controlling
and interacting with them suggest that programs
(the application, the underlying open architecture
planning system, etc.) will frequently be required
to make decisions on which open architecture
components to trust with their data.
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We have described a design and implementa-
tion for a system to handle these problems in a
challenging case. Conductor assumes no user
control or interaction when a new data trans-
mission is being handled. Instead, Conductor
must make all decisions itself, including security
decisions, based on current conditions, predefined
user preferences, and known characteristics of the
data flow.
Conductor’s security architecture allows indi-

vidual data transmissions to use different secu-
rity boxes to achieve different levels and styles
of authentication security. These security boxes
could be chosen by pre-set user preferences, in-
teraction with other security systems (such as in-
trusion detection systems), or by intelligent
analysis of the data stream and prevailing security
conditions.
Our implementation of this design demon-

strates the feasibility of the concept. The security
mechanisms described here add relatively little
overhead to the connection setup phase, other
than cryptographic operations required for au-
thentication. The ongoing transmission similarly
pays few overhead costs beyond any cryptogra-
phy that is necessary to achieve its security
goals.
While designed for the Conductor system, the

same security architecture could also be used for
many other open architecture systems. While it
does not incorporate other security features re-
quired for success of open architectures (such as
mobile code safety), the Conductor mechanism is
compatible with solutions to these problems as
addressed by other research groups.
Overall, this work demonstrates that it is feasi-

ble to dynamically choose the open architecture
nodes to be used for sensitive data transmission.
Further, it is possible to design a sufficiently gen-
eral system to allow different users and applications
to apply their own authentication requirements to
the node selection process. As an early example of a
system that attempts to provide this type of secu-
rity for its users, the Conductor system also points
out the necessity of securing the gathering of in-
formation used to choose a course of action, and
the importance of securing the instructions on what
that course of action will be.
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