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ABSTRACT
Concomitant with the tremendous growth of online social
networking (OSN) platforms are increasing concerns from
users about their privacy and the protection of their data.
As user data management is usually centralized, OSN pro-
viders nowadays have the unprecedented privilege to access
every user’s private data, which makes large-scale privacy
leakage at a single site possible. One way to address this
issue is to decentralize user data management and replicate
user data at individual end-user machines across the OSN.

However, such an approach must address new challenges.
In particular, it must achieve high availability of the data
of every user with minimal replication overhead and with-
out assuming any permanent online storage. At the same
time, it needs to provide mechanisms for encrypting user
data, controlling access to the data, and synchronizing the
replicas. Moreover, it has to scale with large social networks
and be resilient and adaptive in handling both high churn
of regular participants and attacks from malicious users.

While recent works in this direction only show limited
success, we introduce a new, decentralized OSN called the
Self-Organized Universe of People (SOUP). SOUP employs
a scalable, robust and secure mirror selection design and
can effectively distribute and manage encrypted user data
replicas throughout the OSN. An extensive evaluation by
simulation and a real-world deployment show that SOUP
addresses all aforementioned challenges.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer
Communication Networks—Distributed Systems

Keywords
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1. INTRODUCTION
As online social network (OSN) providers deal with tre-

mendous amounts of user information, they can obtain a
deep insight into their users’ personal interests, opinions,
and social relationships, which raises severe privacy and se-
curity concerns. Facebook, for example, has long reached
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the one billion user mark and already controls the personal
data of approximately one sixth of the world’s population.
Yet, the hunt for user data is not over and users are of-
ten helpless when faced with changes, as demonstrated by
Facebook’s recent acquisitions of the Instagram and Whats-
App user bases with multi-billion-dollar agreements. More-
over, centralized control often results in the misuse of user
data [1]. For example, LinkedIn leaked millions of its users’
passwords [2], and Facebook passed sensitive shopping in-
formation of users to the public without their consent [3].

While it remains to be seen whether OSN providers would
give up a major source of income and grant comprehensive
security and privacy means to their users (e.g., encryption
of data), decentralized OSNs (DOSNs) are becoming more
promising for better user data security and privacy. Instead
of relying on a central data repository, a DOSN can allow
users to regain control over their data.

Recently, researchers have proposed a wide range of DOSN
approaches, which considerably differ in how the central
data repository is substituted and how the user controls her
data [4–13]. However, each of these systems suffers from
multiple shortcomings, including (i) limited success in pro-
viding high data availability [7,9,11–13]; (ii) discrimination
of users based on their dependency on other nodes [6,7,11–
13]; (iii) dependency on powerful nodes [4–7]; (iv) high over-
head [10–13]; (v) low adaptivity to OSN dynamics [4,6–13];
(vi) susceptibility to adversaries [4, 6, 7, 9–13]; (vii) a lack
of data encryption [4,7,9]; (viii) non-consideration of mobile
users [6,7,9–13]; and (ix) technical feasibility and economical
deployability issues [5, 6, 8, 13].

Motivated by the absence of a full-fledged DOSN, we in-
troduce a different approach called the Self-Organized Uni-
verse of People (SOUP). In addressing the drawbacks of ex-
isting works, we make the following contributions:

• To achieve high data availability, we propose a new, generic
approach to storing user data in a DOSN. While every
user can store her data at her own machine, she can rely
on a scalable, robust and secure mirror selection design to
select other OSN participants as mirrors for her data and
make the data highly available, even if she herself may
not be always online. SOUP is able to synchronize the
replicas stored at the mirrors and keep them up-to-date
on possibly multiple devices of a user. It does not rely on
permanently available or altruistically provided storage,
although it can make an opportunistic use of such resources
as they become available.
• To provide a robust OSN, SOUP ensures that regardless of

participants’ social relations or online probabilities, data
for all participants is highly available. Such a property is



essential not only to not discriminate any user, but also to
enable access to all data of interest at any time.
• To limit the overhead, SOUP ensures that there exist only

as many replicas as required, and stabilizes the mirror set
so that replicas are not frequently moved.
• To achieve reliability and resiliency, SOUP is designed to

be adaptive to the dynamics often seen in a DOSN and it
can quickly respond to changes in the system and continue
to provide high performance. Moreover, its operation is
not significantly affected by malicious OSN users, as it
can tolerate up to half of the identities in the OSN being
controlled by an adversary.
• To grant data privacy, effective encryption mechanisms en-

sure that only eligible users can access encrypted data.
• To support mobile users, SOUP is designed mobile-friendly

as it minimizes data transfer and resource consumption on
mobile nodes. Moreover, even with a high churning rate
of mobile nodes, SOUP is stable and performs well.
• To demonstrate its feasibility, we run extensive simula-

tion experiments with three different real-world datasets
to show that compared with related work, SOUP does pro-
vide superior performance in all aforementioned features.
• Finally, to show its deployability we implement SOUP on

both desktop and mobile platforms and investigate its per-
formance in a real-world deployment.

The remainder of this paper is structured as follows. Af-
ter conducting a comprehensive review of related work in
Sec. 2, we describe the design of SOUP in Sec. 3, and de-
vote the entire Sec. 4 to a critical component of SOUP, the
mirror selection. We present an extensive, simulation-based
evaluation of SOUP in Sec. 5. We then describe our im-
plementation in Sec. 6, and evaluate SOUP based on an
experimental deployment in Sec. 7. Finally, we discuss open
issues in Sec. 8 and conclude our paper in Sec. 9.

2. RELATED WORK
In the course of decentralizing OSNs, classical P2P or dis-

tributed data storage approaches (e.g., [14–17]) might of-
fer a solution. However, these approaches are generally de-
signed for supporting traditional decentralized applications
such as file sharing, which are often characterized by long
durations of user online time, typically spanning from mul-
tiple hours up to days. Orthogonal to such applications,
users’ online patterns in social networks show high activity
peaks with large gaps of offline time [18, 19]. Additionally,
content in social networking platforms is often uploaded and
accessed from mobile devices that may be disconnected most
of the time. Further, there exist inherent relations between
the OSN users, which can imply storage incentives among
them and discourage freeriding. Intuitively, a user will pre-
fer to store the data of a friend to that of a stranger. Fur-
thermore, in contrast to traditional P2P systems, tit-for-tat
strategies are not as desirable for OSNs. Users rather need
the OSN as a whole to be robust, with each user’s data acces-
sible at any given time. Otherwise, even highly contributing
users may find data of interest unavailable.

With these reasons in mind, researchers have suggested a
wide range of solutions that are specifically tailored to decen-
tralize OSNs: The first approach is to distribute data con-
trol and storage to a limited number of permanently online
storage locations [4–7]. The storage might either be altru-
istically provided (as e.g., in Diaspora [4] or SuperNova [7])
or based on economic incentives such as user payments (as

e.g., in Vis-a-Vis [5] or Confidant [6]). However, altruistic
provisioning, usually from a limited set of volunteers, is un-
likely to meet the demand of a large-scale social network
with as many as several hundred million users. At the same
time, user payments will most likely prevent a large-scale
transition from current centralized OSNs, which do not im-
pose fees on their users. The dependency on both altruistic
and paid servers is also a concern, as data loss can occur
when such servers become disengaged abruptly. Further, in
Diaspora and SuperNova, since users are not able to encrypt
their data, full privacy of data is not achieved; the danger
of misusing user data is shifted from one central provider to
several quasi-central providers.

The second approach is to ask each user to provide a per-
manently available storage space for their own encrypted
profile [8]. This approach does provide high data availability
and low overhead, but it requires all users to be technically
able to provide and configure their own permanently avail-
able data storage, which is impractical. The issue might be
mitigated by incentivizing storage and configuration provi-
ders, which however results in monetary costs for the user.

The third approach is to let nodes cooperate and provide
temporarily available storage to each other [9–13]. SOUP
is designed to follow this rationale as well. With the mu-
tual cooperation of nodes and flexible data storage loca-
tions, users can be independent of dedicated servers and
their drawbacks. Additionally, as every participant is con-
tributing resources, the OSN can operate without additional
costs for every user. The major challenge of this approach,
however, is to provide high data availability to the users.

PeerSoN [9] introduces an optimized node selection al-
gorithm, and nodes with mutual agreements store data for
each other. The main issue of this approach is its inabil-
ity to construct a robust OSN. Users with an online time
of less than eight hours a day achieve less than 90% avail-
ability for their data. Since online time in OSNs is power-
law distributed [18, 19], the majority of users are unable to
make their data highly available, and even highly contribut-
ing users may not be able to find data they want.

Cachet [10] replicates the data of users within a distributed
hash table (DHT). While this approach ensures availability,
it also increases the communication overhead. As OSNs usu-
ally experience high churn rates [19], data often has to be
transferred from departing nodes to other DHT members.
This is particularly the case for mobile nodes. Also, Cachet
does not minimize the number of replicas, which increases
the overhead to keep all replicas of a user’s data up-to-date.

Safebook [11], MyZone [12] and ProofBook [13] mirror
each user’s data at a subset of their direct friends. Unfortu-
nately, a user thus depends on her social contacts for data
storage, as she needs enough suitable friends that qualify as
a mirror. This is difficult for many users in OSNs who main-
tain few social links [20]. As a result, such systems typically
achieve low data availability rates (e.g., 90% in [11,12]).

Finally, none of the above schemes explicitly consider mo-
bile (i.e., smartphone) devices, which have become one ma-
jor way of using OSNs. Approaches that do not require
every node to contribute resources (e.g., Diaspora) can tol-
erate such devices. However, the majority of solutions re-
quire mobile nodes to perform as regular nodes, which can be
inefficient due to the limited capabilities of mobile devices.

We summarize the features offered by existing DOSNs in
Table 1. As discussed before, none of SOUP’s competitors



Table 1: DOSN Approaches Summarized.

can provide all the features required for the operation of a
full-fledged DOSN. In fact, each solution has deficiencies in
multiple categories, whereas SOUP supports all features.

3. SOUP
We now present the design of the Self-Organized Universe

of People (SOUP), and show how the system provides the
critical features necessary to operate a competitive DOSN.

3.1 SOUP Overview
In SOUP, every participating node (or user) maintains its

own data, and selects a small set of other nodes as mir-
rors to store a replica of its data, in order to keep its data
available even when it is offline. Data replication is neces-
sary, because SOUP does not rely on a central repository
and users are not permanently online.

Every SOUP node comprises the SOUP middleware and
the SOUP applications. The SOUP middleware resides be-
tween the network stack and SOUP applications. Its main
functions include (i) to organize SOUP nodes into a struc-
tured overlay; (ii) to handle mobile nodes; (iii) to ensure
user data privacy; (iv) to maintain and synchronize user
data; and (v) to establish communication channels with
other SOUP nodes. Multiple SOUP applications can run
concurrently on top of the middleware, each of which man-
ages the node in a different social network for the same user.
The SOUP middleware provides a generic API to SOUP ap-
plications. For instance, once the data of the user is changed,
the middleware can notify all running applications, so they
all have the most recent version of the user’s data.

Our focus in this paper is on the SOUP middleware, and
we revisit SOUP applications in Sec. 6 and 7, where we
show the implementation of a SOUP node and a SOUP-
based distributed OSN, respectively. We present the main
middleware functions in this section, and describe in detail
how SOUP selects mirrors in Sec. 4. Recall a key contribu-
tion of SOUP is selecting nodes as mirrors while addressing
critical challenges (Sec. 1).

3.2 SOUP Overlay
Nodes in SOUP form a structured overlay, as shown in

Fig. 1. The overlay acts as a globally searchable information
directory and is based on a distributed hash table (DHT).
The DHT enables efficient publish and lookup operations
in a decentralized fashion, making a centralized information
repository unnecessary. Every SOUP user can publish her

publish(mirrorsw)

u

w

y

s

u

Source

Dest

TYPE

d53275abe3da2...

a34b23cd89123...

SOUP_TYPE

SIG sign(object)

Name

ID
Inter-

faces

v

a34b23cd89123...

10.11.12.13

134.76.12.12

Mirrors
cd8324abed194…

e293eee12ab32…

entry(v) at s

object(u v)

v

nm

joinrelay

4

3

1

direct link

Applications

1

Applications

4

mobile 

node
new

node

lookup(v)2

PAY

LOAD
SOUP_DATA

Figure 1: SOUP Overlay

directory entry at the node that is responsible for her ID
in the DHT key space (e.g., v’s entry is published at s—
Step 1 in Fig. 1), and any other node can locate the node to
retrieve the entry (e.g., u can look up v’s ID—Step 2). An
entry typically contains a user’s name, her SOUP ID, the
interfaces (i.e., IP addresses) via which she can currently be
contacted, and the SOUP IDs of all the mirrors of her data.
Here, the SOUP ID is a 64-bit SHA-256 hash over the
user’s 1024-bit public key and uniquely identifies the user.

It is important to note that in contrast to some related
work [10], a user only publishes pointers to mirror nodes
(i.e., SOUP IDs) in the DHT (e.g., w publishes her mirrors
at y—Step 3), whereas the data themselves are stored among
nodes themselves. Directly storing data in the DHT would
have undesirable consequences: First, every user would have
no control over which other nodes will be her mirrors to host
her data, whereas the mirrors would have no option to reject
unwanted data. Second, it would increase the overhead of
the system; whenever a node departs—which can be often
since SOUP nodes may have a high churning rate—it has to
transfer all its DHT data to another node.

SOUP incorporates a list of publicly known bootstrapping
nodes to help new nodes join SOUP. A bootstrapping node is
simply a regular node enhanced with a function to bootstrap
others: a new node can use such a bootstrapping node as its
entry point to the DHT, thus adding itself to the DHT; for
example, in Fig. 1, node n joins the DHT via a bootstrapping
node y. It can then prepare its entry (including looking up
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its own SOUP ID in the DHT to make sure there is no
collision with another user’s SOUP ID), and publish it to
the DHT, which enables other nodes to look up the entry.

3.3 Mobile Nodes
SOUP is designed to be friendly to mobile nodes. As

these devices often experience high churn (e.g., because of
connectivity changes) and long response times (e.g., due to
limited bandwidth), they can decrease the performance and
stability of the DHT overlay. SOUP addresses this challenge
by exempting mobile nodes from the DHT. Instead, a mo-
bile node will relay its DHT publish and lookup operations
through a gateway node that is on the DHT (e.g., node m
will relay through node z in Fig. 1). As doing so frees mobile
nodes from directly executing DHT operations (e.g., shifting
entries), it also saves resources on the mobile devices.

A mobile node initially uses a bootstrapping node as its
gateway (the same node it contacted to join SOUP). How-
ever, every time it encounters another node, it checks that
node’s ability to relay DHT requests (every regular node can
set a limit to mobile connections) and switches to that node
as a gateway if possible to reduce the load on bootstrap-
ping nodes (e.g., node m has switched from node y to z in
Fig. 1). Note that since data itself is not stored in the DHT,
the relayed requests do not consume a lot of bandwidth.

3.4 Data Privacy
To ensure the confidentiality of all privacy-relevant user

information, every SOUP user encrypts all her data using
Attribute Based Encryption (ABE) [21], then distributes
one replica to each mirror. The encryption routine only in-
troduces a limited overhead, even for mobile devices [8]. In
ABE, the symmetric key for encrypted content is protected
by an Access Structure, which is defined by a combination
of attributes, so that only requesters holding the correct
attribute key can decrypt it. This allows a user to grant
fine-grained access to her confidential data, as it cannot be
accessed by other entities except those holding the corre-
sponding attribute keys. For instance, the user can limit
access to one item to users holding two specific attributes,
while three different attributes are required for another item.
The attributes themselves can be arbitrary (e.g., such as
colleague or lives in my city). In particular, the mirrors
themselves cannot access the data stored at their premises
without holding the correct attributes. Note that requests
to modify any data must be encapsulated in an appropri-
ately (i.e., with the owner’s asymmetric private key) signed
SOUP object, and will otherwise be discarded.

3.5 Data Synchronization
A user may receive updates from other users (e.g., mes-

sages to the user). Depending on the content, an update
might require the user to alter her data. If the user is online

herself, she can directly receive updates, order them based
on the timestamps included in the received SOUP objects,
and alter her data accordingly. If the user is offline (e.g., u
in Fig. 2), she then needs assistance from her mirrors (e.g., v
and w in Fig. 2). The mirrors act as a surrogate by receiving
and storing updates to the data, which can then be collected
and ordered by the returning online user later. Note that
the mirrors themselves are not eligible to modify the user’s
data. As u is offline, updates for u have to be stored at
u’s mirrors, v and w. Mirror v itself is also offline, so that
updates for u (not the whole replica of u) have to be further
passed on to v’s mirrors x and y. SOUP is designed such
that at least one mirror of each user is online at any time
(Sec. 4) and can retrieve these updates. Hence, v can re-
trieve any updates to u’s data upon returning online from
its own mirrors. Hereby, all mirrors always present the most
recent user data if they are online, which also enables the
data owner to synchronize different personal devices.

3.6 SOUP Communication
To request data, a user establishes a connection with an-

other user in two steps: First, she looks up the entry of
her communication partner in the DHT (e.g., u looks up v’s
entry in Fig. 1; m would do so via its gateway z). After-
wards, she extracts the partner’s addressable interfaces from
the entry and creates a direct communication channel. This
channel can be based on any networking protocol, ranging
from standard TCP/IP to Bluetooth, if available.

Once a communication channel is established, the commu-
nication partners (u and v in Fig. 1) exchange signed SOUP
objects, which can contain arbitrary information (Step 4 in
Fig. 1). Applications running on top of SOUP can encapsu-
late payload (such as user data or friend requests) into SOUP
objects, and thereby exchange content transparently via the
middleware. The transparency allows the development of
any kind of OSN application on top of the middleware.

4. MIRROR SELECTION
A major component of SOUP is its scalable, robust and

secure approach to selecting mirrors for storing user data
among heterogeneous nodes in a DOSN with very high avail-
ability. We first outline the challenges we face, and then
describe our decentralized mechanisms that address them.

4.1 Challenges
To fulfill its promise to eliminate the drawbacks of existing

DOSNs, SOUP must address a variety of key challenges, that
have not been solved in their entirety before. The primary
challenge is to achieve high data availability that is very
close to that of centralized OSNs while decentralizing the
control and storage of the data.

In leveraging resources of participating nodes, SOUP must
address the heterogeneity of OSN users. Besides a variety
of hardware configurations (e.g., mobile versus desktop de-
vices), the online time patterns of OSN nodes can differ sub-
stantially from each other. Given the power-law distribution
of online times in OSNs, the majority of users are seldom
online, and sessions are usually short and bursty [18,19,22].
Moreover, SOUP must recognize that the users’ machines
are not servers and usually only offer limited storage capac-
ities. SOUP must thus use the resources each node supplies
efficiently. As a node exhausts its capacity, it must be able
to decide which data to keep and which to drop. In addi-



tion, our selection scheme should be open to altruistically
provided resources and exploit them if available.

Also, our approach should exploit the potential of social
relations within the OSN. In particular, users can provide
each other feedback whether they succeeded or failed in ob-
taining data from a participating node. If utilized properly,
such cooperation can help every user to distribute their data
within the OSN more efficiently.

Finally, SOUP’s selection mechanism must have several
key properties: (i) It must scale to the dimensions of OSNs
and be easily deployable in large-scale scenarios. The latter
requires a quick convergence to a stable system state; even
when many nodes join the system at the same time and each
node has little information to begin with, SOUP must pro-
vide effective means to quickly reach high data availability
to each joining node. (ii) It must be robust. Even if a node’s
capabilities or social connections are weak, its data should
not be less available than data of others. Otherwise, those
nodes who need to access its data may find it unavailable.
(iii) It must cope with every possible adverse situation. For
example, an OSN can have a high churn rate due to short-
lived sessions [18, 23]; a large fraction of nodes may depart
the system at the same time due to a network failure; worse,
malicious users in an OSN can launch all kinds of attacks.
SOUP must continue to offer high performance in all such
unfavorable scenarios.

4.2 Mirror Selection Overview
SOUP has to ensure that at any given time for every OSN

node, either the node’s data is available at the node itself
(the node is online), or a copy of the data—called a replica—
is available at another node—called a mirror. The core task
for SOUP is thus mirror selection: every OSN node needs
to select the most eligible nodes as mirrors before it places
its data replicas there.

Every node employs two modes to select its mirrors, a
bootstrapping mode and a regular mode. When a node joins
the OSN and has no knowledge about it, it runs in the boot-
strapping mode, which allows it to gain a foothold in the
OSN; it obtains recommendations from each node it encoun-
ters and ranks mirror candidates based on this information
(Sec. 4.3). Once a node befriends others, it begins to learn
from them about their experience in accessing its data at its
mirrors, and transitions to the regular mode; it will now rely
on friend experience to rank mirror candidates (Sec. 4.4).

The two modes differ in their way of ranking mirror candi-
dates, but follow the same routine for selecting mirrors (Sec.
4.5). Here, a node will primarily consider that the higher a
candidate is ranked, the more likely it will make the node’s
data available. Note it is more so with the regular mode
when direct user experience is used for ranking, as opposed
to looking at strangers’ recommendations in the bootstrap-
ping mode. SOUP further allows every node to dynamically
select as many mirrors as needed. As a result, no matter
whether a node itself is online a lot or not, and no matter
whether it has many friends or just a few, as long as it has
enough quality mirrors via SOUP’s algorithms, its data will
be highly available through those mirrors.

SOUP leverages social relationships in the mirror selec-
tion process primarily through experience exchanges: node
u’s experience in accessing node w’s data via w’s mirror v
helps w decide if v is a good mirror. But social relation-
ships can be useful in other contexts as well. Since friends

have more incentives and higher trust to store data for each
other, a node assigns a higher weight to friend candidates
when selecting mirrors, and protects profiles of friends when
dropping data from its storage.

Dropping data may be necessary if a node is chosen as a
mirror by many nodes, and its resources are exhausted. A
dropping strategy is critical, especially when an adversary
is flooding the OSN and many nodes receive numerous ma-
licious requests to store data. For this task SOUP employs
a protective dropping mechanism (Sec. 4.6).

4.3 Mirror Candidate Ranking in the Boot-
strapping Mode

SOUP allows new nodes to quickly achieve high data avail-
ability. At the time a user joins the OSN, she does not pos-
sess any information about well-suited mirrors. However, as
she contacts other nodes, these nodes can suggest such mir-
rors to the new node. Here, we exploit that OSN users are
most active when they have just joined, and they contact
many other nodes [22]. In particular, every time a new node
u contacts a node v, v suggests the set of mirrors that works
well for itself to u. If u cannot obtain any recommendations,
she will randomly select mirrors from her contacts.

However, a user should not use the bootstrapping mode
for too long. A mirror w suggested by v might not be a good
choice for u for various reasons. Node behaviour in OSNs is
heterogenic (e.g., w.r.t. online time [18]) and w is probably
not the best fitting node for u. Moreover, w might not be
willing to store data for u in the first place, or an attacker
could fake recommendations to lure others into storing their
data at her site.

4.4 Mirror Candidate Ranking in the Regular
Mode

SOUP’s regular mode makes use of knowledge that a node
does not have while bootstrapping, but can obtain after it
has established social relations with other users. It will then
leverage their observations to rank mirror candidates.

As illustrated in Fig. 3, a node u in regular mode main-
tains two data structures: a knowledge base (KB) and
experience sets (ES). In the knowledge base, every entry
is about a node that u knows. With regard to an entry for
node v, if v is a mirror of u, u will record an experience
value (expv) based on u’s friends’ experience regarding v in
the KB. A node w is friends with u if there is an edge (u,w)
in the OSN’s social graph G, which represents a social con-
nection between both nodes. The experience value is the
basis for ranking mirrors. In addition, the entry for v will
record whether or not v is friends with u and a TTL (time-
to-live) value that decreases every time u does not choose
v as a mirror (TTL not shown in Fig. 3). Also, for every
node w that is a friend of u, u records an experience set
ESu(w) as shown in Fig. 4. This set records u’s observa-
tions of w’s mirrors; that is, when requesting w’s data (Step
1 in Fig. 4), u records whether or not the data is available at
w’s mirrors (see Fig. 3b). It will then periodically transmit
its experiences to w (Step 2). Besides confining overhead, we
limit the experience set exchange to friends for two further
reasons: First, users request the their friends’ profiles more
often than those of strangers. This way, they can record
experience sets on the fly when requesting the data anyway.
Second, this limitation raises the bar for malicious nodes
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continues to record its own experiences for friend nodes (c), node w has replaced node v2—which u had rated low—with node v4.
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Figure 4: Recording of Experience Sets

trying to perform slander, as they have to establish social
connections to their victims first.

Thus, for every node j that u is friends with, u will re-
ceive an experience set ESj(u) from j, which includes j’s
observations about u’s mirrors. For any mirror v, node u
can then calculate v’s experience value—which also serves
as v’s ranking—as:

expv = (1− α) · expoldv + α · 1

n

n∑
j=1

·
o(j,v) · av(j,v)

omax
(1)

where n is the number of experience sets that u’s friends
have reported, o(j,v) is the number of observations regard-
ing v that a friend j is reporting since the last experience
set exchange, omax is the maximum number of observations
that j can report, and av(j,v) ∈ [0,1] is the availability of v
during j’s requests of u’s data. Eq. (1) was designed with
respect to a trade-off between accuracy and security:

• Accuracy. u usually does not care who tried to access its
data (especially as exchanging observations is limited to
friend nodes). Instead, it cares for the number of attempts
and successes of each reporting node in receiving its data.
• Security. However, a single malicious node could report

huge numbers of manipulated observations, outweighing a
lot of regularly observing nodes. We limit the maximum
number of observations, omax, that a node can report to
confine the influence of a few (potentially malicious) nodes.

Hence, a significant portion of the recommending nodes, i.e.,
the friends of u, need to be malicious to have an impact on
the selection scheme, while the experience from nodes with
more observations still carries more weight.

Finally, α is the aging factor of observations, and a more
recent observation carries more weight than an older one
(expoldv ). Otherwise, a malicious node could perform a trai-
tor attack, where it obtains an excellent reputation just to
exploit it afterwards. In particular, such a node could of-

Algorithm 1 Mirror Selection at Node u

Mu: set of u’s mirrors, initially empty
Cu: a ranked list of mirror candidates
rv : a candidate v’s ranking value
# Select nodes from Cu

perr ← 1
while perr > ε do

add next top ranked element v from Cu to Mu

perr = perr · (1− rv)
end while
# Apply social filter to nodes in Mu

# (sr(u, v)=1 if u is friends with v; 0 otherwise.)
for all v ∈Mu that sr(u, v) = 0 do

if ∃ v′ ∈ (KBu −Mu) such that
sr(u, v′) = 1 and rv′ · β > rv then

replace v with v′ in Mu

end if
end for
# Prevent overlooking better nodes
add to Mu a random node v′′

return Mu

fer exceptional storage capacities and online time to get se-
lected as a mirror by many users, just to disappear later.
Or, the quality of a mirror could suddenly deteriorate be-
cause of accidental reasons like connectivity problems. Ap-
plying the aging factor supports quick adaption to such sit-
uations. However, α should also not be over-valued, since a
performance degradation can be temporary as well. When
evaluating α, we found that observing only the most recent
observations might in fact lead to unstable mirror sets. Set-
ting α = 0.75 provided us with the best trade-off between
adaptation and stability in our experiments.

4.5 Choosing Mirrors from the Ranking
Once a node obtains the ranking of mirror candidates from

either mode, it selects its mirrors from the candidates, as
depicted in Algorithm 1. It has a target error rate, ε, such
that the probability of her data being unavailable is less
than ε. First, it adds the top-ranked candidate nodes to its
mirror set one by one, until the estimated likelihood of the
data not being available is less than a target error rate ε:

perr =

n∏
i=1

(1− ri) < ε (2)

where ri is the experience value of the i-th node in the candi-
date list. Second, SOUP further exploits the inherent OSN
incentives where nodes would rather prefer to store data of
a friend than a stranger. The node applies a social filter to



raise the ranking values of its friends:

rv = max (β · rv, 1) , where β > 1. (3)

Friend nodes will thus move up in the ranking and can even
replace some unrelated nodes as mirrors. The usage of this
social incentive, however, must not be over-stretched. Eval-
uating β shows that a friend has to provide at least 80% per-
formance of unrelated mirrors (β ≈ 1.25)in order to offer the
best availability and overhead, i.e., it cannot be significantly
inferior to the unrelated nodes. Note that, in contrast to re-
lated works, nodes with few or low-ranked friends are not
discriminated by the social filter and can still achieve high
availability. The filter is rather an option for those nodes
with highly ranked befriended mirror candidates. Finally,
u adds to its mirror set a random node for which it has not
yet determined a ranking. This way, u prevents a possible
overlooking of even better suited nodes.

4.6 Protective Dropping
A mirror node v may not always have enough space to

store the data for another node, say u (e.g., if v is a popular
mirror that wants to prevent getting overloaded with storage
requests). While v can simply neglect u’s storage request,
alternatively, v can also drop another node’s data to make
more space for u. This will not only provide more flexibility,
it will also enable v to choose what data to store.

If a miscreant orchestrates a sybil attack and floods the
OSN with a large amount of storage requests, v may quickly
fill up its storage space. Therefore, in SOUP, each mirror
node v implements a dropping policy that favors friends. As
malicious identities usually have difficulties establishing so-
cial connections to regular nodes [24], v can drop the profiles
of the malicious node, leaving space for the data of friends.

On the downside, this practice would discriminate honest
nodes without or with few friends, since these nodes need to
rely on non-friend nodes. Therefore, for each node w that
stores its data at node v, v calculates a dropping score, dw,
for w’s data as follows (with notations given in Table 2):

• As v exchanges experience sets with each friend, say u, it
also learns which nodes store their data at u.
• If w also stores its data at u, we increase dw by 1. To

protect the data of friends, their score is decreased by 1/β
(recall that we use β ≈ 1.25). If w is a flooder and tries to
store its data on as many nodes as possible, dw will then be
high, and w’s data will incur a high dropping probability.
(Also, consider two benign nodes w, w′ where w has a
larger mirror set. Since v generally contributes less to the
overall availability of w than to that of w′, dropping the
data of w has less impact than dropping the data of w′.)
• If v observes a copy of w’s data in itself, but v is not

listed in w’s published mirror set, it increases dw by a large
constant c, as such a mismatch between the announced
(e.g., published in the DHT) and the real mirror set may
indicate a flooding attempt.
• If dw reaches a threshold θ, node v then blacklists w from

storing its data on v.

The threshold can vary depending on the willingness to
avoid false positives, which can occur due to network errors,
e.g., an error when publishing a new set of mirrors. Our
experiments provided the best results with a three-strike
principle, in which θ = 300 and c = 100. Thus, a node w
will be blacklisted at v after v observed three mismatched
mirror sets. In our evaluation (Sec. 5), we will show that

v Node at which storage is exhausted

Symbol Meaning

w Node that has stored a replica at v

dw Dropping score for replica of node w

ß Social filter

Ɵ Blacklisting threshold

c Mismatch increase (constant)

Table 2: Protective Dropping Notations.

Facebook 90,269

OSN Nodes

Epinions 75,879

Slashdot 82,169

3,646,662

Edges

508,837

948,464

40.40

Avg. Degree

6.71

11.54

Table 3: Datasets for SOUP Evaluation [25,26]

this mechanism effectively protects SOUP against attackers
who try to flood the system.

5. SIMULATION AND ANALYSIS

We start our evaluation with a large-scale simulation of our
data replication scheme, with regards to the challenges listed
in Sec. 4.1. Our experiments with three real-world datasets
show that SOUP provides high data availability with low
overhead, and does so for all nodes in the OSN. SOUP per-
forms even better when altruistic nodes exist, and success-
fully copes with node churn and malicious attacks.

5.1 Metrics, Datasets, and Methodology
We first define two basic performance metrics:

• Data availability at time t: The ratio of the number of
users whose data is available at time t to the total number
of users in the OSN.
• Replica overhead at time t: The average number of

replicas each OSN node has at time t.

We then use these two performance metrics to measure the
robustness, openness, and resiliency of SOUP:

• Robustness. SOUP’s ability to provide high performance
to all nodes in an OSN, regardless of a node’s online time,
social relations and device capability.
• Openness. SOUP’s ability to increase performance when

altruistically provided resources are available.
• Resiliency. SOUP’s ability to maintain its performance

when facing adverse scenarios.

We use three different large-scale datasets to evaluate SOUP
as listed in Table 3. These datasets cover a variety of real-
world social graph features and can help evaluate SOUP’s
performance in different contexts. For instance, users should
not depend on their number of friends, which is why we
chose the less-connected Epinions dataset with an average
node degree of only 17% of that in the Facebook dataset. We
run simulations of SOUP using these datasets, and measure
the metrics defined above. We further handle the following
parameters associated with each user:

Target error rate ε. We assume every user defines her
target error rate as 0.01; i.e., every user aims at a 99% like-
lihood of her data being available (Sec 4.5).

Node online probability. For every node, we must
know if it is online at any given time to determine if a user’s
data is available at this node. Node online time is based



0

0.2

0.4

0.6

0.8

1

Time (Days)

D
a
ta

 A
v
a
ila

b
ili

ty

5

7

9

11

13

A
v
g
. 
#
 o

f 
R

e
p
lic

a
s
/N

o
d
e

0 10 20

Availability (FB)

Mirrors (FB)

Availability (SD)

Mirrors (SD)

Availability (EPIN)

Mirrors (EPIN)

Figure 5: SOUP achieves high availability with low overhead.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Number of Profiles Stored

C
D

F

1 Day

Two Weeks

One Month

Figure 6: SOUP proves to be stable, and 90% of the users do not
have to store more than 7 replicas.

on bursty interaction patterns of users and typically follows
a power-law distribution [18, 22, 27]. We therefore assume
that around 60% of the nodes are available less than 20% of
the time, and there are only very few highly available nodes.
Note that this power-law model incorporates the high churn
rates typical for an OSN. We further apply diurnal patterns
to populate the online time matrix of each node. Accord-
ing to [28], we consider three time zones (US, Europe and
Africa, and Asia and Oceania), where a node’s probability
of belonging to these zones is 0.4, 0.3, and 0.3, respectively.
To bootstrap, nodes join our experiments asynchronously
according to their online probability.

User activity pattern. Different evolutions of OSN user
activity have been observed [18,22]. We model user activity
to be exponentially decreasing [22]. After an initial phase
of high interaction once joining an OSN, a user’s activity
decreases exponentially to become less than one interaction
per day. As nodes in SOUP must gain knowledge about
other participants (i.e., get in contact with them) in order
to find the best-suited mirrors, in all literature we are aware
of, this model represents the worst observed case.

Available storage space per node. Each node must
have a specific storage space value in order to evaluate the
storage overhead and dropping strategy of SOUP. The stor-
age space available at each node follows a Gaussian distribu-
tion, with a median of space for mirroring data of 50 users,
which requires no more than half a gigabyte of disk space as
shown in Sec. 7.

5.2 Results and Analysis

5.2.1 Data Availability and Replica Overhead
Fig. 5 shows SOUP’s data availability and replica over-

head for each dataset. In all the three datasets, SOUP
achieves the targeted availability of above 99% after only one
day, even though no node has any knowledge upon joining.
As SOUP reaches equilibrium, the high level of availability
is maintained for the entire remaining period.

After joining, due to the lack of knowledge about good
mirrors, nodes do not select well-suited mirrors yet, and the
number of replicas increases. However, as soon as nodes ob-
tain more precise rankings, the quality of mirrors improves
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Figure 7: SOUP is robust and does not discriminate any node
based on social relations or online time.

and the replica overhead is reduced by about 50%. On av-
erage each node needs to store less than seven replicas.

5.2.2 Stability and Communication Overhead
SOUP needs to reach a stable state quickly in order to

keep communication overhead low. In particular, if a user
frequently changes her set of mirrors, all her data has to be
transmitted to new mirrors often. We show SOUP’s profile
distribution in Fig. 6 (we report results from the Facebook
dataset for the rest of this section; we observed the same
behaviour of SOUP with both other datasets). After day
one, around half the nodes need to store 10 or more replicas
so that the system achieves high availability. However, as
user experiences are more accurately measured, 90% of the
nodes need to store less than 7 replicas (after two weeks). We
observe the same distribution at the end of our simulation,
indicating that SOUP has reached a stable state.

Further, we find that as mirror rankings become more
accurate, the drop rate of data converges from 0.07% to a
very low 0.045%. Finally, the upper half of our nodes with
regards to online time provides more than 90% of all replicas.
This indicates that weak nodes, in particular mobile nodes,
are rarely chosen as mirrors, saving storage, bandwidth and
battery on these devices.

5.2.3 Robustness
Regardless of their own online probability or quantity of

friends, every user should achieve a very high level of data
availability. We pick the top and bottom 10% of users (first
with regards to their own online probability and second with
regards to their number of friends) and compare their per-
formance in Fig. 7. After just one day, even the bottom
10% of users obtain data availability of above 99%. Hence,
in contrast to related works (e.g., [9–13]), users are discrim-
inated neither based on their own online time nor based on
the quantity and quality of their social relations. Instead,
SOUP offers a robust OSN.

5.2.4 Openness
One of SOUP’s challenges is to exploit altruistically pro-

vided resources efficiently. Fig. 8 shows the impact of the
presence of small percentages of altruistic nodes that are
steadily online. We can observe that 5% (a=0.05) altru-
istic nodes can cause a slight increase and stabilization of
availability, but the improvement in terms of replica over-
head is more prominent; as altruistic nodes become known
to the OSN, nodes can select fewer mirrors than before to
achieve the same level of availability. Hence, while SOUP
does not rely on any kind of altruistic nodes, it can exploit
such nodes’ resources if available.

5.2.5 Resiliency Against Node Dynamics
In addition to high churn rates, we now consider the case

in which a fraction of the users abruptly becomes unavailable
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to the rest of the OSN (Fig. 9). If we assume the top 5% of
nodes in terms of online time leave the OSN simultaneously
(d=0.05), there is a noticeable drop in both data availability
and replica overhead directly after the departure, caused by
the concomitant loss of mirrors within the OSN. However,
the remaining nodes adapt quickly by choosing new mirrors,
and SOUP’s performance improves without introducing any
additional replica overhead. Interestingly, SOUP is indepen-
dent from the top 1-2% of nodes, as data availability does
not significantly drop as these nodes leave the OSN. Still,
a specific profile might be unavailable, either when an ad-
versary attacks its mirrors or when mirrors of popular data
deny service due to overloading. In such a case, these mir-
rors will receive a lower ranking, and SOUP will distribute
the load among additional mirrors. If a mirror is completely
taken down, SOUP will choose a different one, as shown
above. Compared to the static mirror choices of related
work, SOUP is the only approach capable of such adapta-
tion towards both increasing and decreasing resources.

5.2.6 Resiliency Against Malicious Nodes
None of the existing DOSN solutions consider attacks on

their system. We measure SOUP’s performance under at-
tack of up to half the nodes in the OSN. In our experiment,
SOUP not only needs to tolerate the attackers after having
stabilized, but also has to bootstrap in their presence.

First, we study the impact of the slander attack, in which
attackers manipulate experience sets (or recommendations
to bootstrapping users). We assume that the malicious
users have infiltrated the OSN successfully and they send
out recommendations at the maximum rate. Fig. 10 shows
that even when 50% of social relations—and thereby ex-
perience sets—are subject to slander, the data availability
at most drops to around 95% (m = 0.5). Second, we in-
vestigate a flooding attack, in which an attacker creates
multiple identities (Sybils) and floods benign mirrors with
data. We show results for different percentages of Sybils in
Fig. 11. Even with as many Sybils as regular identities in
the OSN, the data availability does not drop below 90% for
the benign users in the long run. The replica overhead, al-
though increased, does not exceed 13 copies per node. In
this case, protective dropping prevents data of socially con-
nected nodes from being dropped for a Sybil’s data, and
avoids the full utilization of resources at benign nodes.
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SOUP Power-law ~99.5% ~6.5

Approach Online time assumption Availability # of replicas

SOUP ~98.5% ~14

PeerSoN
10% of nodes p=0.9

25% of nodes p=0.87

30% of nodes p=0.75

30% of nodes p=0.3

<90%-

100%;

Depends on 

p

6

SOUP ~100% 4

Safebook
Uniform, all nodes p=0.3

~90% 13-24

Table 4: SOUP vs. related work (p = online probability).

5.2.7 SOUP vs Related Work
SOUP’s superiority over state-of-the-art solutions mainly

stems from its qualitative properties, which we extensively
evaluated above. Compared against those, SOUP is robust,
adaptive to node dynamics, and resilient against attacks.

To further compare the performance of SOUP and related
work quantitatively, we run simulations of SOUP under the
node online time distributions assumed in related works, in
those cases where the distributions were available to us.
As shown in Table 4, SOUP outperforms both PeerSoN
and Safebook, providing higher data availability and lower
replica overhead. In particular, when compared with Safe-
book, SOUP achieved 8.5% higher availability while keeping
the replica overhead near the lower bound of Safebook. In
this scenario, SOUP performs slightly worse than in our orig-
inal experiments. This is caused by the uniform online time
distribution, due to which SOUP cannot exploit the het-
erogeneity of node characteristics to select well-suited mir-
rors. In the PeerSoN scenario, the online times of nodes are
drastically improved over our power-law assumption. Still,
PeerSoN is not able to create a robust OSN and the data
availability ranges between less than 90% and close to 100%,
as nodes depend on their own online times. SOUP however
provides close to 100% data availability for all nodes and
further reduces the replica overhead by one third.

6. IMPLEMENTATION
Our implementation of a SOUP node comprises two com-

ponents: the SOUP middleware and the SOUP applications.
Taken together, both constitute a SOUP node as depicted in
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Figure 12: Architecture of a SOUP Node

Fig. 12. Note however that it is also possible to exclusively
run the middleware component, for instance to provide an
altruistic node, which only acts as a mirror or DHT relay
for mobile nodes.

For SOUP applications, we have implemented a SOUP
Demo Client that can run on either a PC or Android device
to organize SOUP nodes into a social network (see Fig. 13).
It supports essential OSN functionalities: Users can search
for each other in the OSN, establish friendships, share pho-
tos or exchange messages. We also implemented a broker
application that can suggest friends to a SOUP node when
it is fed with data through the Facebook API.

For the SOUP middleware, we have implemented it also
for both desktop and Android systems. It consists of several
modules, each responsible for a pre-defined task and eas-
ily exchanged for an improved or different approach at any
time. All modules communicate by passing SOUP objects to
each other. One particular module is the Application Man-
ager that has a simple interface with SOUP applications. It
has two functionalities: (i) it allows arbitrary social appli-
cations to run on top of the SOUP middleware; and (ii) it
enables communication between applications transparent to
the middleware itself. On one hand, it encapsulates content
from a SOUP application into SOUP objects. On the other
hand, it decapsulates content destined for an application
from SOUP objects received from other modules. Further-
more, the Social Manager module is responsible for pro-
cessing requests when an object indicates a change to the
social data, and the Security Manager module deals with
all encryption-related tasks using our own optimized ABE
implementation.1 The Mirror Manager module is responsi-
ble for the selection of mirrors. A node needs to push any
change of its data to its mirrors, and it also needs to man-
age the data that it mirrors for others. Last, if any of these
modules need to communicate with other nodes, they do so
by passing an object to the Interface Manager, which can
then initiate communication via a suitable network interface.
Consider a friend request as an example: After an applica-
tion initiates the request, the Application Manager converts
the request to an appropriate SOUP object, and passes it
to the Social Manager. The Social Manager manipulates
the user’s friend list and forwards the object to the Security
Manager. The Security Manager encrypts and signs the ob-
ject and hands it to the Interface Manager, which sends the
object to the request target over an appropriate link. If the
Interface Manager later receives an encrypted request confir-
mation object from the target, it forwards it to the Security

1Based on https://github.com/wakemecn/cpabe

Figure 13: SOUP on a Nexus 4 Android Phone

Manager, which unlocks the object and issues a confirmation
to the application via the Application Manager.

For the underlying DHT, we use FreePastry 2.12, an open
source implementation of the Pastry DHT [29]. Most of our
code and executables are available online.3

7. DEPLOYMENT
We have deployed SOUP on our own real-world DOSN of

31 users. Four of those were using different Android mobile
phones. All phones were relaying via the same gateway node,
and that node also acted as the bootstrapping node for users
running the regular SOUP client. We collected several days
of data, during which our users established 282 friendships,
shared 204 photos, and exchanged 1189 messages.

Our deployment outperformed our simulation results with
regards to availability (we did not observe a single loss) and
replica overhead. However, note that our large-scale sim-
ulations should be more accurate, since we observed much
longer online times in our experiment than typical for OSNs.
The lessons learned from the deployment are the following:

The bandwidth consumption of SOUP is not a con-
cern. We show the bandwidth consumption of the DHT at
our bootstrapping node in Fig. 14a. Only upon join and
leave operations (i.e., shifting some entries in the DHT) we
observe utilization of the network interface at around 20-40
KB/s. At the same time, lookups do not have a visual im-
pact. Thus, the cost of relaying for a mobile node is confined
to its join procedure, which requires several DHT operations.

The traffic introduced by SOUP itself is also manageable.
Fig. 14b shows the most bandwidth intense period of 20 min-
utes we observed for any user during the time of data collec-
tion. Messaging or simple profile requests do not consume a
lot of bandwidth and are hardly distinguishable from an idle
link. More intense activities like skipping through a photo
album does not consume a regular user’s bandwidth as well,
as she takes her time to view the pictures. Note that the
data traffic a user generates by consuming content is approx-
imately the same as in centralized OSNs, as the user needs
to download the data in those systems as well. Only when

2http://www.freepastry.org
3http://soup.informatik.uni-goettingen.de/
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producing or mirroring content, SOUP generates additional
traffic. Produced data has to be distributed to the mirrors
as well and when acting as a mirror, the uplink of a user is
used. As a consequence, in Fig. 14b, the link is most utilized
is at the creation of a photo album. As in centralized OSNs,
mobile users on a data plan should delay such uploads until
they can access a WiFi link. Motivated by these measure-
ments our Android implementation disables mirroring on
the Android device, while not cancelling concurrent mirror-
ing on her stationary device(s). Users can however opt in to
contributing their Android device as a mirror (e.g., consider
a tablet that is connected to WiFi most of the time.)

The mirror sets in SOUP are stable. Overall, we
find that the mirror sets remain stable and do not differ
much between selection rounds as shown in Fig. 14c. Af-
ter the initial rounds, most mirror changes are additions of
a random node as described in Sec. 3. Each round, only
few nodes change additional mirrors. As a consequence, the
whole data of a user does not have to be transmitted often,
and the communication overhead remains modest.

The cryptographic overhead is low. We found that
the processing times for our ABE operations are ≈ 10%
faster than existing JAVA implementations. When encrypt-
ing a key with four attributes (the processing time grows lin-
early with the number of attributes, independent of the data
size [21,30]), the 90th percentile encryption time was 262ms,
whereas decryption was four times faster and took 61ms
per data item. As improved libraries for encryption (e.g.,
DOSN-specific approaches [30]) become available, SOUP can
implement these as a new version of the Security Manager.

SOUP can manage much more. We further tried to
push SOUP to its limits by using data from other real-world
OSNs. In our deployment, we obtained access to the Face-
book data of 20 users. Their profiles offer details beyond a
crawler’s results, as those often do not include major parts
of a user’s data [8] (e.g., photos on Facebook are not pub-
licly available by default). The average profile size was ≈10
MB, with the largest profile containing hundreds of photos
in 27 photo albums and one video. This profile consumed 60
MB of disk space in total. Overall, the data disclosed 2035
unique data items to us. More than 35% of all items are
less than 10 KB in size, and 93%—including most images—
are less than 100 KB in size, and large items rarely exist.
These findings largely coincide with those in [8]. The whole
data sums up to 206 MB. We selected one mirror as a host
for all data. Recall that storing these 20 profiles is three
times as much as 90% of SOUP nodes will have to store.
We then asked for text, photo and video data from the mir-
ror according to the request probabilities for each data type
as described in [23]. As shown in Fig. 15, the average con-
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Figure 15: Bandwidth consumption at high request rates.

sumption is well below 600 KB/s, even if the mirror has
to handle 20 requests per second. With an increasing re-
quest frequency large items are hit more often, which causes
the spikes in our measurements. As a result, a request might
time out once a mirror becomes overloaded, which may hap-
pen especially to nodes mirroring popular data, or limits its
bandwidth. Note that unlike other approaches where users
are stuck with a static or heteronomous set of mirrors [9–13],
SOUP will adapt to this situation.

8. DISCUSSION AND FUTURE WORK
Use of social relations. In SOUP, social relations not

only provide incentives to store data, but also play a role
when selecting mirrors, deciding which data should be drop-
ped, or filtering out malicious users and limiting their im-
pact. However, the trustworthiness of social relations within
an OSN is questionable. In particular, it remains unclear to
which extent the binary model of social relations reflects
the real world [31]. Recently, there have been approaches
to breaking this model and studying the effect of more ex-
pressive social relations [32, 33]. In fact, friend relations in
OSNs are multi-faceted and the existence of the relation it-
self only contributes very little to its tie strength [33]. Even
though SOUP is performing well if a large fraction of the
social relations in the OSN is compromised, exploiting more
precise relation models may provide an opportunity to fur-
ther improve its performance, stability and resiliency. For
instance, during mirror selection, SOUP could prefer closely
related users represented by a strong tie. The selecting node
could value their experience sets more than those of mere ac-
quaintances, which could further reduce the impact of ma-
nipulated experience sets. Or, the value of the social filter β
could be adjusted to the strength of the relation with each
particular friend. Also, data of closer friends could be more
secured from being dropped.

Large profiles. Although the storage and communica-
tion overhead is currently unproblematic when deploying
SOUP to the real world, there might be difficulties if users
share much larger data items or generate extremely large
user profiles in the future. One option to overcome such



difficulties could be the use of network coding to distribute
a large profile among mirror nodes. Network coding orig-
inally was proposed to improve the throughput utilization
of a given network topology [34], but can also be used in
the context of decentralized data storage [35]. Here, a file f
can be split into k equally sized (f/k) pieces, which are in
turn encoded into n fragments using an (n, k) maximum dis-
tance separable code. After distributing the fragments to n
nodes, it is possible to obtain the complete information from
k encoded fragments. Thus, instead of storing full replicas
among mirrors, SOUP could distribute encoded parts of the
profile (pieces), and then allow for reconstruction from those
parts’ fragments. Doing so can (i) prevent one node from
being overloaded with a large profile and (ii) increase the
data availability of SOUP as only k fragments need to be
available to reconstruct the data of interest.

Extended recommendations. The recommendations
in SOUP currently measure whether or not a user’s friends
were able to retrieve the user’s data from her mirrors (i.e.,
the availability of data). SOUP can be extended in a way
that a user’s friend also reports the bandwidth available at
the mirrors, which is then considered during mirror selec-
tion. Ultimately, this could lead to a better quality of service
for users requesting data from mirrors.

9. CONCLUSION
In this paper we presented SOUP, a decentralized online

social network (DOSN). SOUP addresses the severe privacy
concern from centralized OSNs by returning the control over
who can access which data to the users, and can securely en-
crypt user data according to a fine-grained access policy. As
our key contribution, we advocate a new approach to storing
user data in a large-scale DOSN. It successfully obtains the
best mirror nodes for each user to achieve high data avail-
ability with little overhead, while keeping all selected mirrors
synchronized. It is robust in that data of all users are highly
available without node discrimination, and can converge to
a stable state quickly. It further copes with adverse situa-
tions effectively, and can opportunistically leverage social
relations and altruistically provided resources. Enabling the
aforementioned features distinguishes SOUP as a unique,
full-fledged DOSN from existing DOSNs and their deficien-
cies. Finally, our comprehensive implementation and real-
world deployment of SOUP validate its practicability, in-
cluding its solid support toward mobile users.
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