
1

Humboldt:
A Distributed Phishing Disruption System

Paul Knickerbocker, Dongting Yu, and Jun Li
{pknicker, dongting, lijun}@cs.uoregon.edu

Department of Computer and Information Science
University of Oregon

Abstract—Conventional techniques for combating phish-

ing have focused primarily on detecting phishing web sites

and preventing users from revealing their passwords to

such sites. This passive form of defense is by its nature

incomplete and does nothing to protect users that do

reveal their passwords. Combating the phishing threat

requires more than simple avoidance—it requires a more

active approach to disrupting even successful phishing

operations.

Humboldt is a distributed system that submits poisonous

fake data to phishing web sites that is indistinguishable

from the input of actual phishing victims. The poisonous

data collected by a phisher produces detectable behaviors

when the phisher attempts to use it and provides a

mechanism for tracking activities associated with identity

theft. We evaluate Humboldt to show that it is effective

in disrupting phishing operations with a reasonably low

overhead.

Keywords: phishing, active phishing defense, Hum-

boldt

I. INTRODUCTION

Phishing is a severe security threat on today’s Internet.

By deceiving users to provide personal information to a

fake web page that is visually almost indistinguishable

from its legitimate counterpart, phishers have caused

widespread identity theft and immense finance loss.

Anti-phishing work has been focusing mostly on

detecting phishing sites and preventing users from ac-

cessing them. However, while detection and prevention

of phishing is an essential part of combating phishing,

users may still unknowingly submit their personal data

to phishing sites and thus fall prey to phishing attacks.

To address this problem, researchers have proposed an

aggressive solution, BogusBiter [1] to try to pollute the

data that phishers steal. Whenever a web client visits

a phishing site and is asked to provide a credential,

BogusBiter will simultaneously send a constant number

of bogus credentials similar to the original credential,

causing the phisher to be confused with which creden-

tials it has collected are real. Unfortunately, although

every individual bogus credential is indiscernible from

a real one, the phisher can simply discard all those

credentials received in a batch from the same machine.

Moreover, since BogusBiter relies on those users who

have installed BogusBiter to visit phishing sites manu-

ally, only a limited number of bogus credentials can be

submitted to pollute the phisher’s database.

In this paper, we introduce a new, aggressive approach

to phishing called Humboldt. Like BogusBiter, it also

poisons the data that phishers obtain en masse in order

to actively disrupt phishing activity. But Humboldt takes

a different approach to injecting fraudulent submissions

into the phishing site’s collected data. It relies on Hum-

boldt clients distributed over the Internet to submit poi-

sonous data to every phishing site it targets. In particular,

as an aggressive approach, Humboldt has the following

properties:

• Poisonous data from Humboldt is indistinguishable

from the data submitted by real phishing victims,

not only in terms of the data itself, but also in the

way the data is submitted;

• The submission of poisonous data is coordi-

nated among Humboldt clients in order to pre-

vent detectable behavior which would make post-

processing by phishers easier and also to avoid the

risk of launching DDoS attacks against the innocent

machine that hosts the phishing site; and

• Data submission from Humboldt is also automated,

without requiring manual intervention from users.

With enough clients, Humboldt can inject a signif-

icant amount of fake data into the phisher’s database,

either disrupting the phishing campaign or exposing the

phishers when they try to use these fake credentials—

which are generated and recorded by Humboldt—on the

real web sites they were pretending to be. Humboldt can

also cause data entries stolen from real victims to be

978-1-4244-4626-1/09/$25.00 c©2009 IEEE

2

interspersed among fake entries, protecting those phished

users now that their entries are harder to pick.

We describe how Humboldt achieves these properties

in this paper in detail. After presenting the basic design

requirements and how to meet them in Section II, in

Section III we describe in detail Humboldt’s architecture

that is composed of a central server with three major

components and multiple clients that are responsible for

injecting poisonous data to phishing sites. In Section IV

we discuss how Humboldt can be robust against smart

phishers that try to circumvent Humboldt. We then eval-

uate Humboldt to show that it is effective in disrupting

phishing operations with a reasonably low overhead in

Section V. Finally, we present related work in Section VI

and conclude the paper in Section VII.

II. HUMBOLDT DESIGN

Humboldt must meet a few key requirements in order

to be effective. While taking an offensive approach

towards the phishers, it must ensure that the data it

submits is indistinguishable from real phished data. It

also must ensure that clients have incentives to join

Humboldt. Last, it also must not bring disruptions or

harm to innocent parties, especially the web hosting

company that is unknowingly hosting the phishing site

and Humboldt’s own clients. For the rest of this section

we discuss how Humboldt meet these requirements.

A. Indistinguishability Between Humboldt and Victim

Submissions

Humboldt must assume that every phisher is aware of

Humboldt. For every piece of stolen data it collects, a

phisher can check its source, its pattern of submission,

or its content, to determine whether the data is from

Humboldt or from a real phished user. If Humboldt

submissions can be easily identified based on log file

information on the phishing server, then all the fraudu-

lent submissions from Humboldt can be readily removed.

Therefore, the design of Humboldt must consider how

to make sure its submission of fake data is undetectable

in all three aspects of the fake data, i.e., the source, the

pattern, and the content.

In filtering out submissions from Humboldt, the most

obvious filtering attribute that a phisher may adopt would

be IP address. Submissions from Humboldt, therefore,

would have to be made from a pool of machines, not

a central server. This requires Humboldt to operate

on a distributed nature, which it does using individual

client machines. The phisher may then try to learn

the individual IP addresses of Humboldt clients; more

specifically, since Humboldt clients may be more ag-

gressive in submitting data than real phishing victims, a

phisher could watch where the submissions are from and

assume those who submit more frequently are Humboldt

clients (the phisher could even do so across multiple

phishing sites to be more statistical). Humboldt addresses

this issue from several aspects. First, in today’s Internet

many machines are behind NAT boxes, and all machines

behind a NAT box will appear to be from the same IP

address. If the phisher does not accept multiple visits

from an IP address, when multiple victims from behind

the same NAT box submit to the phishing site, all of

their submissions will be ignored—a loss to the phisher

but a benefit to users. If Humboldt selects a client that

is behind a NAT box, and this client is aggressive and

submits frequently to a phishing site, all machines behind

the NAT box will be immunized from the phishing.

Second, a Humboldt client can also use the DHCP

protocol (which is also very common on today’s Internet)

so that every time it submits to a phishing site it uses a

different IP address. The Humboldt client can log its IP

addresses in the previous submissions. Third, if a Hum-

boldt client is behind a firewall that is not performing

NAT, the firewall can be configured to collaborate with

Humboldt. As shown in Figure 1(a), the firewall can act

as a NAT box for all communications to phishing sites

identified by Humboldt, achieving the same effect as the

first case above. Alternatively, whenever the Humboldt

clients communicate with phishing sites, the firewall

could replace the IP of Humboldt clients with a random

IP from the local domain (Figure 1(a)). With this method

a single Humboldt client could effectively act as multiple

clients, up to the number of IP addresses in the local

domain.

Humboldt must also adopt a submission pattern that

is undetectable to the phisher, or simply display no

pattern in its submission. For example, it must avoid

simultaneous submission of a constant number of forged

credentials in a batch as done in BogusBiter [1]. To

achieve this, Humboldt’s central server coordinates the

submission process of individual volunteer clients. For

each instruction that Humboldt issues, Humboldt at-

taches a time parameter specifying when this associated

particular entry should be submitted. Moreover, even

though fake data is automatically submitted, every Hum-

boldt client complies with the HTTP protocol so that

it is impossible for a phisher to check server logs or

HTTP headers to differentiate the origin of a submission

For example, before submitting any form data, every

Humboldt client will issue an HTTP GET request; a

form submission without a previous GET request would

be a give-away that an automated system is in place.

3

(a) Firewall acting as a NAT box.

(b) Firewall replacing the IP address of a Humboldt client with a
random local IP address.

Fig. 1. Firewall configured to collaborate with Humboldt.

Humboldt clients can further mimic the natural delay

in submission as the user reads, processes, and fills in

the page; this delay can be modeled as a randomized

function with respect to the amount of visible text on

the screen. In addition, the fact that Humboldt clients

have a diversity of connection speeds, HTTP header

information, and browser brand and version numbers

also makes data submissions look real.

Finally, Humboldt must ensure its fake data is similar

to real phished data. To do so, Humboldt generates fake

user names and passwords carefully from a dictionary

of English words, along with occasional numbers in

either of the fields. The result of such a combination

closely mimics real life user names and passwords. It is

possible to even accommodate a victim site’s password

requirements, such as the existence or the amount of

capital letters, numbers, and special symbols, into this

generation algorithm. Should a credit card or bank card

number be needed, Humboldt can also generate sensible

such card numbers according to the standardization of

the numbering scheme, such as one that is generated

by the Luhn algorithm. The intention is to make the

phishers either unsure of the received data, or make

it necessary to have the data checked for validity with

the corresponding legitimate corporation or organization,

exposing the phishers themselves by doing so.

B. Incentives for Clients

Humboldt clients who are responsible for submitting

poisonous data to phishing sites must have a strong

incentive to participate in Humboldt. Humboldt provides

such incentive from several aspects. First of all, the

legitimate web site that is a victim of a phishing attack

will have a strong incentive to urge everyone of its users

to become a Humboldt client. Victim web sites used

to be able to do virtually nothing except warn their

users, which was ineffective, and phishers continued

stealing credentials. With Humboldt, they now can inject

poison into the phisher’s database and further identify the

phisher when they use Humboldt-injected, fake data to

log in to legitimate web sites. Second, every Humboldt

client will be in a win-win situation whether or not

it is known by a phisher to be a Humboldt client: If

unknown by phishers, the client can submit fake data to

phishing sites aggressively without limit, maximizing the

damage it can do to the phishers; otherwise, the phisher

will not take the input from this client, immunizing this

machine—and even those who share the same IP address

behind a NAT box or firewall (see Section II-A)—from

phishing attacks.

C. Minimal Harm to Third Parties and Humboldt Clients

If not careful, Humboldt’s distributed submission sys-

tem could be misused as a DDoS system. If there is a

large pool of Humboldt clients and they all try to submit

at the same time, it could overwhelm the server hosting

the phishing web site. Since a majority of phishing sites

are hosted on commercial hosting services (either by

paying for the service or compromising a server or a web

site), Humboldt should not direct its clients to perform an

equivalent of a DDoS attack. This requirement coincides

with the submission pattern requirement discussed in

Section II-A, as a flood of submissions would also

produce a noticeable anomaly in the log files of phishing

sites and allow for a more effective elimination of Hum-

boldt entries. Humboldt meets this requirement in the

same way as the submission pattern requirement: through

the coordination of the central server. As Humboldt’s

central server coordinates the submission process of

individual clients and avoids flooding fake data from all

clients to the same phishing site, Humboldt will have

minimal disruptions to the hosting services.

It is also important not to bring Humboldt’s clients to

any danger because of their participation in Humboldt.

Humboldt clients expose some information about their

4

machine to the phisher, such as their IP address, web

browser version, and the operating system. However, this

information cannot directly lead to attacks toward the

clients.

III. ARCHITECTURE

A. System Overview

The Humboldt system is composed of a central server

and multiple clients. The client machines are responsi-

ble for submitting fake data to phishing sites, and the

server is further broken up into three major components,

handling the input, processing, and output of the system,

respectively:

• Phishing site profiler that examines known phishing

sites, develops a data submission profile for them,

and populates them into the Humboldt database;

• Humboldt database (HumboldtDB) that stores the

profile for each phishing site, generates fake data for

submitting to each phishing site, as well as logs fake

data submitted to each phishing site for forensics

analysis; and

• Feed creator that coordinates all the clients’ activity

and distributes data to the clients.

As shown in Figure 2, Humboldt’s working procedure

based on these components is as follows. First, the phish-

ing site profiler receives a list of active phishing sites

from a feed such as the one provided by PhishTank [2] or

contracted mail servers that gather phishing URLs from

phishing emails. For each phishing site URL, it fetches

the HTML page, makes sure it exists, and analyzes the

page to create its profile, including determining the fields

in the page and what they expect as input. For every

new phishing site profile, HumboldtDB then determines

the number of Humboldt submissions needed, generates

that amount of fake data, and passes them along with

other instructions through the feed creator to Humboldt

clients. The clients then submit the Humboldt-generated

fake data to the phishing site at the predetermined time

using mechanisms that make their submissions appear

indistinguishable from legitimate users.

B. Phishing Site Profiler

The main purpose of the phishing site profiler is to

process and profile the web page of any phishing site in

order to properly submit forged data to it. In particular, it

needs to determine the method for data submission (e.g.,

GET or POST) and the field type of every field on the

web page (e.g., user name, password, credit card number,

or PIN number). While the purpose of every field may

be clear to a human user visiting the page, it can be

hard for Humboldt to discern using a simple contextual

analysis of the underlying HTML. To compound this

problem, phishers can also try to make their sites harder

to classify through polymorphic field names (though this

may improve phishing site detection). On the other hand,

despite the challenges facing an automatic classification

system, there are trends and popular techniques which

point to an effective solution. For example, 52.6% of

phishing sites reported on PhishTank are Rock-Phish

sites [3], following a predictable format that can be

detected and classified.

Humboldt uses automatic classification to handle the

easily recognizable phishing sites and relies on manual

classification for the rest. In particular, we start out with

automatic detection for the phishing sites that attempt

to capture user names and passwords, as they have

easily recognizable HTML patterns. With the analysis

of the Rock-Phish sites, the percentage of sites which

can be classified automatically should rise significantly.

Meanwhile, the manual evaluation of phishing sites

which are not automatically classified can also be greatly

sped up using an interactive plug-in to the web-browser,

which automatically creates profiles based on the user’s

identification of the fields.

C. Humboldt Database (HumboldtDB)

HumboldtDB is the data management center for the

entire system. It generates and records all the fake

data distributed, as well as the destinations of such

data, and interacts with the feed creator to coordinate

data submission among clients. Because of the amount

of information recorded, HumboldtDB can provide in-

valuable information for tracking phishing behavior and

performing forensic analysis, especially when a phisher

uses the fake data injected to its phishing site.

HumboldtDB is the source of all the fake data submit-

ted by the Humboldt system. The fraudulent data used

can be classified into several different categories such

as user names, credit card numbers and their associated

CVV code and expiration dates, passwords and ad-

dresses. Each category of data has its own requirements

for appearing legitimate (e.g., credit card numbers should

have valid Luhn digits, passwords are often dictionary

based), and are generated using specialized algorithms

designed to mimic legitimacy. As the generation of data

is not CPU-intensive, Humboldt is able to continuously

generate fake data to provide them to the feed creator

for distribution.

HumboldtDB must ensure proper coordination be-

tween clients. When a new phishing site is entered

by the profiler, HumboldtDB calculates a randomized

5

Fig. 2. Humboldt architecture.

submission schedule that follows the trend of expected

phishing victims, estimated at 25 on average for the first

day, and around 10 each day thereafter according to [3],

in order to minimize the possibility that phishers can

detect the introduction of Humboldt data. The data is

distributed to the feed creator which then acts upon the

schedule.

HumboldtDB is also the primary repository for all the

information about submissions made. That is, it logs all

fake data submitted, including the destination sites of

those submissions. Since it is not hard to map a phishing

site with the legitimate site that it tries to impersonate

(e.g., the verification of a phishing site usually involves

a positive identification by a human; a mapping can be

made easily at that stage), Humboldt can inform each

victim site of all the fake data submitted to the phishing

sites that impersonate that victim site. The victim site can

then identify phishers once it sees activities using these

fake data. Security researchers and law enforcement

personnel can also benefit from the logged submission

information; the flow of the fake data can also be tracked

as they are exchanged between different parties. Note

since logged submission data is also of great interest to

phishers, Humboldt provides such data only to trusted

victim sites.

D. Feed Creator

The feed creator is the “output” component of the

Humboldt server, responsible for passing to and co-

ordinating actions among Humboldt clients with data

passed from HumboldtDB. The feed creator also receives

feedback information from Humboldt clients, such as

whether a submission is successful, and passes them

back to HumboldtDB.

More specifically, to make the distribution more coor-

dinated, the feed creator keeps records of online Hum-

boldt clients and some user data such as how frequent the

client is able to make submissions. For example, clients

behind a NAT box or a Humboldt-aware firewall may

choose to submit as many as possible for the reasons

we discussed in Section II-A, but other clients may

make at most one submission per phishing site. With

such knowledge the feed creator can make appropriate

distribution decisions about which clients to involve and,

after receiving fake data from HumboldtDB, passes them

to selected clients to submit. The feed creator component

also waits for feedback data, such as the success of

the submission, or HTTP errors that the client may

encounter.

6

E. Humboldt Clients

Humboldt clients are tasked with submitting fake data

to phishing sites while obscuring the system’s footprint.

In order to be indistinguishable from the submission of

phished users, the submission of data from Humboldt

clients should mimic the behavior of a phished user

close enough by following the design as discussed in

Section II-A.

In fact, every client can be simply implemented as a

web browser plug-in. Since the browser embeds browser

data (such as the browser version) along with HTTP

requests, using a browser plug-in will help exhibit a

realistic distribution of visitor profiles to the phishing

site. Moreover, implementing Humboldt clients as a web

browser plug-in allows non-technical users help con-

tribute to the Humboldt system through a simple install.

The plug-in can operate without any user input, but

simply interact with Humboldt and make submissions

while the user performs other activities.

Joining Humboldt is easy. After a host installs the

Humboldt plug-in, it can initiate a join request to the

Humboldt server (more specifically, the feed creator),

which then can add this host as a Humboldt client.

(We discuss security concerns in adding clients in Sec-

tion IV-B.)

The Humboldt server has a light-weight mechanism

for maintaining its clients. Recall every client needs to

send feedback to the feed creator after it is instructed

to submit fake data. If a client does not send feedback

in multiple instances (currently set to three times that

happen during different time windows), the feed creator

will simply remove that client.

IV. DISCUSSION

It is not enough for Humboldt to just have a short-term

success as phishers can attempt to neutralize Humboldt’s

success in fighting against phishers. In this section,

we identify countermeasures phishers can employ, and

discuss how Humboldt can deal with them. Specifically,

we discuss how phishers may embed a unique ID in

their phishing URLs, pretend to be Humboldt clients,

or compromise Humboldt’s phishing site profiler or

HumboldtDB, and what Humboldt’s solutions are.

A. Phishing URLs with Unique Identifier

One potential problem for Humboldt is phishing URLs

that carry a unique identifier. When a phisher sends out

phishing emails in a phishing campaign, the phisher

can make sure the phishing URL in every phishing

email contains a unique ID, e.g. http://www.phisher.

com/login.cgi?id=12345. (Note that such unique IDs are

also used in certain legitimate cases, such as IDs for

forgotten password emails, or account activation links.)

The phisher can also log (or make sure it can derive) all

the email addresses it targeted, together with the unique

ID for each email address. As a result, the phisher can

expect most of its phishing victims would simply click

on a phishing URL with a unique ID—and doing so only

once—to get directed to the phishing site, and only target

such victims.

Such a design from phishers would force Humboldt

to also submit its fake data to phishing URLs with

unique IDs, and to use every unique ID only once.

If a submission to the phisher’s web site is based

on a request address without an ID (e.g. http://www.

phisher.com/), or a non-existent ID according to the

phisher’s knowledge, (e.g. http://www.phisher.com/login.

cgi?id=nonexistent), or is a duplicate submission using

the same phishing URL with an ID, the phisher can

discard any information entered from the submission.

To deal with this strategy from phishers, Humboldt

has to gather phishing URLs with unique IDs. Note that

phishing links reported by services such as PhishTank

may not contain many phishing URLs with unique IDs.

Instead, Humboldt can team up with mail servers to

collect phishing URLs, especially those with unique

IDs, and then have Humboldt clients submit fake data

using such phishing URLs. Phishers, upon receiving a

submission, will not know if that particular submission

is from Humboldt or a phished user since the ID is going

to be valid in their local database.

If phishers learn which mail servers are collaborating

with Humboldt and discard all submissions resulting

from phishing emails toward those mail servers, then the

entire mail domain of those servers will be immunized

from phishing. This is a significant benefit for the

domain, especially when the domain is as large as having

millions of users.

B. Authenticity and Integrity of Humboldt Clients

Humboldt must take caution in adding a new client

(but without being too restrictive to lose many potential

clients). For example, Humboldt needs to make sure the

IP address of every client is not spoofed. Humboldt

also needs to make sure that it is not a bot from a

botnet that is trying to sign up, probably by using a

CAPTCHA technique. This way, if a phisher tries to

join Humboldt as a client to compromise Humboldt, it

can, but the phisher’s machine will only sign up as one

specific machine with an IP address on the record.

At the same time, certain clients—including any client

belonging to a phisher—could misbehave, but Humboldt

7

is tolerant of that. A client could fail to submit fake

data assigned to it, thus failing to pollute the database

of a phisher. A client could also submit the fake data

more than once, causing the phisher simply to ignore

the submission. A client may also modify the fake data,

still polluting the database of a phisher but making

the fake data not trackable by Humboldt. However, all

these cases will not affect other clients who do behave

properly. No matter how many clients misbehave, the

well-behaved clients will be able to continue disrupting

phishing effectively. There is also no real data passed

around anywhere in the system, so no misbehaviors can

put any real data in danger. The possible compromise or

malicious modification of client side software code is a

likely indication of a compromised machine altogether,

and such vulnerabilities fall under program and operating

systems security, out of the scope of this paper.

C. Securing the Humboldt Server

The phishing site profiler, HumboldtDB, and the feed

creator are the three critical components of the Hum-

boldt server. Phishers can launch many security attacks

toward them, but fortunately the possible types of attacks

are common and already well-studied. For example, an

obvious attack towards the Humboldt server is a DoS

or DDoS attack. These types of attacks are very general

and are widely studied as a separate research topic. We

therefore do not discuss them here as they are out of our

scope. The phishing site profiler needs to make sure its

sources of phishing URLs are trustworthy, HumboldtDB

must employ common database security solutions to

make sure its data cannot be stolen or modified by

phishers, and the feed creator must sign every dispatch

to clients about what fake data to submit to a specific

phishing site in order to guarantee the integrity of the

dispatch.

D. Legal Issues

Humboldt does not cause harm to a web site or the

identity of an individual. By hosting a web site online

with its forms, the web site (who is probably a phisher)

invites the public to input data into the form and make

submissions. Since these web sites are public, anyone

is allowed to submit data into these forms. Humboldt

is merely a program that automates this data input and

submission process as if a human is performing these

actions. There is then no harm done to the web sites in

this sense. A Humboldt client also is not inadvertently

entering a contract for its client machine since, even if

an EULA is present on the web site, it is unclear and

debatable whether an agreement is present, especially

if a phishing site is being dealt with. As a result, no

contracts are entered. On the other hand, the informa-

tion that is being submitted is not causing harm to a

potential online retailer should a phisher uses it to make

a purchase, because only fake generated data (i.e. not

real data) is submitted to the phisher. The probability

of having a coincidental match in credit card number,

CVV, expiration date, and cardholder name to those of

a real person’s is, for practical purposes, zero. The same

argument can be applied to show that Humboldt does

not bring identity theft and thus bringing harm to an

individual.

Since Humboldt generates fake data for distribution,

the legality of such actions is also worth discussing. For

credit cards, the algorithm for generating and validating

a Luhn number is in the public domain, as it is created

by IBM scientist Hans Peter Luhn and described in U.S.

Patent 2,950,048, filed on January 6, 1954, and granted

on August 23, 1960. The purpose of Luhn numbers is

simply to provide a 16-digit number that contains error-

detection capabilities. The outcome that Humboldt tries

to achieve is just to have the phisher accept the number,

believing it is valid. It is no different to generate these

Luhn numbers compared to generating a seemingly valid

fake address or name. Humboldt or its clients do not gain

anything, financially or otherwise, from the distribution

of these fake data to the phishers. It is also not expected

that these fake information can provide the phishers with

any financial gain.

V. EVALUATION

In this section, we evaluate both the effectiveness of

Humboldt and the performance of the prototype that we

have implemented. For effectiveness, we have devised

two probability models to arrive at theoretical results.

These theoretical results give us insight on possible

requirements of Humboldt for a successful deployment,

including the amount of fake data to be submitted to an

individual phishing site and the probability of identifying

a phisher with such fake data. For performance, we

have implemented a prototype and collected necessary

performance overhead data on a desktop machine with

reasonable hardware.

A. Theoretical Results

In order to measure how effective and efficient Hum-

boldt is, we must have a definition of effectiveness and

efficiency, followed by methods to properly evaluate

them.

We define an effective solution to be one that has

the highest chance of identifying phishers. Therefore our

8

metric is the probability of success, where success is the

ability to identify a phisher’s login attempt to a victim

web site. We also define a solution to be efficient if it

requires a minimal number of submissions. Our metric

to measure efficiency is then the number of fake entries

Humboldt deems necessary to submit.
For both the effectiveness and efficiency metric, we

derive a model and analyze how Humboldt does in terms

of the metric.
1) Probability of Success: Suppose that a phisher,

after running a phishing campaign, is left with a database

of submissions into its phishing web site. Let N be the

number of total submissions that the phisher receives,

and H be the number of entries within N that are fake

data submissions from Humboldt. Of course, the phisher

does not know what H is. The number of real phished

entries is N − H . Further, on the phisher’s side, we

let n < N be the number of entries that the phisher

tries with the legitimate web site in order to verify the

legitimacy of the received entries. (The phisher might

not test all received entries due to the fear of being

caught or simply lack of time.) Since Humboldt can

provide victim web sites with the fake entries that it

has instructed its clients to submit to their phishing

counterparts, the victim web site can recognize phishers

when they attempt to log in with a Humboldt entry. We

let k ∈ {1, 2, . . .} be the number of Humboldt entries

that a victim web site sees within a time period before

concluding that it is a phisher trying to log in. For a

web site with a large user base, since it is possible that

a Humboldt-created fake user name and password pair

might coincide with that of a real existing user in the

victim web site, k could be chosen such that k = 2, i.e.,

the victim site identifies a phisher after seeing at least

two login attempts with Humboldt entries. However,

choosing k = 2 is already very conservative as it is

extremely unlikely that this coincidence happens. A k

value of 1 is sufficient for most cases.
Let X be the random variable for the number of

Humboldt entries that a phisher tries with the victim web

site. We then have the probability

P{X = k} =

(

H
k

)(

N−H
n−k

)

(

N
n

) ,

with k being the threshold to identify phishers. The

probability of detection is actually

P{PhisherDetected} = P{X ≥ k},

where the latter is a summation on k to an upper limit

of H:

P{X ≥ k} =
H

∑

i=k

P{X = i} =
H

∑

i=k

(

H
i

)(

N−H
n−i

)

(

N
n

) . (1)

Considering a scenario where N = 100 and n = 20,

we can use Equation (1) to derive the discrete probability

values. As shown in Figure 3, we can see that Humboldt

is effective in catching phishers: With k = 2, if the

phisher randomly picks and tries 20 out of a total of 100

entries in its database, we will have 90% probability of

detecting this phisher by only submitting 17 Humboldt

entries to the phisher’s database. With k = 1, then

only 8 Humboldt entries are needed for the same 90%

probability. The trends displayed in the same figure are

mostly sigmoidal, meaning that in most cases adding

just a few more Humboldt entries can greatly improve

our chance of detecting the phisher.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
ro

b
a
b
ili

ty

of Humboldt entries (H)

k = 1
k = 2
k = 4
k = 6
k = 8

k = 10

Fig. 3. Probability of identifying a phisher based on the number of
Humboldt entries in the phisher’s database (the phisher has a database
with 100 entries and it tries 20 out of 100 randomly).

Similarly, consider a scenario with N = 100 and H =
20, where we fix the number of Humboldt entries in

the phisher’s database, and observe how the probability

of identifying the phisher may vary with the different

n values, i.e., the size of the random sample that the

phisher picks to try on the victim site. This scenario is

shown in Figure 4. From this figure we can see that with

k = 2, if Humboldt successfully submitted 20 entries

into the phisher’s database that has totally 100 entries,

the probability of identifying the phisher will be 90% if

the phisher randomly picks just 17 entries to attempt at

the victim web site. And with k = 1, the phisher can

be detected with the same 90% probability if it submits

only 8 entries. Since the distributions are sigmoidal again

and a slight increase in the number of attempts at the

victim site would significantly increase the probability of

identifying the phisher, one interesting observation here

is that the phisher has to be very cautious in increasing

its number of attempts at the victim site. On the other

hand, to cause Humboldt to have a lower probability of

9

success, the phisher has to decrease its number of login

attempts. Note that the probability value stays above 50%

even if the phisher only attempts eight times for k = 2,

and three times for k = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
ro

b
a
b
ili

ty

of attempted entries (n)

k = 1
k = 2
k = 4
k = 6
k = 8

k = 10

Fig. 4. Probability of identifying a phisher based on the size of the
random sample chosen by the phisher (the phisher has a database
with 100 entries and it tries 20 out of 100 randomly).

It is interesting to note that Figure 3 is identical to

Figure 4 (with their respective fixed variable values).

This is more of a property rather than coincidence:

we can in fact show that although the two equations

have different summations, the individual terms end

up being the same if each term in the summation is

enumerated. What this means is that the number of

Humboldt submissions is just as important as the sample

size that a phisher chooses to try. In the case that phishers

decrease their sample sizes, Humboldt can easily deal

with it by linearly increasing its size of submissions.

Overall, Humboldt is effective: With a reasonable

number of Humboldt-submitted entries, the probability

in detecting phishers is high as phishers use Humboldt

entries in attempted logins at victim web sites. Even if

a phisher concedes with fewer attempts, Humboldt can

always injects more entries to the phisher’s database to

maintain the high probability of successfully identifying

the phisher.

2) Number of Submissions: To analyze the number of

submissions that Humboldt needs to inject into a phish-

ing site, we define another model where the total number

of submissions is not fixed as defined above, but rather a

variable based on the scale of a phishing campaign and

user response rate. Without loss of generality, assume the

phisher sends out M phishing emails targeting a specific

victim web site as part of a phishing campaign, and let

β be the response rate of email users who have received

one of M emails and followed through the phishing link

provided. The number of entries from real victims is

then M · β, and we can represent the total number of

entries that the phisher receives as (H+M ·β). Plugging

(H + M · β) into Equation (1) by replacing N , we now

have:

P{X ≥ k} =
H

∑

i=k

P{X = i} =
H

∑

i=k

(

H
i

)(

M ·β
n−i

)

(

H+M ·β
n

) . (2)

Based on Equation 2, we can analyze the number of

submissions needed from two angles. First, as shown in

Figures 5 and 6, we can study how the probability of

identifying the phisher varies based on the scale of a

phishing campaign. Both figures assume n = 20 and

k = 1, but in Figure 5 we have H = 20 and in Figure 6

we have H = 100. With a fixed H , it is obvious that the

detection probability decreases as the size of the phishing

campaign increases. Moreover, while the detection is not

effective with H = 20, increasing H to 100 will greatly

improve the efficacy of detecting phishers. Note for most

phishing campaigns we evaluate, this value of H is about

one magnitude smaller than the number of real phished

entries that a phisher obtains.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

P
ro

b
a
b
ili

ty

of phishing emails (M)

β = 0.05
β = 0.10
β = 0.15
β = 0.20
β = 0.25

Fig. 5. Probability of identifying a phisher based on the number of
phishing emails (H = 20, n = 20, and k = 1).

Secondly, we can study in order to achieve a given

probability of identifying a phisher, how many Humboldt

entries are needed for different sizes of phishing cam-

paigns. Figures 7 and 8 plot the results for probabilities

of 0.8 and 0.9, respectively. Both assume k = 1 and

n = 20. As expected, the one magnitude difference

between these two variables still hold, and we confirm

that Humboldt can achieve high probabilities of success

with a realistic number of clients. The trends between

these two variables, the number of entries Humboldt

needs to submit versus the size of a phishing campaign

display basically a linear relationship, indicating that

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

P
ro

b
a
b
ili

ty

of phishing emails (M)

β = 0.05
β = 0.10
β = 0.15
β = 0.20
β = 0.25

Fig. 6. Probability of identifying a phisher based on the number of
phishing emails (H = 100, n = 20, and k = 1).

Humboldt can keep up with large phishing campaigns

with the same proportion of Humboldt clients.

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000

#
 o

f
H

u
m

b
o
ld

t
e
n
tr

ie
s
 (

H
)

of phishing emails (M)

β = 0.05
β = 0.10
β = 0.15
β = 0.20
β = 0.25

Fig. 7. Estimation of number of Humboldt entries needed for
detection probability of 0.8 (k = 1 and n = 20).

In summary, Humboldt is efficient because, with a rea-

sonable response rate of phishing emails, Humboldt can

handle large-scale phishing campaigns in the range of

thousands of phishing emails with one fewer magnitude

of fake entries submitted, in the range of low hundreds.

This capability of handling large phishing campaigns

with minimal resources is crucial to the success of

Humboldt.

B. Humboldt Prototype Evaluation

We have built and implemented a prototype of Hum-

boldt. In this prototype we use PhishTank as the provider

for phishing URLs, and the Humboldt server is a Pen-

tium 4 desktop with a 3-GHz CPU and a 1-GB mem-

ory. From our tests and results, the prototype achieves

 0

 50

 100

 150

 200

 250

 300

 350

 0 2000 4000 6000 8000 10000

#
 o

f
H

u
m

b
o
ld

t
e
n
tr

ie
s
 (

H
)

of phishing emails (M)

β = 0.05
β = 0.10
β = 0.15
β = 0.20
β = 0.25

Fig. 8. Estimation of number of Humboldt entries needed for
detection probability of 0.9 (k = 1 and n = 20).

performance expectations. On the Humboldt server side,

we mainly studied the rate that new phishing sites

appear and the speed at which Humboldt processes them;

on the Humboldt client side, we mainly studied the

extra network traffic due to a client’s participation in

Humboldt.

It is crucial for the Humboldt server to be able to keep

up with the pace of the appearance of new phishing web

sites. By fetching the hourly updates of PhishTank, we

observe that although the number of online phishing sites

at a given moment is high (over 10000 as of June 2009),

the number of new online sites on an hourly basis is

quite low. From a period of 27 hours in March 2009, we

observed 99 new phishing sites reported by PhishTank

through a 27-hour period, an average of 3.7 sites per

hour. (Although PhishTank is not complete in listing all

the phishing sites, it provides one of the most popular

listings, and the number of phishing sites it provides is

on the same order as its counterparts.) This low value is

advantageous for Humboldt since it only needs to profile

each phishing site once, and the profiling stage is the

most CPU intensive stage for the Humboldt server.

Since PhishTank only updates the feed each hour, we

evaluate the Humboldt server’s overhead on an hourly

basis as well. First, with our prototype, processing a new

phishing site—including downloading its web page and

profiling it—will cost on average 1.769 seconds. Here,

the latency for downloading a web page will depend on

the locations of the Humboldt server, the phishing site,

the relevant DNS servers, as well as network congestion

level; the cost of profiling a web page can also depend

on the contents of the page. In addition, every hour

the server will incur an overhead that costs on average

28.269 seconds, including deciding if certain phishing

11

URLs in the current hour still point to the same web

pages that have been processed before. As a result,

theoretically our prototype of Humboldt can process

an average of 2019 new sites per hour (i.e., (3600-

28.269)/1.769), a number that is much larger than the

real number of new sites appearing each hour (which is

3.7 on average as mentioned above).

On the client side, we want to minimize network traffic

that Humboldt caused on the client machines. Since

instructions from Humboldt to each client are minimal,

we focus on the size of phishing web pages since each

client must pretend to visit the phishing page before a

submission is made. After studying 130 phishing sites

we found that phishing sites have a mean size of 33145

bytes with a standard deviation of 53842 bytes, including

their HTTP headers, images, CSS, external JavaScript,

and associated files. Given on average there are only

3.7 new phishing sites per hour to handle as calculated

above, a Humboldt client would thus incur a reasonable

amount of traffic overhead with today’s technology.

VI. RELATED WORK

Several prevention mechanisms and techniques exist

to help users not become phished. These solutions are

typically deployed as web browser or email client plug-

ins. For example, one such type of web browser plug-

ins defends against phishing through password obfus-

cation and password management [4], [5], [6]. Some

browser plug-ins use heuristic-based approaches to detect

phishing web sites, using machine-readable properties

of a web site or a browser’s data such as its browsing

history [7], [8], [9], [10], [11]. Email client plug-ins

can also identify phishing emails if they contain links

to fraudulent sites [12], [13].

Prevention can also be done at legitimate web sites.

Solutions such as SiteKey rely on mutual authentication

where the legitimate web site can provide an image

that a phishing site does not have access to [14], [15],

[16]. This challenge-response technique is somewhat

effective, but an inexperienced user can still be phished

if the phishing site does not show the cue image at all,

even if the legitimate version of the web site has such

component. Other more advanced cueing techniques also

exist. One example is an authentication solution that uses

random visual keypads for password entry [17].

There are also techniques that can be deployed on

both a user’s machine and a legitimate web site. The

most common method is web site identification using

whitelists or blacklists. The web browser (or a plug-in

of the browser) can check if each site navigated to exists

on a whitelist or a blacklist [18], [19], [20]. In order for

blacklisting to be effective, the blacklist database has to

update itself quickly and frequently. We cannot blacklist

just the IP addresses since sometimes many sites share

one same IP address in commercial hosting services. In

recent years new phishing techniques, such as rock-phish

web sites and fast-flux domains, begin to appear getting

around blacklisting. As a result, blacklisting is effective

against identified phishing sites (the browser can give

highly visual alerts to the user), but it is not exhaustive

and leaves many phishing sites unaffected.

If a victim web site finds a phishing site for its own

brand, the victim site can issue a take-down notice to the

company hosting the phishing site, as discussed in [3],

[21]. It is also possible to stop DNS resolutions earlier

on in the DNS resolution chain so that the domain name

of a phishing site is not resolved at all. Take-down is

more of a reactive strategy rather than preventative, so

usually by the time a web site is indeed taken down,

some damage has already been done and the phisher

is able to obtain personal information from victim users

up until that point. Another problem with this take-down

strategy is that it lacks incentive for everyone except for

the victim site itself. Users who can identify a site as a

phishing site do not achieve personal gain by notifying

the bank or hosting company; and similar argument stand

for hosting companies.

VII. CONCLUSIONS

Phishing as one of the most severe security threats on

today’s Internet has caused widespread identity theft and

immense finance loss. Solutions to phishing, however,

have mostly been passive and are often about detecting

phishing sites and preventing users from accessing them.

Although offensive approaches have been taken, such as

submitting bogus credentials to phishing sites or simply

requesting to take down a phishing site, such approaches

are either easy to thwart or require too many manual

operations.

We present a solution in this paper, called Humboldt,

that can inject poisonous data into phishing sites to

disrupt phishing activities. It can profile phishing sites

to decide what fake data to submit, and have its clients

do so without looking different from real phished users.

Humboldt not only causes phishers to have difficulty

in obtaining sensitive data from real victim users, but

also makes it possible to track phishers. We have also

evaluated Humboldt and shown it is both effective and

efficient; the evaluation of the Humboldt prototype also

shows the system has a low performance overhead.

12

REFERENCES

[1] C. Yue and H. Wang, “Anti-phishing in offense and defense,”
in ACSAC ’08: Proceedings of the 2008 Annual Computer

Security Applications Conference. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 345–354.

[2] OpenDNS, LLC. PhishTank. [Online]. Available: http://www.
phishtank.com/

[3] T. Moore and R. Clayton, “An empirical analysis of the current
state of phishing attack and defence,” in Workshop on the

Economics of Information Security, 2007, June 2007.
[4] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell,

“Stronger password authentication using browser extensions,”
in SSYM’05: Proceedings of the 14th conference on USENIX

Security Symposium. Berkeley, CA, USA: USENIX Associa-
tion, 2005, pp. 2–2.

[5] E. Kirda and C. Kruegel, “Protecting users against phishing
attacks with AntiPhish,” in Proceedings of the International

Computer Software and Applications Conference, 2005, pp.
517–524.

[6] K.-P. Yee and K. Sitaker, “Passpet: Convenient password
management and phishing protection,” in Proceedings of the

Symposium on Usable Privacy and Security, 2006, pp. 32–43.

[7] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. C.
Mitchell, “Client-side defense against web-based identity theft,”
in Proceedings of the Network and Distributed System Security

Symposium, February 2004.
[8] CallingID Ltd., “CallingID Toolbar,” visited October

10, 2007. [Online]. Available: http://www.callingid.com/
DesktopSolutions/CallingIDToolbar.aspx

[9] Mozilla Foundation, “Firefox phishing protection,” visited
October 10, 2007. [Online]. Available: http://www.mozilla.
com/en-US/firefox/phishing-protection/

[10] Microsoft Corp., “Anti-phishing technologies overview,” visited
October 10, 2007. [Online]. Available: http://www.microsoft.
com/mscorp/safety/technologies/antiphishing/overview.mspx

[11] Netcraft, “Netcraft anti-phishing toolbar,” visited October 10,
2007. [Online]. Available: http://toolbar.netcraft.com/

[12] I. Fette, N. Sadeh, and A. Tomasic, “Learning to detect phishing
emails,” in Proceedings of the international conference on

World Wide Web, 2007, pp. 649–656.
[13] B. Adida, S. Hohenberger, and R. L. Rivest, “Fighting phishing

attacks: A lightweight trust architecture for detecting spoofed
emails,” in Proceedings of DIMACS Workshop on Theft in E-

Commerce: Content, Identity, and Service, April 2005.

[14] N. Agarwal, S. Renfro, and A. Bejar, “Yahoo!’s Sign-in Seal
and current anti-phishing solutions,” in Proceedings of Web 2.0

Security & Privacy Workshop, May 2007.

[15] Bank of America, “How Bank of America SiteKey works for
online banking security,” visited October 10, 2007. [Online].
Available: http://www.bankofamerica.com/privacy/sitekey/

[16] The Vanguard Group, “Learn how Vanguard protects
your accounts,” visited October 10, 2007. [On-
line]. Available: https://personal.vanguard.com/VGApp/hnw/
help/SecurityVGProtectsAcctsContent.jsp

[17] Tricerion, “Tricerion SMA product overview,” visited October
10, 2007. [Online]. Available: http://www.tricerion.com/
products/productOverview.php

[18] Earthlink, Inc., “Earthlink tools for Firefox browser,” visited
October 10, 2007. [Online]. Available: http://www.earthlink.
net/software/nmfree/firefox/faq/

[19] eBay, Inc, “eBay: Buyer’s tools: Toolbar,” visited October 10,
2007. [Online]. Available: http://pages.ebay.com/ebay toolbar/

[20] Google, Inc., “Google safe browsing for Firefox,” visited
October 10, 2007. [Online]. Available: http://www.google.com/
tools/firefox/safebrowsing/

[21] T. Moore and R. Clayton, “Examining the impact of website
take-down on phishing,” in eCrime ’07: Proceedings of the

anti-phishing working groups 2nd annual eCrime researchers

summit. New York, NY, USA: ACM, 2007, pp. 1–13.

