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Abstract—Geo-distributed clouds provide an intriguing plat-
form to deploy online social network (OSN) services. To leverage
the potential of clouds, a major concern of OSN providers is
optimizing the monetary cost spent in using cloud resources while
considering other important requirements, including providing
satisfactory quality of service (QoS) and data availability to OSN
users. In this paper, we study the problem of cost optimization
for the dynamic OSN on multiple geo-distributed clouds over
consecutive time periods while meeting pre-defined QoS and data
availability requirements. We model the cost, the QoS, as well
as the data availability of the OSN, formulate the problem, and
design an algorithm named cosplay. We carry out extensive
experiments with a large-scale real-world Twitter trace over
10 geo-distributed clouds all across the US. Our results show
that, while always ensuring the QoS and the data availability as
required, cosplay can reduce much more one-time cost than the
state-of-the-art methods, and it can also significantly reduce the
accumulative cost when continuously evaluated over 48 months,
with OSN dynamics comparable to real-world cases.

Index Terms—Online social network, Cloud computing, Opti-
mization models and methods, Performance analysis and evalu-
ation

I. INTRODUCTION

INTERNET services today are experiencing two remarkable
changes. One is the unprecedented popularity of online

social networks (OSNs), where users build social relationships,
and create and share contents with one another. The other is the
rise of clouds. Often spanning multiple geographic locations,
clouds provide an important platform for deploying distributed
online services. Interestingly, these two changes tend to be
combined. While OSN services often have a very large user
base and need to scale to meet demands of users worldwide,
geo-distributed clouds that provide Infrastructure-as-a-Service
can match this need seamlessly, as well as tremendous resource
and cost efficiency advantages. Infinite on-demand cloud re-
sources can accommodate the surges of user requests; flexible
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pay-as-you-go charging schemes can save the investments of
service providers; and cloud infrastructures also free service
providers from building and operating ones’ own data centers.
Indeed, a number of OSN services are increasingly deployed
on clouds, e.g., Sonico, CozyCot, and Lifeplat [2].

Migrating OSN services towards geographically distributed
clouds must reconcile the needs from several different aspects.
First, OSN providers want to optimize the monetary cost spent
in using cloud resources. For instance, they may wish to
minimize the storage cost when replicating users’ data at more
than one cloud, or minimize the inter-cloud communication
cost when users at one cloud have to request the data of others
that are hosted at a different cloud. Moreover, OSN providers
hope to provide OSN users with satisfactory quality of service
(QoS). To this end, they may want a user’s data and those of
her friends to be accessible from the cloud closest to the user,
for example. Last but not least, OSN providers may also be
concerned of data availability, e.g., ensuring the number of
users’ data replicas to be no fewer than a specified threshold
across clouds. Addressing all such needs of cost, QoS, and
data availability is further complicated by the fact that an OSN
continuously experiences dynamics, e.g., new users join, old
users leave, and the social relations also vary.

Existing work on OSN service provisioning either pursues
least cost in a single site without the QoS concern as in
the geo-distribution case [29], [33], or aims for least inter-
data-center traffic in the case of multiple data centers without
considering other dimensions of the service [25], e.g., data
availability. More importantly, the models in all such work
do not capture the monetary cost of resource usage and thus
cannot fit the cloud scenario. There are some work on cloud-
based social video [37], [38], focusing on leveraging online
social relationships to improve video distribution, which is on-
ly one of the many facets of OSN services; most optimization
research on multi-cloud and multi-data-center services are not
for OSN [23], [39], [30], [10]. They fail to capture the OSN
features such as social relationships and user interactions, and
thus their models are not applicable to OSN services.

In this paper, we study the problem of optimizing the
monetary cost of the dynamic, multi-cloud-based OSN, while
ensuring its QoS and data availability.

We first model the cost, the QoS, and the data availability
of the OSN service upon clouds. Our cost model identifies
different types of costs associated with multi-cloud OSN while
capturing social locality [29], [33], an important feature of
the OSN service that most activities of a user occur between
herself and her neighbors. Guided by existing research on OSN
growth and our analysis of real-world OSN dynamics, our
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model approximates the total cost of OSN over consecutive
time periods when the OSN is large in user population but
moderate in growth, enabling us to achieve the optimization
of the total cost by independently optimizing the cost of each
period. Our QoS model links the QoS with OSN users’ data
locations among clouds. For every user, all clouds available are
sorted in terms of a certain quality metric (e.g., access latency);
therefore every user can have the most preferred cloud, the
second most preferred cloud, etc. The QoS of the OSN service
is better if more users have their data hosted on clouds of a
higher preference. Our data availability model relates with the
minimum number of replicas maintained by each OSN user.

We then base on these models to formulate the cost opti-
mization problem which considers QoS and data availability
requirements. We prove the NP-hardness of our problem. We
propose an algorithm named cosplay based on our obser-
vations that swapping the roles (i.e., master or slave) of a
user’s data replicas on different clouds can not only lead to
possible cost reduction, but also serve as an elegant approach
to ensuring QoS and maintaining data availability. Compared
with existing approaches, cosplay reduces cost significantly
and finds a substantially good solution of the cost optimization
problem, while guaranteeing all requirements are satisfied.
Furthermore, not only can cosplay reduce the one-time cost
for a cloud-based OSN service, it can also solve a series of
instances of the cost optimization problem and thus minimize
the aggregated cost over time by estimating the heavy-tailed
OSN activities [13], [35] during runtime.

As part of our extensive research, we distribute a real-world
geo-social Twitter dataset of 321,505 users with 3,437,409
social relations over 10 clouds all across the US in a variety of
settings. Compared with existing alternatives, including some
straightforward methods such as the greedy placement (the
common practice of many online services [34], [32]), the
random placement (the de facto standard of data placement
in distributed DBMS such as MySQL and Cassandra [24]),
and some state-of-the-art algorithms such as SPAR [29] and
METIS [22], cosplay produces better data placements. While
meeting all requirements, it can reduce the one-time cost by up
to about 70%. Further, over 48 consecutive months with OSN
dynamics comparable to real-world cases, compared with the
greedy placement, continuously applying cosplay can reduce
the accumulative cost by more than 40%. Our evaluations also
demonstrate quantitatively that the trade-off among cost, QoS,
and data availability is complex; an OSN provider may have
to incorporate cosplay to all three dimensions. For instance,
according to our results, the benefits of cost reduction decline
when the requirement for data availability is higher, whereas
the QoS requirement does not always influence the amount of
cost that can be saved.

The remainder of this paper is structured as follows. Sec-
tion II describes our models of the cost, QoS, and data
availability of the OSN service over multiple clouds. Sec-
tion III formulates the cost optimization problem. Section IV
elaborates our cosplay algorithm, as well as our considera-
tions and insights. Section V demonstrates and interprets our
evaluations. Section VI discusses some related issues such as
complexity and optimality. We contrast our work with related

work in Section VII and conclude this paper in Section VIII.

II. MODELS

Targeting the OSN service over multiple clouds, we begin
with identifying the types of costs related to cloud resource
utilization: the storage cost for storing users’ data, the inter-
cloud traffic cost for synchronizing data replicas across cloud-
s, the redistribution cost incurred by the cost optimization
mechanism itself, and some underlying maintenance cost for
accommodating OSN dynamics. We discuss and approximate
the total cost of the multi-cloud OSN over time. Afterwards,
we propose a vector model to capture the QoS of the OSN
service, show the features of this model, and demonstrate its
usage. Finally, we model the OSN data availability by linking
it with the number of each user’s data replicas.

A. System Settings

Clouds and OSN users are all geographically distributed.
Without loss of generality, we consider the single-master-
multi-slave paradigm [32], [12]: each user has only one master
replica and several slave replicas of her data, where each
replica is hosted at a different cloud. When signing in to the
OSN service, a user always connects to her master cloud, i.e.,
the cloud that hosts her master replica, and every read or write
operation conducted by a user goes to her master cloud first.

We assume the placement of OSN users’ replicas follows
the social locality scheme [29], [33]. Observing that most
activities of an OSN user happen between the user and her
neighbors (e.g., friends on Facebook or followees on Twitter),
this scheme requires that a user’s master cloud host a replica
(either the master or a slave) of every neighbor of the user. This
way, every user can read the data of her friends and her own
from a single cloud, and the inter-cloud traffic only involves
the write traffic for maintaining the consistency among a
user’s replicas at different clouds. Social locality has multi-
fold advantages: given that there are often many more reads
than writes in an OSN service [14], it can thus save a large
proportion of the inter-cloud traffic; this scheme also incurs
a much lower storage consumption than full replication in
that the full replication requires every cloud to maintain a
data replica for every user. Note that for a user with one
master and r slaves, a write on this user’s data always incurs r
corresponding inter-cloud writes to maintain consistency. We
consider eventual consistency in our work, and assume issues
such as write conflicts are tackled by existing techniques.

B. Modeling the Storage and the Inter-cloud Traffic Cost

OSN is commonly abstracted as a social graph, where each
vertex represents a user and each edge represents a social
relation between two users [26]. We extend this model by
associating three distinct quantities with every user. (1) A user
has a storage cost, which is the monetary cost for storing one
replica of her data (e.g., profile, statuses) in the cloud for one
billing period. (2) Similarly, a user has a traffic cost, which
is the monetary cost during a billing period because of the
inter-cloud traffic. As mentioned earlier, due to social locality,
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Fig. 1: Storage and inter-cloud traffic cost
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Fig. 3: Cost over consecutive time periods

in our settings the inter-cloud traffic only involves writes (e.g.,
posting tweets, leaving comments). We do not consider intra-
cloud traffic, no matter read or write, as it is free of charge [4],
[1]. (3) A user has a sorted list of clouds for the purpose of
QoS, as will be described in Section II-E.

Fig. 1 is an example where 11 users are hosted by 3 clouds.
Black circles represent each user’s master replica, and red
ones represent the slave replicas of neighbors to ensure social
locality. Solid lines are social relations and dotted arrows are
the synchronization traffic. Within each black circle, the value
on the top is the storage cost of a user, and the value at the
bottom is the traffic cost. For Fig. 1, the total storage cost is
330 and the total inter-cloud traffic cost is 50.

Besides the cost described above, note that the read/write
operations themselves are charged based on the number of
operations performed [1]. As we require the social locality for
every user, the number of read operations performed by a user
on all replicas of hers and her friends depends neither on the
number of the replicas nor on the placement of the replicas.
The charging for read operations is thus out of the scope of
our optimization of replica placement. In contrast, the number
of the write operations performed by a user on all replicas of
hers and her friends depends on the number and the placement
of the replicas. Fortunately, its charging can be included just
as part of a user’s traffic cost. For example, let τu = wuT
denote user u’s traffic cost, where wu is the number of writes
performed on u’s data and T is the average traffic cost incurred
by a single write. Then, one can include the cost charged for
a single write into T so that optimizing the total inter-cloud
traffic cost by our model can actually optimize the sum of the
traffic and the read/write operations cost.

We make further assumptions. When calculating the costs,
we assume that all clouds have the same billing prices. In
reality, resource usage of clouds from different providers or
at different locations may be charged at different prices. Such
cases can be easily addressed by associating a proper weight
with each cloud in our model, and our proposed algorithm,
as shown later, can also straightforwardly adapt to these
cases. We also assume that each cloud can provide “infinite”
resources on demand to an OSN service provider, a guarantee
often provided by a cloud provider to its customers.

C. Modeling the Redistribution Cost

An important part of our cost model is the cost incurred
by the optimization mechanism itself, which we call the
redistribution cost. We generally envisage that an optimization

mechanism is devised to optimize the cost by moving data
across clouds to optimum locations, thus incurring such cost.
The redistribution cost is essentially the inter-cloud traffic
cost, but in this paper we use the term inter-cloud traffic to
specifically refer to the inter-cloud write traffic for maintaining
replica consistency, and treat the redistribution cost separately.

We expect that the optimization is executed at a per-billing-
period granularity (e.g., per-month) for the following reasons.
First, this frequency is consistent with the usual charging
unit for a continuously running and long-term online service.
The OSN provider should be enabled to decide whether to
optimize the cost for each billing period, according to her
monetary budget and expected profit, etc. Also, applying
any cost optimization mechanism too frequently may fail the
optimization itself. At the time of writing this paper, the real-
world price of inter-cloud traffic for transferring some data
once is quite similar to that of storing the same amount of
data for an entire billing period [4], [1]. As a result, moving
data too frequently can incur more redistribution cost that can
hardly be compensated by the saved storage and inter-cloud
traffic cost. Without loss of generality, we assume that the
optimization mechanism is applied only once at the beginning
of each billing period, i.e., the redistribution cost only occurs
at the beginning of every billing period.

D. Approximating the Total Cost

Consider the social graph in a billing period. As it may
vary within the period, we denote the final steady snapshot
of the social graph in this period as G′ = (V ′, E′), and the
initial snapshot of the social graph at the beginning of this
period as G = (V,E). Thus, the graph G experiences vari-
ous changes—collectively called ∆G—to become G′, where
∆G = (∆V,∆E), ∆V = V ′ − V , and ∆E = E′ − E.

Now consider the total cost incurred during a billing period.
Denoting the total cost, the storage plus the inter-cloud traffic
cost, the maintenance cost, and the redistribution cost during
a period as Ψ, Φ(·), Ω(·), and Θ(·), respectively, we have

Ψ = Φ(G) + Φ(∆G) + Ω(∆G) + Θ(G).

The storage cost in Φ(G) + Φ(∆G) is for storing users’ data
replicas, including the data replicas of existing users and of
those who just join the service in this period. The inter-cloud
traffic cost in Φ(G) + Φ(∆G) is for propagating all users’
writes to maintain replica consistency. The redistribution cost
Θ(G) is the cost of moving data across clouds for optimiza-
tion; it is only incurred at the beginning of a period, following
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our previous assumption. There is also some underlying cost
Ω(∆G) for maintenance, described as follows.

The maintenance cost Ω(∆G) is used to capture the cost
spent on handling OSN changes. When a new user joins the
OSN service, the service selects a cloud and places this user’s
data there. Some time later after this initial placement and
no later than the end of the current billing period, the OSN
service must maintain social locality for this user and her
neighbors, including creating new slave replicas on involved
clouds as needed, incurring maintenance cost. However, in
reality, when the OSN user base reaches a certain scale,
Ω(∆G) and Φ(∆G) become negligible as the size of ∆G
(i.e., |∆V |) becomes much smaller than that of G (i.e., |V |).
Existing research observes that real-world OSNs usually have
an S-shape growth [11], [16]. As the user population becomes
larger, the increment of the total number of users or social
relations will decay exponentially [18], [40]. Let us look at the
monthly growth rate (i.e., |∆V |/|V |) in some real examples.
According to Facebook [5], after its user population reached 58
million by the end of 2007, it grew with an average monthly
rate below 13% through 2008 and 2009, a rate below 6%
through 2010, and then a rate below 4% until the end of 2011
when it reached 845 million. For Twitter, its average monthly
growth rate was less than 8% in most months between March
2006 and September 2009 [8]. Similar rates were also observed
for YouTube and Flickr [27].

Therefore, we derive an approximated cost model as

Ψ ≈ Φ(G) + Θ(G)

which we will focus on throughout the rest of this paper. Note
that calculating Ψ requires the storage cost and the traffic
cost of each user in G. For any cost optimization mechanism
that runs at the beginning of a billing period, an estimation is
required to predict each user’s costs during this billing period.
Let’s for now deem that the costs can be predicted and known.
We defer the discussion on cost prediction to Section V-A.

Fig. 2 and 3 illustrate different types of costs during a single
billing period and consecutive billing periods. The numbers in
the figures are the cloud IDs. Slave replicas are not drawn for
the ease of presentation.

Note that, for the initial data placement, the OSN service
may use various pre-specified strategies to choose a cloud,
such as choosing the one with the lowest access latency for
the user [34], [32]. At this point the OSN cannot determine
an optimum cloud in terms of cost for a new user, as it knows
neither the user’s storage cost (except for a certain reserved
storage such as storing a profile with pre-filled fields) nor her
traffic cost for the current billing period. We assume that an
OSN places a new user’s data on her most preferred cloud.

E. Modeling QoS and Data Availability

Sorting clouds. Among all clouds, one cloud can be better
than another for a particular user in terms of certain metric(s)
(e.g., access latency, security risk). For instance, concerning
access latency, the best cloud to host the data requested by
a user is likely the geographically closest cloud to that user.
Given N clouds and |V | users, with cloud IDs {1, . . . , N}

(denoted as [N ] hereafter) and user IDs {1, . . . , |V |} (denoted
as [|V |] hereafter), clouds can be sorted for user u as c⃗u =
(cu1, cu2, ..., cuN ), where cui ∈ [N ], ∀i ∈ [N ]. For any cloud
cui, cuj , i < j, we deem that cui is more preferred than cuj ;
in other words, placing user u’s data on the former provides
better service quality to this user than the latter. The clouds
{cu1, cu2, ..., cuj}, ∀j ∈ [N ] are thus the j most preferred
clouds of user u, and the cloud cuj is the jth most preferred
cloud of user u. This sorting approach provides a unified QoS
abstraction for every user while making the underlying metric
transparent to the rest of the QoS model.

Defining QoS. We define the QoS of the entire OSN service
as a vector q⃗ = (q⃗[1], q⃗[2], ..., q⃗[N ]), with

q⃗[k] =
1

|V |

|V |∑
u=1

k∑
j=1

fu(mu, j), ∀k ∈ [N ],

where mu denotes the ID of the cloud that hosts the master
data replica of user u, fu(i, j) is a binary function that equals
to 1 if cloud i is user u’s jth most preferred cloud but 0
otherwise. Therefore, q⃗[k] is the ratio of users whose master
data are placed on any of their respective k most preferred
clouds over the entire user population. This CDF-style vector
allows OSN providers to describe QoS at a finer granularity.

Let us refer back to Fig. 1 as an example, where the vector
associated with each circle represents the sorted cloud IDs for
the corresponding user. We see that out of all the 11 users, 7
are hosted on their first most preferred cloud, 10 on either of
their two most preferred clouds, and all users on any of their
three most preferred clouds. Thus, the QoS is q⃗ = ( 7

11 ,
10
11 , 1).

Comparing QoS. There can be different data placements
upon clouds. Each may result in a different corresponding
QoS vector. For two QoS vectors q⃗a and q⃗b representing two
placements respectively, we deem that the former placement
provides QoS no better than the latter, i.e., q⃗a ≤ q⃗b, if every el-
ement of the former vector is no larger than the corresponding
element of the latter, i.e., q⃗a[k] ≤ q⃗b[k], ∀k ∈ [N ].

QoS requirement. We model the QoS requirement as two
vectors Q⃗l and Q⃗u, Q⃗l ≤ Q⃗u that serve as a lower bound
and an upper bound, respectively. In order to meet the QoS
requirement, a data placement must have a QoS q⃗ that meets
Q⃗l ≤ q⃗ ≤ Q⃗u. Specified by the OSN provider, Q⃗l captures
the worst QoS that can be tolerated and Q⃗u captures the best
QoS that can be provided. Note that we do not require Q⃗u to
represent the placement of every user’s data on her first most
preferred cloud. Q⃗u can be set as any valid QoS vector, subject
to the OSN provider’s customized policies and considerations.

As an example, let us see how Q⃗l can express “80% of
all users must access data in no more than 200 ms.” In this
case, clouds are sorted according to access latency for every
user. For any user u, we can calculate that only putting her
master data replica on any of her nu, nu ∈ [N ] most preferred
clouds can grant her the latency of no more than 200 ms. By
denoting nmin = min{nu|∀u ∈ [|V |]}, this requirement can
thus be expressed by setting Q⃗l[nmin] = 0.8. If nmin ̸= 1,
then Q⃗l[k], ∀k ∈ {1, . . . , nmin − 1} can be set as any value
as long as 0 ≤ Q⃗l[k1] ≤ Q⃗l[k2] ≤ 0.8, 1 ≤ k1 < k2 < nmin.
In fact, Q⃗l can express any fine-grained requirement such as
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“95% of users’ access must be satisfied within 500 ms, 80%
be satisfied within 200 ms and 65% be satisfied within 90 ms.”

Data availability requirement. An OSN provider specifies
the data availability requirement by indicating the minimum
number of every user’s slave replicas. We denote it using a
number R, R ∈ {0, . . . , N − 1}, where N is the number
of clouds. In order to meet the data availability requirement,
each user must maintain slave replicas no fewer than R. If the
number of a user’s slave replicas to maintain social locality is
no smaller than R, the data availability requirement for this
user has already been met and this user does not have to own
more slaves; in contrast, besides the slaves to maintain social
locality, if a user does not have enough slaves to meet the data
availability requirement, then this user must have more slaves
to ensure that the total number of her slaves is equal to R.

III. PROBLEM

With the models defined in Section II, we are interested in
the following problem: given an existing data placement upon
N clouds of OSN G(V,E) with |V | users, find out the optimal
data placement with the minimal total cost—i.e., the sum of the
storage and inter-cloud traffic cost Φ(G) and the redistribution
cost Θ(G) for implementing this optimal placement from the
existing placement—while ensuring QoS and data availability
meet pre-defined requirements.

We introduce the following notations in order to formulate
the problem. mui and sui are binary decision variables. The
former equals to 1 if in the optimal placement user u’s master
replica is placed on cloud i, and 0 otherwise. The latter equals
to 1 if in the optimal placement u has a slave replica placed
on cloud i, and 0 otherwise. m′

ui and s′ui are also binary, and
are counterparts of mui and sui respectively in the existing
placement. µu is the storage cost for storing one master or
slave replica of user u. τu is the traffic cost for synchronizing
one slave replica of user u. β is the coefficient for converting
the storage cost of a replica to the redistribution cost of moving
this replica across clouds. euv ∈ E if user u and user v
are neighbors. fu(i, j) is a binary function indicating whether
cloud i is user u’s jth most preferred cloud (as introduced in
Section II-E). The QoS requirement is given by two vectors
Q⃗l and Q⃗u, and the data availability requirement is given by
a number R. We formulate the problem as follows.

minimize:

Φ(G) + Θ(G)

where

Φ(G) =

|V |∑
u=1

(µu

N∑
i=1

(mui + sui) + τu

N∑
i=1

sui)

Θ(G) =

|V |∑
u=1

(βµu

N∑
i=1

(max{(mui + sui)− (m′
ui + s′ui), 0}))

subject to:

N∑
i=1

mui = 1, ∀u ∈ [|V |] (1)

mui + sui ≤ 1, ∀u ∈ [|V |], ∀i ∈ [N ] (2)

mvj+svj = 1, j =
N∑
i=1

(imui), if euv ∈ E,∀u, v ∈ [|V |] (3)

N∑
i=1

sui ≥ R, ∀u ∈ [|V |] (4)

Q⃗l[k] ≤
1

|V |

|V |∑
u=1

k∑
j=1

fu(
N∑
i=1

(i ·mui), j) ≤ Q⃗u[k],∀k ∈ [N ]

(5)
Constraint (1) ensures that every user has a single master

replica. Constraint (2) ensures that no master and slave replicas
of the same user are co-located on a common cloud. Constraint
(3) ensures the social locality. Constraint (4) ensures the
data availability. Constraint (5) ensures that the QoS of the
data placement meets the QoS requirement. All constraints
apply to both the existing data placement and the optimal
placement. Here we do not write the existing case for the ease
of presentation. Our cost optimization problem is NP-hard. We
provide the proof in the appendix of this paper.

IV. ALGORITHM

Our cost optimization problem is an Integer Programming
(IP) problem. The huge user population of real-world OSN
services translates into a huge number of decision variables,
and the NP-hardness of our problem makes it impossible to
be efficiently solved by existing general-purpose IP solvers.
We thus seek practical heuristics. We propose cosplay, an
optimization algorithm that iteratively swaps the roles of
master and slave replicas on different clouds to reach the
optimal placement.

A. Observations

Our algorithm is inspired by three observations below when
swapping a master replica and a slave replica of a user. In this
what we call a role-swap process, the master replica becomes
a slave replica and the slave becomes the master. We use Fig. 4
and Fig. 5 to illustrate our observations, where lines and circles
in these figures have the same meanings as in Fig. 1, and each
user has 1 unit of storage cost and 1 unit of traffic cost. Note
that while symbols like u, v are supposed to denote users
throughout this paper, we also use them to denote the master
replicas of the corresponding users in the figures here.

Observation 1: Role-swap can lead to possible cost re-
duction. Fig. 4 is a simple example with 4 users hosted by
3 clouds. For user u, we may choose to swap the roles of
replica u with replica u′ (as in Fig. 4(b)), or swap the roles of
replica u with replica u′′ (as in Fig. 4(c)), while maintaining
the social locality. Before the swap in Fig. 4(a), there are 10
units of replica storage and 6 units of inter-cloud traffic. After
the swap, as in both Fig. 4(b) and Fig. 4(c), there are 9 units
of replica storage and 5 units of inter-cloud traffic. We thus



IEEE/ACM TRANSACTIONS ON NETWORKING 6

save 1 unit of replica storage and 1 unit of inter-cloud traffic
by paying 1 unit of redistribution cost (caused by copying the
replica v3 to create a new replica v′3 in Fig. 4(b), or v′′3 in
Fig. 4(c)). Overall, we can achieve 1 unit of cost reduction.

Observation 2: Because of the QoS requirement, not every
role-swap is feasible, although it may reduce cost. When
multiple role-swaps for a user are available, we must choose
the one(s) meeting QoS requirements. The two different role-
swap choices taken in Fig. 4(b) and in Fig. 4(c) result in the
same amount of cost reduction. Let us suppose every cloud
has an ID and every user has a sorted list of preferred clouds
as shown in the figure. Before the swap, q⃗ = (0.75, 0.75, 1).
If the QoS requirement is given by Q⃗u = (1, 1, 1) and
Q⃗l = (0.5, 0.75, 1), then we should choose Fig. 4(c) instead of
Fig. 4(b), because the QoS of the former is q⃗ = (0.5, 0.75, 1),
which still meets the QoS requirement, and the QoS of the
latter is q⃗ = (0.5, 0.5, 1), which violates the QoS requirement.
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Fig. 5: Role-swap of u

Observation 3: Every user needs to have slave replicas no
fewer than a given number, which can be maintained when
performing role-swaps. We use Fig. 5 for illustration, where
5 users are hosted on 3 clouds, and for simplicity, we do not
show the sorted lists of cloud IDs. Suppose in this example, the
required minimum number of slaves of every user is 1. After
maintaining social locality, users u, v1, v2, and v4 already
meet this requirement, but user v3 still needs a slave replica
for data availability, i.e., v′3 in this figure. Now we swap the
roles of replicas u and u′′ for cost reduction. After this swap,

note that the slave replica v′4 is not needed for maintaining
the social locality of u, but it is still needed to satisfy the
data availability of user v4. Therefore, in this case, the cost
reduction is 4 units, instead of 6 units if we remove v′4.

B. Our Algorithm: Cosplay
Inspired by the above three observations, we employ a series

of role-swaps to maximize the total cost reduction while main-
taining data availability and ensuring QoS requirements. Our
algorithm follows a greedy approach in using role-swaps and
requiring that every applied role-swap reduce cost. The more
cost reduction each role-swap has and the more role-swaps are
applied, the more total cost reduction we can achieve. Note
that our algorithm computes a better placement, and it does not
physically manipulate data. When our algorithm terminates,
data are role-swapped or moved (in the case of redistribution)
from existing locations to new locations in order to implement
the new placement output by our algorithm.

We describe our cosplay algorithm as follows: starting with
an existing placement, the algorithm runs and repeats the two
procedures of single role-swaps (made up of Algorithms 1, 3,
5) and double role-swaps (made up of Algorithms 2, 4, 5) one
after the other, and it terminates when neither of them can be
further executed to reduce the cost or when a specified number
of iterations are executed.

Single role-swaps. In each iteration, select a user randomly.
For each feasible role-swap between this user’s master and one
of her slaves, calculate the cost reduction. Then, choose the
role-swap with the largest cost reduction and apply it. Repeat
this until no further cost can be reduced.

Double role-swaps. In each iteration, select a user random-
ly, and pair this user with each of her neighbors whose master
is on a different cloud. For each such pairs, first check if
the following pair of role-swaps is feasible: one between the
selected user’s master and her slave on the neighbor’s cloud
and the other between the neighbor’s master and her slave
on the selected user’s cloud. If feasible, calculate the cost
reduction of these two role-swaps. Then, choose the pair with
the largest cost reduction and apply the two role-swaps. Repeat
this until no further cost can be reduced.

Whether a single role-swap or a double role-swap, three
basic but non-trivial operations of cosplay are needed: de-
termining whether it is feasible, calculating its cost reduction,
and swapping the roles of involved replicas. We elaborate how
to efficiently achieve these operations below.

1) Determining Feasibility: Algorithms 1 and 2 determine
the feasibilities of a single role-swap and a double role-swap,
respectively. Algorithm 1 checks whether applying a role-swap
would make the current QoS out of the range specified by the
QoS lower bound and upper bound. In Algorithm 1, user u’s
master and slave replicas are on cloud cui and cuj respectively.
Algorithm 2 invokes Algorithm 1, where users u and v are
selected, with their masters on cloud cui and cvi and slaves
on cuj and cvj , respectively. Note that applying one role-swap
can change the current QoS, and the feasibility of the next
role-swap must be considered based on the new QoS. We do
not show the function adjustQoS(cui, cuj) as it is very simple,
adjusting q⃗ in a way similar to Algorithm 1.
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Algorithm 1: isSingleFeasible(cui, cuj)
Data: cui, cuj : u’s ith and jth most preferred cloud
Q⃗l, Q⃗u: the QoS lower and upper bounds
q⃗: the current QoS of the placement
begin

if i < j then // cui is more preferred than cuj
for each k ∈ [i, j − 1] do

if q⃗[k]− 1
|V | < Q⃗l[k] then

return false;

else
for each k ∈ [j, i− 1] do

if q⃗[k] + 1
|V | > Q⃗u[k] then

return false;

return true;

Algorithm 2: isDoubleFeasible(cui, cuj , cvi, cvj)
Data: cui, cuj : u’s ith and jth most preferred cloud
cvi, cvj : v’s ith and jth most preferred cloud
begin

if isSingleFeasible(cui, cuj) then
adjustQoS(cui, cuj);
if isSingleFeasible(cvi, cvj) then

adjustQoS(cuj , cui);
return ture;

else
adjustQoS(cuj , cui);

if isSingleFeasible(cvi, cvj) then
adjustQoS(cvi, cvj);
if isSingleFeasible(cui, cuj) then

adjustQoS(cvj , cvi);
return ture;

else
adjustQoS(cvj , cvi);

return false;

2) Calculating Cost Reduction: Algorithms 3 and 4 specify
the calculations of the cost reduction of a single role-swap and
a double role-swap, respectively. Here we highlight three of
our insights about Algorithm 3 as follows.

Local computation. To calculate the cost reduction for a
role-swap between user u’s master and her slave, an intuitive
option would be calculating the difference between the total
cost of the old placement (i.e., the one before applying the
role-swap) and that of the new placement (i.e., the one after
applying the role-swap). However, doing so involves accessing
every user and calculating the total cost twice, which can cause
considerable computation overhead given a large social graph.
In fact, we observe that the cost reduction can be calculated
by accessing only local information. The cost reduction only
depends on the storage and traffic cost of user u and her
neighbors, and the locations of their replicas in the old and
new placements. If on user u’s master cloud we store a slave
replica of her neighbor v to maintain the social locality for u,
and if v has no other neighbors of her own on this cloud, a
role-swap between user u’s master and her slave will make this
slave replica of v useless, and this replica is thus a candidate
for elimination (whether it can be eliminated further depends
on data availability as described below). In one word, a local
computation is sufficient to calculate the reduced cost.

Algorithm 3: calcCostReducSingle(mu, su)

Data: mu: the cloud hosting u’s master replica
su: the cloud hosting u’s slave replica
µu, τu: u’s storage cost and traffic cost
Pe: the existing placement of all users’ replicas
∆: the cost that can be reduced
δu: the number of u’s slaves that can be reduced
ρ: the number of slaves that incur the redistribution cost
Rmv mu: boolean: true if removing u’s replica on mu, false if not
Rmv su: boolean: true if removing u’s replica on su, false if not
begin

∆ ⇐ 0, δu ⇐ 0, δv ⇐ 0, ρ ⇐ 0;
Rmv mu ⇐ true, Rmv su ⇐ true;
/* calculate the reduced cost incurred by

replicas of u’s neighbors */
for each v ∈ u’s neighbors do

δv ⇐ 0, ρ ⇐ 0;
if mv ̸= mu then

if u is v’s only neighbor on mu then
δv ⇐ δv + 1;
if v has no replica on mu in Pe then

ρ ⇐ ρ− 1;

if mv = su then
Rmv su ⇐ false;

if mv ̸= su then
if v has no slave replica on su then

δv ⇐ δv − 1;
if v has no replica on su in Pe then

ρ ⇐ ρ+ 1;

if mv = mu then
Rmv mu ⇐ false;

if ¬ (v has R slave replicas and δv > 0) then
∆ ⇐ ∆+ (µv + τv)δv − βµvρ;

/* calculate the reduced cost incurred by
replicas of u’s own */

ρ ⇐ 0;
if Rmv su = true then

δu ⇐ δu − 1;
if u has no replica on su in Pe then

ρ ⇐ ρ+ 1;

if Rmv mu = true then
δu ⇐ δu + 1;
if u has no replica on mu in Pe then

ρ ⇐ ρ− 1;

if ¬ (u has R slave replicas and δu > 0) then
∆ ⇐ ∆+ (µu + τu)δu − βµuρ;

return ∆;

Algorithm 4: calcCostReducDouble(mu, su,mv, sv)

begin
∆Ψ1 ⇐ calcCostReducSingle(mu, su);
swapRole(mu, su);
∆Ψ2 ⇐ calcCostReducSingle(mv , sv);
swapRole(su,mu);
return ∆Ψ1 +∆Ψ2;

Redistribution cost. The cost of redistribution incurred by
a role-swap depends on the new placement where this role-
swap is applied, and the existing placement which is the input
to our cosplay algorithm. In the new placement, when a slave
needs to be created on a cloud for social locality, we check to
see if it did not exist on the cloud in the existing placement. If
so, the cost of creating this slave is added to the redistribution
cost incurred by this role-swap. Similarly, when a slave is to
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Algorithm 5: swapRole(mu, su)

Data: mu: the cloud hosting u’s master replica
su: the cloud hosting u’s slave replica
δu: the number of u’s slaves that can be reduced
Rmv mu: boolean: true if removing u’s replica on mu, false if not
begin

δu ⇐ 0, δv ⇐ 0, Rmv mu ⇐ true;
for each v ∈ u’s neighbors do

δv ⇐ 0, ρ ⇐ 0;
if mv ̸= mu then

if u is v’s only neighbor on mu then
δv ⇐ δv + 1;

if mv ̸= su then
if v has no slave replica on su then

δv ⇐ δv − 1;

if mv = mu then
Rmv mu ⇐ false;

if ¬ (v has R slave replicas and δv > 0) then
if mv ̸= mu then

if u is v’s only neighbor on mu then
Remove v’s slave at mu;

if mv ̸= su then
if v has no slave replica on su then

Create v’s slave at su;

// Do the role-swap
if Rmv mu = true then

δu ⇐ δu + 1;

u’s master at mu becomes a slave;
u’s slave at su becomes the master;
if ¬ (u has R slave replicas and δu > 0) then

if u has a slave replica on mu and Rmv mu = true then
Remove u’s slave at mu;

be removed as it is no longer needed, we check whether this
slave existed on its current cloud in the existing placement.
If not, this slave was created by a previous role-swap and the
incurred redistribution cost of creating this slave has already
been counted. We thus subtract this cost from the redistribution
cost of the role-swap.

Data availability. Whether to remove a slave or not does not
only depend on social locality, but also on the data availability
requirement. Creating slaves is always fine because it never
violates the data availability requirement. We must ensure
that if we remove a slave replica, the number of slaves of
this user is still no fewer than the pre-specified number, thus
maintaining the data availability for this user. If we cannot
remove a slave due to the data availability reason, this user
should not be considered when calculating cost reduction of
a role-swap that involves this user, and the slave is also not
touched when performing the role-swap.

3) Swapping Roles of Replicas: Algorithm 5 describes the
operation of swapping the roles of a user u’s master on cloud
mu and her slave on cloud su. Swapping the roles does not
simply involve u’s replicas alone; instead, it may also involve
removing or creating her neighbors’s slave replicas due to
social locality and data availability. The flow of this algorithm
shares some similarities with Algorithm 1, specifically calcu-
lating the cost reduction of a role-swap before it is performed
is actually simulating how the cost would be affected if the
role-swap occurred.

V. EVALUATIONS

We carry out extensive evaluations by placing real-world
Twitter data over 10 clouds all across the US. We demon-
strate significant one-time and accumulated cost reductions
with cosplay compared to existing approaches, while always
ensuring QoS and data availability requirements. By varying
the experimental settings, we also investigate the complex
trade-off among cost, QoS, and data availability.

A. Data Preparation

Collecting data. We crawled Twitter during March and
April 2010 in a breadth-first manner, consistent with previous
OSN crawls [26], [36]. We collected 3,117,553 users with
23,883,149 social relations. For each user, we have her pro-
file, tweets, and her list of followers. Among all the users,
1,157,425 users provide location information in their profiles.

Sorting clouds for each user. Due to the lack of publicly
available dataset on latencies between OSN users and OSN
sites, we cannot sort clouds for users in terms of latency.
However, the geographic distance is widely used as an impor-
tant QoS metric in previous work [17], [15]. With our Twitter
dataset, we thus sort clouds for each user in terms of the real-
world geographic distance between a user and the clouds.

Fig. 6: User locations
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Fig. 7: Monthly growth rate

We focus on users who are geographically located in the
US. With the help of the database of US Board on Geographic
Names [7] and Google Maps, we convert users’ text locations
to geo-coordinates (i.e., [latitude, longitude]). Out of all these
users, we extract the largest connected component of 321,505
users with 3,437,409 social relations as the input to our
evaluations. We then select 10 cities all across the US as
cloud locations: Seattle (WA), Palo Alto (CA), Orem (UT),
Chicago (IL), San Antonio (TX), Lansing (MI), Alexandria
(LA), Atlanta (GA), Ashburn (VA), and New York (NY).
All these locations have real-world cloud data centers [3].
Afterwards, we sort all clouds for each user in terms of the
respective geographic distance between a user and the clouds.
Fig. 6 plots the locations of all the 321,505 users.

Extracting monthly OSN snapshots. To evaluate cosplay
for OSN with dynamics, we extract monthly graph snapshots
out of our largest connected component. Under the assumption
that each user publishes her first tweet and forms her social
relations immediately after she joins the service, and with the
time stamp of each tweet and the follower list of each user, we
find that the earliest user in our largest connected component
joined Twitter in March 2006 and the latest user joined Twitter
in February 2010. We thus can extract 48 monthly social
graphs. Fig. 7 shows the monthly growth rates of our 48
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graphs. The user base growing at about 15% since the 16th
month is a good approximation of the real-world OSN growth,
as discussed in Section II.

Obtaining monthly costs for each user. We calculate costs
by multiplying the unit price with the data size, and use such
calculated costs of each user for each of the 48 months as
the ground truth. We use $0.125/GB/month for storage cost
and $0.12/GB for inter-cloud traffic cost [4]. With each tweet
and its time stamp, we can easily find how much data a user
publishes in a given month (i.e., the traffic size of that month),
and how much data this user has accumulated by the end of
a given month (i.e., the storage size of that month).

In the real world, when executing cosplay in consecutive
billing periods, it needs an estimate of each user’s costs at the
beginning of each period. Existing research tells that users’
online activities are bursty and the inter-activity time is heavy-
tailed [13], [35], making the estimation of future activities and
data size difficult. However, our goal here is not to pursue
estimation accuracy, instead, our interest is in the trending size
of a user’s produced data so that we can make the correct role-
swap. We exploit the Exponentially Weighted Moving Average,
a common approach for similar purposes, to estimate the
number of activities in a future time period with the smoothing
factor α = 0.9 to capture the burstiness of user activities.
By multiplying it with the average data size of all previous
activities, we obtain the estimation of the data size in a future
time period. As a result, we obtain 48 monthly graphs with
the estimated costs of each user for each month.

B. Experimental Settings

We run two groups of evaluations. In the first group, with
our largest February 2010 social graph as input, we compare
the costs and the QoS’ of the data placements produced by the
greedy method, the random method, SPAR, METIS, and cos-
play. We also investigate how the costs are influenced by the
data availability requirement and by the QoS requirement. We
ensure social locality for all approaches for fair comparison.
The greedy method places every user’s master on her first most
preferred cloud. The random method assigns a user’s master
to a cloud randomly. For SPAR, we implement it ourselves,
and we treat each social relation between two users as an
edge creation event and create a random permutation of all
events to produce the edge creation trace as input, following
the method suggested in [29]. For METIS, there is an open-
source implementation from its authors. We use its option of
minimizing the inter-partition communication. We use each
user’s storage cost plus her traffic cost as the vertex size (in
METIS’ terminology) to create its input. For cosplay, we use
the greedy method to produce an existing placement.

We vary the number of most preferred clouds that users
use to place masters, and we also vary the QoS and the
data availability requirements. We have 10 clouds sorted for
every user. Besides the 10-clouds case, we also compare the
cases when each user uses her 2, 4, 6, and 8 most preferred
clouds for master placement. We vary the QoS requirement
by varying the lower bound while keeping the upper bound

fixed at Q⃗u = (1). Note that, when there are 10 clouds a QoS
vector should have 10 elements, but we omit the consecutive
1’s at the end of a QoS vector for the ease of presentation.
Q⃗u = (1) corresponds to the greedy placement and is the
best QoS that can be provided. We vary Q⃗l by the following
rule. Given the value of the first element (hereafter we call
it the “first value” for brevity) of the Q⃗l vector and given
the number of most preferred clouds that users use, we set
the values of all other elements of Q⃗l by building a linear
growth from its first value to 1. For example, if the first
value of Q⃗l is 0.5 and users use 2 most preferred clouds, then
Q⃗l = (0.5, 1). With the same first value, if users use 6 most
preferred clouds, then Q⃗l = (0.5, 0.6, 0.7, 0.8, 0.9, 1). We vary
the data availability requirement by iterating R from 0 to 9.
We set β = 1, reflecting the fact that the cost of moving some
data across clouds once is similar to that of storing the same
data in the cloud for one month.

In the second group of evaluations, with the inputs of our
48 monthly OSN snapshots with real-world costs and the other
48 monthly snapshots with estimated costs, we focus on the
continuous cost reduction that can be achieved by cosplay,
compared with the greedy method. For each month, we run
greedy on the former, representing the real-world common
practice of placing user’s data on the closest cloud for lowest
access latency. We run cosplay on the former to show the
“ideal” cost reduction, assuming we know the exact costs of
each user for each month at the beginning of every month.
We also run cosplay on the latter, where replica locations
are adjusted according to the estimated costs of each user,
to show the effectiveness of our estimation approach. Note
that cosplay runs only once at the beginning of every month.
When new users join the system during a month, each user is
still placed by the greedy method. When only using greedy,
the total cost for each month is the sum of the storage and
the inter-cloud traffic cost, plus the maintenance cost. When
running cosplay, the total cost for each month additionally
includes the redistribution cost. We use the same Q⃗u and β
settings as in our first group of evaluations and only consider
the case where every user uses all 10 most preferred clouds.
We set R = 0 and the first value of Q⃗l to be 0.5.

C. Evaluation Results

In the figures, the cost of every placement is normalized
as the quotient of the placement divided by the standard cost,
where the standard cost is the cost of the greedy placement
with R = 0. The storage cost is normalized by the standard
storage cost, the inter-cloud traffic cost and the redistribution
cost is normalized by the standard inter-cloud traffic cost, and
the total cost is normalized by the standard total cost.

1) One-time Cost Reduction: We note that, throughout
Fig. 8 to 11 and in Fig. 14 and 15, the first value of Q⃗l is
always set as 0.5, and we vary Q⃗l in Fig. 12 and 13.

Fig. 8 compares the costs of the placements produced
by different methods over all the 10 clouds with R = 0.
For all methods except cosplay, the total cost is the sum
of its storage and inter-cloud traffic cost. For cosplay, the
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total cost additionally includes the redistribution cost. The
greedy placement has moderate cost compared with random.
Users who are geographically close to one another tend to
have similar sorted lists of clouds. Thus, greedy can assign
local users to the same nearby cloud and random tends to
straddle local social relations across clouds. SPAR has less
cost than greedy and random but more than METIS, indicating
that minimizing the number of replicas cannot necessarily
minimize the actual cost. Cosplay outperforms all others with
total cost reductions of 59%, 66%, 50% and 44%, compared
to greedy, random, SPAR and METIS, respectively.

Fig. 9 depicts the total cost of each method over 10 clouds
as R, the minimum number of slave replicas required for
every user to ensure data availability, varies. When R is small,
cosplay achieves more cost reduction via role-swaps and
eliminates those slaves that are no longer needed for social
locality. When it becomes larger, cosplay’s advantages are
decreasing, as it cannot eliminate some slaves as they are
needed for data availability even if they are not needed for
social locality. The room for optimization also becomes less.
All methods turn to full replication when R = 9.

Fig. 10 dissects the costs of the placements produced by
cosplay on users’ 2, 4, 6, 8, and 10 most preferred clouds in
the case of R = 0. As the number of involved clouds grows,
the storage cost, the inter-cloud traffic cost and the total cost
drops, since more optimization can be done if more clouds
are available for each user. However, the redistribution cost
also declines, indicating we pay less overhead to achieve more
saved costs. The reason is, as the total number of feasible role-
swaps grows, the number of those with negative redistribution
cost also increases, dragging down the total redistribution cost
as more role-swaps put users’ masters on clouds where they
do not have a replica in the existing placement.

Fig. 11 demonstrates the total cost of each cosplay place-
ment as R increases. No matter how R changes, we observe
that when users consider placing their masters on more than
4 of their most preferred clouds, the advantages of cosplay
are not obviously influenced by the number of most preferred

clouds. In contrast, when every user only considers using her
2 most preferred clouds to host her master, cosplay achieves
much less cost reduction. This phenomenon implies that 2
most preferred clouds of each user do not cover the social
relations among users, while using 4 most preferred clouds of
each user results in clouds of friends overlapping and masters
of friends co-located, and thus fewer slaves are needed for
social locality and the total cost can be significantly less
than the 2-clouds case. However, this advantage is gradually
compensated as the minimum number of slaves required by
every user increases.

Fig. 12 shows the total costs cosplay achieves when the
QoS requirement varies with R = 0. As the first value of Q⃗l

increases, the number of users that are allowed to be role-
swapped decreases and thus less room is left for optimization.
When the first value is small, it does not affect the amount of
cost that can be saved. Although more users are allowed to be
role-swapped, the number of role-swaps that can lead to actual
cost reduction is limited—allowing more users to be role-
swapped does not necessarily indicate more cost reduction.
When the first value becomes large enough, operating on
fewer most preferred clouds achieves more cost reduction,
which aligns with our intuition that placing together a small
number of users instead of straddling them across clouds could
save the cost. As cosplay operates on a larger number of
most preferred clouds, it is easier for the cost reduction to be
affected by the first value as this value grows. This is natural
as operating on more clouds indicates that more role-swaps
can be done to save cost. Hence, it is easier to be affected
when the number of permitted users decreases.

Fig. 13 provides the total cost cosplay achieves as both the
QoS requirement and R vary when operating on all the 10
most preferred clouds. The case with a larger R tends to be
less affected by Q⃗l than the case with a smaller R. This is
because when R is larger, the room for optimization becomes
smaller because the number of role-swaps that leads to cost
reduction becomes small. It can be small enough that even
when R = 8 the QoS requirement does not have any effect on
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the cost. With any given QoS requirement, a larger R always
comes with a lower cost reduction, consistent with Fig. 11.

Fig. 14 visualizes the QoS vectors of the placements pro-
duced by all the methods over the 10 clouds. No doubt that
greedy has the best QoS. Random has the linear QoS as
expected. SPAR or METIS partitions a graph into a given
number of partitions. With 10 clouds, there exist 10! =
3,628,800 different ways of placing the 10 partitions upon
the 10 clouds. Each placement has its own QoS. Out of all
10! QoS vectors, we obtain the largest value and the smallest
value for each of the 10 dimensions of the QoS vector. We
can therefore draw the upper and lower QoS bounds for SPAR
and METIS. SPAR and METIS are only able to produce QoS
similar to random, while cosplay can always keep the QoS
within any pre-defined upper and lower bounds.

Fig. 15 investigates how many more slaves we need to
ensure the social locality for every user, except the minimum
number of slaves that are maintained for data availability
(some of them may also serve social locality). This figure
draws the average number of additional slaves needed for so-
cial locality in the placements produced by different methods.
We see that, while meeting the data availability requirement,
cosplay always needs the fewest number of additional slaves
for social locality of all users. Cosplay not only minimizes
the cost, it also reduces the number of replicas. What is
interesting is that, SPAR, an algorithm of minimizing the
replica number, is beat by METIS. This is because SPAR
runs as a procedure responding to a series of edge creation
events and only guarantees the minimal number of replicas
of involved users in a local sense, while METIS takes the
whole social graph as input and thus achieves better results in
a global sense.

2) Continuous Cost Reduction: We note that, as stated in
Section V-A, we mainly focus on the time periods after the
16th month. The two peaks of user population growth in the
26th and 37th month are also reflected in our results.

Fig. 16 and 17 report the ratios of the maintenance cost and
the redistribution cost over the total cost in each month, respec-
tively. Fig. 16 verifies our cost model as the maintenance cost
of greedy occupies less than 5% of the total cost, which is the
reason why we can neglect the maintenance cost incurred by
newly-joined users in our approximated cost model. Cosplay
significantly reduces the total cost for each month, causing the
maintenance cost to occupy larger proportions out of the total
cost. Fig. 17 shows that the redistribution cost always keeps
below 2% of the total cost of a month.

Fig. 18 depicts the one-time cost reduction for each month
and the cumulative cost reduction until each month, com-
pared with greedy. We observe that the one-month and the
cumulative cost reductions achieved by running cosplay on
estimated costs do not deviate much from, and almost overlap
with reductions achieved by running cosplay on real-world
costs. We check the prediction accuracy for all 48 months.
On predicting the traffic cost of each user in each of the 48
months, in 4 months the prediction error averaged over all
users is less than ±1 time, and in 39 months it is less than
±5 times. On predicting the storage cost of each user in each
of the 48 months, in 35 months the prediction error averaged

over all users is less than ±1%, and in 45 months it is less
than ±2%. The small prediction error in the storage cost tends
to be the cause of the small deviation of the cost reduction
based on predicted cost. This is because as time elapses a
user’s stored data accumulates and becomes much bigger than
her traffic amount, making the storage cost dominate the cost
reduction. In this figure we also observe that the cost reduction
climbs up as time elapses, and the accumulative total cost
reduction goes towards more than 40%. The cost reduction
can be deteriorated by large monthly growth rates, as in the
months where user growth peaks occur. However, as discussed
previously, the real-world monthly growth rate is usually quite
small and thus we can expect significant cost reductions.

VI. DISCUSSIONS

Having demonstrated the evaluation results of our algorithm,
now we selectively discuss some related issues.

Complexity. Cosplay has a time complexity of O(N2δ),
where N is the number of clouds in the system and δ is
the number of iterations executed, given that real-world OSN
services often enforce a constant limit of the number of friends
a user can have; without such a limit, in the worst case where
every user was a friend of every other user, the complexity
would be O(|V |δ) where |V | ≫ N is the number of users
in the system. As an example, let’s consider one iteration in
the single role-swaps procedure, assuming each user has up to
C friends. The first step of the random selection of a user is
O(1). In the second step, checking the feasibility of a single
role-swap by Algorithm 1 takes O(N) and thus checking all
single role-swaps of a user takes O(N2). Then, calculating
the cost reduction of a single role-swap by Algorithm 3
takes O(C) and thus calculating the cost reductions of a
user’s all feasible role-swaps takes O(NC). The third step
picks up the role-swap with the largest cost reduction with
a complexity of O(N). The complexity of one iteration is
thus O(1) + O(N2) + O(NC) + O(N) = O(N2), and for
δ iterations it is O(N2δ). In our evaluations, we pre-specify
that each user, on average, is allowed 100 times of being
selected for role-swaps, i.e., δ = 100|V |; however, through all
evaluations with various settings, our algorithm runs at most
a few more than 10|V | iterations before no role-swap can be
done to reduce the cost.

Optimality. Although cosplay only finds a local optimal
solution to our cost optimization problem, it performs em-
pirically much better than other placement approaches in
Section V-C. Figuring out the optimality gap is challenging as
finding the global optimal solution is NP-hard. Nevertheless,
using the small-scale example in Fig. 1, we can have a rough
sense about how much the optimality gap would be. We have
11 users and 3 clouds, so there are 311 = 177147 possible
placements of masters; slaves are placed to ensure social
locality and data availability. We consider the cases of R = 0,
where slave replicas only serve the purpose of ensuring every
user’s social locality, and R = 1, where every user has at
least 1 slave replica no matter it is for social locality or data
availability. For a given QoS requirement and a given data
availability requirement, we can obtain the placement with the
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minimal (optimal) cost and the placement with the maximum
(worst) cost by enumerating all the feasible solutions; we also
run cosplay. Fig. 19 is the result. For example, when R = 0
and the QoS first value is 0.5, cosplay finds the solution whose
cost is 1.26 times of the optimal cost while in this case the
maximum cost is 2.56 times of the optimal cost; when R = 1,
cosplay almost always finds an optimal solution. Compared
with the former, there is less room for optimization in the latter
case; one may imagine that in the extreme case of R = 2
no optimization can be done, as the total cost is fixed no
matter how masters and slaves are placed. We deem that an
approximation ratio like this is reasonably good.

Role-swap vs. master-migrations. It appears that role-
swaps limit the solution to the initial placement, i.e., a role
swap does not seem to be able to migrate a user’s data to a
cloud that has none of her replicas in the initial placement. We
will demonstrate and explain in the following that (1) allowing
such master migrations does not help much in reducing the
cost, and (2) only role-swaps can move a considerable amount
of users to the clouds that do not host their replicas in
the initial placement. Although not included in this paper,
Algorithm 3 and 5 have already been adapted to allow master
migrations. A master migration refers to moving a master
replica from one cloud to another cloud which does not have a
slave replica of the same user. As in role-swaps, social locality
also needs to be ensured by creating slaves of neighbors
if necessary. After adaption to master migrations, in each
iteration, our algorithm can perform the operation, either a
role-swap or a master migration, whose cost reduction is the
maximal out of all feasible role-swaps and master migrations.
We thus run additional evaluations as in Fig. 20 and 21.
Fig. 20 indicates that even allowing master migrations, the
number of master migrations performed only occupies a small
portion of the total number of all the operations performed;
in fact, the placement obtained has almost the same cost
as in the only role-swaps case (which is not shown in the
figure). The reason that role-swaps tend to suffice and master
migrations may not be important is that a master migration
barely reduces the total cost, unlike a role-swap: firstly, a
master migration incurs redistribution cost itself by moving the
master replica to the destination cloud, while a role-swap does
not have this cost; secondly, it may also incur redistribution
cost by creating slaves of neighbors at the destination cloud.
In a role-swap of a user, as the user has a slave serving
social locality at the destination cloud, it is highly likely that
neighbors already have masters there, which does not hold for
a master migration. Fig. 21 indicates that, when no master

migrations are allowed and only role-swaps are performed,
a considerable portion of users have ever had their masters
swapped to clouds other than where their slaves are placed in
the initial placement. For example, when the QoS first value
is 0.1, for users who have 2 replicas (including master) in the
initial placement, 45% of them have ever been beyond the
initial clouds while cosplay runs. In this figure we set R = 0.
As a user’s slaves are created to maintain the social locality
of a neighbor’s master, the new slaves will cause the user’s
master to be swapped to the clouds where they are created.
Therefore, a user’s master is not restricted to those clouds
hosting her slaves in the initial placement.
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Requirement variation. As the OSN evolves, the OSN
provider’s data availability requirement and QoS requirement
may change. The change of the former can be easily handled.
If a user needs more slaves to improve the data availability,
one can choose some clouds and create the needed slaves
there. Note that such slaves only accept propagated writes for
consistency, as social locality is already ensured by existing
slaves. The cost associated with these new slaves created for
data availability does not rely on which clouds they are placed.
On the other hand, if fewer slaves are expected as the current
level of data availability is unnecessarily high, one can then
remove slaves which do not serve the social locality. The QoS
requirement can also be changed by the OSN provider so
that an existing placement that satisfies the old requirement
may not necessarily meet the new requirement; also, when
users move their locations and their preferences for clouds
change accordingly, the QoS of a placement may vary and not
satisfy the QoS requirement any more. In this case, how do we
minimize its cost while making such a placement satisfy the
new QoS requirement and the data availability requirement?
One approach can be to move data to make the placement
meet the QoS requirement, which is always feasible, and
afterwards running our algorithm as we do to minimize its
cost. Here one may want to achieve this first step at the
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minimum redistribution cost by composing an algorithm based
on our adapted version of cosplay.

VII. RELATED WORK

We contrast our work in this paper with existing work in
the following three categories.

Optimizing OSN services. For OSN at a single site, using
distributed hash to partition the data across servers [24], [6]
potentially leads to poor performance. Recent work proposes
maintaining social locality to address this issue: SPAR [29]
minimizes the total number of slave replicas while maintaining
social locality for every user; S-CLONE [33] maximizes the
number of users whose social locality can be maintained, given
a fixed number of replicas per user. For OSN across multiple
sites, some propose selective replication of data across data
centers to reduce the total inter-data-center traffic [25], and
others propose a framework that captures and optimizes mul-
tiple dimensions of the OSN system objectives simultaneous-
ly [19]. The work in [29] and [33] does not have the concern of
QoS as in our geo-distribution case. Besides, the cost models
in all the aforementioned existing work, except [19], do not
capture the monetary expense and cannot fit the cloud scenario,
while [25] and [19] do not explore social locality to optimize
the multi-data-center OSN service.

Graph (re)partitioning. The graph partitioning problem
divides a weighted graph into a given number of partitions
in order to minimize either the weights of edges that straddle
partitions or the inter-partition communication volume while
balancing the weights of vertices in each partition [9]. The
repartitioning problem additionally considers the existing par-
titioning, minimizing the migration costs while balancing ver-
tex weights [31]. State-of-the-art solutions for such problems
include METIS [22] and Scotch [28]. Although similar in the
sense of partitioning, the problem studied in this paper has
fundamental difference from the classic graph (re)partitioning
problems. Firstly, classic problems have no notion of social
locality, QoS, and data availability, which makes these algo-
rithms inapplicable to geo-distributed OSNs. Secondly, classic
problems generally define a balance constraint, which is not
necessary in the multi-cloud scenario because each cloud is
supposed to provide “infinite” resources on demand.

Optimizing multi-cloud services. The work most related
to OSN services may be those on social media [37], [38]
that leverage online social relationships to improve media
delivery. Volley [10] finds out the best data center for each
data item based on access interdependencies, the identity and
time stamp of data access, while balancing storage capacity
across data centers; PNUTS [21] proposes selective replication
at a per record granularity to minimize replication overhead
and forwarding bandwidth, while respecting policy constraints.
A substantial body of literature studies cloud resource pric-
ing [30] and allocation [23], request mapping and content
routing [39] in the multi-cloud or multi-data-center scenario.
Although our work also focuses on multi-cloud services, OSN
is unique in data access patterns (i.e., social locality), making
this group of existing work inapplicable to our scenario.

VIII. CONCLUSION

In this paper, we study the problem of optimizing the mon-
etary cost spent on cloud resources when deploying an online
social network (OSN) service over multiple geo-distributed
clouds. We model the cost of OSN data placement, quantify
the OSN quality of service (QoS) with our vector approach,
and address OSN data availability by ensuring a minimum
number of replicas for each user. Based on these models, we
present the optimization problem of minimizing the total cost
while ensuring the QoS and the data availability. We propose
cosplay as our algorithm. By extensive evaluations with large-
scale Twitter data, cosplay is verified to incur substantial cost
reductions over existing, state-of-the-art approaches. It is also
characterized by significant one-time and accumulated cost
reductions over 48 months such that the QoS and the data
availability always meets pre-defined requirements.
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APPENDIX
NP-HARDNESS PROOF

We prove the NP-hardness of our cost optimization problem
formulated in Section III by restriction. Specifically, we show
that the MIN REPLICA problem, which has been proved NP-
hard [29], is contained by our problem as a special case.
Firstly, let β = 0 and let µu = 0, τu = 1, ∀u ∈ [1,M ].
This makes the objective of our cost optimization problem the
same as that of MIN REPLICA, both minimizing the total
number of slave replicas. Secondly, let the list of the sorted
clouds of every user be identical, i.e., fu(i, j) = fv(i, j),
∀u, v ∈ [1,M ], ∀i, j ∈ [1, N ], and let Q⃗l and Q⃗u satisfy
Q⃗l[k] = Q⃗u[k] = k

N , ∀k ∈ [1, N ]. This makes Constraint
(5) of our problem equivalent to the load balance constraint
of MIN REPLICA, both maintaining an equal number of
master replicas across partitions. Thirdly, note that all other
constraints of our problem are the same as their counterparts
of MIN REPLICA. Hence, MIN REPLICA is a case of our
problem under the above settings. Due to the NP-hardness of
MIN REPLICA, our cost optimization problem is NP-hard.�
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