
Resilient Intermediary-Based Key Exchange Protocol for IoT

ZHANGXIANG HU, University of Oregon, USA

JUN LI, University of Oregon, USA

CHRISTOPHER WILSON, University of Oregon, USA

Due to the limited resources of Internet of Things (IoT) devices, Symmetric Key Cryptography (SKC) is typically favored over resource-

intensive Public Key Cryptography (PKC) to secure communication between IoT devices. To utilize SKC, devices need to execute a key

exchange protocol to establish a session key before initiating communication. However, existing SKC-based key exchange protocols

assume communication devices have a pre-shared secret or there are trusted intermediaries between them; neither is always realistic

in IoT.

We introduce a new SKC-based key exchange protocol for IoT devices. While also intermediary-based, our protocol fundamentally

departs from existing intermediary-based solutions in that intermediaries between two key exchange devices may be malicious, and

moreover, our protocol can detect cheating behaviors and identify malicious intermediaries. We prove our protocol is secure under the

universally composable model, and show it can detect malicious intermediaries with probability 1.0. We implemented and evaluated

our protocol on different IoT devices. We show our protocol has significant improvements in computation time and energy cost.

Compared to the PKC-based protocols ECDH, DH, and RSA, our protocol is 2.3 to 1591 times faster on one of the two key exchange

devices and 0.7 to 4.67 times faster on the other.

CCS Concepts: • Security and privacy → Key management; Symmetric cryptography and hash functions; • Theory of
computation→ Cryptographic protocols.

Additional Key Words and Phrases: Internet of Things, key exchange, malicious intermediary

ACM Reference Format:
Zhangxiang Hu, Jun Li, and Christopher Wilson. 2023. Resilient Intermediary-Based Key Exchange Protocol for IoT. 1, 1 (October 2023),

30 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Due to advances in lightweight computing and networking technologies, the Internet of Things (IoT) has rapidly

penetrated into our lives. However, because a compromised IoT system can lead to disastrous results [23, 35, 43], a key

challenge facing IoT is that IoT networks must support secure communications channels to protect message integrity

and confidentiality, thus resistant to both message tampering and eavesdropping. To establish secure communication

channels, a general solution for IoT devices is to employ cryptographic algorithms. For instance, IoT devices can either

employ public key cryptography (PKC) or symmetric key cryptography (SKC) to establish secure communication

channels between them. However, IoT devices are highly heterogeneous and usually have extremely limited resources

Authors’ addresses: Zhangxiang Hu, University of Oregon, Eugene, Oregon, USA, zhangxia@uoregon.edu; Jun Li, University of Oregon, Eugene, Oregon,

USA, lijun@uoregon.edu; Christopher Wilson, University of Oregon, Eugene, Oregon, USA, cwilson@uoregon.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Zhangxiang Hu, Jun Li, and Christopher Wilson

such as memory, battery, and computing power. Due to the expensive operations and longer key sizes of PKC, many

IoT devices are not capable of performing PKC and have to resort to SKC. A central question with using SKC, however,

is key exchange; that is, any two IoT devices must exchange a common secret key in order to encrypt and decrypt

messages between them.

Non-cryptographic solutions have been proposed for secret key exchange between IoT devices. A typical solution

is using a secure secondary communication channel, which however usually requires additional hardwares or sen-

sors [24, 42] that IoT devices may not be equipped with. Other non-cryptographic solutions include jamming [3] and

proximity [31]. The jamming solution requires a special entity—jammer—to jam the channel and the proximity solution

needs IoT devices to be physically close to each other (e.g., 6cm); both are often unrealistic.

Cryptographic key exchange solutions can be various methods using PKC (e.g., Diffie-Hellman, ECC, RSA) or

methods not using PKC. The former’s demand on resources and computing power is often beyond the reach of IoT

devices. For example, in our experiments, we observed that devices with resources of CPU clock less than 32MHZ, flash

memory size less than 64KB, and RAM size less than 16KB, are failed to perform PKC-based key exchange protocols.

The latter are methods using SKC. In contrast to using PKC, SKC-based key exchange has a better performance with

significantly lower usage of resources and computational power, thus is often preferred to PKC-based key exchange in

resource-constrained environments. However, to use SKC for key exchange, if only two communication parties are

involved and no pre-shared private secret, SKC alone is not sufficient to establish a key exchange protocol via public

channels, even if one-way function exists [20]. There are two approaches in using SKC for key exchange between two

parties: using a pre-shared secret between the two parties, or using the help of intermediary parties between the two

parties. Here, we also call an intermediary party a helper in the rest of the paper. As an IoT network is often composed

of hundreds or even thousands of devices, doing the former approach for every pair of devices is daunting. The latter

approach is more feasible, which we focus on in this paper.

To the best of our knowledge, all existing SKC-based key exchange protocols with intermediary helpers rely on an

assumption in their adversary model that the intermediaries must be honest or semi-honest, where the intermediaries

do not tamper with messages in a protocol or abort the protocol and follow all instructions in a key exchange protocol

(Intermediaries in the honest model are trustworthy while intermediaries in the semi-honest model are not fully

trustworthy and may attempt to obtain useful information from the protocol). This assumption is usually stringent and

often unrealistic. A stronger adversary model is the malicious model in which intermediaries can arbitrarily deviate

from a protocol. If intermediary parties are compromised by malicious adversaries, they can tamper with messages

between the key exchange parties. IoT devices may not detect the compromise and they may either fail to exchange a

secret key between them or leak useful information pertaining to the key to adversaries. Key exchange parties could try

to sign their messages, but signing with PKC is too expensive for IoT devices, and signing with SKC requires the key

exchange parties to have a shared key between them which they have yet to agree on.

Furthermore, to our best knowledge, none of the previous intermediary-based key exchange protocols have formally

proved that their protocol is secure under the Universally Composable (UC) security model, or UC-secure [9]. Here, a

UC-secure key exchange protocol means even when it is used by multiple key exchange sessions simultaneously or

when it is combined with other protocols (e.g., when it is embedded in another protocol), the protocol is still secure

(e.g., no information can leak from one session to another session or leak from the key exchange protocol to another

protocol).

In this work, we design, prove, and evaluate a new intermediary-based key exchange protocol for devices with limited

resources—especially IoT devices—to successfully and securely agree upon a secret session key. In particular, we apply

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 3

the cut-and-choose technique to identify the malicious helpers without using any PKC primitives. Cut-and-choose is

widely adopted in multi-party computation (MPC) [1, 25] to achieve security against malicious parties. Its main idea is

to let one party construct different versions of a secret message and have the other party randomly check some of them

and use the rest of them. In our protocol, we first let an IoT device create a bunch of test keys, and then let the other IoT

device randomly pick a subset of test keys to detect malicious helpers and use the remaining test keys to derive a real

secret session key for communication between the two devices. Our main contributions include:

• Our protocol advances SKC-based key exchange. Unlike any previous intermediary-based solution, our protocol

is the first one that does not rely on the trustworthiness of helper parties. Also, the protocol does not leak any

useful information to the helper parties. If some helpers are malicious and do not follow the protocol, the two

devices will still be able to establish a session key without leaking any useful information.

• Our protocol introduces a novel design that can efficiently identify the malicious helpers when they tamper

messages going through them, even if they collude or selectively tamper messages.

• With the SK-security framework and the UC model, we formally prove that our protocol is secure against

malicious intermediary helpers in both the stand-alone model and the UC model.

• We derive the best possible setting (e.g., the number of intermediary helpers and secure channels needed) for

an intermediary-based key exchange protocol to be secure. We also show how two communication devices

authenticate each other with the help from intermediaries before the key exchange starts.

• We conduct a theoretical analysis of our protocol and show its failure probability is easily negligible with a

reasonable setup and its malicious helper detection probability can be 1.0 even when a malicious helper only

tampers a small number of messages.

• We provide empirical evaluations for our protocol. We implemented our protocol and emulated different IoT

devices on Mininet to evaluate its performance against three widely used PKC-based protocols: RSA, Diffie-

Hellman, and Elliptic Curve Diffie-Hellman. For two parties doing key exchange, our experiments demonstrated

that our protocol achieves 2.3 to 1591 times faster on one party and 0.7 to 4.67 times faster on the other.

Note that this paper extends and improves our previous conference paper [18] by discussing the optimal setting for a

secure intermediary-based key exchange protocol. In addition, we enhanced the key derivation process and further

formally proved that our protocol is secure in a stronger security model—the UC model. We also conduct additional

theoretical analysis to explain the experimental setting in our evaluation, and finally provide some use cases of our

protocol in practice.

The rest of this paper is organized as follows. Section 2 reviews the related work on previous key exchange protocols

in IoT environments and summarizes their limitations and drawbacks. Section 3 introduces the basic design of the

intermediary-based key exchange protocol with secret sharing scheme, and shows the network configurations in

the basic design. Section 4 describes our resilience design that can detect malicious behaviors and identify cheating

intermediaries with the cut-and-choose technique. Section 5 proves the security of our protocol against malicious

intermediaries in the UC model. Section 6 provides a theoretical analysis of our protocol’s efficacy, resiliency, and

overhead. Section 7 shows the experimental results of our protocol’s performance and network overhead. Section 8

illustrates some real-world use cases that apply our protocol in practical applications. Finally, Section 9 concludes this

paper.

Manuscript submitted to ACM

4 Zhangxiang Hu, Jun Li, and Christopher Wilson

2 RELATEDWORK

A secure key exchange protocol is a core cryptographic primitive in building secure communication channels [10].

Various standard public key cryptography (PKC) schemes are sufficient to implement a secure key exchange protocol in

traditional networks. However, due to the limited resources of IoT devices, these schemes are not suitable for many IoT

environments. Many previous approaches were introduced to improve the efficiency of PKC, such as more efficient

variants of Elliptic Curve schemes [8, 12]. A proposed SEMECS scheme in [41] improves the Elliptic Curve-based PKC

solution by eliminating some expensive operations in ECC such as scalar multiplication or addition. In addition, Ozmen

and Yavuz [30] propose Designated Boyko-Peinado-Venkatesan (DBPV) solution which significantly improves the

energy consumption for IoT devices. The result shows that their solution is up to 7 times better than standard PKC

solutions in terms of the battery life and computation time. The computational cost during key exchange can also be

reduced by performing pre-computations before key exchange [30]. However, improvements on PKC-based methods are

limited, mostly insufficient in addressing the resource limitations of IoT devices with extremely constrained resources.

Below we focus on previous approaches that mainly use SKC.

One key exchange solution without PKC is using physical unclonable function (PUF) [44, 45]. The main idea is

that IoT devices can leverage the unique and unpredictable characteristics of the PUF to authenticate each other and

generate a shared secret. However, PUF-based solution requires specialized hardware to function and devices must be

embedded with a PUF, which is often unrealistic for many IoT devices.

Another key exchange solution without PKC is using a pre-shared secret. For example, the approach in [22] and [36]

assume that all nodes in the same network share a common master key, from which any two nodes can derive their

session key. However, if any node is compromised, it will expose the master key and therefore threaten the confidentiality

of the entire network. To address this issue, some approaches (such as those in [14, 27]) instead use a password between

a client and all its servers as a pre-shared secret, where every server has a share of the password. The servers collectively

use the password to authenticate the client and then derive a session key for the client to communicate with any one of

the servers. Here, unless more than a threshold number of servers are compromised, a compromised server node will

not leak the password. Unfortunately, these password-based approaches still employ PKC. Also, like the pre-shared

master key, they still have a single point-of-failure (the password), and they cannot identify which server(s), if any, are

compromised.

Instead of one common pre-shared secret among all nodes, Chan et al. [17] suggest each node pre-store a set of keys

randomly selected from a universal key space, where the sets of any two nodes overlap. When a node decides to start a

communication session with another node, it must identify all the common keys it shares with that node and then

derive a session key between them from the common keys. If an attacker subverts a node, the attacker can only learn the

keys in the node’s set of keys, while the session key remains secure. However, the procedure to identify common keys

between different nodes could leak useful information about the universal key space and eventually the information of

the session keys between nodes. In a similar work [26], every node is associated with a set of polynomials in a universal

pool of random bivariate polynomials. Any two nodes need to derive their session key by first identifying their common

bivariate polynomials, which however could leak useful information of the pool and also the information of the session

keys.

Different from using a pre-shared secret, another solution is to use help from a trusted third party. Hummen et al. [19]

suggested that as long as an IoT device maintains a key associated with an external trusted server, it then can use the

help of the trusted server to derive a new secret session key for its communication with another party. This approach

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 5

drastically reduces the computations of IoT devices. Yet, the trusted server is a major point of failure. If it is compromised,

it could obtain all secret keys.

Instead of placing trust into a single third party, researchers proposed solutions using multiple intermediary helpers.

Solutions in [21, 32–34] use the neighboring nodes of key exchange parties as intermediary helpers, whereas for the

solution in [17], multiple independent communication paths between two communication nodes can be regarded

as intermediary helpers. A party can initiate a key exchange with another party by splitting a secret into multiple

secret shares and sending each share to a different intermediary helper, where each share leaks no information of

the original secret. Every intermediary helper then forwards the share it receives to the other key exchange party,

which subsequently assembles all the shares it receives to derive the original secret, and both parties can then use the

same secret to derive their session key. However, these intermediary-based solutions assume all intermediaries are

trusted or at least semi-honest. In other words, all intermediaries must follow the protocol honestly. If any intermediary

becomes malicious and deviates from the protocol, such as discarding a secret share or tampering a secret share before

forwarding it, the whole key exchange could fail and the malicious intermediary may learn certain information of the

secret, potentially weakening the confidentiality strength of the session key. Furthermore, the communication nodes

cannot detect which intermediary helpers are compromised by the adversary.

3 BASIC DESIGN

Not only does our intermediary-based key exchange solution eliminate all PKC operations and only rely on SKC

operations, it also significantly differs from prior intermediary-based solutions and adds new features. In particular, we

describe the basic design of our key exchange solution in this section and focus on the resiliency against malicious

intermediaries in the next section.

3.1 Settings and Assumptions

Every IoT device, say PA, communicates with another IoT device, say PB , via a public channel, which is not secure as

messages through the channel could be eavesdropped or tampered. PA and PB thus need to exchange a session key to

protect their communication, where PA is the key exchange initiator and PB is key exchange responder. PA and

PB are honest and follow their key exchange protocol between themselves. Finally, both parties are resource-constrained

IoT devices and can only perform SKC operations (i.e., no PKC operations).

Between PA and PB are n intermediary helper parties Hi (i = 1, . . . ,n) (Fig. 1) that will assist the key exchange. A

helper can be a gateway device, a smart phone, or another IoT device. Further, PA and PB each set up a secure channel

with every helper through a registration process, which can establish a shared secret between an IoT device and a helper

and use the shared secret to set up a secure channel between them for their communication. (Note this registration

process is not suitable for two IoT devices to exchange a session key as it will need to register every IoT device at its

every communication party, a much larger overhead than registering a device at all its helpers.) Finally, unlike PA and

PB who are honest, a helper may be malicious. We assume there are less than t helpers in total which are malicious.

Before they start key exchange, PA and PB authenticate each other, as follows. For PA to authenticate itself to PB ,

PA composes an authentication message about its identity and sends it to every helper (through its secure channel

with the helper). Every helper then verifies the message; if the message is verified, the helper then sends a claim to PB

(through its secure channel with PB) that the other side is indeed PA. On the side of PB , upon the receipt of claims

from all the helpers, PB can then decide if PA is authenticated based on its authentication policy, which, for example,

may require (a) all the claims vouch for PA, or (b) the majority of claims vouch for PA, or (c) no more than a threshold

Manuscript submitted to ACM

6 Zhangxiang Hu, Jun Li, and Christopher Wilson

number or percentage of claims vouch for an identity that is not PA. Clearly, except for policy (a), if some helpers are

malicious, PB can still authenticate PA. PB can authenticate itself to PA in the same way.

PA PB

H1

Hn

Hi

...

...

Fig. 1. The settings of key exchange. PA and PB are communication devices and Hi (i = 1, . . . , n) are intermediary helpers. A
double-headed arrow indicates a secure channel between an IoT device and a helper, and they can send messages to each other.

3.2 Key Exchange Protocol π

We now describe the key exchange protocol π to illustrate the basic design of our key exchange solution. It leverages a

standard t-out-of-n secret sharing scheme [37] in which a secret S is composed of n shares and a collection of at least

t(t ≤ n) shares must be present in order to reconstruct S . Any collection that has less than t shares does not leak any

information about S . The main idea of π is for the key exchange initiator PA to split a secret into n shares and for the

key exchange responder PB to receive at least t shares separately through t helpers and reconstruct the original secret,

thus PA and PB are able to use the same secret to derive their session key. The protocol is as follows.

(a) Initialization. PA initializes the key exchange with PB by sending PB a message (init, sid) (via a public channel)

where init contains PA’s security parameters (including ciphers and parameters available for key exchange and

ciphers and key lengths for its communication with PB) and sid is the ID of the current key exchange session. PB

then sends back (initconfirm, sid) (via a public channel) where initconfirm contains a subset of PA’s security

parameters that PB agrees with for their key exchange.

(b) Choose secret and its shares. PA randomly chooses a secret S and invokes a t-out-of-n secret sharing scheme to

obtain n shares of S : {si |i = 1, . . . ,n}.

(c) Transfer secret shares. PA sends si to Hi (i = 1, . . . ,n), which then forwards si to PB after receiving si .

(d) Derive secret from shares. Upon receipt t shares among {si |i = 1, . . . ,n}, PB then uses the t-out-of-n secret

sharing scheme to reconstruct S .

(e) Derive session key. PA and PB both compute ksid = f (S, 0), where f is a pseudorandom function agreed by PA

and PB during initialization. ksid is then the session key for PA and PB .

(f) Verify session key. Furthermore, PA and PB each compute S ′ = f (S, 1), and PB sends an acknowledgement

messageM = д(“confirm”, sid, PA, PB , S
′) to PA where д is a message authentication function (also agreed by PA

and PB during initialization). Upon the receipt ofM , PA checks ifM is also д(“confirm”, sid, PA, PB , S
′). If so, PA

knows both parties agree on ksid as their session key, and PA can start its communication with PB ; otherwise, PA

either aborts the protocol or initiates another instance of π .

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 7

Hi

(init, sid)

(initconfirm, sid)

si si

M

Randomly picks
a secret S , ob-
tains its shares
(s1, . . . , sn), and
sends si to PB via
Hi

Reconstructs
secret S , derives
session key from
S , and composes
acknowledgement
message M

Device PA Device PB

Fig. 2. Key exchange protocol π . Each dashed line means a message is sent via a public channel. Each solid line means a message is
sent via an intermediary helper party. The single-headed arrows indicate the direction of message movement.

3.3 Agreement of Helpers for n-Helper Protocol

The protocol π requires the two key exchange devices to have secure channels with the same set of helper parties.

However, this requirement can be a challenge in the real world since every device can choose helpers based on its

preferences. It is possible that when two devices start key exchange, they do not have the same n helpers in common.

For example, in Fig. 3, although PA and PB wish to use three helpers, PA only has secure channels with H1 and H2,

and PB only has secure channels with H2 and H3. We therefore design a helper discovery process to enable two key

exchange IoT devices PA and PB to agree on the same set of helpers before they invoke the n-helper protocol.

First of all, PA and PB need to determine which n helpers they need to agree on to use for their key exchange.

Denote C this set of n helpers. Also denote A and B the initial sets of helpers of PA and PB , respectively. First, PA

sends an initialization message to PB . Compared to the message in Fig 2, the initialization message here contains extra

information which includes A and the number of helpers (i.e., n) needed for the key exchange. PB then identifies the

common helpers it has with PA, i.e.,A∩B. If |A∩B| ≥ n, PB randomly picks n helpers fromA∩B and assigns them to

C. Otherwise, besides the common helpers, PB randomly selects n-|A∩B| helpers from A∪B \ A∩B and places all

these helpers into C. Clearly, now |C|=n. PB also notifies PA of C.

Both PA and PB then try to add new helpers that are in C but not in A and B, respectively. To do so, they each use

their current helpers to establish a secure channel with every new helper. Assume PA needs to add a new helper Hnew .

PA then treats Hnew as a key exchange responder in a completely new key exchange session and runs an independent

instance of an |A|-helper key exchange protocol with helpers fromA. Here, Hnew needs to have a secure channel with

each helper in A. If Hnew is traditional device with enough computational resources, this is trivial since Hnew can

simply apply conventional PKC techniques to build secure channels between each other. As a result, PA and Hnew can

agree on a common secret key and PA can use the key to establish a secure channel with Hnew , thus also establishing

Hnew as a new helper. The procedure for PB to add a new helper is exactly the same.

However, if Hnew is an IoT device with constrained resources, then it builds secure channels with other helpers as

follows.

Manuscript submitted to ACM

8 Zhangxiang Hu, Jun Li, and Christopher Wilson

(1) First, Hnew builds communication channels with other helpers through the assistance of the key exchange

parties. Since we assume that key exchange parties are honest, Hnew can transfer secret keys to other helpers

via the key exchange party PB .

(2) For each remained helper Hi that Hnew does not have secure channel with, it checks if has enough helpers

to conduct key exchange with Hi . If so, it invokes a key exchange protocol to build a secure channel with Hi .

Otherwise, Hnew skips this step.

(3) Hnew checks if it has enough helpers to conduct key exchange with PA. If so, it invokes a key exchange protocol

to build a secure channel with PA and PA adds Hnew as a new helper. Otherwise, Hnew skips this step.

Back to the example in Fig. 3, we can see here n = 3, A = {H1,H2}, B = {H2,H3}. Upon the initialization message

from PA, PB determines C = {H1,H2,H3} and also notifies PA about C. If H3 is a rich-resource device, PA then adds H3

as a new helper. To do so, first H3 builds secure channels with H1 and H2 with PKC. Then PA uses its current helpers

H1 and H2 to conduct a key exchange with H3 and uses the secret key to establish a secure channel with H3 and thus

have H3 as a new helper. PB also uses the same procedure and adds H1 as a new helper. As a result, PA and PB both use

helpers specified by C.

If H3 is a resource-constrained IoT device, H3 first shares a secret key with H2 via PB and thus establishes a secure

channel with H2. Then H3 checks if it has enough helpers to continue establishing a secure channel with H1. If so, H3

invokes our protocol to exchange a secret key with H1. Otherwise, H3 stops the process of building secure channels

with other helpers and checks if it has enough helpers to continue establishing a secure channel with PA. If so, PA

conducts a key exchange with H3 and add H3 as a new helper.

Finally, PA and PB complete the helper discovery process and continue the key exchange protocol. If PA and PB are

not able to find enough helpers to assist the key exchange, they could choose either reduce the number of helpers to

continue the key exchange protocol, or they both output fail and exit the protocol.

PA PB

H1

H3

H2

Fig. 3. PA and PB do not share the same set of helper parties. The double-headed arrows indicate a secure channel between an IoT
device and a helper, and they can send messages to each other.

3.4 Optimal Network Configuration

As shown in Fig. 1, protocol π relies on the existence of n helpers and pre-established secure channels between

communication devices and helpers. One concern here is that what are the minimum numbers of helpers and secure

channels for protocol π to successfully exchange a key between two devices. In this section, we show that without PKC,

π with two helpers and four secure channels is the optimal intermediary-based key exchange protocol that uses the

fewest number of intermediary helpers and secure channels.

To prove π ’s optimality, we explore the possibility of other cases that use one helper (Fig. 4), two helpers (Fig. 5), and

three or more helpers (Fig. 6). (We omit settings that are isomorphic to each other.) Compared to protocol π with two

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 9

helper parties and four secure channels, these cases either utilize fewer helper parties or fewer secure channels, and we

show below that if only using SKC, these cases are not sufficient to implement a key exchange protocol.

Theorem 1. The key exchange protocol π with two helpers and four secure channels is the optimal intermediary-based

key exchange protocol for two parties to establish a session key in that π uses the fewest number of intermediary helpers

and secure channels.

We analyze cases with one helper, two helpers, and three or more helpers separately below.

3.4.1 One-Helper Cases. Cases with one helper include cases 4a, 4b, and 4c in Fig. 4. We focus on showing 4c is

impossible to have a secure key exchange protocol without using PKC. The impossibility of 4c implies the impossibility

of 4a and 4b because 4c has a stronger setting with more secure channels. The proof follows the fact that whatever

messages that are transferred over the network, these messages are also obtained by the helper H1. In Fig. 4c, since the

communication channel between PA and PB is public, H1 can eavesdrop on all messages on this channel. In addition,

H1 has as much (or more) computational power as PA and PB , since our protocol does not rely on PKC, whatever can

be learned or computed by PA or PB can also be learned by H1. Therefore, it is impossible for PA and PB to share a

common secret session key without leaking it to H1.

PA PB

H1

(a) G1

PA PB

H1

(b) G2

PA PB

H1

(c) G3

Fig. 4. Different network settings for one helper. A solid (resp. dashed) double-headed arrow indicates that an IoT device and a helper
can communicate with each other through a secure (resp. public) channel.

3.4.2 Two-Helper Cases. For two-helper cases, we first look at cases 5a, 5b, 5c. Here we only show that 5c is impossible

to achieve secure key exchange since the impossibility of case 5c also implies the impossibility of cases 5a and 5b

because case 5c has a stronger setting with more secure channels. We show that case 5c can be reduced to the case of

no helper. Assume that we have a secure key exchange protocol π for case 5c, now we construct a secure key exchange

protocol π ′ for two communication parties with no helper as follows. Consider the components CA = (PA,H1) and

CB = (PB ,H2), we create new parties P ′A and P ′B to simulate the behavior of CA and CB respectively. Namely, for all

operations that PA and H1 perform in π , P ′A behaves the same. P ′B also behaves the same as PB and H2 in π . Since π is a

secure key exchange protocol against malicious adversaries, π ′ is also a secure key exchange protocol for parties P ′A and

P ′B . However, it contradicts the result of Impagliazzo-Rudich [20] that without PKC, no secure key exchange protocol

exists while only the two communication parties are involved. Therefore, there is no such protocol π for case 5c.

We now look at cases 5d, 5e, 5f. Case 5f follows a similar argument as in case 4c. In case 5f, the communication

channel between PB and H1 is a public channel. H2 can eavesdrop all messages that are transferred between H1 and

PB . Thus, H2 obtains all the information in this case. Since H2 has more computational power than PB , whatever PB

computes or receives can also be computed or obtained by H2. Therefore, it is impossible for PA and PB to share a

common secret session key without leaking it to H2.

Manuscript submitted to ACM

10 Zhangxiang Hu, Jun Li, and Christopher Wilson

PA PB

H1

H2

(a) G4

PA PB

H1

H2

(b) G5

PA PB

H1

H2

(c) G6

PA PB

H1

H2

(d) G7

PA PB

H1

H2

(e) G8

PA PB

H1

H2

(f) G9

Fig. 5. Different network settings for two helpers. A solid (resp. dashed) double-headed arrow indicates that an IoT device and a helper
can communicate with each other through a secure (resp. public) channel.

PA PB

H1

Hi

Hn

...

...

(a) G10: there is a secure path between PA and PB .

PA PB

H1

Hi

Hn

...

...

(b) G11: there is no secure path between PA and PB

Fig. 6. Different network settings for more than two helpers. 6b has no secure path between PA and PB . A solid (resp. dashed)
double-headed arrow indicates that an IoT device and a helper can communicate with each other through a secure (resp. public)
channel.

3.4.3 Cases with Three or More Helpers. To show the impossibilities, we divide all cases into two categories which

depend on whether there is a secure path from PA to PB . Namely, a secure path from PA to PB indicates that there is a

secure channel from PA to a helperHi and also a secure channel from the same helperHi to PB (e.g., Fig. 6a). Notice that

we only consider the cases with three secure channels since there are more than two helpers. Also, the the impossibility

of cases with three secure channels implies the impossibility of cases that has two or fewer secure channels.

For all cases without a secure path from PA to PB as in Fig. 6b, they follow a similar argument to case 5c. We can

reduce these cases to the no helper case as follows. For all helpers that PA has secure channels with, we group them

into a component CA with PA and let a new party P ′A to simulate the behavior of CA. For all other helpers, including

helpers that PB has no secure channels with, we also group them into a component CB with PB and let a new party P ′B
to simulate the behavior of CB . Thus, if there is a secure key exchange protocol for these cases, we can also construct a

secure key exchange protocol for P ′A and P ′B which contradicts to the Impagliazzo-Rudich result.

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 11

For all cases that have a secure path from PA to PB , the argument is similar to case 5f. Assume the secure path passes

through the helper Hi . Since the number of secure channels is less than or equal to three, there is no other secure path

from PA to PB . Without loss of generality, if the third secure channel connects to PA, then Hi can eavesdrop on all

messages PB receives and obtains all information that PB can compute. Therefore, it is impossible for PA and PB to

share a common secret session key without leaking it to Hi .

4 RESILIENCY DESIGN

4.1 Overview

Protocol π is not resilient against malicious helpers. If a helper tampers or forges a share before sending it to PB and

PB uses it with other shares to reconstruct the secret (S), PB will not derive the same secret that PA has, resulting in

the failure of the key exchange. Moreover, PA and PB cannot detect or identify malicious helpers. A typical approach

to this problem is to sign every share, but signing with PKC is too expensive for IoT devices, and signing with SKC

requires PA and PB to have a session key between them already, which they have yet to agree on.

We design a new protocol π A
that advances π with resiliency. Without using any PKC operation, π A

enables key

exchange devices to try to detect and identify malicious helpers. The main design idea of π A
is derived from the

cut-and-choose technique widely used in secure multi-party computation. The cut-and-choose technique lets one party

construct different versions of a message and have the other party randomly checks some of them and use the rest of

them. In π A
, PA generates a number of random keys which we call test keys, PB use some of them called opening

keys to identify malicious helpers via an efficient and effective design, and PA and PB use the rest of them called

evaluation keys to derive the session key.

4.2 Key Exchange Protocol π A: General Design

π A
is composed of three phases. We overview them here and elaborate them in Section 4.3.

Initialization phase. As opposed to choosing one secret S as in π , PA now generates a number of test keys. For

every test key, π A
invokes a standard t-out-of-n secret sharing scheme to split it into n shares, sends each share to a

different helper, which then forwards the share to PB . Note that with the assumption that there are less than t helpers

in total which are malicious (Section 3.1), the security property of the t-out-of-n secret sharing scheme guarantees that

the malicious helpers, even if they collude, will not be able to have t or more shares to learn any useful information of

any test key.

Cut-and-choose phase. This phase is focused on identifying malicious helpers and dropping shares from them. PB

first randomly chooses half of the test keys as opening keys and the other half test keys as evaluation keys and also

notifies PA its choice. PA then retransmits a copy of every share of every opening key to PB via a helper rather than

the original helper that forwarded the share, where the helper is randomly chosen each time. PB then inspects every

helper and compares every share of an opening key forwarded by the helper against the share’s copy retransmitted via

another helper. If there are t or more helpers that disagree with the helper, PB then regards the helper as malicious.

Otherwise, i.e., if this helper was not malicious, every helper who disagreed with the helper is then malicious; with t or

more disagreements, there would be then t or more malicious helpers, which contradicts the assumption that at most

t − 1 helpers are malicious (Section 3.1).

If more than n-t helpers are malicious, PB aborts the protocol. Otherwise, PB drops all the shares forwarded by

every helper identified as malicious, some of which could be shares of an evaluation key. PB finally reconstructs every

Manuscript submitted to ACM

12 Zhangxiang Hu, Jun Li, and Christopher Wilson

evaluation key with its remaining shares. Although it is still likely that some remaining shares are compromised and as

a result evaluation keys reconstructed with them are also compromised, the likelihood is low given that most remaining

shares are authentic.

Session key derivation phase. PA randomly chooses a secret, uses each evaluation key to encrypt the secret

separately, and sends each encrypted secret to PB . PB then uses the corresponding evaluation key to decrypt every

encrypted secret. Although PB may not reconstruct some evaluation keys correctly due to compromised shares, it can

treat the decryption output with the majority agreement as the secret. PA and PB can therefore use the secret to derive

their session key.

Hj

Hh(i)

Initialization phase:

Cut-and-choose phase:

Session key derivation phase:

(init, sid)

(initconfirm, sid)

τ1j , . . . ,τs j τ ′
1j , . . . ,τ

′
s j

O, E

τi j τ ′′i j

notify

ci

M

PA Generates s test
keys (τ1,..., τs); for
each test key τi ,
obtains n shares
(τi1,..., τin); for all
j ∈ {1,..., n }, sends
shares (τ1j ,..., τs j)
to PB via Hj

Randomly picks
O and E from
{1,..., s }For all i ∈ O and

all j ∈ {1,..., n },
sends τi j to PB via
helper Hh(i) where
h is a random
mapping function Detects malicious

helpers and drops
all shares from
them

For all i ∈ E,
encrypts secret S
with each evaluation
key τi to obtain
ci = Encτi (S)

Decrypts ci and
takes the ma-
jority output as
secret S to derive
the session key;
composes the ac-
knowledgement
message M

Device PA Device PB

Fig. 7. Key exchange protocol π A . Each dashed line means a message is sent via a public channel. Each solid line means a message is
sent via an intermediary helper party.

4.3 Key Exchange Protocol π A: Protocol

The protocol π A
is as follows.

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 13

[Initialization phase.] This phase is the same as π ’s Initialization (see Section 3.2), except that the init also contains

the number of test keys from PA. Plus, PA sends test keys to PB as follows:

• PA randomly generates s test keys T = (τ1, τ2, · · · , τs), where every test key is of an equal length.

• For every τi ∈ T , PA invokes the t-out-of-n secret sharing scheme to obtain its n shares (τi1, τi2, · · · , τin).

• For every test key τi and its every share τi j , PA sends τi j to helper Hj , which then forwards the share to PB .

Helper Hj will thus receive and forward a set of shares (τ1j , τ2j , · · · , τs j).

• For each τi , PB receives shares (τ ′i1, τ
′
i2, · · · , τ

′
in). (We use notation τ ′i j instead of τi j since a share may be tampered

by a corrupted helper.)

[Cut-and-choose phase.] PB now processes all the test key shares it has received:

• Based on the total number of test keys, PB randomly chooses half of test key indexes, denoted as O, to be the

indexes of opening keys and the other half, denoted as E, to be the indexes of evaluation keys. PB sends (O, E)

to PA (via a public channel).

• On PA, upon the receipt of O and E, for every τi j (i ∈ O) it forwarded, retransmit a copy of τi j to PB via helper

Hh(i), where h is a random mapping function and ∀i ∈ O,h(i) , j.

• On PB , for every helper Hj (j = 1, . . . ,n), compare every τ ′i j (i ∈ O) it received from Hj with its retransmitted

copy from helper Hh(i) to see if they match. If for helper Hj there are t or more helpers that disagree with Hj , Hj

is then a malicious helper and PB drops all the test key shares from Hj .

• If more than n-t helpers cheated, PB aborts the protocol. Otherwise, for every i ∈ E, PB knows at least t shares

from (τ ′i1, τ
′
i2, · · · , τ

′
in) still remain. With these remaining shares, PB thus uses the t-out-of-n secret sharing

scheme to reconstruct τ ′i . Here, PB regards τ ′i as τi (which may not be the same if at least one share used is

tampered but not found in the previous step).

• PB sends (notify) to PA to let PA enter the next phase (via a public channel).

[Session key derivation phase.] PA and PB now generate their session key as follows:

• PA randomly chooses a secret S , encrypts S with each evaluation key τi separately, i ∈ E, to obtain ciphertext

ci=Encτi (S), and sends each ci to PB (via a public channel).

• For each ciphertext ci (i ∈ E) received, PB decrypts it using the evaluation key τ ′i .

• PB takes the majority output from the previous step as the secret S .

• PA and PB truncate the secret into two halves, and let pwd be the first half and salt be the second half. PA and

PB invoke PBKDF2 (Password-Based Key Derivation Function 2) to compute

Ksid = PBKDF2(f ,pwd, salt, 256, 2 ∗ l)

and set K0

sid be the first l bits of Ksid and K1

sid be the last l bits.

• PB sends an acknowledgement messageM = д(“confirm”, sid, PA, PB ,K
1

sid) to PA where д is a message authen-

tication function that is agreed by PA and PB during initialization. Upon the receipt ofM , PA checks ifM is also

д(“confirm”, sid, PA, PB ,K
1

sid). If so, PA confirms that both parties agree on K0

sid as their session key, and PA

can start its communication with PB ; otherwise, PA either aborts the protocol or initiates another instance of πA.

To improve the security, when PA and PB invoke the protocol for the first time and agree on K0

sid where sid = 0, they

store it internally in their memory as the master key. To derive a session key from the master key, PA and PB follow a

similar idea that they truncate K0

0
into two halves and apply PBKDF2 to derive K0

1
as the session key. For a subsequent

communication session i with i > 1, PA and PB will derive the session key K0

i from K0

i−1 with the same mechanism.

Manuscript submitted to ACM

14 Zhangxiang Hu, Jun Li, and Christopher Wilson

5 SECURITY PROOF OF π A

We now formally prove the security of protocol π A
. We first introduce the formal definitions of session key security

(SK-security) and t-out-of-n secret sharing scheme, and then prove π A
’s security.

5.1 Definitions

5.1.1 Session Key Security. We adopt the session key security (SK-security) [7], which formally defines the security

of a key exchange protocol. We choose this definition because it is conceptually simple and easy to use when analyzing

and proving the security of a key exchange protocol. In addition, adopting SK-security also helps define the key exchange

protocol security in the universally composable (UC) model, which we will describe in Section 5.1.2. The intuition

behind the SK-security is that it means an adversary cannot distinguish a session key from a randomly chosen value.

To define SK-security, we first define a game Game
I
A

between a simulator I and an adversary A. Let k be a session

key and c ∈ {0, 1} be a coin, GameI
A

is defined in two steps:

• I first generates the session key k and then tosses the random coin c . I receives c
R
← {0, 1} where

R
← means

randomly choosing a value from a set. If c is 0, I provides the real session key k to A; otherwise I randomly

chooses a value k ′
R
← {0, 1} |k | from the session key space and returns k ′ to A.

• With the received value k or k ′, A outputs a result c ′ as its guess for the value c . If c ′ = c then I outputs 1 (I

→ 1); otherwise, I outputs 0 (I → 0).

Definition 1. A key exchange protocol Π is SK-secure against adversary A if it satisfies the following properties:

• Correctness. After running Π, the two honest parties establish the same session key only with a negligible

probability of failure.

• Indistinguishability. The probability that adversary A outputs a correct c ′ that equals to c is 1

2
+ ϵ(λ) where ϵ(λ)

is a negligible function in λ. Or, in an equivalent expression, assuming ADV
Π
A
(λ) be the advantage of adversary

A to win the game Game
I
A

, we then have ADV
Π
A
(λ) = |Pr [I → 1] − 1

2
| = ϵ(λ).

5.1.2 Universally Composable Model. UC model provides a stronger security definition for a key exchange protocol

than SK-security. The SK-security defines the key exchange security in the standalone model that a key exchange

protocol is secure only when a single instance of the protocol runs in isolation. In contrast, UC model guarantees

that a key exchange protocol remains secure even if it is used by multiple key exchange sessions simultaneously or

when it is combined with other protocols (e.g., when it is embedded in another protocol). That is, no information can

leak from one session to another session or leak from the key exchange protocol to another protocol. Clearly, a key

exchange protocol that is UC-secure has a stronger guarantee and is thus more desired. We refer to the original paper

of Canetti [9] for more details and formal definition of UC model.

5.1.3 Secret Sharing Scheme.

Definition 2. A t-out-of-n secret sharing scheme Σ consists of the following two algorithms:

• Share distribution algorithm Share. A randomized algorithm that takes a secret messagem as input and outputs

a sequence of n shares:M = (m1, · · · ,mn).

• Secret reconstruction algorithm Reconstruct. A deterministic algorithm that takes an input of a collection of t

or more shares and outputs the secret messagem.

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 15

A secure secret sharing scheme should satisfy the property of correctness such that for all U ⊆ {1, · · · ,n} with

|U | ≥ t , it holds that Pr [Reconstruct(mi |i ∈ U) =m] = 1. For anyU ⊆ {1, · · · ,n} with |U | < t , no information will

be learned from those shares.

To formalize the security of Σ, letm,m′ ∈ M be two different messages from the message spaceM. The challenger

(i.e., the simulator) I invokes the Share algorithm onm,m′ and obtainsM← Share(m),M′ ← Share(m′).

I also tosses a random coin b ∈ {0, 1}. If b = 0, I returns (mi |i ∈ U) to the adversary A. Otherwise I returns

(m′i |i ∈ U). With the received set of shares,A outputs a result b ′ as its guess for the value b. If b ′ = b then I outputs 1;

otherwise, I outputs 0.

We define the advantage of the adversary A in this game as:

ADV
Σ
A = |Pr [I → 1] −

1

2

|

Definition 3. A t-out-of-n secret sharing scheme Σ is secure over message spaceM if ADVΣ
A

is a negligible function.

An instance of implementation of a t-out-of-n secret sharing scheme is Shamir’s secret sharing scheme [37]. The idea

behind this scheme is that d + 1 points can determine a unique degree-d polynomial. We refer to [37] for more details.

5.2 Security Proof

With SK-security, we first prove that π (specified in Section 3.2) is secure against malicious helpers, and then prove π A

(specified in Section 4.3) is also secure according to an advanced theorem in SK-security.

Proof. We first prove π is secure. We assume in π all helper parties are semi-honest and they follow the protocol

and forward messages correctly (i.e., thus messages are authentic). According to Definition 1, to prove this theorem we

need to prove both the correctness and the indistinguishability of π .

The correctness of π follows the correctness of the t-out-of-n secret sharing scheme. Since for every i ∈ {1, . . . ,n},

helper Hi follows the protocol and forwards si correctly, both PA and PB will agree on the same secret S . This is

guaranteed by the correctness property of a secret sharing scheme defined in Section 5.1.3. It is clear that as PA and PB

are honest (Section 3.1), they can derive the session key ksid = f (S, 0) with probability one.

To show the indistinguishability property of π , we need to prove no adversary has a non-negligible advantage to

distinguish a real session key k (i.e., ksid in π) from a random value k ′. To do so, we now prove the opposite is not

possible. Specifically, we assume that there was such an adversary A against π and show with this assumption, we can

construct a distinguisherD as follows that would violate Definition 3 about the security of the t-out-of-n secret sharing

scheme. In another words, D can distinguish (si |i ∈ U) from (s
′
i |i ∈ U) and output the correct b ′ with non-negligible

probability.

The distinguisher D works as follows. Upon the input [k∗, (si |i ∈ U)], where k
∗
is randomly chosen with probability

1

2
between the real session key k (i.e., ksid in π) and k ′ (a random string of length k), D invokes A which plays the

same role as a helper in protocol π . After receiving the share si from PA,A forwards it to PB . Based on the input k∗,A

determines whether k∗==k or k∗ , k and output c ′ = 0 or c ′ = 1, respectively. D then uses the output of c ′ from A as

its guess for coin toss b, outputs b, and terminates.

Now we show the contradiction caused by the assumption above. Assume the adversary compromises a helper party

and obtains one share from the helper, i.e., (si |i ∈ U). Note that since we assume PA an PB are always honest and an

adversary can only compromise up to t − 1 helpers, the adversary cannot obtain t shares of the secret. If the real session

key k is chosen as the input k∗ (i.e., k∗ == k), si is a share of k
∗
. Otherwise, a random k ′ is chosen to be k∗ and si is not

Manuscript submitted to ACM

16 Zhangxiang Hu, Jun Li, and Christopher Wilson

a share of k∗. Now, even though k∗ is randomly chosen between k and k ′ with the same probability, A can guess if

the input k∗ is the real session key and output the correct c ′ with non-negligible advantage ADV
Π
A
, therefore D can

base on c ′ from A to guess ifmi is a share of k
∗
, with non-negligible advantage ADV

Π
A
. Clearly, D’s non-negligible

advantage contradicts Definition 3. We thus prove the indistinguishability property of π .

Now that we proved both the correctness and the indistinguishability of π , according to Definition 1, π is secure.

Next we prove the security of π A
. We use the theorem that if a key exchange protocol (say Π) in which all key

exchange messages are authentic satisfies SK-security, when the protocol is extended to become a new protocol (say

Π′) in which key exchange messages can be corrupted, the new protocol also satisfies SK-security if it can authenticate

messages and discard corrupted ones [7, 11]. Here, when we extend π to π A
, we see in π every message is assumed

authentic, while in π A
messages can be tampered by malicious helpers but PB can identify and drop tampered messages

(Section 4.2). Therefore, π A
also satisfies SK-security.

Finally, we prove π A
is secure under UC model. The proof follows the fact in [11] that a key exchange protocol is

secure under the UC model if (1) the protocol is SK-secure in the stand-alone model and (2) if the protocol verifies at

the end that the two parties agree on the same session key. From the proof above, we know (1) is true that π A
satisfies

SK-security. For (2), as shown in the “Verify session key” step (see Section 3.2), PB sends an acknowledgement message

M to PA, and then PA checks the correctness ofM to verify that PA and PB share the same value of S ′, thereby confirm

that both parties agree on the same session key ksid . Therefore, (2) is also true. We conclude that protocol π A
is secure

under UC model. □

6 THEORETICAL PERFORMANCE ANALYSIS OF π A

In this section we conduct a theoretical performance analysis of π A
. We analyze its failure probability, pf , the lower

bound of test keys s , the probability that a malicious helper can be detected, pd , and the number of messages to send

during a key exchange session, N .

6.1 Failure Probability (pf)

π A
fails if PA and PB do not reach an agreement on their session key. Note that the failure is only a denial-of-service,

while no secret or any useful information is leaked. π A
fails in two cases:

• Case 1: π A
fails if more than n-t helpers are malicious. As described in Sections 4.2 and 4.3, in this case PB will

not have enough shares to reconstruct evaluation keys, so it will abort the protocol with pf = 1.

• Case 2: π A
fails if the majority of evaluation keys at PB are corrupted (i.e., each of them is reconstructed using at

least one corrupted share). Denote C the set of corrupted evaluation keys; given there are s test keys and half of

them are evaluation keys, we can see in this case |C | ≥ ⌈s/4⌉. As a result, in the session key derivation phase PB

will not be able to correctly decrypt the encrypted secret from PA and derive the session key.

More specifically, Case 2 happens if ∀τi ∈ C, τi would not be selected as an opening key during the cut-and-choose

phase, which has a probability of 0.5, and τi is not correctly reconstructed. Denote pr the probability that PB correctly

reconstructs an evaluation key. Now we have:

pf = (0.5 · (1 − pr))
|C |

(1)

Since |C | ≥ ⌈s/4⌉, we have

pf ≤ (0.5 · (1 − pr))
⌈s/4⌉

(2)

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 17

From Equation (2), a higher pr will result in a lower pf . Moreover, 0.5 · (1 − pr) is less than 0.5 since pr is no more than

1. Thus, the failure probability pf declines exponentially as the number of test keys s increases, which we say pf is

negligible in s .

We now analyze pr . Let pc be the cheating probability of each one of the n helpers. The expected number of cheating

parties is then n · pc . For each test key, PB receives n − (n · pc) correct shares. To reconstruct a test key, PB needs to

choose t correct shares. We thus have:

pr =
t−1∏
i=0

n − i − n · pc
n − i

(3)

Note that for simplicity, here we assume all helpers have the same cheating probability pc . If each helper Hi has a

different cheating probability pic , the expected number of cheating helpers is

∑n
i=1 p

i
c rather than n · pc .

From Equation (3), pr is affected by n, t , and pc . If t and pc are fixed, when n increases, pr also increases. This is

consistent with the intuition that if there are fixed number of malicious shares, increasing n means more helpers and

thus more shares per evaluation key, which provides PB a better chance to pick correct shares to reconstruct evaluation

keys. On the other hand, if n and pc are fixed, when t increases, pr would decrease. This is because increasing t requires

PB to select extra shares to reconstruct every evaluation key, which means PB would have a higher likelihood to pick

malicious shares. Finally, if fixing n and t , a higher pc would cause PB to have a higher probability to pick malicious

shares, thus decreasing pr .

Finally, combines Equations (2) and (3), if pf must be lower than an upper bound, while key exchange parties probably

cannot control the value of pc , they can adjust the values of parameters s , t , and n to meet the requirement.

6.2 Number of test keys (s)

In order to derive the session key with probability at least 1 − pf , PB must correctly reconstruct enough number of

evaluation keys. Recall that for a total number of s test keys, in the cut-and-choose phase, PB chooses half of them as

opening keys and the other half as evaluation keys. Then in the session key derivation phase, PB needs to correctly

reconstruct at least s/4 evaluation keys to obtain majority outputs.

For the s/2 evaluation keys, we consider the critical point case when half of evaluation keys (i.e., s/4) are not

reconstructed correctly. In this case, PB would not be able to obtain the secret in the session key derivation phase. From

Equation (3), for each evaluation key, PB can correctly reconstruct it with probability pr . Thus, for s/4 evaluation keys,

the probability that the critical point case happens is (1 − pr)
s/4

. Since pf is the maximum acceptable probability that

the critical point case happens, we must have (1 − pr)
s/4 ≤ pf . From this inequality, we can see the lower bound of test

keys is:

s ≥ 4 · log
1−pr pf . (4)

6.3 Malicious Helper Detection Probability (pd)

Now we discuss the probability that PB can identify a malicious helper. We point out that if the number of test keys s

and the t parameter in π A
’s t-out-of-n secret sharing scheme satisfy that s ≥ 4t − 4, PB can always identify a malicious

helper if it tampered at least 2t − 2 shares in total of all opening keys We detail the analysis below.

In the cut-and-choose phase, for every helper Hj (j = 1, ...,n) PB counts the number of other helpers that disagree

with the helper in forwarding an opening key’s share and identifies the helper as malicious if there are at least t helpers

that disagree with Hj . Below we analyze the probability pd that PB can successfully identify a malicious helper Hj

based on the number of shares that Hj tampered, Z . Recall every helper forwards one share per opening key, thus

forwarding totally s/2 shares; clearly, Z ≤ s/2.

Manuscript submitted to ACM

18 Zhangxiang Hu, Jun Li, and Christopher Wilson

(1) Hj tampered at least 2t − 2 shares of opening keys (i.e., Z ≥ 2t − 2). Here, because for each share tampered by Hj ,

PA retransmitted a copy of its original value along a different helper, i.e., totally at least 2t − 2 helpers, even if all

malicious helpers collude with Hj to not show disagreements (i.e., retransmitting a copy of a share’s tampered

value rather than its original value), given there are at most t − 1 malicious helpers (including Hj), there are at

least t benign helpers each of which will disagree with Hj , thus identifying Hj as malicious. i.e., pd = 1.

Notice this case assumes Z ≥ 2t − 2. Given Z ≤ s/2, we can obtain that s and t must satisfy s ≥ 4t − 4.

(2) Hj tampered less than t shares of opening keys (i.e., Z < t). In this case, PB cannot identify Hj as malicious. I.e., pd

= 0. This is because Hj could be either benign or malicious. Specifically, while it is possible that Hj is malicious

and all helpers that disagree with Hj are either benign or malicious, it is also possible that Hj is benign and all

helpers that disagree with Hj , whose total number is less than t , are malicious. On the other hand, even though

PB cannot identify Hj as malicious in this case, the number of opening key shares that Hj can tamper must be

less than t . Given PB ’s random choice of opening keys and evaluation keys from the test keys, the number of

evaluation key shares that Hj can tamper must also be less than t on average. Compared to total s/2 shares of all

s/2 evaluation keys (one share per key) that Hj could have tampered, t is much less than s/2 as we set s ≥ 4t − 4

from (1) above. PB would thus have a much higher probability to reconstruct evaluation keys correctly, thereby

reducing the failure probability pf .

(3) Hj tampered t ≤ Z ≤ 2t −3 shares of opening keys. In this case, PB can identify a malicious helper with probability

pd and we show how to compute pd as follows. Given that there are s/2 opening keys and Hj forwarded the

j-th share of every opening key, Hj forwarded total s/2 shares. As PA retransmitted each of these shares via a

randomly chosen helper that is notHj , we assume the total number of such helpers isQ . Clearly,Q ≤ s/2. PB will

then check if each of these Q helpers disagrees with Hj , and determines Hj to be malicious if there are at least t

disagreements. Denote x the number of disagreements. Assume the worst case where there are t − 1 malicious

helpers and they collude, while there are n − t + 1 benign helpers (with totally n helpers) and n − t + 1 > t − 1 (or

n − t + 1 ≥ t). To detect Hj is malicious, all x disagreements then must come from benign helpers, which has a

probability (n−t+1
x

)
·
(t−2
Q−x

)(n−1
Q

) .

Here, while all Q helpers come from totally n − 1 helpers (excluding Hj), x helpers are chosen from n − t + 1

benign helpers and the rest Q − x helpers are chosen from t − 2 malicious helpers (excluding Hj with totally

t − 1 malicious helpers). Last, we know x≥t and x cannot be greater than Q , we then have in the worst case

pd =

Q∑
x=t

(n−t+1
x

)
·
(t−2
Q−x

)(n−1
Q

) (5)

6.4 Message Overhead (N)

We now analyze how many messages PA and PB will need to send in one key exchange session with π A
. Indeed, the

message overhead is one of the four metrics that is used in Section 7 to evaluate the efficiency of π A
. First, during the

Initialization phase, there are two initialization messages (i.e., (init, sid) and (initconfirm, sid)), plus n shares of s test

keys where every share is a separate message, resulting in n·s+2 messages. Then during the Cut-and-choose phase, PB

sends PA two messages (i.e., (O, E) and (notify)), and PA sends PB a copy of every opening key’s every share. With

totally s/2 opening keys (we assume s is an even number for simplicity) and n shares for each opening key, this leads to

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 19

4 6 8 10 12
n

200

400

600

800

1000

N

t = 2
t = 3

t = 4
t = 5

Fig. 8. Message overhead N over the number of required shares t and the number of intermediary helpers n.

s/2 · n + 2 messages for this phase. Last, during the Session key derivation phase, PA sends PB s/2 ciphertexts, plus one

final message from PB for session key verification. Overall, there are
3n+1
2

s + 5 messages in total.

i.e.,

N =
3n + 1

2

s + 5 (6)

From Equation (6), N increases as n and s increase. If a lower message overhead is desired, one can lower the value of

n and s (i.e., less helpers and test keys). On the other hand, from Section 6.1, lowering the values of n and s will increase

pf . Therefore, users need to adjust n and s to meet their specific requirements for pf and N .

6.5 Graphical Analysis of π A’s Performance

Before conducting the experimental evaluation, we first perform a graphical analysis to show how the input parameters

affect the performance of π A
. Based on the analysis of π A

in Section 6, here we use the message overhead N to

theoretically evaluate the efficiency of π A
for efficiency in this section and also use N one of the four metrics for

experimental evaluation in Section 7. From Equation(6), it is easy to see that N depends on n (number of intermediary

helpers) and s (number of test keys). From Equation(4) and (3), s relies on n, t (number of required shares), and pf

(target failure probability). Since pf is pre-configured by communication devices, we fix pf and analyze how t and n

affect N .

First we let PA and PB fix the failure probability pf to be 0.005. This is the same failure probability due to the packet

loss when we let PA send a key to PB directly and PB replies with a confirm message (assuming no attacker exists). In

our experiment, we emulate a Wi-Fi environment with a 0.3% packet loss probability which is a typical value in a Wi-Fi

environment.

One possible concern here is that if the packet loss rate would affect the message overhead of π A
. In fact, our

evaluation results show that the packet loss rate has very little impact on N unless it reaches a very large, unrealistic

value, such as 30%. This is because unless the packet loss rate is large, packet loss is easily compensated by the inherent

message redundancy in π A
, since π A

uses many redundant shares for every test key to reconstruct the key.

Fig. 8 shows how N is affected by t and n with pf fixed at 0.005. In the evaluation, we set t ranging from 2 to 5

and n ranging from 3 to 12 which is enough to show the trend. In general, we can see that when t (i.e., more required

shares) or n (i.e., more helpers) increases, N also increases (i.e., more messages). Intuitively, a larger n means PA needs

to generate more shares, thus increasing the number of messages to send. To see why N increases as t increases, recall

that PB needs all the t shares for the evaluation key reconstruction to be correct, a larger t means a higher possibility

that at least one of the shares is tampered. To counter this risk, more test keys, and thus more messages, will be needed

Manuscript submitted to ACM

20 Zhangxiang Hu, Jun Li, and Christopher Wilson

to filter more tampered shares and increase the difficulty for malicious helpers to corrupt the majority evaluation keys.

Notably, N increases dramatically when t becomes close to n. For example, when n = 6 and t changes from 4 to 5, N

increases from 376 to 781. Here t plays a more important role than n in determining N , and it doubles the values of N .

To minimize the message overhead, a naive solution here is to choose t and n as small as possible. However, the

values of t and n decide how “secure” the key exchange session should be. For example, if there are at most X malicious

helpers that collude among themselves, t must be greater than X ; otherwise, these X helpers could mislead PB to

reconstruct corrupted evaluation keys, where each of them is reconstructed using all the t shares that these helpers

forged (note that every helper can and only can provide one share).

In addition, t and n also affect the malicious helper detection probability. From Equation 5, it shows that when t and

n are small, it is almost impossible for communication devices to detect malicious helpers. This is because PA and PB

must have enough benign helpers to retransmit shares and identify malicious helpers in the cut-and-choose phase. In

addition, from Equation 4, the number of test keys s also depends on t and n, increasing the value of n may decrease the

value of s , thereby decrease the total message overhead. For instance, when t = 5 and n changes from 6 to 7, N decrease

from 781 to 623. This is because when increasing n with a fixed value of t , PB would have a higher chance to choose the

correct shares to reconstruct evaluation keys, thus reduce the number of required test keys to detect malicious helpers.

7 EXPERIMENTAL RESULTS

7.1 Experiment Design

We implemented π A
with python cryptography libraries and measured its performance, including its running time,

CPU cycles, energy consumption, and bandwidth overhead, in experiments.

We set up our experiment devices and running environments as follows. For each key exchange session between a

key exchange initiator PA and a key exchange responder PB , we selected three different types of resource-constrained

devices: Raspberry Pi Zero W, Arduino Due, and SAM D21 Xplained. They are commonly used in the real word for

IoT applications but have a different range of resource capacity. Table 1 describes their basic specifications. For the

implementations of π A
and other three PKC-based key exchange protocols, we used Python 3.6.9 with cryptography

library pycrypto 2.6.1. For the networking environment, we used the Mininet platform [16] on Ubuntu 18.04.4 to emulate

a Wi-Fi environment, where every link is 10 Mbps with a 0.3% packet loss probability.

Table 1. Key exchange devices in experiments

CPU Memory Voltage Current

draw

Raspberry Pi Zero W 1 GHZ 512 MB 5 V 500 mA

Arduino Due 84 MHZ 512 KB 1.8 V 77.5 mA

SAM D21 Xplained 48 MHZ 32 KB 1.62 V 7 mA

The main parameters to configure for our experiments are n, t , s , and the number of malicious helpersm. In our

experiments, we first set the failure probability of π A
to be 0.005 which was pre-configured by PA and PB . With this

setup, from Section 6.1 and Section 6.5, we can derive that π A
has the minimum message overhead when we set n to be

6, t to be 4, and s to be 28. In addition, PA and PB can always detect malicious helpers whenm is no greater than 2.

We compare π A
6
with traditional PKC-based key exchange protocols: RSA (Rivest–Shamir–Adleman), DH (Diffie-

Hellman), and ECDH (Elliptic Curve Diffie-Hellman). We set the key length of π A
6
to be 128, for which the equivalent

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 21

key lengths for RSA, Diffie-Hellman, and ECDH are 3072, 3072, and 256, respectively [6]. For ECDH, we use the curve

SECP256R1 with ephemeral keys. For each PKC-based protocol, we do not include an authentication component; even

so and even as π A
6
includes an authentication (Section 3.1), we show π A

6
outperforms them, many times tremendously.

We noticed that there are many state-of-the-art work [30, 41, 45] that improve the PKC-based key exchange solutions.

It is imperative to also conduct a comprehensive comparison between our protocol and the state-of-the-art work.

However, given the extensive landscape of existing PKC-based key exchange solutions, it is unfeasible to compare

our protocol with all them. In addition, many of the work are hard to locate the original implementations or the

implementations are not compatible with our running environment. Therefore, we leverage ECHD, DH, and RSA, which

are the three most basic PKC-based solutions, as the benchmark for comparison. They can best help benchmark any

proposed key exchange solution since any key exchange solution can also be simply compared against these three basic

ones to not only know how much better it is against the three basic ones, but also how much better, or worse, than

other key exchange solutions that also have been compared against these three.

7.2 Running Time

We measured the running time of π A
6
and the comparator key exchange protocols on both PA and PB . We recorded the

time for running a complete session of each protocol on each device and took the average across 10 experiments. Fig. 9

shows the comparison results of π A
6
versus different comparator protocols. Specifically, Fig. 9a and Fig. 9c show the

running time of PKC-based key exchange protocols, while Fig. 9b and Fig. 9d show the running time of π A
6
(0), π A

6
(1),

and π A
6
(2).

Fig. 9a and Fig. 9b illustrate that on PA, π
A
6
is much faster than its comparators, especially when PA is an Arduino

Due or SAM D21 whose resources are extremely limited. Using π A
6
(2) as an example, which has the slowest running

time among the three π A
6
configurations in our experiments, on Raspberry Pi Zero W, π A

6
(2) in the worst case is 2.3

times faster than ECDH and 24.1 times faster than RSA; however, on SAM D21, π A
6
(2) is 59.6 times faster than ECDH

and 1591 times faster than RSA.

Fig. 9c and Fig. 9d show on PB for all types of IoT devices, although its lead is less striking than that on PA, π
A
6
is still

faster than other protocols. Again using π A
6
(2) as an example, while on PA π A

6
(2) is 2.3 to 59.6 times faster than ECDH, on

PB it is still about 0.7 to 3.65 times faster than ECDH; with a Raspberry Pi Zero, the running time of π A
6
(2) on PB is 0.072

seconds while it takes ECDH 0.122 seconds. The lead reduction here is because PB needs to perform more operations

than PA, including identifying malicious helpers, reconstructing evaluation keys, and decrypting multiple ciphertexts

to obtain the secret. Nonetheless, π A
6
is faster than its comparator protocols on both devices in a key exchange.

7.3 CPU Cycles

We also measured the CPU cycles of π A
6
and the comparator protocols on both PA and PB . As shown in Fig. 10, it takes

the comparator protocols many times more CPU cycles than π A
6
to conduct a key exchange session. On PA, for example,

if it is a Raspberry Pi Zero W, it takes ECDH 4.87 times more CPU cycles than π A
6
(2) in the worst case, where π A

6
(2) is

the most expensive among the three different configurations of π A
6
. Similarly, if it is a SAM D21, it takes 4.1 times more

instead. On PB , for example, if it is a Raspberry Pi Zero W, it takes ECDH 11.79 times more CPU cycles than π A
6
(2), and

if it is a SAM D21, it takes 104.7 times more instead. Again, even though π A
6
’s operations on PB are relatively heavier

than PA, similar to its running time performance on PB , its CPU cycles on PB still easily betters those of the comparator

protocols.

Manuscript submitted to ACM

22 Zhangxiang Hu, Jun Li, and Christopher Wilson

Raspberry Pi
Arduino Due SAM D210

20
40
60
80

100
120
140

Se
co

nd
s

ECDH
DH
RSA

(a) Comparator protocols on device PA

Raspberry Pi
Arduino Due SAM D210.00

0.02
0.04
0.06
0.08
0.10
0.12
0.14

Se
co

nd
s

A
6(0)
A
6(1)
A
6(2)

(b) π A
6
on device PA

Raspberry Pi
Arduino Due SAM D210

2
4
6
8

10
12
14

Se
co

nd
s

ECDH
DH
RSA

(c) Comparator protocols on device PB

Raspberry Pi
Arduino Due SAM D210.0

0.5
1.0
1.5
2.0
2.5
3.0

Se
co

nd
s

A
6(0)
A
6(1)
A
6(2)

(d) π A
6
on device PB

Fig. 9. Running time of key exchange protocols on devices PA and PB . Note that each subfigure uses a different maximum value for
its Y-axis.

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 23

Raspberry Pi
Arduino Due SAM D21

6
8

10
12
14
16
18
20

lo
g(

of

 m
illi

on
 c

yc
le

s) ECDH
DH
RSA

(a) Comparator protocols on device A

Raspberry Pi
Arduino Due SAM D21

6
8

10
12
14
16
18
20

lo
g(

of

 m
illi

on
 c

yc
le

s) A
6(0)
A
6(1)
A
6(2)

(b) π A
6
on device A

Raspberry Pi
Arduino Due SAM D21

6
8

10
12
14
16
18
20

lo
g(

of

 m
illi

on
 c

yc
le

s) ECDH
DH
RSA

(c) Comparator protocols on device B

Raspberry Pi
Arduino Due SAM D21

6
8

10
12
14
16
18
20

lo
g(

of

 m
illi

on
 c

yc
le

s) A
6(0)
A
6(1)
A
6(2)

(d) π A
6
on device B

Fig. 10. CPU cycles of key exchange protocols on devices PA and PB .

Manuscript submitted to ACM

24 Zhangxiang Hu, Jun Li, and Christopher Wilson

Raspberry Pi
Arduino Due SAM D210

1000
2000
3000
4000
5000
6000

m
J

ECDH
DH
RSA

(a) Comparator protocols on device A

Raspberry Pi
Arduino Due SAM D210

20
40
60
80

100
120
140

m
J

πA6(0)
πA6(1)
πA6(2)

(b) π A
6
on device A

Raspberry Pi
Arduino Due SAM D210

200

400

600

800

1000

m
J

ECDH
DH
RSA

(c) Comparator protocols on device B

Raspberry Pi
Arduino Due SAM D210

50

100

150

200

m
J

πA6(0)
πA6(1)
πA6(2)

(d) π A
6
on device B

Fig. 11. Energy consumptions of key exchange protocols on devices PA and PB . Note that each subfigure uses a different maximum
value for its Y-axis.

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 25

7.4 Energy Consumption

We measured π A
6
and the comparator protocols’ energy consumption with the formula E = U · I ·T [4] whereU is the

voltage, I is the current intensity, and T is the time to complete a session of a key exchange protocol. The values of U

and I are from Table 1. Notice we only consider the current intensity when devices are in the active mode. Fig. 11a and

Fig. 11b show the energy consumption comparison results at PA. We can see if PA is a Raspberry Pi Zero, while the

most energy-efficient PKC protocol ECDH consumes 497.5mJ, π A
6
(2) in the worst case only consumes 152.5mJ, which is

only about 30.6% of ECDH’s energy consumption. In fact, the energy saving with π A
6
is even more significant if the

device is resource-constrained. For example, if PA is a SAM D21, while ECDH consumes 42mJ, π A
6
(2) only consumes

0.41mJ, which is only 0.97% of ECDH’s energy consumption.

Fig. 11c and Fig. 11d show energy consumption comparison at PB . We can see π A
6
again consumes much less energy

than the PKC-based key exchange protocols. For example, if PB is a Raspberry Pi Zero, the energy consumption of

π A
6
(2) on PB is 59.1% of that of ECDH (180mJ versus 305mJ), and if PB is a much more resource-constrained SAM D21,

this number becomes 47.9% (20.1mJ versus 41.8mJ). Last, in π A
6
(0) and π A

6
(1) PB consumes even less energy than the

comparator protocols.

7.5 Bandwidth Overhead

Finally, we measured the bandwidth overhead of π A
6
and its comparator key exchange protocols. In our experiments,

the bandwidth overhead indicates the amount of messages that both parties need to transmit over the network in order

to establish a session key. Fig. 12 illustrates the results. We can see that π A
6
(1) and π A

6
(2) incur more bandwidth than

PKC protocols and π A
6
(0) have more bandwidth overhead than ECDH, but less than RSA and Diffie-Hellman. On one

hand, the number of messages in π A
6
is much more than that in the other three PKC-based protocols. On the other hand,

the length of keys in π A
6
is much shorter (Section 7.1) and the size of messages in π A

6
is much smaller. As a result, overall

the bandwidth overhead of π A
6
is comparable to that of the comparator protocols, especially when considering its vast

improvements in running time and energy consumption. We also emphasize here that the bandwidth overhead in one

key exchange session is independent of other key exchange sessions, thus not affected by other sessions. Even if an

intermediary may be shared across multiple sessions, it is usually not an IoT device and not poor in bandwidth capacity,

further assuring our design is scalable against the size of an IoT network.

8 USE CASES

In this section, we describe the practical application of our protocol by illustrating some real-world use cases. Specifically,

we show the use of our protocol for two IoT devices to exchange a secret and establish secure communication channels

in three scenarios of smart home, healthcare, and smart agriculture. Notice that prior to starting the key exchange

protocol, the two communication IoT devices must initiate an authentication process to authenticate each other, as

described in Section 3.1. Therefore, during the key exchange, we assume both devices are honest and correctly follow

the protocol. In addition, in our use cases, IoT devices communicate with each other directly instead of through an

intermediary hub. This is because direct communication between IoT devices can achieve better performance in terms

of reliability, latency, bandwidth, and privacy [2, 28, 29, 39].

Manuscript submitted to ACM

26 Zhangxiang Hu, Jun Li, and Christopher Wilson

ECDH DH RSA
500

1000

1500

2000

2500

3000

By
te

s

(a) Comparator protocols

A
6(0) A

6(1) A
6(2)

500

1000

1500

2000

2500

3000
By

te
s

(b) π A
6

Fig. 12. Bandwidth usage of key exchange protocols.

8.1 Smart Home

Smart home technology refers to devices that provide residents with remote monitoring and management services of

appliances and systems. Over the past few decades, smart home technology has developed rapidly and has become

one of the critical solutions for energy efficiency, climate change, and innovation [38]. However, due to the resource-

constrained nature of IoT devices in the smart home, secure communication between these devices is still a major

challenge. If the devices are from the same manufacturer, two communicating devices could have a secret pre-installed

by the manufacturer to establish a secure channel between them; however, most devices are often from different

manufacturers.

Our protocol can be used by smart home devices to exchange secret keys and establish secure communication

channels with each other, even if the devices are from different vendors. Suppose there is a light sensor that monitors the

brightness in the house. It has established secure communication channels with some intermediary helpers. The helpers

can be a gateway device, a desktop, or another smart device. For example, the light sensor may already have a secure

communication channel with a smart humidifier because they share a secret pre-installed by the same manufacturer.

Now, let’s say an occupant wants to install a new smart shade that needs to establish a secure channel with the

light sensor. If the smart shade and the light sensor are from different manufacturers and do not have a pre-shared

secret, then they can run our protocol to exchange a secret key and establish a secure channel. First, the smart shade

needs to select some devices as its intermediary helpers. For example, it can use a desktop as an intermediary helper;

the occupant can randomly create a secret key and hardcode the key into the smart shade and the desktop such that

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 27

they can establish a secure communication channel with the key. Note that we assume here that the occupant cannot

simply hardcode a secret into the smart shade and the light sensor for important reasons; for example, (1) compared

to hardcoding a key into a desktop, it would be difficult to reconfigure the light sensor when it is already set up and

installed, and (2) since the smart shade may also need to communicate with other devices, it will also incur a large

overhead to hardcode different keys into each of its communication parties. Also, the smart shade can use another

smart device as an intermediary helper if it is from the same vendor as the smart shade and they share a pre-installed

secret, where they can use the secret to set up a secure communication channel. Next, the smart shade initializes a key

exchange request and sends it to the light sensor to agree on the same set of helpers for them. Then, they start the

key exchange session and agree on a shared secret key. Finally, the smart shade and the light sensor can communicate

securely using the secret key.

8.2 Healthcare

Healthcare is one of the most critical areas for IoT applications [5]. IoT devices used in healthcare, such as pacemakers,

insulin pumps, and cochlear implants, can monitor the vital signs of a patient’s health and synchronize the collected

data with other devices. In particular, if some unusual activity is detected, a healthcare device can immediately report

to a nearby medical machine for further analysis and response.

Suppose a pacemaker is implanted in a patient. Before implanting the pacemaker in the patient’s chest, we can set

up the pacemaker by selecting intermediary helpers and establishing a secure communication channel between the

pacemaker and each helper. For example, the helpers can be different applications developed by different organizations

or companies, such as the pacemaker’s manufacturer. These applications are pre-installed on the patient’s smart phone.

Suppose a medical machine needs to establish a secure communication channel with the pacemaker so that the

pacemaker can synchronize and store its data on the machine. The medical machine then invokes our protocol to

perform the key exchange with the pacemaker. First, the machine must register with the above applications to establish

a secure communication channel with each helper (i.e., the applications). Then the machine initializes a key exchange

request and sends it to the pacemaker so that they can agree on the same helpers. When the helpers are confirmed

by the pacemaker, they start the key exchange session and agree on a common secret key. Finally, the pacemaker can

synchronize its data to the medical machine using the secret key.

8.3 Smart Agriculture

Smart agriculture is another emerging paradigm that improves crop yields and production [15] by using IoT to monitor

soil efficiency, temperature, humidity, etc. Meanwhile, smart agriculture is still experiencing a low level of security

features. In order to build a robust and efficient smart agriculture system, it is critical to ensure the integrity and

confidentiality of the data collected by IoT devices when transferring and processing them [13].

As a common setup, IoT devices in smart agriculture are often connected to a gateway or other edge node devices,

which are used to store and process small amounts of data and relay data to cloud servers [13, 40]. Therefore, IoT

devices can leverage edge node devices as their intermediary helpers.

For a new device, say a smart sprinkler, to join a smart agriculture system, it is essential that the sprinkler communicate

with other devices, such as a smart soil moisture meter, through secure communication channels. To establish secure

channels, the sprinkler can invoke our protocol to exchange a common secret key with other devices. First, the sprinkler

can select some edge node devices as its helpers and set up a secure channel with each of them. For example, the

sprinkler can select some edge node devices as its helpers according to their geographical location. Then, the system

Manuscript submitted to ACM

28 Zhangxiang Hu, Jun Li, and Christopher Wilson

randomly generates a different secret for each edge node device and hardcodes the secret into the sprinkler’s memory

and the edge node device, thereby setting up a secure channel with the edge nodes using the shared secret. Again, for

the similar reasons described in Section 8.1, the system should not hardcode a secret directly between the sprinkler and

the moisture meter. Then, the sprinkler can choose a set of helpers and initialize a key exchange request. However,

different from the smart home system and healthcare system, a smart agriculture system has a much larger space. The

sprinkler needs to choose nearby helpers according to their geographic locations. It is possible that the sprinkler and

the moisture meter do not share the same set of helpers In this case, they must first invoke a helper agreement process,

as described in Section 3.3, to agree on the the same helpers in common. For example, suppose at the beginning the

sprinkler and the moisture meter have different helpers; say the sprinkler has helpers A and B and the moisture meter

has helpers C and D. Since A, B, C, and D are edge node devices and well-resourced and they can build secure channels

among themselves easily, the moisture meter can first build a secure channel with A by using C and D as their common

helpers, thus adding A as a new helper of the moisture meter. Similarly, the moisture meter can add B as a new helper,

and the smart sprinkler can add C and D as its new helpers, resulting that the moisture meter and the sprinkler having

the same helpers A, B, C, and D. Finally, the smart sprinkler and the moisture meter can start the key exchange session

and agree on a common secret key.

9 CONCLUSION AND FUTUREWORK

Internet of Things (IoT) devices have an essential need for secure communications between them, for which a key

exchange protocol for them to establish a communication session key is a prerequisite. However, due to their often

extremely constrained resources and computing power, many IoT devices are not capable of performing public key

cryptography (PKC), making any key exchange solution that uses PKC infeasible. There have been lightweight, non-

cryptographic solutions, but they are often unrealistic.

Key exchange solutions that only use symmetric key cryptography (SKC) can be divided into two categories: those

using pre-shared secrets and those using intermediary parties. The former is daunting and hardly scalable when

employed for an IoT network composed of hundreds or even thousands of devices. The latter so far relies on honest or

semi-honest intermediary parties.

This work proposes a new SKC-based key exchange solution (π A
) using intermediary parties (also called helpers). It

departs from the state of the art by assuming any intermediary party can be malicious. Its design makes it lightweight

and deployable in IoT and resilient against malicious intermediary parties. In particular, under the cut-and-choose

methodology, π A
introduces a new protocol design that not only can successfully establish a session key in the end, but

also can efficiently identify malicious intermediary parties when they tamper messages going through them, even if

they collude or selectively tamper messages.

This work provided both theoretical proof and analysis and empirical evaluations of π A
. From the proof π A

is shown

to be secure against malicious helpers. From the analysis, π A
’s failure probability is easily negligible with a reasonable

setup and π A
’s malicious helper detection probability can be 1.0 even when a malicious helper only tampers a small

number of messages. From the empirical evaluations, π A
outperforms three widely used PKC-based key exchange

protocols in terms of running time, CPU cycles, and energy consumption while its bandwidth overhead is comparable

to them.

For the future work, we will implement an open-source library for the community. The library will be used by

developers to apply our protocol in their IoT devices to enhance the security and efficiency for communications. In

addition, our current experiment is conducted in an emulated Wi-Fi environment with Mininet platform. We will

Manuscript submitted to ACM

Resilient Intermediary-Based Key Exchange Protocol for IoT 29

integrate our protocol in real world use cases (as described in Section 8) and evaluate its performance also in terms of

running time, CPU cycles, energy consumption, and bandwidth overhead.

ACKNOWLEDGMENTS

We would like to thank Samuel Mergendahl for his feedback in our early perparation and discussion of this work, and

also the anonymous reviewers for their valuable feedback. This material is based upon work partially supported by the

Ripple Graduate Fellowship awarded to Zhangxiang Hu. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily reflect the views of the supporters.

REFERENCES
[1] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. 2015. How to Efficiently Evaluate RAM Programs with Malicious Security. In

Advances in Cryptology – EUROCRYPT 2015. 702–729.
[2] Godfrey Anuga Akpakwu, Bruno J Silva, Gerhard P Hancke, and Adnan M Abu-Mahfouz. 2017. A survey on 5G networks for the Internet of Things:

Communication technologies and challenges. IEEE access (2017).
[3] Haithem Al-Mefleh and Osameh Al-Kofahi. 2016. Taking advantage of jamming in wireless networks: A survey. Computer Networks 99 (2016), 99 –

124.

[4] Giuseppe Ateniese, Giuseppe Bianchi, Angelo Capossele, and Chiara Petrioli. 2013. Low-cost Standard Signatures in Wireless Sensor Networks: A

Case for Reviving Pre-computation Techniques?. In NDSS.
[5] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things: A survey. Computer networks (2010).
[6] Elaine Barker, William Burr, William Polk, and Miles Smid. 2006. Recommendation for key management: Part 1: General. National Institute of

Standards and Technology, Technology Administration.

[7] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. 1998. A Modular Approach to the Design and Analysis of Authentication and Key Exchange

Protocols. Cryptology ePrint Archive. https://eprint.iacr.org/1998/009.

[8] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In Public Key Cryptography. Berlin, Heidelberg, 207–228.
[9] Ran Canetti. 2000. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptology ePrint Archive, Report 2000/067.

https://eprint.iacr.org/2000/067.

[10] Ran Canetti and Hugo Krawczyk. 2001. Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. Cryptology ePrint Archive,

Report 2001/040. https://eprint.iacr.org/2001/040.

[11] Ran Canetti and Hugo Krawczyk. 2002. Universally Composable Notions of Key Exchange and Secure Channels. Cryptology ePrint Archive, Report

2002/059. https://eprint.iacr.org/2002/059.

[12] Craig Costello and Patrick Longa. 2015. FourQ: Four-Dimensional Decompositions on a Q-curve over the Mersenne Prime. In Advances in Cryptology.
Berlin, Heidelberg, 214–235.

[13] Angelita Rettore de Araujo Zanella, Eduardo da Silva, and Luiz Carlos Pessoa Albini. 2020. Security challenges to smart agriculture: Current state,

key issues, and future directions. Array (2020).

[14] Mario Di Raimondo and Rosario Gennaro. 2003. Provably Secure Threshold Password-Authenticated Key Exchange. In Advances in Cryptology.
Berlin, Heidelberg, 507–523.

[15] Othmane Friha, Mohamed Amine Ferrag, Lei Shu, Leandros Maglaras, and XiaochanWang. 2021. Internet of things for the future of smart agriculture:

A comprehensive survey of emerging technologies. IEEE/CAA Journal of Automatica Sinica (2021).
[16] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick McKeown. 2012. Reproducible Network Experiments Using

Container-Based Emulation. In Proceedings of the 8th International Conference on Emerging Networking Experiments and Technologies. New York,

USA, 253–264.

[17] Haowen Chan, A. Perrig, and D. Song. 2003. Random key predistribution schemes for sensor Networks. In Symposium on Security and Privacy.
197–213.

[18] Zhangxiang Hu, Jun Li, Samuel Mergendahl, and Christopher Wilson. 2022. Toward a Resilient Key Exchange Protocol for IoT. In Proceedings of the
Twelfth ACM Conference on Data and Application Security and Privacy.

[19] R. Hummen, H. Shafagh, S. Raza, T. Voig, and K. Wehrle. 2014. Delegation-based authentication and authorization for the IP-based Internet of

Things. In Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). 284–292.
[20] R. Impagliazzo and S. Rudich. 1989. Limits on the Provable Consequences of One-way Permutations. In Proceedings of the Twenty-first Annual ACM

Symposium on Theory of Computing. 44–61.
[21] M. A. Iqbal and M. Bayoumi. 2016. Secure End-to-End key establishment protocol for resource-constrained healthcare sensors in the context of IoT.

In International Conference on High Performance Computing Simulation (HPCS). 523–530.

Manuscript submitted to ACM

https://eprint.iacr.org/1998/009
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2001/040
https://eprint.iacr.org/2002/059

30 Zhangxiang Hu, Jun Li, and Christopher Wilson

[22] Bocheng Lai, Sungha Kim, and Ingrid Verbauwhede. 2002. Scalable Session Key Construction Protocol for Wireless Sensor Networks. In IEEE
Workshop on Large Scale RealTime and Embedded Systems (LARTES).

[23] Sang-Gi Lee, Sei-Yoon Lee, and Jeong-Chul Kim. 2016. A Study on Security Vulnerability Management in Electric Power Industry IoT. Journal of
Digital Contents Society (2016), 499–507.

[24] X. Liang, R. Peterson, and D. Kotz. 2020. Securely Connecting Wearables to Ambient Displays with User Intent. Transactions on Dependable and
Secure Computing 17, 4 (2020), 676–690.

[25] Yehuda Lindell and Benny Pinkas. 2007. An Efficient Protocol for Secure Two-Party Computation in the Presence of Malicious Adversaries. In

Proceedings of the 26th Annual International Conference on Advances in Cryptology. Berlin, Heidelberg, 52–78.
[26] Donggang Liu and Peng Ning. 2003. Establishing Pairwise Keys in Distributed Sensor Networks. In Proceedings of the 10th ACM Conference on

Computer and Communications Security (CCS) (Washington D.C., USA). New York, USA, 10 pages.

[27] P. MacKenzie, Thomas Shrimpton, and M. Jakobsson. 2002. Threshold password-authenticated key exchange: (Extended abstract). In CRYPTO.
[28] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. 2017. A survey on mobile edge computing: The communication

perspective. IEEE communications surveys & tutorials (2017).
[29] Boubakr Nour, Kashif Sharif, Fan Li, Sujit Biswas, Hassine Moungla, Mohsen Guizani, and Yu Wang. 2019. A survey of Internet of Things

communication using ICN: A use case perspective. Computer Communications (2019).
[30] Muslum Ozgur Ozmen and Attila A. Yavuz. 2017. Low-Cost Standard Public Key Cryptography Services for Wireless IoT Systems. In Proceedings of

the Workshop on Internet of Things Security and Privacy. 65–70.
[31] Timothy J. Pierson, Travis Peters, Ronald Peterson, and David Kotz. 2019. CloseTalker: Secure, Short-Range Ad Hoc Wireless Communication. In

Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services (Seoul, Republic of Korea) ((MobiSys)). 340–352.
https://doi.org/10.1145/3307334.3326100

[32] P. Porambage, A. Braeken, A. Gurtov, M. Ylianttila, and S. Spinsante. 2015. Secure end-to-end communication for constrained devices in IoT-March-

enabled Ambient Assisted Living systems. In 2nd World Forum on Internet of Things (WF-IoT). 711–714.
[33] P. Porambage, A. Braeken, P. Kumar, A. Gurtov, and M. Ylianttila. 2015. Proxy-based end-to-end key establishment protocol for the Internet of

Things. In International Conference on Communication Workshop (ICCW). 2677–2682.
[34] Y. B. Saied and A. Olivereau. 2012. D-HIP: A distributed key exchange scheme for HIP-based Internet of Things. In International Symposium on a

World of Wireless, Mobile and Multimedia Networks (WoWMoM). 1–7.
[35] Yogeesh Seralathan, Tae Tom Oh, Suyash Jadhav, Jonathan Myers, Jaehoon Paul Jeong, Young Ho Kim, and Jeong Neyo Kim. 2018. IoT security

vulnerability: A case study of a Web camera. In 20th International Conference on Advanced Communication Technology (ICACT). 172–177.
[36] Stefaan Seys and Bart Preneel. 2002. Key establishment and authentication suite to counter DoS attacks in distributed sensor networks. Unpublished

manuscript). COSIC (2002).

[37] Adi Shamir. 1979. How to Share a Secret. Communication 22, 11 (November 1979), 612–613.

[38] Benjamin K Sovacool and Dylan D Furszyfer Del Rio. 2020. Smart home technologies in Europe: A critical review of concepts, benefits, risks and

policies. Renewable and sustainable energy reviews (2020).
[39] Wen Tao, Liang Zhao, Guangwen Wang, and Ruobing Liang. 2021. Review of the internet of things communication technologies in smart agriculture

and challenges. Computers and Electronics in Agriculture (2021).
[40] Xing Yang, Lei Shu, Jianing Chen, Mohamed Amine Ferrag, Jun Wu, Edmond Nurellari, and Kai Huang. 2021. A survey on smart agriculture:

Development modes, technologies, and security and privacy challenges. IEEE/CAA Journal of Automatica Sinica (2021).
[41] Attila Altay Yavuz and Muslum Ozgur Ozmen. 2019. Ultra lightweight multiple-time digital signature for the internet of things devices. IEEE

Transactions on Services Computing (2019).

[42] J. Zhang, Z. Wang, Z. Yang, and Q. Zhang. 2017. Proximity based IoT device authentication. In Conference on Computer Communications. 1–9.
[43] Zhi-Kai Zhang, Michael Cheng Yi Cho, Chia-Wei Wang, Chia-Wei Hsu, Chong-Kuan Chen, and Shiuhpyng Shieh. 2014. IoT security: ongoing

challenges and research opportunities. In IEEE 7th international conference on service-oriented computing and applications. 230–234.
[44] Yue Zheng and Chip-Hong Chang. 2021. Secure mutual authentication and key-exchange protocol between PUF-embedded IoT endpoints. In 2021

IEEE International Symposium on Circuits and Systems (ISCAS).
[45] Yue Zheng, Wenye Liu, Chongyan Gu, and Chip-Hong Chang. 2022. PUF-based mutual authentication and key exchange protocol for peer-to-peer

IoT applications. IEEE Transactions on Dependable and Secure Computing (2022).

Manuscript submitted to ACM

https://doi.org/10.1145/3307334.3326100

	Abstract
	1 Introduction
	2 Related Work
	3 Basic Design
	3.1 Settings and Assumptions
	3.2 Key Exchange Protocol
	3.3 Agreement of Helpers for n-Helper Protocol
	3.4 Optimal Network Configuration

	4 Resiliency Design
	4.1 Overview
	4.2 Key Exchange Protocol A3pt: General Design
	4.3 Key Exchange Protocol A3pt: Protocol

	5 Security Proof of A3pt
	5.1 Definitions
	5.2 Security Proof

	6 Theoretical Performance Analysis of A3pt
	6.1 Failure Probability (pf)
	6.2 Number of test keys (s)
	6.3 Malicious Helper Detection Probability (pd)
	6.4 Message Overhead (N)
	6.5 Graphical Analysis of A3pt's Performance

	7 Experimental Results
	7.1 Experiment Design
	7.2 Running Time
	7.3 CPU Cycles
	7.4 Energy Consumption
	7.5 Bandwidth Overhead

	8 Use cases
	8.1 Smart Home
	8.2 Healthcare
	8.3 Smart Agriculture

	9 Conclusion and Future Work
	Acknowledgments
	References

