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ABSTRACT
In order for resource-constrained Internet of Things (IoT) devices

to set up secure communication channels to exchange confidential

messages, Symmetric Key Cryptography (SKC) is usually preferred

to resource-intensive Public Key Cryptography (PKC). At the core

of setting up a secure channel is secure key exchange, the process of

two IoT devices securely agreeing on a common session key before

they communicate. While compared to using PKC, key exchange

using SKC is more resource-aware for IoT environments, it requires

either a pre-shared secret or trusted intermediaries between the

two devices; neither assumption is realistic in IoT.

In this paper, we relax the above assumptions and introduce

a new intermediary-based secure key exchange protocol for IoT

devices that do not support PKC. With a design that is lightweight

and deployable in IoT, our protocol fundamentally departs from

existing intermediary-based solutions in that (1) it leverages inter-

mediary parties that can be malicious and (2) it can detect malicious

intermediary parties. We provide a formal proof that our protocol

is secure and conduct a theoretical analysis to show the failure

probability of our protocol is easily negligible with a reasonable

setup and its malicious helper detection probability can be 1.0 even

when a malicious helper only tampers a small number of messages.

We implemented our protocol and our experimental results show

that our protocol significantly improves the computation time and

energy cost. Dependent on the IoT device type (Raspberry Pi, Ar-

duino Due, or Sam D21) and the PKC algorithms to compare against

(ECDH, DH, or RSA), our protocol is 2.3 to 1591 times faster on one

of the two devices and 0.7 to 4.67 times faster on the other.

CCS CONCEPTS
• Security and privacy→ Key management; Security proto-
cols; •Networks→ Security protocols; • Theory of computation
→ Cryptographic protocols.
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1 INTRODUCTION
Due to advances in lightweight computing and networking tech-

nologies, the Internet of Things (IoT) has rapidly penetrated into

our lives. However, because a compromised IoT system can lead to

disastrous results [16, 26, 30], a key challenge facing IoT is that IoT

networks must support secure communications channels to protect

message integrity and confidentiality, thus resistant to both mes-

sage tampering and eavesdropping. While IoT devices can either

employ public key cryptography (PKC) or symmetric key cryptog-

raphy (SKC) to establish secure communication channels between

them, due to their often extremely constrained resources and com-

puting power, many IoT devices are not capable of performing PKC

and have to resort to SKC. A central question with using SKC, how-

ever, is key exchange; that is, any two IoT devices must exchange

a common secret key in order to encrypt and decrypt messages

between them.

Non-cryptographic solutions have been proposed for secret key

exchange between IoT devices. A typical solution is using a se-

cure secondary communication channel, which however usually re-

quires additional hardwares or sensors [17, 29] that IoT devices may

not be equipped with. Other non-cryptographic solutions include

jamming [2] and proximity [22]. The jamming solution requires

a special entity—jammer—to jam the channel and the proximity

solution needs IoT devices to be physically close to each other (e.g.,

6cm); both are often unrealistic.

Cryptographic key exchange solutions can be various methods

using PKC (e.g., Diffie-Hellman, ECC, RSA) or methods not using

PKC. The former’s demand on resources and computing power is

often beyond the reach of IoT devices. The latter are methods using

SKC. In contrast to using PKC, SKC-based key exchange has a better

performance with significantly lower usage of resources and com-

putational power. There are two approaches in using SKC for key

exchange between two parties: using a pre-shared secret between

the two parties, or using the help of intermediary helper parties
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between the two parties. As an IoT network is often composed of

hundreds or even thousands of devices, doing the former approach

for every pair of devices is daunting. The latter approach is more

feasible, which we focus on in this paper.

All existing intermediary-based key exchange protocols must

trust the intermediaries, a stringent and often unrealistic require-

ment. If the intermediary helper parties are compromised and tam-

per messages from the key exchange parties, IoT devices may not

detect the compromise and they may either fail to exchange a se-

cret key between them or leak useful information pertaining to

the key to adversaries. Key exchange parties could try to sign their

messages, but signing with PKC is too expensive for IoT devices,

and signing with SKC requires the key exchange parties to have a

shared key between them which they have yet to agree on.

In this work, we design, prove, and evaluate a new intermediary-

based key exchange protocol for devices with limited resources—

especially IoT devices—to successfully and securely agree upon

a secret session key. In particular, we apply the cut-and-choose

technique to identify the malicious helpers without using any PKC

primitives. Cut-and-choose is widely adopted in multi-party com-

putation (MPC) [1, 18] to achieve security against malicious parties.

Its main idea is to let one party construct different versions of a

secret message and have the other party randomly check some of

them and use the rest of them. In our protocol, we first let an IoT

device create a bunch of test keys, and then let the other IoT device

randomly pick a subset of test keys to detect malicious helpers and

use the remaining test keys to derive a real secret session key for

communication between the two devices. Our main contributions

include:

• Our protocol advances SKC-based key exchange. Unlike any

previous intermediary-based solution, our protocol is the

first one that does not rely on the trustworthiness of helper

parties. Also, the protocol does not leak any useful infor-

mation to the helper parties. If some helpers are malicious

and do not follow the protocol, the two devices will still be

able to establish a session key without leaking any useful

information.

• Our protocol introduces a novel design that can efficiently

identify the malicious helpers when they tamper messages

going through them, even if they collude or selectively tam-

per messages.

• With the SK-security framework, we formally prove that our

protocol is secure against malicious intermediary helpers.

• We conduct theoretical analysis of our protocol and show its

failure probability is easily negligible with a reasonable setup

and its malicious helper detection probability can be 1.0 even

when a malicious helper only tampers a small number of

messages.

• We provide empirical evaluations for our protocol. We im-

plemented our protocol and emulated different IoT devices

on Mininet to evaluate its performance against three widely

used PKC-based protocols: RSA, Diffie-Hellman, and Elliptic

Curve Diffie-Hellman. For two parties doing key exchange,

our experiments demonstrated that our protocol achieves

2.3 to 1591 times faster on one party and 0.7 to 4.67 times

faster on the other.

The rest of this paper is organized as follows. Section 2 reviews

the related work on previous key exchange protocols in IoT envi-

ronments. Section 3 introduces the basic design of the intermediary-

based key exchange protocol with secret sharing scheme. Section 4

describes our new mechanism to detect malicious behaviors and

identify cheating intermediaries. Section 5 proves the security of

our protocol against malicious intermediaries. Section 6 provides a

theoretical analysis of our protocol’s efficacy, resiliency, and over-

head. Section 7 shows the experimental results of our protocol’s

performance and network overhead. Finally, Section 8 concludes

this paper.

2 RELATEDWORK
A secure key exchange protocol is a core cryptographic primitive

in building secure communication channels [7]. Various standard

public key cryptography (PKC) schemes are sufficient to implement

a secure key exchange protocol in traditional networks. However,

due to the limited resources of IoT devices, these schemes are not

suitable for many IoT environments. Many previous approaches

were introduced to improve the efficiency of PKC, such as more

efficient variants of Elliptic Curve schemes [6, 9]. The computational

cost during key exchange can also be reduced by performing pre-

computations before key exchange [21]. However, improvements on

PKC-based methods are limited, mostly insufficient in addressing

the resource limitations of IoT devices. Below we focus on previous

approaches that mainly use SKC.

One key exchange solution without PKC is using a pre-shared

secret. For example, the approach in [15] and [27] assume that all

nodes in the same network share a commonmaster key, fromwhich

any two nodes can derive their session key. However, if any node is

compromised, it will expose the master key and therefore threaten

the confidentiality of the entire network. To address this issue,

some approaches (such as those in [10, 20]) instead use a password

between a client and all its servers as a pre-shared secret, where

every server has a share of the password. The servers collectively

use the password to authenticate the client and then derive a session

key for the client to communicate with any one of the servers. Here,

unless more than a threshold number of servers are compromised, a

compromised server node will not leak the password. Unfortunately,

these password-based approaches still employs PKC. Also, like the

pre-shared master key, they still have a single point-of-failure (the

password), and they cannot identify which server(s), if any, are

compromised.

Instead of one common pre-shared secret among all nodes, Chan

et al. [12] suggest each node pre-store a set of keys randomly se-

lected from a universal key space, where the sets of any two nodes

overlap. When a node decides to start a communication session

with another node, it must identify all the common keys it shares

with that node and then derive a session key between them from

the common keys. If an attacker subverts a node, the attacker can

only learn the keys in the node’s set of keys, while the session key

remains secure. However, the procedure to identify common keys

between different nodes could leak useful information about the

universal key space and eventually the information of the session

keys between nodes. In a similar work [19], every node is associated

with a set of polynomials in a universal pool of random bivariate



polynomials. Any two nodes need to derive their session key by first

identifying their common bivariate polynomials, which however

could leak useful information of the pool and also the information

of the session keys.

Different from using a pre-shared secret, another solution is to

use help from a trusted third party. Hummen et al. [13] suggested
that as long as an IoT device maintains a key associated with an

external trusted server, it then can use the help of the trusted server

to derive a new secret session key for its communication with

another party. This approach drastically reduces the computations

of IoT devices. Yet, the trusted server is a major point of failure. If

it is compromised, it could obtain all secret keys.

Instead of placing trust into a single third party, researchers

proposed solutions using multiple intermediary helpers. Solutions

in [14, 23–25] use the neighboring nodes of key exchange parties

as intermediary helpers, whereas for the solution in [12], multiple

independent communication paths between two communication

nodes can be regarded as intermediary helpers. A party can initiate

a key exchange with another party by splitting a secret into multi-

ple secret shares and sending each share to a different intermediary

helper, where each share leaks no information of the original secret.

Every intermediary helper then forwards the share it receives to

the other key exchange party, which subsequently assembles all the

shares it receives to derive the original secret, and both parties can

then use the same secret to derive their session key. However, these

intermediary-based solutions assume all intermediaries are trusted

or at least semi-honest. In other words, all intermediaries must fol-

low the protocol honestly. If any intermediary becomes malicious

and deviates from the protocol, such as discarding a secret share or

tampering a secret share before forwarding it, the whole key ex-

change could fail and the malicious intermediary may learn certain

information of the secret, potentially weakening the confidentiality

strength of the session key. Furthermore, the communication nodes

cannot detect which intermediary helpers are compromised by the

adversary.

3 BASIC DESIGN
Not only does our intermediary-based key exchange solution elim-

inate all PKC operations and only rely on SKC operations, it also

significantly differs from prior intermediary-based solutions and

adds new features. In particular, we describe the basic design of our

key exchange solution in this section and focus on the resiliency

against malicious intermediaries in the next section.

3.1 Settings and Assumptions
Every IoT device, say PA, communicates with another IoT device,

say PB , via a public channel, which is not secure as messages

through the channel could be eavesdropped or tampered. PA and PB
thus need to exchange a session key to protect their communication,

where PA is the key exchange initiator and PB is key exchange
responder. PA and PB are honest and follow their key exchange

protocol between themselves. Finally, both parties are resource-

constrained IoT devices and can only perform SKC operations (i.e.,

no PKC operations).

Between PA and PB are n intermediary helper parties Hi (i =
1, . . . ,n) (Figure 1) that will assist the key exchange. A helper can

be a gateway device, a smart phone, or another IoT device. Further,

PA and PB each set up a secure channel with every helper through

a registration process, which can establish a shared secret between

an IoT device and a helper and use the shared secret to set up a

secure channel between them for their communication. (Note this

registration process is not suitable for two IoT devices to exchange

a session key as it will need to register every IoT device at its every

communication party, a much larger overhead than registering a

device at all its helpers.) Finally, unlike PA and PB who are honest,

a helper may be malicious. We assume there are less than t helpers
in total which are malicious.

Before they start key exchange, PA and PB authenticate each

other, as follows. For PA to authenticate itself to PB , PA composes

an authentication message about its identity and sends it to every

helper (through its secure channel with the helper). Every helper

then verifies the message; if the message is verified, the helper then

sends a claim to PB (through its secure channel with PB ) that the
other side is indeed PA. On the side of PB , upon the receipt of claims

from all the helpers, PB can then decide if PA is authenticated based

on its authentication policy, which, for example, may require (a)

all the claims vouch for PA, or (b) the majority of claims vouch for

PA, or (c) no more than a threshold number or percentage of claims

vouch for an identify that is not PA. Clearly, except for policy (a),

if some helpers are malicious, PB can still authenticate PA. PB can

authenticate itself to PA in the same way.

PA PB

H1

Hn

Hi

...

...

Figure 1: The settings of key exchange. PA and PB are com-
munication devices and Hi (i = 1, . . . ,n) are intermediary
helpers.

3.2 Key Exchange Protocol π
We now describe the key exchange protocol π to illustrate the basic

design of our key exchange solution. It leverages a standard t-out-
of-n secret sharing scheme [28] in which a secret S is composed of

n shares and a collection of at least t(t ≤ n) shares must be present

in order to reconstruct S . Any collection that has less than t shares
does not leak any information about S . The main idea of π is for the

key exchange initiator PA to split a secret into n shares and for the

key exchange responder PB to receive at least t shares separately
through t helpers and reconstruct the original secret, thus PA and

PB are able to use the same secret to derive their session key. The

protocols is as follows.

(a) Initialization. PA initializes the key exchange with PB by send-

ing PB a message (init, sid) (via a public channel) where init
contains PA’s security parameters (including ciphers and param-

eters available for key exchange and ciphers and key lengths for



its communication with PB ) and sid is the ID of the current key

exchange session. PB then sends back (initconfirm, sid) (via a
public channel) where initconfirm contains a subset of PA’s
security parameters that PB agrees with for their key exchange.

(b) Choose secret and its shares. PA randomly choose a secret

S and invokes a t-out-of-n secret sharing scheme to obtain n
shares of S : {si |i = 1, . . . ,n}.

(c) Transfer secret shares. PA sends si toHi (i = 1, . . . ,n), which
then forwards si to PB after receiving si .

(d) Derive secret from shares. Upon receipt t shares among

{si |i = 1, . . . ,n}, PB then uses the t-out-of-n secret sharing

scheme to reconstruct S .
(e) Derive session key. PA and PB both compute ksid = f (S, 0),

where f is a pseudorandom function agreed by PA and PB
during initialization. ksid is then the session key for PA and PB .

(f) Verify session key. Furthermore, PA and PB each compute

S ′ = f (S, 1), and PB sends an acknowledgement messageM =
д(“confirm”, sid, PA, PB , S

′) to PA where д is a message au-

thentication function (also agreed by PA and PB during ini-

tialization). Upon the receipt of M , PA checks if M is also

д(“confirm”, sid, PA, PB , S
′). If so, PA knows both parties agree

on ksid as their session key, and PA can start its communication

with PB ; otherwise, PA either aborts the protocol or initiates

another instance of π .

Hi

(init, sid )

(initconfirm, sid )

si si

M

Randomly picks
a secret S , ob-
tains its shares
(s1, . . . , sn ), and
sends si to PB via
Hi

Reconstructs
secret S , derives
session key from
S , and composes
acknowledgement
message M

Device PA Device PB

Figure 2: Key exchange protocol π . Each dashed line means
amessage is sent via a public channel. Each solid linemeans
a message is sent via an intermediary helper party.

4 RESILIENCY DESIGN
4.1 Overview
Protocol π is not resilient against malicious helpers. If a helper

tampers or forges a share before sending it to PB and PB uses it

with other shares to reconstruct the secret (S), PB will not derive the

same secret that PA has, resulting in the failure of the key exchange.

Moreover, PA and PB cannot detect or identify malicious helpers. A

typical approach to this problem is to sign every share, but signing

with PKC is too expensive for IoT devices, and signing with SKC

requires PA and PB to have a session key between them already,

which they have yet to agree on.

We design a new protocol π A
that advances π with resiliency.

Without using any PKC operation, π A
enables key exchange devices

to try to detect and identify malicious helpers. The main design idea

of π A
is derived from the cut-and-choose technique widely used

in secure multi-party computation. The cut-and-choose technique

lets one party construct different versions of a message and have

the other party randomly checks some of them and use the rest of

them. In π A
, PA generates a number of random keys which we call

test keys, PB use some of them called opening keys to identify

malicious helpers via an efficient and effective design, and PA and

PB use the rest of them called evaluation keys to derive the session
key.

4.2 Key Exchange Protocol π A: General Design
π A

is composed of three phases. We overview them here and elabo-

rate them in Section 4.3.

Initialization phase. As opposed to choosing one secret S as

in π , PA now generate a number of test keys. For every test key, π A

invokes a standard t-out-of-n secret sharing scheme to split it into n
shares, sends each share to a different helper, which then forwards

the share to PB . Note that with the assumption that there are less

than t helpers in total which are malicious (Section 3.1), the security

property of the t-out-of-n secret sharing scheme guarantees that

the malicious helpers, even if they collude, will not be able to have

t or more shares to learn any useful information of any test key.

Cut-and-choose phase. This phase is focused on identifying

malicious helpers and drops shares from them. PB first randomly

chooses half of the test keys as opening keys and the other half

test keys as evaluation keys and also notifies PA its choice. PA
then retransmits a copy of every share of every opening key to

PB via a helper rather than the original helper that forwarded the

share, where the helper is randomly chosen each time. PB then

inspects every helper and compares every share of an opening key

forwarded by the helper against the share’s copy retransmitted via

another helper. If there are t or more helpers that disagree with the

helper, PB then regards the helper as malicious. Otherwise, i.e., if

this helper was not malicious, every helper who disagreed with the

helper is then malicious; with t or more disagreements, there would

be then t or more malicious helpers, which contradicts with the

assumption that at most t − 1 helpers are malicious (Section 3.1).

If more than n-t helpers are malicious, PB aborts the protocol.

Otherwise, PB drops all the shares forwarded by every helper iden-

tified as malicious, some of which could be shares of an evaluation

key. PB finally reconstructs every evaluation key with its remaining

shares. Although it is still likely that some remaining shares are

compromised and as a result evaluation keys reconstructed with

them are also compromised, the likelihood is low given that most

remaining shares are authentic.

Session key derivation phase. PA randomly chooses a secret,

uses each evaluation key to encrypt the secret separately, and sends

each encrypted secret to PB . PB then uses the corresponding evalu-

ation key to decrypt every encrypted secret. Although PB may not

reconstruct some evaluation keys correctly due to compromised

shares, it can treat the decryption output with the majority agree-

ment as the secret. PA and PB can therefore use the secret to derive

their session key.



Hj

Hh(i )

Initialization phase:

Cut-and-choose phase:

Session key derivation phase:

(init, sid )

(initconfirm, sid )

τ1j , . . . ,τs j τ ′
1j , . . . ,τ

′
s j

O, E

τi j τ ′′i j

notify

ci

M

Generates s test
keys (τ1,..., τs ); for
each test key τi ,
obtains n shares
(τi1,..., τin ); for all
j ∈ {1,..., n }, sends
shares (τ1j ,..., τs j )
to PB via Hj

Randomly picks
O and E from
{1,..., s }For all i ∈ O and

all j ∈ {1,..., n },
sends τi j to PB via
helper Hh(i ) where
h is a random
mapping function

Detects malicious
helpers and drops
all shares from
them

For all i ∈ E,
encrypts secret S
with each evaluation
key τi to obtain
ci = Encτi (S ) Decrypts ci and

takes the ma-
jority output as
secret S to derive
the session key;
composes the ac-
knowledgement
message M

Device PA Device PB

Figure 3: Key exchange protocol π A. Each dashed line means
amessage is sent via a public channel. Each solid linemeans
a message is sent via an intermediary helper party.

4.3 Key Exchange Protocol π A: Protocol
The protocol π A

is as follows.

[Initialization phase.] This phase is the same as π ’s Initialization
(see Section 3.2), except that the init also contains the number of

test keys from PA. Plus, PA sends test keys to PB as follows:

• PA randomly generates s test keysT = (τ1, τ2, · · · , τs ), where
every test key is of an equal length.

• For every τi ∈ T , PA invokes the t-out-of-n secret sharing

scheme to obtain its n shares (τi1, τi2, · · · , τin ).
• For every test key τi and its every share τi j , PA sends τi j
to helperHj , which then forwards the share to PB . HelperHj
will thus receive and forward a set of shares (τ1j , τ2j , · · · , τs j ).
• For each τi , PB receives shares (τ ′i1, τ

′
i2, · · · , τ

′
in ). (We use

notation τ ′i j instead of τi j since a share may be tampered by

a corrupted helper.)

[Cut-and-choose phase.] PB now processes all the test key shares

it has received:

• Based on the total number of test keys, PB randomly chooses

half of test key indexes, denoted as O, to be the indexes of

opening keys and the other half, denoted as E, to be the

indexes of evaluation keys. PB sends (O, E) to PA (via a

public channel).

• On PA, upon the receipt of O and E, for every τi j (i ∈ O) it
forwarded, retransmit a copy of τi j to PB via helper Hh(i),

where h is a random mapping function and ∀i ∈ O,h(i) , j.
• On PB , for every helper Hj (j = 1, . . . ,n), compare every τ ′i j
(i ∈ O) it received from Hj with its retransmitted copy from

helper Hh(i) to see if they match. If for helper Hj there are t
or more helpers that disagree withHj ,Hj is then a malicious

helper and PB drops all the test key shares from Hj .

• If more than n-t helpers cheated, PB aborts the protocol.

Otherwise, for every i ∈ E, PB knows at least t shares from
(τ ′i1, τ

′
i2, · · · , τ

′
in ) still remain. With these remaining shares,

PB thus uses the t-out-of-n secret sharing scheme to recon-

struct τ ′i . Here, PB regards τ ′i as τi (which may not be the

same if at least one share used is tampered but not found in

the previous step).

• PB sends (notify) to PA to let PA enter the next phase (via

a public channel).

[Session key derivation phase.] PA and PB now generate their

session key as follows:

• PA randomly chooses a secret S , encrypts S with each evalua-
tion key τi separately, i ∈ E, to obtain ciphertext ci=Encτi (S),
and sends each ci to PB (via a public channel).

• For each ciphertext ci (i ∈ E) received, PB decrypts it using

the evaluation key τ ′i .
• PB takes the majority output from the previous step as the

secret S .
• PA and PB follow exactly π ’s “Derive session key” and “Verify
session key” steps (see Section 3.2). PB also notifies PA the

identities of malicious helpers, encrypted with their newly

derived session key.

5 SECURITY PROOF OF π A

We now formally prove the security of protocol π A
. We first intro-

duce the formal definitions of session key security (SK-security)

and t-out-of-n secret sharing scheme, and then prove π A
’s security.

5.1 Definitions
5.1.1 Session Key Security. We adopt the session key security
(SK-security) [5], which formally defines the security of a key

exchange protocol. We choose this definition because it is conceptu-

ally simple and easy to use when analyzing and proving the security

of a key exchange protocol. The intuition behind the SK-security is

that it means an adversary cannot distinguish a session key from a

randomly chosen value.

To define SK-security, we first define a game Game
I
A

between

a simulator I and an adversary A. Let k be a session key and

c ∈ {0, 1} be a coin, GameI
A

is defined in two steps:

• I first generates the session key k and then tosses the ran-

dom coin c . I receives c
R
← {0, 1} where

R
←means randomly

choosing a value from a set. If c is 0, I provides the real



session key k to A; otherwise I randomly chooses a value

k ′
R
← {0, 1} |k | from the session key space and returns k ′ to

A.

• With the received value k or k ′, A outputs a result c ′ as its
guess for the value c . If c ′ = c then I outputs 1 (I → 1);

otherwise, I outputs 0 (I → 0).

Definition 1. A key exchange protocol Π is SK-secure against
adversary A if it satisfies the following properties:

• Correctness.After runningΠ, the two honest parties establish
the same session key only with a negligible probability of

failure.

• Indistinguishability. The probability that adversary A out-

puts a correct c ′ that equals to c is 1

2
+ ϵ(λ) where ϵ(λ) is

a negligible function in λ. Or, in an equivalent expression,

assuming ADV
Π
A
(λ) be the advantage of adversary A to

win the game Game
I
A

, we then have ADV
Π
A
(λ) = |Pr [I →

1] − 1

2
| = ϵ(λ).

5.1.2 Secret Sharing Scheme.

Definition 2. A t-out-of-n secret sharing scheme Σ consists of
the following two algorithms:

• Share distribution algorithm Share.A randomized algorithm

that takes a secret messagem as input and outputs a sequence

of n shares:M = (m1, · · · ,mn ).

• Secret reconstruction algorithm Reconstruct. A determinis-

tic algorithm that takes an input of a collection of t or more

shares and outputs the secret messagem.

A secure secret sharing scheme should satisfy the property of

correctness such that for all U ⊆ {1, · · · ,n} with |U | ≥ t , it holds
that Pr [Reconstruct(mi |i ∈ U ) =m] = 1. For anyU ⊆ {1, · · · ,n}
with |U | < t , no information will be learned from those shares.

To formalize the security of Σ, let m,m′ ∈ M be two differ-

ent messages from the message spaceM. The challenger (i.e., the

simulator) I invokes the Share algorithm onm,m′ and obtains

M← Share(m),M′ ← Share(m′).
I also tosses a random coin b ∈ {0, 1}. If b = 0, I returns

(mi |i ∈ U ) to the adversary A. Otherwise I returns (m′i |i ∈ U ).
With the received set of shares, A outputs a result b ′ as its guess
for the value b. If b ′ = b then I outputs 1; otherwise, I outputs 0.

We define the advantage of the adversary A in this game as:

ADV
Σ
A = |Pr [I → 1] −

1

2

|

Definition 3. A t-out-of-n secret sharing scheme Σ is secure over
message spaceM if ADVΣ

A
is a negligible function.

An instance of implementation of a t-out-of-n secret sharing

scheme is Shamir’s secret sharing scheme [28]. The idea behind

this scheme is that d + 1 points can determine a unique degree-d
polynomial. We refer to [28] for more details.

5.2 Security Proof
With SK-security, we first prove that π (specified in Section 3.2)

is secure against malicious helpers, and then prove π A
(specified

in Section 4.3) is also secure according to an advanced theorem in

SK-security.

Proof. We first prove π is secure. We assume in π all helper

parties are semi-honest and they follow the protocol and forward

messages correctly (i.e., thus messages are authentic). According

to Definition 1, to prove this theorem we need to prove both the

correctness and the indistinguishability of π .
The correctness of π follows the correctness of the t-out-of-n

secret sharing scheme. Since for every i ∈ {1, . . . ,n}, helper Hi
follows the protocol and forwards si correctly, both PA and PB will

agree on the same secret S . This is guaranteed by the correctness

property of a secret sharing scheme defined in Section 5.1.2. It is

clear that as PA and PB are honest (Section 3.1), they can derive the

session key ksid = f (S, 0) with probability one.

To show the indistinguishability property of π , we need to prove
no adversary has a non-negligible advantage to distinguish a real

session key k (i.e., ksid in π ) from a random value k ′. To do so, we

now prove the opposite is not possible. Specifically, we assume that

there was such an adversary A against π and show with this as-

sumption, we can construct a distinguisherD as follows that would

violate Definition 3 about the security of the t-out-of-n secret shar-

ing scheme. In another words, D can distinguish (si |i ∈ U ) from
(s ′i |i ∈ U ) and output the correct b

′
with non-negligible probability.

The distinguisherD works as follows. Upon the input [k∗, (si |i ∈
U )], where k∗ is randomly chosen with probability

1

2
between the

real session key k (i.e., ksid in π ) and k ′ (a random string of length

k), D invokes A which plays the same role as a helper in protocol

π . After receiving the share si from PA,A forwards it to PB . Based
on the input k∗,A determines whether k∗==k or k∗ , k and output

c ′ = 0 or c ′ = 1, respectively. D then uses the output of c ′ from A
as its guess for coin toss b, outputs b, and terminates.

Now we show the contradiction caused by the assumption above.

Assume the adversary compromises a helper party and obtains one

share from the helper, i.e., (si |i ∈ U ). Note that since we assume PA
an PB are always honest and an adversary can only compromise up

to t −1 helpers, the adversary cannot obtain t shares of the secret. If
the real session key k is chosen as the input k∗ (i.e., k∗ == k), si is a
share of k∗. Otherwise, a random k ′ is chosen to be k∗ and si is not
a share of k∗. Now, even though k∗ is randomly chosen between

k and k ′ with the same probability, A can guess if the input k∗ is
the real session key and output the correct c ′ with non-negligible

advantage ADV
Π
A
, therefore D can base on c ′ from A to guess if

mi is a share of k
∗
, with non-negligible advantage ADV

Π
A
. Clearly,

D’s non-negligible advantage contradicts Definition 3. We thus

prove the indistinguishability property of π .
Now that we proved both the correctness and the indistinguisha-

bility of π , according to Definition 1, π is secure.

Next we prove the security of π A
. We use the theorem that if a

key exchange protocol (say Π) in which all key exchange messages

are authentic satisfies SK-security, when the protocol is extended to

become a new protocol (say Π′) in which key exchange messages

can be corrupted, the new protocol also satisfies SK-security if it can

authenticatemessages and discard corrupted ones [5, 8]. Here, when

we extend π to π A
, we see in π every message is assumed authentic,

while in π A
messages can be tampered by malicious helpers but PB

can identify and drop tampered messages (Section 4.2). Therefore,

π A
also satisfies SK-security.

□



6 THEORETICAL PERFORMANCE ANALYSIS
OF π A

In this section we conduct a theoretical performance analysis of

π A
. We analyze its failure probability, pf , the probability that a

malicious helper can be detected, pd , and the number of messages

to send during a key exchange session, N .

6.1 Failure Probability (pf )
π A

fails if PA and PB do not reach an agreement on their session

key. Note that the failure is only a denial-of-service, while no secret

or any useful information is leaked. π A
fails in two cases:

• Case 1: π A
fails if more than n-t helpers are malicious. As

described in Sections 4.2 and 4.3, in this case PB will not
have enough shares to reconstruct evaluation keys, so it will

abort the protocol with pf = 1.

• Case 2: π A
fails if the majority of evaluation keys at PB

are corrupted (i.e., each of them is reconstructed using at

least one corrupted share). Denote C the set of corrupted

evaluation keys; given there are s test keys and half of them

are evaluation keys, we can see in this case |C | ≥ ⌈s/4⌉. As
a result, in the session key derivation phase PB will not be

able to correctly decrypt the encrypted secret from PA and

derive the session key.

More specifically, Case 2 happens if ∀τi ∈ C, τi would not be

selected as an opening key during the cut-and-choose phase, which

has a probability of 0.5, and τi is not correctly reconstructed. Denote
pr the probability that PB correctly reconstructs an evaluation key.

Now we have:

pf = (0.5 · (1 − pr ))
|C |

(1)

Since |C | ≥ ⌈s/4⌉, we have

pf ≤ (0.5 · (1 − pr ))
⌈s/4⌉

(2)

From Equation (2), a higherpr will result in a lowerpf . Moreover,

0.5 · (1 − pr ) is less than 0.5 since pr is no more than 1. Thus, the

failure probability pf declines exponentially as the number of test

keys s increases, which we say pf is negligible in s .
We now analyze pr . Let pc be the cheating probability of each

one of the n helpers. The expected number of cheating parties is

then n · pc . For each test key, PB receives n − (n · pc ) correct shares.
To reconstruct a test key, PB needs to choose t correct shares. We

thus have:

pr =
t−1∏
i=0

n − i − n · pc
n − i

(3)

Note that for simplicity, here we assume all helpers have the same

cheating probability pc . If each helper Hi has a different cheating

probability pic , the expected number of cheating helpers is

∑n
i=1 p

i
c

rather than n · pc .
From Equation (3), pr is affected by n, t , and pc . If t and pc are

fixed, when n increases, pr also increases. This is consistent with

the intuition that if there are fixed number of malicious shares, in-

creasing n means more helpers and thus more shares per evaluation

key, which provides PB a better chance to pick correct shares to

reconstruct evaluation keys. On the other hand, if n and pc are fixed,
when t increases, pr would decrease. This is because increasing t
requires PB to select extra shares to reconstruct every evaluation

key, which means PB would have a higher likelihood to pick mali-

cious shares. Finally, if fixing n and t , a higher pc would cause PB to

have a higher probability to pick malicious shares, thus decreasing

pr .
Finally, combines Equations (2) and (3), if pf must be lower

than an upper bound, while key exchange parties probably cannot

control the value of pc , they can adjust the values of parameters s ,
t , and n to meet the requirement.

6.2 Malicious Helper Detection Probability (pd )
Now we discuss the probability that PB can identify a malicious

helper. We point out that if the number of test keys s and the t
parameter in π A

’s t-out-of-n secret sharing scheme satisfy that

s ≥ 4t − 4, PB can always identify a malicious helper if it tampered

at least 2t − 2 shares in total of all opening keys We detail the

analysis below.

In the cut-and-choose phase, for every helper Hj (j = 1, ...,n)
PB counts the number of other helpers that disagrees with the

helper in forwarding an opening key’s share and identifies the

helper as malicious if there are at least t helpers that disagrees with
Hj . Below we analyze the probability pd that PB can successfully

identify a malicious helper Hj based on the number of shares that

Hj tampered,Z . Recall every helper forwards one share per opening
key, thus forwarding totally s/2 shares; clearly, Z ≤ s/2.

(1) Hj tampered at least 2t − 2 shares of opening keys (i.e., Z ≥
2t − 2). Here, because for each share tampered by Hj , PA
retransmitted a copy of its original value along a different

helper, i.e., totally at least 2t − 2 helpers, even if all malicious

helpers collude with Hj to not show disagreements (i.e., re-

transmitting a copy of a share’s tampered value rather than

its original value), given there are at most t − 1 malicious

helpers (including Hj ), there are at least t benign helpers

each of which will disagree with Hj , thus identifying Hj as

malicious. i.e., pd = 1.

Notice this case assumes Z ≥ 2t − 2. Given Z ≤ s/2, we can
obtain that s and t must satisfy s ≥ 4t − 4.

(2) Hj tampered less than t shares of opening keys (i.e., Z < t ). In
this case, PB cannot identifyHj as malicious. I.e., pd = 0. This

is because Hj could be either benign or malicious. Specifi-

cally, while it is possible that Hj is malicious and all helpers

that disagree with Hj are either benign or malicious, it is

also possible that Hj is benign and all helpers that disagree

with Hj , whose total number is less than t , are malicious.

On the other hand, even though PB cannot identify Hj as

malicious in this case, the number of opening key shares

that Hj can tamper must be less than t . Given PB ’s random
choice of opening keys and evaluation keys from the test

keys, the number of evaluation key shares that Hj can tam-

per must also be less than t on average. Compared to totally

s/2 shares of all s/2 evaluation keys (one share per key) that

Hj could have tampered, t is much less than s/2 as we set
s ≥ 4t − 4 from (1) above. PB would thus have a much higher

probability to reconstruct evaluations keys correctly, thereby

reducing the failure probability pf .
(3) Hj tampered t ≤ Z ≤ 2t − 3 shares of opening keys. In this

case, PB can identify a malicious helper with probability



pd and we show how to compute pd as follows. Given that

there are s/2 opening keys and Hj forwarded the j-th share

of every opening key, Hj forwarded totally s/2 shares. As
PA retransmitted each of these shares via a randomly chosen

helper that is not Hj , we assume the total number of such

helpers is Q . Clearly, Q ≤ s/2. PB will then check if each

of these Q helpers disagrees with Hj , and determines Hj to

be malicious if there are at least t disagreements. Denote x
the number of disagreements. Assume the worst case where

there are t − 1 malicious helpers and they collude, while

there are n− t + 1 benign helpers (with totally n helpers) and

n − t + 1 > t − 1 (or n − t + 1 ≥ t ). To detect Hj is malicious,

all x disagreements then must come from benign helpers,

which has a probability(n−t+1
x

)
·
( t−2
Q−x

)(n−1
Q

) .

Here, while all Q helpers come from totally n − 1 helpers

(excluding Hj ), x helpers are chosen from n − t + 1 benign
helpers and the rest Q − x helpers are chosen from t − 2

malicious helpers (excluding Hj with totally t − 1 malicious

helpers). Last, we know x≥t and x cannot be greater thanQ ,

we then have in the worst case

pd =

Q∑
x=t

(n−t+1
x

)
·
( t−2
Q−x

)(n−1
Q

) (4)

6.3 Message Overhead (N )
We now analyze how many messages PA and PB will need to send

in one key exchange session with π A
. First, during the Initialization

phase, there are two initialization messages (i.e., (init, sid) and
(initconfirm, sid)), plus n shares of s test keys where every share

is a separate message, resulting in n·s+2 messages. Then during

the Cut-and-choose phase, PB sends PA two messages (i.e., (O, E)

and (notify)), and PA sends PB a copy of every opening key’s

every share. With totally s/2 opening keys (we assume s is an even

number for simplicity) and n shares for each opening key, this leads

to s/2 · n + 2 messages for this phase. Last, during the Session

key derivation phase, PA sends PB s/2 ciphertexts, plus one final
message from PB for session key verification. Overall, there are

3n+1
2

s + 5 messages in total. i.e.,

N =
3n + 1

2

s + 5 (5)

From Equation (5), N increases as n and s increase. If a lower
message overhead is desired, one can lower the value of n and s
(i.e., less helpers and test keys). On the other hand, from Section 6.1,

lowering the values of n and s will increase pf . Therefore, users
need to adjust n and s to meet their specific requirements for pf
and N .

7 EXPERIMENTAL RESULTS
7.1 Experiment Design
We implemented π A

with python cryptography libraries and mea-

sured its performance, including its running time, CPU cycles, en-

ergy consumption, and bandwidth overhead, in experiments.

We set up our experiment devices and running environments as

follows. For each key exchange session between a key exchange

initiator PA and a key exchange responder PB , we selected three

different types of resource-constrained devices: Raspberry Pi Zero

W, Arduino Due, and SAM D21 Xplained. They are commonly used

in the real word for IoT applications but have a different range of

resource capacity. Table 1 describes their basic specifications. For

the implementations of π A
and other three PKC-based key exchange

protocols, we used Python 3.6.9 with cryptography library pycrypto

2.6.1. For the networking environment, we used the Mininet plat-

form [11] on Ubuntu 18.04.4 to emulate aWi-Fi environment, where

every link is 10 Mbps with a 0.02% packet loss probability.

Table 1: Key exchange devices in experiments

CPU Memory Voltage Current

draw

Raspberry Pi Zero W 1 GHZ 512 MB 5 V 500 mA

Arduino Due 84 MHZ 512 KB 1.8 V 77.5 mA

SAM D21 Xplained 48 MHZ 32 KB 1.62 V 7 mA

The main parameters to configure for our experiments are n,
t , s , and the number of malicious helpersm. In our experiments,

we first set the failure probability of π A
to be 0.005 which was pre-

configured by PA and PB . With this setup, from Section 6.1, we can

derive that π A
has the minimum message overhead when we set n

to be 6, t to be 4, and s to be 28. In addition, PA and PB can always

detect malicious helpers whenm is no greater than 2.

We compare π A
6
with traditional PKC-based key exchange pro-

tocols: RSA (Rivest–Shamir–Adleman), DH (Diffie-Hellman), and

ECDH (Elliptic Curve Diffie-Hellman). We set the key length of

π A
6
to be 128, for which the equivalent key lengths for RSA, Diffie-

Hellman, and ECDH are 3072, 3072, and 256, respectively [4]. For

ECDH, we use the curve SECP256R1 with ephemeral keys. For each

PKC-based protocol, we do not include an authentication compo-

nent; even so and even as π A
6
includes an authentication (Section 3.1),

we show π A
6
outperforms them, many times tremendously.

7.2 Running Time
We measured the running time of π A

6
and the comparator key ex-

change protocols on both PA and PB . We recorded the time for

running a complete session of each protocol on each device and

took the average across 10 experiments. Figure 4 shows the compar-

ison results of π A
6
versus different comparator protocols. Specifically,

Figure 4a and Figure 4c show the running time of PKC-based key ex-

change protocols, while Figure 4b and Figure 4d show the running

time of π A
6
(0), π A

6
(1), and π A

6
(2).

Figure 4a and Figure 4b illustrate that on PA, π
A
6
is much faster

than its comparators, especially when PA is an Arduino Due or

SAM D21 whose resources are extremely limited. Using π A
6
(2) as an

example, which has the slowest running time among the three π A
6

configurations in our experiments, on Raspberry Pi Zero W, π A
6
(2)

in the worst case is 2.3 times faster than ECDH and 24.1 times faster

than RSA; however, on SAM D21, π A
6
(2) is 59.6 times faster than

ECDH and 1591 times faster than RSA.

Figure 4c and Figure. 4d show on PB for all types of IoT devices,

although its lead is less striking than that on PA, π
A
6
is still faster
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Figure 4: Running time of key exchange protocols on devices
PA and PB . Note that each subfigure uses a different maxi-
mum value for its Y-axis.

than other protocols. Again using π A
6
(2) as an example, while on

PA π A
6
(2) is 2.3 to 59.6 times faster than ECDH, on PB it is still

about 0.7 to 3.65 times faster than ECDH; with a Raspberry Pi

Zero, the running time of π A
6
(2) on PB is 0.072 seconds while it

takes ECDH 0.122 seconds. The lead reduction here is because PB

needs to perform more operations than PA, including identifying
malicious helpers, reconstructing evaluation keys, and decrypting

multiple ciphertexts to obtain the secret. Nonetheless, π A
6
is faster

than its comparator protocols on both devices in a key exchange.

7.3 CPU Cycles
We also measured the CPU cycles of π A

6
and the comparator pro-

tocols on both PA and PB . As shown in Figure. 5, it takes the com-

parator protocols many times more CPU cycles than π A
6
to conduct

a key exchange session. On PA, for example, if it is a Raspberry Pi

Zero W, it takes ECDH 4.87 times more CPU cycles than π A
6
(2) in

the worst case, where π A
6
(2) is the most expensive among the three

different configurations of π A
6
. Similarly, if it is a SAM D21, it takes

4.1 times more instead. On PB , for example, if it is a Raspberry Pi

Zero W, it takes ECDH 11.79 times more CPU cycles than π A
6
(2),

and if it is a SAM D21, it takes 104.7 times more instead. Again,

even though π A
6
’s operations on PB are relatively heavier than PA,

similar to its running time performance on PB , its CPU cycles on

PB still easily betters those of the comparator protocols.

7.4 Energy Consumption
We measured π A

6
and the comparator protocols’ energy consump-

tion with the formula E = U · I · T [3] where U is the voltage, I
is the current intensity, and T is the time to complete a session of

a key exchange protocol. The values of U and I are from Table 1.

Notice we only consider the current intensity when devices are

in the active mode. Figure 6a and Figure 6b show the energy con-

sumption comparison results at PA. We can see if PA is a Raspberry

Pi Zero, while the most energy-efficient PKC protocol ECDH con-

sumes 497.5mJ, π A
6
(2) in the worst case only consumes 152.5mJ,

which is only about 30.6% of ECDH’s energy consumption. In fact,

the energy saving with π A
6
is even more significant if the device

is resource-constrained. For example, if PA is a SAM D21, while

ECDH consumes 42mJ, π A
6
(2) only consumes 0.41mJ, which is only

0.97% of ECDH’s energy consumption.

Figure 6c and Figure 6d show energy consumption comparison at

PB . We can see π A
6
again consumes much less energy than the PKC-

based key exchange protocols. For example, if PB is a Raspberry

Pi Zero, the energy consumption of π A
6
(2) on PB is 59.1% of that of

ECDH (180mJ versus 305mJ), and if PB is a much more resource-

constrained SAM D21, this number becomes 47.9% (20.1mJ versus

41.8mJ). Last, in π A
6
(0) and π A

6
(1) PB consumes even less energy

than the comparator protocols.

7.5 Bandwidth Overhead
Finally, we measured the bandwidth overhead of π A

6
and its com-

parator key exchange protocols. In our experiments, the bandwidth

overhead indicates the amount of messages that both parties need

to transmit over the network in order to establish a session key.

Figure 7 illustrates the results. We can see that π A
6
(1) and π A

6
(2) incur

more bandwidth than PKC protocols and π A
6
(0) have more band-

width overhead than ECDH, but less than RSA and Diffie-Hellman.

On one hand, the number of messages in π A
6
is much more than

that in the other three PKC-based protocols. On the other hand, the

length of keys in π A
6
is much shorter (Section 7.1) and the size of

messages in π A
6
is much smaller. As a result, overall the bandwidth
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Figure 5: CPU cycles of key exchange protocols on devices
PA and PB .

overhead of π A
6
is comparable to that of the comparator protocols,

especially when considering its vast improvements in running time

and energy consumption. We also emphasize here that the band-

width overhead in one key exchange session is independent of

other key exchange sessions, thus not affected by other sessions.
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Figure 6: Energy consumptions of key exchange protocols
on devices PA and PB . Note that each subfigure uses a differ-
ent maximum value for its Y-axis.

Even if an intermediary may be shared across multiple sessions, it

is usually not an IoT device and not poor in bandwidth capacity,

further assuring our design is scalable against the size of an IoT

network.
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8 CONCLUSION
Internet of things (IoT) devices have an essential need of secure

communications between them, for which a key exchange protocol

for them to establish a communication session key is a prerequi-

ste. However, due to their often extremely constrained resources

and computing power, many IoT devices are not capable of per-

forming public key cryptography (PKC), making any key exchange

solution that uses PKC infeasible. There have been lightweight,

non-cryptographic solutions, but they are often unrealistic.

Key exchange solutions that only use symmetric key cryptog-

raphy (SKC) can be divided into two categories: those using pre-

shared secrets and those using intermediary parties. The former is

daunting and hardly scalable when employed for an IoT network

composed of hundreds or even thousands of devices. The latter so

far relies on honest or semi-honest intermediary parties.

This paper proposes a new SKC-based key exchange solution

(π A
) using intermediary parties (also called helpers). It departs from

the state of the art by assuming any intermediary party can be

malicious. Its design makes it lightweight and deployable in IoT and

resilient against malicious intermediary parties. In particular, under

the cut-and-choose methodology, π A
introduces a new protocol

design that not only can successfully establish a session key in

the end, but also can efficiently identify malicious intermediary

parties when they tamper messages going through them, even if

they collude or selectively tamper messages.

This paper provided both theoretical proof and analysis and

empirical evaluations of π A
. From the proof π A

is shown to be

secure against malicious helpers. From the analysis, π A
’s failure

probability is easily negligible with a reasonable setup and π A
’s

malicious helper detection probability can be 1.0 even when a mali-

cious helper only tampers a small number of messages. From the

empirical evaluations, π A
outperforms three widely used PKC-based

key exchange protocols in terms of running time, CPU cycles, and

energy consumption while its bandwidth overhead is comparable

to them.
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