
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

On Explainable and Adaptable Detection of
Distributed Denial-of-Service Traffic
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Abstract—Launched from numerous end-hosts throughout the Internet, a distributed denial-of-service (DDoS) attack can exhaust the
network bandwidth or other resources of a victim, cripple its service, and make it unavailable to legitimate clients. Recently many
learning-based approaches attempt to detect DDoS attacks, but their results are often hardly explainable to users and their models are
seldom adaptable to new environments. In this paper, we propose a new learning-based DDoS detection approach. It detects DDoS
attacks via an enhanced k-nearest neighbors (KNN) algorithm, which utilizes a k-dimensional (KD) tree to speed up the detection
process, and classifies DDoS sources at a fine granularity according to each IP’s risk level. Compared to previous DDoS detection
approaches, this approach outputs explanatory information that enables network administrators to easily inspect detection results and
make necessary interventions. Moreover, this approach is adaptable in that users do not need to retrain the detection model to have it
fit with a new network environment. We evaluated this approach in both simulated environments and the real world, achieving more
than 95.6% accuracy in detecting DDoS attacks at line speed. In addition, we carried out a human subject study on its explainability,
demonstrating that the outputs can help people better understand the attack and make interventions precisely and promptly.

Index Terms—Distributed Denial-of-Service (DDoS), DDoS detection, Anomaly detection, Explainable machine learning, K-nearest
neighbors (KNN), Principal component analysis (PCA), Traffic analysis.
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1 INTRODUCTION

D ISTRIBUTED denial-of-service (DDoS) attacks pose a
severe security problem on today’s Internet and can

render servers, network infrastructure, and applications
unavailable to their users. They overwhelm the targeted
machine or network resources with excessive traffic, thereby
preventing legitimate traffic from being processed [1]. Cisco
indicated in their March 2020 white paper [2] that the
frequency of DDoS attacks had increased more than 2.5
times and the average size of DDoS attacks had approached
1 Tbps over the last three years.

Of foremost importance in DDoS defense tasks are to
detect DDoS, classify DDoS sources, and do so accurately
and quickly. Decades of research and industry efforts have
led to a myriad of DDoS detection and classification ap-
proaches. In recent years, many researchers have begun
to harness machine learning algorithms, such as support
vector machine (SVM), Naive Bayes, convolutional neural
network (CNN), etc., on big data in detecting and classifying
DDoS attacks (e.g., [3], [4], [5]). The evaluations of such
approaches demonstrate their strong ability in extracting
useful knowledge from massive training data and decent
recall scores in detecting a variety of DDoS attacks.

Unfortunately, the negative aspects of most learning-
based approaches are also apparent. Firstly, many learning-
based approaches may not be well-suited for practical appli-
cations, as their detection results are often difficult to inter-
pret, resembling black boxes [6], [7]. As a result, extracting
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explanatory information from the detection outputs gener-
ated by these methods (e.g., deep neural networks and deep
recurrent neural networks) is challenging. In real-world de-
ployments, network administrators particularly need good
explainability, as they usually have to manually review
and verify DDoS detection results, including eliminating
false alarms and avoiding severe collateral damage due to
filtering traffic from legitimate users. This is especially true
for large-scale networks, such as Internet service providers
(ISPs) and Internet exchange points (IXPs), where a single
filtering rule can disconnect a considerable number of IP
addresses, making network administrators hesitant about
which actions to take. According to previous literature [8],
[9], [10] and our analysis (Section 3), detection approaches
with useful explanatory information should possess three
features to help network administrators make appropriate
and timely decisions:

• Transparency: The detection model should allow
users to gain clear insight into the traffic processing
procedures, intuitively illustrating all network con-
texts and situations.

• Traceability: The detection outputs should help
users quickly understand the detection logic and
indicate root causes.

• Heuristic: The detection outputs should help users
make applicable decisions to address the ongoing at-
tack by quantifying the attack status, attack intensity,
and the mitigation cost-effectiveness.

However, most existing DDoS detection approaches strug-
gle to meet these requirements.

Secondly, most learning-based approaches lack adapt-
ability. Their performance is heavily dependent on the cov-
erage and applicability of the training data. Considering that
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DDoS attacks are diverse and network traffic regarded as
DDoS in one environment might be considered legitimate in
another (and vice versa), few of the current learning-based
approaches can effectively adapt a DDoS detection model
trained in one environment to fit in a new network environ-
ment. This limitation leads to poor detection accuracy or the
need for lengthy retraining.

To address these missing gaps, we design a machine-
learning-based DDoS detection and classification approach
that is not only effective, but also explainable and adaptable.
Specifically,

1) With network traffic flows summarized into traffic
profiles, our approach can detect an DDoS attack
(i.e., detection) and identify DDoS sources (i.e., clas-
sification) accurately and quickly. To detect DDoS,
it enhances the k-nearest neighbors (KNN) algo-
rithm to place traffic profiles into different regions
into the searching space and can categorize traffic
profiles to be benign or malicious and detect if
the current traffic profile corresponds to a DDoS
attack. Furthermore, to improve the efficiency of
the detection process, it introduces a k-dimensional
(KD) tree algorithm to convert the KNN detection
model into a semi-decision tree, which significantly
reduce the time complexity of traffic monitoring to
O(d) in most cases, where d is the depth of the
semi-decision tree. If a DDoS attack is detected, to
identify DDoS sources, it will sort the traffic sources
(i.e., senders’ IP addresses) based on risk levels to
minimize collateral damage, and iteratively identify
and remove the malicious IP addresses until the
traffic profile returns to a benign position in the
KNN searching space.

2) Our approach is highly explainable, characterized
by its transparency, traceability, and heuristic qualities.
These attributes enable the generation of intuitive
explanatory information, allowing network admin-
istrators to easily understand and act upon them.
Upon detecting a DDoS attack, our approach not
only sends an alert message but also provides a
risk profile, a visual detection model, and a status graph
to elucidate the attack. The risk profile represents
the shortest Euclidean distance from the current
traffic profile to a benign region in the KNN search
space, assisting network administrators in quan-
tifying the attack’s magnitude and the associated
mitigation costs. The visual detection model clari-
fies the detection logic, network context, and root
causes by illustrating the relative distances from the
current traffic profile to illegitimate and legitimate
groups. Generated using principal component anal-
ysis (PCA) projection, the status graph concisely and
intuitively depicts the attack stage, intensity, and
cost-effectiveness of mitigation efforts.

3) Our approach is adaptable in that the detection and
classification model derived in one environment can
port to another environment without re-training. It
allows direct modifications on the KNN searching
space and enables users to leverage a variety of
prior knowledge to evolve the detection model.

We evaluated our approach in both simulated environ-
ments and the real world. We first trained and evaluated
our detection model with representative DDoS datasets in
simulation environments. The results indicate that the de-
tection model can achieve an accuracy of 0.956 and a recall
score of 0.920 even when detecting some application-layer
DDoS attacks. We then conducted a human subject study
with questionnaire surveys to evaluate its explainability. The
results demonstrate that the explanatory outputs can effec-
tively help users understand not only the intensity, stage,
and confidence level of the attack, but also can help them
make suitable mitigation strategies quickly. Furthermore, as
this approach is easily adaptable to a new environment, we
transferred the model (with merely some measurement data
as input) to a real-world network environment at the Front
Range GigaPoP (FRGP) [11], a regional IXP in USA. We suc-
cessfully detected most of the real-world DDoS attacks from
February 24 to May 21, 2020, which we verified with the IXP.
The latency of detection is also low—e.g., with a throughput
of 100 Gbps, our approach can complete detection in around
five seconds.

The remainder of this paper is structured as follows: Sec-
tion 2 presents an overview of the related work, followed by
a description of the threat and defense models in Section 3.
Subsequently, the method design is detailed in Section 4,
and our approach is evaluated in Section 5. Finally, we
conclude the paper in Section 6.

2 RELATED WORK

Using network traffic data to detect DDoS attacks is a
technique that is widely used in the security community.
From the perspective of operating principles, we can fur-
ther classify the existing DDoS detection approaches into
statistical approaches, rule-based approaches, learning-based ap-
proaches, and soft-computing-based approaches. We discuss the
advantages and disadvantages of each approach in detail.

2.1 Statistical Approaches

Statistical approaches detect DDoS attacks by exploiting
statistical properties of benign or malicious network traf-
fic. These approaches are straightforward and dominated
the early development of DDoS detection. Generally, these
approaches build a statistical model of normal or malicious
traffic and then apply a statistical inference test to determine
if a new instance follows the model [12]. For example, D-
WARD [13] uses a predefined statistical model for legitimate
traffic to detect anomalies in the bidirectional traffic statis-
tics for each destination with periodic deviation analysis.
Chen [14] proposed a DDoS detection method based on
the two-sample t-test, which indicates that the SYN arrival
rate of legitimate traffic follows the normal distribution and
identifies a DDoS attack by testing the distribution com-
pliance. Zhang et al. [15] proposed a detection method by
applying the Auto Regressive Integrated Moving Average
model on the available service rate of a protected server.

Statistical approaches can provide interpretable results
by outputting abundant metrics to describe the current
network situation, such as shown in Figure 1. These met-
rics primarily function as network measurements, assisting
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Fig. 1: Partial outputs of Kentik [16], a popular traffic moni-
toring tool that can detect and mitigate DDoS attacks.

network administrators in grasping the network context.
However, they are often not arranged in a concise and
heuristic manner that would enable the identification of root
causes and cost-effective mitigation strategies. As a result,
skilled analysts are still indispensable for extracting valu-
able insights from these metrics to not only understand the
importance of the alarms but also determine the appropriate
course of action. Another limitation of statistical approaches
is that as DDoS attacks evolve, traffic generated by sophis-
ticated DDoS attacks may not always exhibit significant
statistical deviations across various aspects. Consequently,
traditional statistical DDoS detection methods might strug-
gle to accurately identify modern DDoS attacks.

2.2 Rule-based Approaches

Rule-based approaches formulate noticeable characteristics
of known DDoS attacks and detect actual occurrences of
such attacks based on those formulated characteristics. For
example, NetBouncer [17] detects illegitimate clients by con-
ducting a set of legitimacy tests on the clients; If a client fails
to pass these tests, it will be considered malicious until a
particular legitimacy window expires. Wang et al. [18] detect
DDoS with an augmented attack tree (AAT), which captures
incidents triggered by DDoS traffic and the corresponding
state transitions from the view of network traffic transmis-
sions. Limwiwatkul et al. [19] detect ICMP, TCP and UDP
flooding attacks by analyzing packet headers with well-
defined rules and conditions. However, due to the grow-
ing diversity of DDoS attacks, rule-based approaches face
challenges in summarizing and formulating the features
of all possible attack types. Consequently, they are being
gradually replaced by learning-based or soft-computing-
based methods.

2.3 Learning-based Approaches

Over the past few years, more and more researchers have
begun to leverage machine learning techniques to model,
mitigate, and detect DDoS attacks (e.g., [5], [20], [21], [22],
[23], [24], [25], [26], [27], [28]). Some of these methods
(e.g., [29], [30], [31]) utilize unsupervised learning algo-
rithms to distinguish anomalies from normal traffic, as such
algorithms do not require training before the detection.
However, unsupervised-learning-based approaches are sen-
sitive to the selected features and the background traffic. On

the other hand, supervised-learning-based approaches may
struggle to provide users with explainable detection results,
as the prevalent machine learning algorithms (e.g., , linear
regression [32], multilayer perceptron [33], convolutional
neural network [34], graph convolutional network [35], etc.)
often resemble black boxes in their functionality. In real-
world deployments, explainable results are critical for attack
mitigation, because network administrators usually need to
manually review the detection results in order to eliminate
false positives and maintain the usability of their network
infrastructure.

Recently, there has been a surge of efforts aimed at
enhancing the explainability of machine learning algo-
rithms. For example, Nguyen et al. [36] proposed a machine
learning-based anomaly detection approach capable of in-
forming users about the types of detected anomalies and
the significant features contributing to the detection process.
Ribeiro et al. [37] introduced Local Interpretable Model-
agnostic Explanations (LIME), which offers insights into
machine learning model predictions by generating locally
interpretable explanations, enabling users to better compre-
hend the decision-making process of complex models. Ad-
ditionally, Lundberg et al. [38] presented SHapley Additive
exPlanations (SHAP), a unified method for explaining the
output of various machine learning models. Nevertheless,
some of these approaches have not been implemented for
DDoS detection, some of their explanations may not be
suitable for DDoS detection scenarios, or some may not
completely fulfill the transparency, traceability, or heuristic
requirements.

In addition, the applicability of these machine learning
algorithms highly depend on the training data and training
environment, which means it is difficult to quickly transfer
a detection model trained in one network environment to
another network environment.

Therefore, although most learning-based approaches are
usually accurate in detecting DDoS attacks, they are not
easily deployable in real-world environments. As opposed
to these previous learning-based approaches, our approach
focuses on the explainability and adaptability of the detec-
tion model.

2.4 Soft-computing-based Approaches
Soft computing is a term for describing the use of approxi-
mate calculations to provide imprecise but usable solutions
to complicated computational problems. Such approaches
match the general goal of DDoS detection, which is to iden-
tify attack sources while allowing only a few false positives
and false negatives. Soft computing approaches can be an
ensemble of statistical, rule-based, and learning approaches.
For example, Jalili et al. [39] use statistical preprocessing to
extract features from the traffic, and then utilize an unsu-
pervised neural network to classify traffic patterns as either
malicious or legitimate. Kumar et al. [40] utilize a resilient
back propagation neural network as the base classifier, then
propose RBPBoost to combine the outputs, and Neyman
Pearson cost minimization strategy to generate the final clas-
sification decision. Shiaeles et al. [41] detect DDoS attacks
based on a fuzzy estimator using mean packet inter-arrival
times within 3-second detection windows. Just like learning-
based approaches, soft-computing-based approaches also
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have the disadvantage of poor explainability, making them
difficult to deploy in real-world scenarios.

3 THREAT AND DEFENSE MODELS

In this section, we begin by presenting the threat models
associated with DDoS attacks, followed by a description of
the defense model of the proposed approach.

3.1 Threat model

DDoS attacks are malicious efforts aimed at disrupting the
normal operation of a targeted server, service, or network
by inundating it with an overwhelming volume of internet
traffic. These attacks are carried out by multiple systems,
often compromised by malware and controlled by a single
attacker known as a botmaster. The compromised systems,
referred to as bots, constitute a network called a botnet.
The primary objective of a DDoS attack is to render the
target’s resources inaccessible to legitimate users, resulting
in downtime and potential financial or reputational harm.

Regarding attack methodologies, DDoS attacks can be
categorized into three main types:

• Volumetric attacks strive to overwhelm the target’s
bandwidth by generating an immense volume of
traffic, impeding legitimate users from accessing the
targeted service. Examples of volumetric attacks in-
clude UDP floods and ICMP floods [42].

• Protocol attacks leverage vulnerabilities in network
protocols to consume resources or cause network
disruptions. Examples of such attacks include SYN
floods, which target the TCP handshake process, and
Ping of Death attacks that transmit oversized ICMP
packets [43].

• Application-layer attacks focus on specific applica-
tions or services, overloading them with seemingly
legitimate requests. These attacks demand fewer re-
sources for execution but may pose greater chal-
lenges in detection and mitigation. Examples include
HTTP GET floods, Slowloris attacks, and DNS query
floods [44].

DDoS attacks can cause significant harm to victims,
leading to service disruptions, revenue loss, reputational
damage, and increased security expenses. Therefore, it is
crucial for organizations to implement strong security mea-
sures to minimize the impact of such attacks.

3.2 Defense model

The defense model of the proposed approach operates as
follows:

1) Initially, the network administrator deploys the pro-
posed approach on the network to be secured. It is
important to note that this network may differ from
the one where the approach was trained.

2) The approach continuously monitors network traf-
fic, identifying any DDoS attacks aimed at targets
within the protected network.

3) Upon detecting a DDoS attack, the approach clas-
sifies the DDoS traffic and sends the classification

results as mitigation rules to upstream routers or
Internet service providers.

4) The mitigation rules typically include malicious
IP addresses/IP prefixes or malicious traffic flows.
These rules are then applied to network traffic to al-
leviate the DDoS attack, preventing it from reaching
its intended victim.

3.2.1 Adaptability to the network to be secured
The network requiring protection might not be the same
as the one on which the approach was trained. This can
occur when the approach is trained using a public dataset
that may not accurately represent the specific network to
be secured. Consequently, it is essential for the approach to
rapidly adapt to the network in need of protection without
necessitating extensive time, a large volume of training data,
or numerous fine-tuning processes.

3.2.2 Minimizing Collateral Damage and Verifying Results
In the context of DDoS attacks, collateral damage refers to
the unintended consequences of mitigation rules on legiti-
mate traffic. If a rule inadvertently blocks a valid IP address,
it can disrupt genuine traffic, potentially causing more harm
than allowing malicious traffic to reach the intended target.

To minimize collateral damage, network administrators
typically need to manually verify detection results before
implementing them as mitigation rules (at steps 2 or 3).
Several factors should be considered during the verification
process, including:

• Network Context: Administrators should evaluate
the network context, taking into account factors such
as attack intensity, the number of attack sources,
current network throughput, and more. This infor-
mation is vital for understanding the attack’s impact
and the necessity of mitigation, allowing for appro-
priate planning and next steps.

• Detection Logic: Understanding the detection logic
of the chosen approach is essential for administrators
to determine the reliability of the results. Addition-
ally, this information can help identify the root cause
of the attack, aiding in the elimination of potential
false positives. For example, during high-traffic pe-
riods, duplicate user requests may be misclassified
as application-layer DDoS attacks (i.e., flash crowds).
This type of misclassification can be avoided by
quick verification.

• Mitigation Cost-Effectiveness: Since mitigation
rules can lead to collateral damage and addi-
tional costs, administrators should weigh the cost-
effectiveness of the proposed rules. In some cases,
even when the network is under attack, the system
may have enough redundancy to cope during peri-
ods of low activity. In such instances, administrators
may opt not to apply mitigation rules to avoid un-
necessary collateral damage.

Thus, the proposed approach should offer adequate
explanations to aid administrators in verifying the results.
Specifically, it needs to be transparent for assessing the net-
work context, traceable for understanding the detection logic,
and heuristic for evaluating the mitigation cost-effectiveness
and formulating an appropriate plan.
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Fig. 2: Operational model of the proposed approach.

4 DESIGN

In our approach, DDoS detection and classification occurs
at the victim end, on a vantage point that sees all the
traffic to and from the victim. It can stream explanations
along with detection results to the network administrator
and allow interventions to the detection pipeline. Figure 2
illustrates our approach’s operational model. It has three
components: the preprocessing module, detection module,
and classification module.

First, the preprocessing module inputs packet or flow-
level traffic data from the router that runs widely used
traffic capture engines, such as NetFlow [45] and sFlow [46].
It monitors the traffic in batches. Each batch is a uniform
time bin, t, which is also the most basic detection unit of
our approach. In our implementation, we set each batch
as 5 seconds. During each batch, the preprocessing module
extracts features from the input data stream to form different
types of overall traffic profiles. A traffic profile can be
denoted as s, with s = {f1, f2, f3, ..., fn}, where fn denotes
the value of the n-th feature during a batch t. The features
in s depend on the detectors we use, as each detector may
need a different traffic profile with different features.

Our approach then works in two phases: the detection
phase (illustrated in Figure 3) and classification phase. In
the detection phase, the detection module detects whether
the network is under a DDoS attack. To provide compre-
hensive protection to the victim, our approach can employ
multiple detectors, with each focusing on certain types of
DDoS attacks. Once a DDoS attack is detected, the detection
module outputs both detection results and explanations to
ongoing attacks. The network administrators can review
and verify the detected attack according to the explanatory
information, thereby choosing to intervene in the attack de-
fense procedure or allow our approach to automatically deal
with the attack. In the end, the classification phase begins by
pinpointing the IP addresses of attackers for future actions.
In this phase, the classification module generates a traffic
profile p for every individual IP address and classifies traffic
at a fine granularity according to IP traffic profiles.

Traffic duplication
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Fig. 3: Workflow of the detection phase.

4.1 Detection Phase

The goal of the detection phase is to determine whether a
DDoS attack is present according to the current traffic profile
s. We use the KNN algorithm [47] to achieve the goal, as
this algorithm is straightforward and reliable. The KNN al-
gorithm is a non-parametric method used for classification,
which finds the k nearest neighbors of the traffic profile s
and uses their classifications to vote for the label of s. Users
can also choose to build multiple KNN detection models to
detect a variety of DDoS attacks, as Figure 2 and 3 show.

In our implementation, we built four distinct detection
models to identify TCP SYN floods, ICMP floods, UDP
reflection and amplification attacks, and application-layer
attacks, respectively. Each model utilizes different features
and training data. The rationale behind constructing mul-
tiple KNN models to address different attacks, rather than
developing a single complex KNN model, is to circumvent
the curse of dimensionality [48] and overfitting. A detection
model capable of handling various types of attacks generally
needs to process data in high-dimensional spaces since it
must encompass all the essential features of each individual
attack. Nonetheless, an increase in the dataset’s dimen-
sions can render the search space sparser. Consequently,
we would require significantly more training data to cover
the search space; otherwise, the detection model’s accuracy
would be unsatisfactory. To overcome this issue, we build
multiple KNN models to cover different attacks, with each
model using only a few features.

Besides, users are able to adjust the voting mechanism
of the KNN algorithm to get detection results with higher
confidence, thereby reducing the number of false alarms in
real deployments. More specifically, our approach labels the
current traffic profile as malicious if more than ρ of the k
nearest neighbors in the KNN searching space are malicious.
We can set ρ as a number larger than 0.5 so that the detection
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Fig. 4: A DDoS detector with the modified KNN algorithm and KD tree.

standards will be more rigid. For example, we set ρ as 0.75
in the evaluation to eliminate the false positive rate.

However, the KNN algorithm has a notable drawback.
Although the model training time is minimal, the prediction
requires a time complexity of O(nlogn) to complete, as it
needs to enumerate the data points in the search space
to find the k nearest neighbors. To address this issue, we
leverage the KD tree [49] to partition the search space, thus
reducing the number of data points to enumerate. With the
KD tree, when an incoming traffic profile arrives, we only
need to search a sub-area to predict the result. Figure 4
illustrates a simple example where only two features are
included in the training and prediction process.

Furthermore, according to our experimental results,
most DDoS profiles exhibit relatively large differences com-
pared to legitimate traffic profiles. This leads to an intrigu-
ing observation that most of the search areas partitioned by
the KD tree contain either benign traffic profiles or malicious
traffic profiles. As shown by the red and green areas in
Figure 4, we define a search area as a confirmed area if one
type of traffic profile dominates the area and the number
of any other type of traffic profile is smaller than ρk. If
the current traffic profile s falls within a confirmed area,
we can directly label the profile s with the identity of the
confirmed area without conducting any KNN queries. As a
result, we transform the original KNN query process into a
semi-decision tree. The detection module will only trigger
the search for nearest neighbors when the traffic profile s
falls within an unconfirmed area. If anomalies do not occur
frequently, this semi-decision tree data structure can reduce
the time complexity for traffic monitoring to nearly O(d),
where d is the depth of the tree.

However, the use of the KD tree may lead to a slight
decrease in detection accuracy. This is because the search
space is partitioned into multiple sub-areas, which may
result in inaccurate results when the traffic profile s falls
on the boundary of two sub-areas. Nonetheless, for most
DDoS attacks, legitimate traffic profiles have relatively large
distances from malicious traffic profiles, leading to a sig-
nificant margin between the two types of traffic profiles,
thereby minimizing the impact caused by the KD tree.
Moreover, by employing multiple models to detect different
types of DDoS attacks, we ensure clear decision-making for
each detection model, which further minimizes the impact
brought by the KD tree on detection accuracy.

4.2 Explainability & Manual Intervention
Once our approach detects a DDoS attack, it not only
outputs an alert message, but also employs an interpreter
(as shown in Figure 2) to export transparent, traceable, and
heuristic explanatory information to explain and quantify
the attack. Such information includes a risk profile, a visu-
alized KNN model, and a status graph. According to these
outputs, network administrators can know the attack type,
detection logic, intensity, status, confidence level of the
alarm, and the cost of mitigations. Unlike some statistical
approaches that provide too many metrics that can eas-
ily overwhelm network administrators, our method aims
to output concise information and intuitive explanations
with the help of appropriate visualizations. With a small
amount of training, network administrators can understand
the current situation within seconds on the basis of the
interpreter’s outputs, and therefore are able to quickly make
manual interventions to the detection decision. Further-
more, network administrators can choose to either reject or
approve the detection results. Of a particular note is that this
manual intervention is optional. If the administrator does
not intervene within a certain amount of time, the system
will automatically execute the decisions of detectors.

4.2.1 Risk Profile
The risk profile ∆ (where ∆ = (m, δ)) is a tuple that
provides the network administrators with a quantified and
traceable summary about the current attack, indicating the
primary cause and intensity, which meets the traceability
requirement in the paradigm of explainability. Here, m is
the name of the feature in the traffic profile s that primarily
causes the DDoS attack. This attribute helps the network
administrator determine the attack type. For example, if m is
the ”number of inbound ICMP packets”, the victim is likely
facing an ICMP attack and being overwhelmed by abundant
incoming ICMP packets. δ is the smallest value by which
feature fm needs to be reduced to make the traffic profile s
move to a benign position. In other words, δ is the shortest
distance on fm from the current traffic profile to a legitimate
traffic profile in the KNN searching space. For example,
∆ = (”number of inbound ICMP packets”, 8500) means
the victim is currently under an ICMP flooding attack and
we need to eliminate at least 8500 inbound ICMP packets
per five seconds to mitigate the attack.

To figure out ∆ for a given traffic profile s that has been
labeled as DDoS attack by a detector D, we need to first
find the closest benign traffic profile l in the KNN searching
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Fig. 5: The status graph of a SYN flood detector. Red dots
represent attack traffic profiles. Blue dots represent legiti-
mate traffic profiles. The dark green vertical line represents
the current traffic profile.

space of D. To achieve this, we conduct a breadth-first
search. Then, we normalize s and l to ensure that features
belonging to both profiles are directly comparable. In the
end, we use Equation 1 to calculate δ and m.

s∆ = snormalized − lnormalized,

m = max(s∆).F eatureName,

δ = max(s∆).

(1)

In a few cases, the interpreter may find multiple
risk profiles from multiple detectors, which means ∆ =
{(m1, δ1), (m2, δ2), ..., (mn, δn)}. We consider that the vic-
tim is facing either flash crowds or severe hybrid attacks
under this circumstance, as the traffic volume significantly
exceeds the infrastructure’s capacity in multiple aspects.
Here, flash crowds are large surges of legitimate traffic
focusing on specific sites on the Internet over a relatively
short period of time [50].

4.2.2 Visualized KNN Model
To fulfill the transparency requirement and provide network
administrators with a clear understanding of the detection
model, network context, and detection logic, the interpreter
will visualize the KNN detection model in addition to the
detection results. As the training and input datasets are usu-
ally of high dimensionality, the interpreter will only include
three most important features of the datasets to draw a
three-dimensional plot. Besides, the network administrator
can choose to change the visualized features to inspect the
situation from different aspects.

Such a visualized KNN model is informative. From the
visualization, network administrators can observe relative
distances from the current traffic profile to benign and
malicious groups. According to this information, network
administrators can obtain intuitive understandings regard-
ing the detection logic, attack severity, and victim status. We
further evaluate the explainability of the visualized KNN
model in Section 5.3.

4.2.3 Status Graph
To facilitate rapid decision-making by network administra-
tors based on current conditions and the cost-effectiveness
of mitigation measures, the interpreter generates a status
graph that provides a concise and intuitive representation of
the attack stage, intensity, and confidence level of the alarm.

Figure 5 shows a status graph example. It consists of two
subplots. The upper one uses principal component analysis

(PCA) [51] to map the training and input datasets to a
one-dimensional space. PCA is a technique widely used for
dimensionality reduction by projecting each data point onto
only the first few principal components to obtain lower-
dimensional data, while preserving as much of the data’s
variation as possible. More specifically, for a k-dimensional
DDoS training dataset D ∈ RN×k, the interpreter uses PCA
to learn a linear transformation shown in Equation 2.

T 1 = DW 1, T 2 ∈ RN×1. (2)

Then, for the incoming traffic profile s, we use Equation 3
to map it onto a two-dimensional space.

r = W T
1 s, s ∈ R1×k, r ∈ R1×1. (3)

In the end, our approach visualizes this one-dimensional
dataset {r} ∪ T 1, labeling DDoS traffic profiles, legitimate
traffic profiles, and the input traffic profile with different
colors. In other words, it is a reduced-dimensional KNN
model. Network administrators can quickly learn relative
spatial relationships between the current traffic profile and
attack/legitimate traffic profiles from this plot.

The subplot below illustrates the anomaly index κ. This
value indicates the confidence level of the detection result.
The closer this value is to one, the more likely it is that the
detected attack is a true positive. Since all of the alarms are
detected by the KNN model, the base value of κ is equal
to ρ. Then, our approach utilizes a window to move from
left to right in the upper subplot, checking the number of
attack and legitimate traffic profiles within the window to
calculate κ.

κ = ρ+ (1− ρ)
nm

ni + nm
. (4)

Equation 4 shows the calculation of the anomaly index κ,
where nm denotes the number of malicious traffic profiles
within the window and ni denotes the number of legitimate
traffic profiles within the window.

In addition, by analyzing the training data, our approach
divides the status graph into three stages from left to right:

• Preparatory stage: the attack is still in its infancy.
Its intensity is low. The network administrator can
choose to ignore this attack if conducting conserva-
tive defensive measures.

• Stalemate stage: the attack is still under the infrastruc-
ture’s capacity, but it is starting to cause a notice-
able impact on the network. Network administrators
should mitigate the attack if conducting rigorous de-
fensive measures. However, network administrators
can still ignore this attack if they are more concerned
about collateral damage caused by mitigation.

• Overwhelming stage: the attack is overwhelming the
network, the network administrator should immedi-
ately take mitigation measures to protect the accessi-
bility of the network.

Network administrators can know the attack status by ob-
serving which area the current traffic profile falls in.

From the example in Figure 5, we can discern from the
status graph that the detected attack is in the overwhelming
stage. The current traffic profile is much closer to malicious
groups. Moreover, both the attack intensity and anomaly
index are high. Therefore, network administrators should
immediately take measures to mitigate this attack.
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4.3 Phase Two: Classification
The objective of the classification phase is to differentiate
malicious IP addresses from benign ones, and output the
malicious IPs for DDoS traffic filtering. It is important to
note that the classification module will only be activated
after some anomalies have been detected in the detection
phase.

The design philosophy of the traffic classification is that
the traffic profile s is currently in a malicious position, and
we need to restrict the traffic from the most suspicious IP
addresses so that the traffic profile can move to a safer
position in the KNN searching space.

We begin the classification phase by building a traffic
profile p for each IP address that appeared during the attack.
The profile p should have the same attributes as the overall
traffic profile s. The only difference is that the values of fea-
tures in p are calculated from the traffic of each individual
IP, while the values of features in s are calculated from the
overall traffic in the network. Afterwards, we sort the IP
addresses in decreasing order of the risk degree, where the
risk degree is a number that indicates how suspicious an IP
is. According to the risk profile ∆ (∆ = (m, δ)) we obtained
from the DDoS detection phase, we define the risk degree of
an IP address as f (p)

m . Finally, we conduct traffic filtering on
IP addresses such that the overall traffic profile can move to
a benign area.

However, legitimate clients may sometimes have signif-
icant risk degrees as well. Classifying the IP addresses only
according to the risk degree may cause significant collateral
damage. To address this issue, we also need to minimize
the impact on other features of the overall traffic profile s
when determining the malicious traffic sources. We consider
this as an optimization problem with two constraints, which
can be demonstrated by Equation 5. Here, G denotes the
complete set of IP addresses we have seen in the network
during the DDoS attack, Gm denotes the set of malicious
IP addresses that the classification program will output for
future actions, and p(i) denotes the traffic profile of the ith-
IP.

argmax
Gm

f(G,Gm) =
∑

g∈G,g/∈Gm

∑
i∈g

∥∥∥p(i)
∥∥∥
2

=
∑

g∈G,g/∈Gm

∑
i∈g

√√√√ n∑
k=1

∣∣∣fp(i)

k

∣∣∣2, (5)

subject to:
∑

g∈Gm

∑
i∈g

pim ≥ δ,

Gm ⊆ G.

(6)

Equation 6 shows two constraints: (1) after eliminating all
the traffic from malicious IP addresses (set Gm), the overall
traffic profile should be reduced by at least δ on fm in the
KNN searching space; (2) the malicious IP set Gm should be
a subset of the complete IP set G.

Deriving the optimal solution of this optimization prob-
lem is expensive, especially when the network we are moni-
toring is at the ISP-level. Hence, we designed Algorithm 1 to
obtain a near-optimal solution Gm efficiently. Since the time
complexity of sorting the IPs according to the risk degree
is O(nlogn), the algorithm conducts the grid partitioning
on the searching space to accelerate the IP classification.

Algorithm 1 Recognition of malicious IPs with grid sorting

1: input: risk profile ∆ = (m, δ)
2: input: complete IP set G
3: initialize set Gm to store the malicious IP addresses
4: grid partitioning: G = {g1, g2, g3, ..., gn}
5: G.sort() ▷ in decreasing order of feature m and

increasing order of other features
6: for g in G do
7: Gm.add(g.items())

8: val←−
∑

i∈g f
p(i)

m

9: total eliminated←− val + total eliminated
10: if total eliminated >= δ then
11: return Gm

12: end if
13: end for

Then, we need to eliminate IP addresses along the m axis
and minimize impacts on other features at the same time.
With this grid configuration, we can always find a corner
grid gm that has the largest value on feature m but also
has the smallest values on irrelevant features. The classifier
considers the grid gm as the most suspicious grid and
gives it the highest priority in classification. Afterwards, the
algorithm sorts the remaining grids in decreasing order of
feature m and increasing order of other features. Finally, the
algorithm eliminates IPs grid-by-grid in such order until the
overall traffic profile returns to the benign area. Figure 6
illustrates an example of such procedure.

4.4 Adaptability

The proposed approach offers superior adaptability com-
pared to other learning-based methods. When deploying a
pre-trained detection model in a new network environment,
users are not required to retrain the model for a suitable fit.
Instead, they can leverage a variety of prior knowledge to
evolve the model, thereby enhancing its robustness across
different environments.

Here, we assume the user will have some type of limited
information about the new network environment as prior
knowledge. Such information includes the network traffic
measurement results or link bandwidth information about
the network environment, some training samples for on-
line learning, and incomplete threshold values for DDoS
detection. Any type of the above information can evolve
the detection model and help the model adapt to the new
environment.

4.4.1 Mapping via Traffic Measurement

Assuming that we have the network traffic measurement re-
sults about the new network environment, we can normalize
the KNN searching space from the trained environment to
the new environment according to the traffic distributions
of the two networks. The easiest way to do this is by using
min-max normalization for the conversion process.

l = max(Dnew[:, i])−min(Dnew[:, i])

D̂[:, i] = l · D[:, i]−min(D[:, i])

max(D[:, i])−min(D[:, i])

(7)
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Fig. 6: An example of the classification process, where the classification module reads the risk profile, partitions the
searching space, and find the malicious IP set Gm grid-by-grid.

Equation 7 shows the conversion process, where D denotes
the original training dataset and Dnew denotes the sampled
traffic from the new network environment. By mapping
the original training data to the new network environment,
our approach is able to conduct DDoS detection without
retraining or re-collecting any new training data.

4.4.2 Online Updating for KD-tree

If the traffic monitoring system can obtain labeled traffic
with the system running, we can conduct online learning on
the proposed detection model, thus making it gradually fit
a new environment. The KNN algorithm does not require
training, making it very suitable and efficient to conduct
online learning. However, the KD-tree, along with the con-
firmed areas, needs to refresh to reflect new knowledge.
We can control the program to update the classifier only
during the idle times to reduce the performance impact on
the detection system. Nevertheless, the time complexity of
refreshing the model is only O(n).

4.4.3 Integration with Existing Thresholds/Rules

Algorithm 2 Integration with existing rules

1: input: existing rule table T as a stack
2: input: detection model D ▷ D is a semi-decision tree
3: while T is not empty do
4: r ←− T.pop()
5: if D(r.condition) exists and overlaps with searching

area set S then
6: remove overlapped areas from S
7: T.push(r)
8: else if D(r.condition) exists then
9: D.update(r)

10: else ▷ D(r.condition) not exists
11: D.root.rightChild←− D ▷ right child will be

called when not satisfying the condition
12: D.root←− r.condition
13: D.root.leftChild←− FILTER action
14: end if
15: end while
16: return D

In certain situations, network administrators may al-
ready have imperfect detection rules (e.g., threshold-based

rules) tailored to their network environment. Below are a
few examples of such rules:

if (traffic.packets_per_second > 2_000_000
or traffic.kbs_per_second > 1_800_000
or traffic.in_out_ratio > 80
or traffic.external_ips > 15_000):
alert()

else:
pass

Network administrators can integrate our approach with ex-
isting rules to enhance DDoS protection efficacy without dis-
rupting the current detection logic or significantly increas-
ing the rule budgets. Since the pre-trained DDoS detection
model is a semi-decision tree, users can incorporate existing
detection rules into the pre-trained model by modifying the
tree structure. This design allows our detection approach
to adapt to existing knowledge without substantially in-
creasing rule budgets and detection overhead. Algorithm 2
illustrates an example procedure for integration, where the
existing detection rules have higher priority. Users can also
specify different decision priorities based on the current
situation.

5 EVALUATION

In this section, we assess our approach from various per-
spectives. We tested our approach not only in simulated en-
vironments using multiple publicly-available DDoS datasets
(Subsection 5.2), but also deployed it at FRGP [11], a re-
gional IXP in Colorado State, to examine its adaptability and
usability in real-world scenarios (Subsection 5.4). Addition-
ally, we conducted a questionnaire survey to quantitatively
evaluate the explainability of our approach (Subsection 5.3).

5.1 Features & Training Data
Our learning-based approach requires labeled training data
as input in order to build the detectors for each attack
type. Therefore, we picked several representative DDoS
datasets from public repositories and captured traffic in real-
world environments to train and test our approach. Table 1
shows the public datasets we used and the types of attacks
they contain. These datasets and our captured traffic cover
volumetric attacks (e.g., ICMP flood, UDP reflection and
amplification attacks), protocol attacks (e.g., TCP SYN flood
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TABLE 1: Datasets for training and testing.

Dataset Name Format Size Attack Type Background Traffic Used For

DARPA 2009 DDoS [52] pcap 1.09 GB TCP SYN flood attack ✓ Training & Testing
CAIDA 2007 DDoS [53] pcap 12.08 GB ICMP flood attack Training & Testing
FRGP NTP Flow Data [54] Argus flows 1.60 TB NTP reflection attack ✓ Training & Testing
DDoS Chargen 2016 [55] flow-tools 74.05 GB UDP reflection and amplification attacks ✓ Training & Testing
FRGP Colorado Traffic [11] FlowRide & NetFlow > 5.00 TB Various ✓ Testing

attacks), and application-layer attacks (e.g., HTTP flood,
Slowloris, etc.). We separately trained four DDoS detection
models using the datasets, with one dedicated to TCP SYN
flood, another to ICMP flood, a third one for UDP reflection
and amplification attacks, and a final one for application-
layer attacks. Together, these models can provide compre-
hensive protection to the victim server.

The training datasets come in various formats, rang-
ing from packet-level pcap data to flow-level connection
data. Since our approach operates at the flow level, we
preprocess the data by converting the original datasets into
traffic profiles tailored to different detection models with a
granularity of five seconds. We also sampled a small portion
(approximately 10%) of the data from the DDoS datasets
for our testing datasets. These testing datasets were not
used during model training but were instead utilized in
the testing phase. Moreover, we sampled network traffic
from a router at FRGP to simulate legitimate background
traffic, thereby complementing the dataset. The overall ratio
of DDoS training data to legitimate background training
data is 1:2.

As our approach works best with low-dimensional
datasets, we selected the best feature sets based on univari-
ate statistical tests. More specifically, we performed χ2 tests
to the data samples to retrieve only 4-6 best features. Table 2
enumerates the four sets of features we selected to train the
four different DDoS detectors. The most frequently used
feature was the ratio of the inbound traffic volume to the
outbound traffic volume. We found that the features listed
in Table 2 are useful in identifying the majority of DDoS
attacks.

5.2 Detection & Classification Efficacy
To evaluate the detection and classification efficacy of our
approach, we first built a simulation environment where a
virtual switch continuously streams collected traffic to the
proposed system. Such a simulation environment enables
us to conduct convenient and efficient tests. During the
evaluation, we simultaneously replayed legitimate traffic
and a portion of the DDoS test traffic. We also dynamically
adjusted the traffic volume during the test to effectively
mimic real-world DDoS scenarios.

5.2.1 Detection Efficacy
For comparison tests, we utilized three additional DDoS
detection approaches. One is a DDoS detection model based
on a support vector machine (SVM) [56]. We trained this
model using the same training data and features as shown
in Table2. Another is FastNetMon [57], an open-source
commercial DDoS detection program. This threshold-based
DDoS detection approach is widely employed in small to
mid-sized enterprises due to its high efficiency and accuracy.
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(a) SYN flood.
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(b) ICMP flood.
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(c) UDP flood.
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(d) Application-layer DDoS.
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Fig. 7: Comparison results of DDoS detection efficacy (ACC:
Accuracy, REC: Recall, PRE: Precision, F1: F1 score, and FPR:
False positive rate).

Lastly, we included Rapid [27], a hybrid DDoS detection
method that combines LSTM and multi-layer perceptron.
The test dataset consists of at least 250 episodes of legitimate
traffic traces and at least 250 episodes of traffic traces with
attacks. An episode is the most basic detection unit, contain-
ing more than five seconds of replayed network traffic.

Figure 7 illustrates the comparison results for DDoS
detection under the simulated environments. For both SYN
flood and ICMP flood attacks, all the three approaches can
achieve very decent detection efficacy. As for UDP and
application-layer attacks, although Rapid and the SVM-
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TABLE 2: Features we utilize for detecting and classifying different categories of DDoS attacks.

Attack Type Features We Use

TCP SYN flood — protocol attack # of inbound TCP packets / # of outbound TCP packets, # of TCP packets,
# of inbound SYN packets, # of outbound ACK packets, # of inbound ACK packets

ICMP flood — volumetric attack # of inbound ICMP packets / # of outbound ICMP packets, # of ICMP packets,
# of inbound echo requests, # of outbound replies (destination unreachable)

UDP reflection & amplification attack — volumetric attack # of inbound UDP bytes / # of outbound UDP bytes, # of UDP bytes,
# of inbound UDP packets / # of outbound UDP packets, # of UDP packets

HTTP GET flood, Slowloris, DNS query attack, etc. — # of inbound bytes / # of outbound bytes, # of bytes, # of sessions,
application-layer attack # of inbound packets / # of outbound packets, # of packets, avg packet interval

based approach are slightly superior to our approach in
terms of recall scores, they perform worse in terms of the
false positive rates. A low false positive rate is essential for
the detection system’s usability in real-world deployments,
as a high number of false alarms will either cause too much
collateral damage or force network administrators to ignore
the detection results. Thus, when accuracies are similar,
users tend to choose the approach with a significantly
lower false positive rate. Compared with FastNetMon, our
approach has a similar false positive rate. However, our
approach is superior to FastNetMon in terms of accuracy
and recall score.

We also halved the training data, resulting in a 1:4 ratio
between the DDoS training data and legitimate background
training data, to assess the detection efficacy in the pres-
ence of unbalanced and insufficient training data. Figure 7e
and 7f illustrate the results. We can see that when the train-
ing data is unbalanced, FastNetMon works significantly
better than the other approaches, as it is a threshold-based
approach. Among the other three approaches, our method
demonstrates superior detection efficacy compared to the
SVM-based approach and exhibits comparable efficacy to
Rapid.

5.2.2 Classification Efficacy

As for the traffic classification, we first replayed a collected
network traffic dataset in a Mininet-based [58] network
environment. This dataset consists of 25 minutes of net-
work traffic with both DDoS attack and legitimate packets.
Then, we ran FastNetMon and the proposed approach re-
spectively, conducting mitigation on malicious IP addresses
reported by them throughout each process. Simultaneously,
we observed the network situation to evaluate the classi-
fication efficacy. To ensure a fair procedure, we did not
intervene in the detection process during evaluation.

Figure 8 shows the classification efficacy results, where
the y-axis indicates the number of packets. By mitigating
all the traffic from the attackers classified by the two ap-
proaches, we can see our approach can eliminate more
malicious traffic than FastNetMon. The only drawback of
our approach is that the classification will only be triggered
when an attack is detected. After proceeding with mitiga-
tion, once the traffic profile is no longer labeled as malicious,
our approach will stop classifying IP addresses as malicious,
and only begin classification again as soon as the traffic
profile is labeled malicious again. This explains the periodic
fluctuations on the number of packets for our approach as
seen in the figure.
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Fig. 8: Efficacy of DDoS traffic classification.

5.2.3 Timeliness

We measured the runtime of our approach on a 100 Gbps
link (please refer to Section 5.4 for details of the link) and
presented the results in Figure 9. This figure shows three
cumulative step histograms, illustrating the runtime for pre-
processing a batch of traffic (five seconds), monitoring a
batch of legitimate traffic, and monitoring a batch of traffic
with attacks, respectively. Here, the runtime for monitor-
ing legitimate traffic consists of the time consumption of
pre-processing and detection; the runtime for monitoring
traffic with attacks consists of the time consumption of pre-
processing, detection, and classification.

From the figure, we can see that the runtime is short
when there are no attacks present, considering that the pro-
gram has a five-second time window to operate. Moreover,
as the detection model is a semi-decision tree, it will directly
output the results without conducting any KNN queries if
the traffic profile is situated in a confirmed benign area.
Thus, the majority of time is spent on traffic pre-processing
when monitoring only legitimate traffic. When there is a
considerable amount of incoming DDoS traffic, the runtime
almost doubles since fine-grained IP classification is time-
consuming. Fortunately, when an attack is detected, the
system does not need to complete the calculation within five
seconds to catch the next batch. The top priority at the time
an attack is detected is to mitigate the attack, and therefore,
an increased delay in classification is still acceptable.

In conclusion, our approach is efficient when detecting
and classifying DDoS traffic. With delays of around two
seconds during idle time and five seconds during the DDoS
peak, our approach is able to produce timely defense for the
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Fig. 9: Cumulative step histograms of processing time
(tested with 100 Gbps flow-level traffic).

Composition of the participants

Participants with DDoS-related expertise 15
Participants with security backgrounds but not DDoS-related expertise 4
Participants without security backgrounds 4
The total number of participants 23

Basic information of the questionnaire survey

Number of questions 25
Approximate time to explain the usage of our approach (min) 15
Approximate time to complete the survey (min) 30

TABLE 3: Basic information of the questionnaire survey.

victim.

5.3 Explainability
To evaluate the explainability of our approach, we con-
ducted a questionnaire survey, which is a formal and ef-
fective method in Human-Computer Interaction (HCI) re-
search [59], to collect feedback from participants and as-
sess their understanding of the system’s functionality and
decision-making process.

We disseminated survey questionnaires to a range of
security labs and individuals without a security background
in the USA and China. In total, 23 people participated in the
survey. Table 3 provides an overview of the participants’
basic information as well as essential details about the
questionnaire survey.

Before the questionnaire, we provided a brief introduc-
tion to the background knowledge, our design, and the
output explanatory information. We then presented several
examples of the outputs to demonstrate how they explain
detected attacks and how to interpret them. Figure 10 and
11 display a few examples from the questionnaire.

We proceeded to ask participants questions about the
explainability of our approach, such as the ease of under-
standing the outputs, the intuitiveness of the visualizations,
and whether the explanatory information met the design ob-
jective. Finally, we administered tests to assess participants’
comprehension of the explanatory information for various
attack types and their ability to make correct interventions.
Specifically, we presented scenarios of different attack types
detected by our approach and asked participants to interpret
the explanatory information and recommend intervention
measures for the next step under varying circumstances.
Responses were collected anonymously to protect privacy
and minimize bias.
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(a) Before normalization. We can clearly see that the training
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(b) Normalized according to the traffic distribution. The dark
green dot is the current traffic profile for inference, whose risk
profile ∆ = (”number of inbound ICMP packets”, 52041).

Fig. 10: Examples of visualized KNN detection models for
identifying ICMP attacks.

Figure 12 presents some key findings from our question-
naire evaluation. Although a few individuals questioned the
explainability aspects of our approach, the majority of par-
ticipants agreed that the risk profile helps users understand
the root cause and quantify the attack. Additionally, the
visualized KNN model provides an intuitive explanation of
the network context, detection models, and detection logic
for network administrators. The status graph illustrates the
current attack stage, intensity, confidence level of the alarm,
and mitigation cost-effectiveness, ultimately guiding net-
work administrators in making appropriate interventions.
Therefore, in terms of transparency, traceability, heuristic,
and ease of learning, our proposed approach successfully
achieves its design goals.

5.4 Case Study: A Real-world Deployment

In addition to the evaluation under emulation environ-
ments, we deployed our approach at several links in FRGP
to further test its deployability and adaptability. This real-
world deployment also provides a good opportunity to
demonstrate how explanatory information can help net-
work administrators adopt conservative tactics for eliminat-
ing false alarms.
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(a) Status graph of an attack shown in Figure 10b. Network
administrators should proceed with mitigation as this attack
has a high intensity and is already in the overwhelming stage.
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(b) A detected ICMP flooding attack. This attack is in the
stalemate stage. Network administrators can either ignore this
attack if following a conservative protection policy or proceed
with mitigation immediately if following a more aggressive
protection policy.

Fig. 11: Examples of status graphs for explaining ICMP
attacks.
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Disagree/NO Neither agree nor disagree Agree/Yes

Fig. 12: Selected questionnaire evaluation results on the
explainability of our approach.

5.4.1 Measures for Ethical Considerations

As the network traffic from FRGP contains private informa-
tion of users and trade secrets of operators, we take effective
measures to address possible ethical considerations. Data is
collected by FRGP operators and their collaborators from
a local educational institution on an ongoing basis. We
formulate a Memorandum of Agreement (MoA) with FRGP
operators and their collaborators to stipulate the correct
usage and accessibility of the data. To protect the privacy of

users and prevent data leakage, we set rigorous regulations
for data analysis and storage. We list the regulations below:

1) The IP addresses in the network traffic data are
anonymized in a prefix-preserving manner with
CryptoPAN [60], before collection and storage. This
ensures we cannot trace back to individual users
during our deployment.

2) All the data is stored on a restricted server. Besides
the SSH port, all the ports on the server are closed,
and no connections can be initiated from the server.
This minimizes the risk of accidental leakage of
network data.

3) Our approach can only be deployed on the restricted
server.

4) We are only allowed to receive the detection re-
sults from the restricted server. Other information
related to the IXP operations have to remain on the
restricted server, such as prefix-level measurements,
the trained model, and pre-processed data.

5.4.2 Deployment Setup
The restricted server where our approach is deployed has
an Intel Xeon Silver 4116 processor with 64 GB of RAM.
The flow-level data is collected from multiple routers at
FRGP during a 3-month period between 10:20 MST on
February 24 to 21:40 MST on May 21, 2020. At its peak,
the traffic volume usually reaches 100 Gbps during the day.
Our approach can simultaneously obtain access to network
traffic flows in three formats, which are NetFlow, Argus
Flow [61], and FlowRide, a newly developed flow-capture
tool that summarizes traffic every five seconds. The pre-
processing module converts the traffic flows into the overall
traffic profiles and IP-level traffic profiles for each detector.

As was true in the evaluation of the simulation environ-
ment, the deployed detection model was pre-trained with
datasets shown in Table 1. To adapt the pre-trained detection
model to the FRGP environment, we conducted several
measurements on the network to obtain the data distribu-
tion for each traffic feature used by the detectors. Then, we
mapped the pre-trained model to the FRGP environment
according to these distributions. While the program was
running, we were able to receive the detection results for dif-
ferent types of attacks (i.e., NTP, TCP SYN, ICMP, and UDP
attacks). During the evaluation, the FRGP operators also
gave us information about DDoS attacks they discovered
using Arbor Network’s PeakFlow and Threat Mitigation
System (TMS) [62]. Of a particular note is that the attacks
reported by FRGP cannot represent ground truth as the IXP
also suffers from false positives and false negatives, but they
have good reference values for evaluating our approach. In
addition, our contract with FRGP operators does not allow
us to alter any traffic flows in their network, so we did not
evaluate the classification efficacy in this deployment.

5.4.3 Findings
To better quantify the traffic change during an anomaly, we
define peak intensity index ζ , calculated as ζ = Vpeak/Vexp,
where Vpeak denotes the peak volume of the anomaly and
Vexp denotes the expected traffic volume. For an anomaly
with a short duration (less than 30 minutes), we treat
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Fig. 13: Detection results from 10:20 MST on February 24 to
21:40 MST on May 21, 2020. Red circles indicate the attacks
only reported by FRGP operators but not detected by our
approach. Yellow circles indicate the attacks only detected
by our approach but not reported by FRGP operators. Other
dots indicate the attacks detected by both parties. The depth
of the background color represents the density of attacks.

the traffic volume right before the anomaly as Vexp. For
an anomaly with a longer duration, we calculate Vexp by
statistically averaging legitimate traffic volumes at the same
time in the surrounding seven days. Figure 13 shows the
anomaly detection results. The top subplot illustrates the
peak intensity indexes ζ of the anomalies occurring at
different times. The bottom subplot illustrates the duration
of the detected anomalies at different times.

Our approach successfully detected over 90% of DDoS
attacks reported by FRGP operators, including all severe
attacks with a ζ greater than 2. The five missed alarms (high-
lighted with red circles in Figure 13) were all low-intensity
attacks that did not significantly damage the systems.

Furthermore, our approach proved more sensitive in
detecting DDoS attacks, generating 21 alarms that FRGP op-
erators missed (highlighted with yellow circles in Figure 13).
These 21 alarms involved low-intensity, short-duration at-
tacks, which could represent small-scale floods undetected
by FRGP’s system or false positives. The effective explain-
ability of our approach enabled network administrators to
determine that most of these attacks were in preparatory or
stalemate stages based on their status graphs. Consequently,
if network administrators opt for a conservative mitigation
policy, they can quickly review the explanatory information
and choose to disregard these alarms.

In conclusion, the real-world deployment demonstrates
the adaptability and usability of our approach. Besides,
the explanatory information can quickly help the network
administrators identify possible false positives or less threat-
ening attacks, thereby making necessary interventions.

6 CONCLUSIONS

This paper presents a learning-based approach for detect-
ing and classifying DDoS traffic. In comparison to existing
methods, the proposed approach offers two key advantages:
(1) explainability and (2) adaptability. By employing a KD
tree and a modified KNN algorithm, the method generates
a tree-like classifier that not only accelerates predictions
but also produces interpretable outputs. These outputs of-
fer network administrators a clear understanding of net-
work context, detection logic, attack stages, and mitiga-
tion cost-effectiveness. Additionally, users can easily adapt
the detection model to different environments using prior
knowledge, without the need to retrain the model from
scratch. Leveraging grid sorting, the classification module
significantly reduces collateral damage and delivers results
promptly.

We trained the detection model using representative
DDoS datasets from public repositories in a simulated envi-
ronment. We then evaluated the approach in both simulated
and real-world settings. The evaluation results demonstrate
the effectiveness and efficiency of this approach in both
scenarios, as well as its adaptability from small simulated
environments to a real IXP setting. Regarding explainabil-
ity, the questionnaire evaluation reveals that in terms of
transparency, traceability, heuristic, and ease of learning, our
method successfully achieves its design goals.
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