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ABSTRACT
With the continuous appreciation of cryptocurrency, cryptojacking,
the act by which computing resources are stolen to mine cryptocur-
rencies, is becoming more rampant. In this paper, we conduct a
measurement study on cryptojacking network traffic and propose
CryptoJacking-Sniffer (CJ-Sniffer), an easily deployable, privacy-
aware approach to protecting all devices within a network against
cryptojacking. Compared with existing approaches that suffer from
privacy concerns or high overhead, CJ-Sniffer only needs to access
anonymized, content-agnostic metadata of network traffic from
the gateway of the network to efficiently detect cryptojacking traf-
fic. In particular, while cryptojacking traffic is also cryptocurrency
mining traffic, CJ-Sniffer is the first approach to distinguishing
cryptojacking traffic from user-initiated cryptocurrency mining
traffic, making it possible to only filter cryptojacking traffic, rather
than blindly filtering all cryptocurrency mining traffic as commonly
practiced. After constructing a statistical model to identify all the
cryptocurrency mining traffic, CJ-Sniffer extracts variation vectors
from packet intervals and utilizes a long short-termmemory (LSTM)
network to further identify cryptojacking traffic. We evaluated CJ-
Sniffer with a packet-level cryptomining dataset. Our evaluation
results demonstrate that CJ-Sniffer achieves an accuracy of over
99% with reasonable delays.

CCS CONCEPTS
• Security and privacy→ Network security; • Networks→
Network measurement; Network security; Network monitoring;
• Information systems→ Data mining.
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1 INTRODUCTION
With the frenzy of the cryptocurrency market, cryptocurrency min-
ing (cryptomining) has become a method of making huge profits.
In fact, cryptomining is critical in many blockchain-based systems,
as it not only provides a means to verify cryptocurrency transac-
tions, but more importantly, also helps establish consensus through
different mechanisms [32], such as Proof of Work (PoW) and Proof
of Space (PoS). Therefore, to encourage cryptomining, cryptocur-
rency systems usually reward miners with transaction fees and
extra coins. Unfortunately, the lucrative potential of cryptomining
has caught the attention of hackers, who compromise personal
computers, servers, or even Internet-of-Things (IoT) devices, such
as smart TVs, to mine cryptocurrencies (e.g., BTC, XMR) [51]. Such
activity is called cryptojacking, which is the unauthorized use of
someone else’s computing resources to mine cryptocurrency. Such
a hacker is also called a cryptojacker and such a resource is said
to be cryptojacked.

There are many methods of conducting cryptojacking [24]. For
example, a cryptojacker can trick a victim into clicking on a mali-
cious link in an email to download cryptomining scripts onto their
computer, infect a website with JavaScript code to automatically
run the code by a victim’s browser when it visits the website, or
compromise a server to stealthily execute cryptomining programs
in the background. Although Coinhive, an in-browser mining ser-
vice provider, was shut down in March 2019, cryptojacking has
still been active and evolving [44]. According to the Unit 42 Cloud
Threat Report [43], from December 2020 to February 2021, 17% of
organizations with a cloud infrastructure showed signs of crypto-
jacking, causing significant computing resource abuse and tremen-
dous economic loss. Recently, the SophosLabs team also disclosed
that cryptojackers compromised unpatched Exchange servers to
mine XMR [10].

There have been many endpoint-based approaches to crypto-
jacking defense [14, 24, 46]. By monitoring software operations,
website visits, or hardware conditions, an endpoint-based approach
can often achieve decent accuracy and is usually easy to deploy if
resources permit, but it is almost infeasible to deploy it on all end-
points due to user inertia and many endpoints are indeed resource-
constrained. To address this issue, researchers and developers pro-
posed network-based approaches to detect general cryptomining
activities by analyzing cryptominers’ network traffic [11, 26, 37].
These approaches are often deployed only at a network gateway,
avoiding the need for every device in the network to deploy a de-
fense solution. However, as application-layer behavior inference
through layer-3 network traffic is extremely difficult, whether these
network-based approaches are based on IP blocklists or deep packet
inspection, or conduct state-of-the-art traffic analysis, they can
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hardly distinguish cryptojacking from user-initiated cryptomin-
ing, which is cryptomining performed by legitimate users of com-
puting devices in use. Thus, network-based approaches treat all
cryptocurrency mining traffic as either legitimate and allowing all
of the traffic, or malicious and dropping all of the traffic.

To fill the missing gap, in this paper, we first thoroughly mea-
sure and model the characteristics of cryptomining network traffic,
including exploring the tiny differences between cryptojacking
traffic and user-initiated cryptomining traffic. We then propose
CryptoJacking-Sniffer (CJ-Sniffer), a content-agnostic, easily de-
ployable approach that not only can detect cryptomining activities,
but also can distinguish cryptojacking from user-initiated crypto-
mining, only by analyzing layer-3 network traffic.

CJ-Sniffer operates in three phases. In the first phase, CJ-Sniffer
inspects packet sizes of every connection to discard obviously irrele-
vant connections, which could significantly reduce the data volume
for further analysis. In the second phase, CJ-Sniffer detects crypto-
mining connections by comparing every connection’s packet inter-
val distribution with labeled traffic. In the third phase, CJ-Sniffer
leverages the long short-term memory (LSTM) model [23] to distin-
guish cryptojacking connections from user-initiated cryptomining
connections. As a result, CJ-Sniffer can efficiently classify network
connections into three categories: cryptojacking connections, user-
initiated cryptomining connections, and other connections.

Our work makes the following contributions:

• CJ-Sniffer as a content-agnostic, network-based approach to
detecting cryptojacking activities is not only efficient since
it does not inspect packet payload, but also preserves user
privacy by only leveraging a limited amount of anonymized
metadata of packets.
• CJ-Sniffer is the first work to distinguish cryptojacking traf-
fic from user-initiated cryptomining traffic. This is important
because it is often necessary to only filter cryptojacking traf-
fic while preserving user-initiated cryptomining traffic from
a device. While the difference between cryptomining traffic
and other network traffic is already challenging to detect at
a network gateway, the difference between cryptojacking
traffic and user-initiated cryptomining traffic is significantly
harder to detect.
• CJ-Sniffer is easy and efficient to deploy. While cryptojack-
ing is rampant, any institution, enterprise, or an individual
user can deploy CJ-Sniffer at their network’s gateway to
safeguard all the computing devices in their network from
cryptojacking at line speed.
• We collect, measure, and release the first labeled, packet-
level cryptomining traffic dataset to the research community.
It contains more than 500 hours of both cryptojacking and
user-initiated cryptomining traffic from various types of
computing devices.

We evaluated CJ-Sniffer with real-world network traffic and
found that its efficacy and efficiency are both high. Even running
on an ordinary personal computer, CJ-Sniffer is capable of provid-
ing real-time traffic monitoring for an enterprise or campus-level
network. To reach a detection accuracy of 95%, it only needs to

collect approximately 160 network packets from a cryptojacked de-
vice, and approximately 200 network packets to reach an accuracy
of 97%, all with nearly zero false alarms.

The rest of this paper is organized as follows. After we outline
related work in Section 2, we describe our discoveries of crypto-
jacking and cryptomining traffic properties (Section 3). We then
illustrate CJ-Sniffer’s design in Section 4 and evaluate it in Section 5.
We discuss its limitations and open issues in Section 6 and conclude
the paper in Section 7. Of a particular note here is that the research
described in this paper is extended from our early poster paper
published in [20].

2 RELATEDWORK
In the past few years, researchers have proposed various cryp-
tomining or cryptojacking defense approaches. According to the
deployment position of these approaches, they are generally either
endpoint-based or network-based, or a combination of the two with
multiple deployment positions.

2.1 Endpoint-based Cryptojacking Defense
Endpoint-based cryptojacking defense is dominated by various
endpoint-based cryptojacking detection approaches. Usually, these
approaches can be easily embedded in antivirus tools, system fire-
walls, or even browsers.

Endpoint-based cryptojacking detection approaches can use dif-
ferent types of input to conduct detection. The most common input
is source code of software or websites. For example, CMTracker [24]
first uses hash-based and stack-based profiling methods to extract
features from websites and then matches the features against hand-
crafted rules to identify websites with cryptojacking code; SEIS-
MIC [46] derives semantic signatures from known cryptojacking
scripts and then matches running scripts at an endpoint against
signatures to detect cryptojacking scripts. Besides, hardware condi-
tions can also be used as input. Gomes et al. [21] extracted features
from the CPU usage and used machine learning to detect crypto-
jacking processes. Tahir et al. [42] proposed a machine learning
detection solution based on features from Hardware Performance
Counters (HPCs) values. However, hardware-based approaches may
generate an excess of false alarms, as many legitimate processes
sometimes utilize hardware in a way similar to cryptojacking. To
address this issue, CoinPolice [38] actively changes the execution
speed of processes, then collects execution traces at various ex-
ecution speeds, and inputs the collected data into a deep neural
network to pinpoint cryptojacking scripts.

These approaches can often achieve a decent accuracy because
they have access to a variety of system and software metrics from
end-users. However, the popularity of these approaches is limited by
user habits, as not all users are willing to install cryptojacking detec-
tion software and have it monitor their computer thoroughly. Also,
some IoT devices, such as smart furniture and health-monitoring
devices, have too little resources to deploy these approaches. Addi-
tionally, cryptojacking malware is becomingmore sophisticated; for
example, hackers could obfuscate their code to thwart an endpoint-
based approach. It is thus necessary to update an endpoint-based
approach frequently.



CJ-Sniffer: Measurement and Content-Agnostic Detection of Cryptojacking Traffic RAID 2022, October 26–28, 2022, Limassol, Cyprus

Table 1: Comparisons of selected network-based cryptomin-
ing detection approaches (#: not support; G#: partially sup-
port;  : fully support).

Approach
Content
Agnostic

Cryptomining
Detection

User-initiated Cryptomining
v.s.

Cryptojacking

DPI-based solution #   
Cisco solution [8] G#  #
Munoz et al. [26]   #
Pastor et al. [37]   #
Hu et al. [25]   #
MineHunter [50]   #
CJ-Sniffer    

2.2 Network-based Cryptomining Defense
Network-based cryptomining defense operates at certain vantage
points of a network so that any devices within the network can be
protected. During the early rise of cryptomining, some companies,
schools, and institutions deployed some simple network-based ap-
proaches to guard their computing devices. For example, network
administrators can block the IP addresses of confirmed mining
pools and websites hosting cryptomining code [8, 49]; or, intrusion
detection systems can conduct deep packet inspection (DPI) to dis-
cover specific cryptomining text strings in packet payloads [16].
These approaches are easy to develop and deploy, but they can only
offer preliminary defense against cryptomining due to their low
levels of accuracy.

Later, as network traffic analysis techniques [36] evolved, sev-
eral projects began to detect cryptomining activities with content-
agnostic traffic flows. Munoz et al. [26] inspected network flows
in NetFlow or IPFIX format with some learning-based algorithms
(e.g., SVM, CART, C4.5, and Naïve Bayes) to detect cryptomining
activities. Caprolu et al. [12] built a random-forest-based frame-
work to classify network traffic related to pool mining, solo mining,
and activities from active full nodes. Pastor et al. [37] extracted
several features from NetFlow data and leveraged deep learning
models to detect encrypted cryptomining malware connections;
Hu et al. [25] indicate that using random forest with extracted dis-
criminative network traffic features can accurately and efficiently
detect cryptomining traffic; MineHunter [50] detects cryptomining
connections by analyzing packet intervals with a similarity calcu-
lation algorithm based on credible probability estimation. These
network-based approaches come with many advantages: (1) once
deployed in a network, they can protect all users inside the network;
(2) they do not analyze message content from users, thus protecting
user privacy; (3) they have a higher throughput than DPI methods
due to their smaller input size (network flow records vs. packet
trace with payloads).

However, none of the aforementioned approaches distinguish
between cryptojacking and user-initiated cryptomining activities (as
demonstrated in Table 1). They cannot meet the desire of many
networks to forbid only cryptojacking traffic but still allow the
user-initiated cryptomining traffic.

2.3 Hybrid Cryptojacking Defense
Hybrid cryptojacking defense combines both endpoint-based and
network-based approaches. For example, Gomes et al. introduced

CryingJackpot [22], which first extracts features from both network
traffic flows and endpoint operating system logs and then utilizes
unsupervisedmachine learning algorithms to discover cryptojacked
devices with a high F1-Score. Although hybrid cryptojacking de-
fense can achieve robust and accurate detection results on different
types of cryptojacking activities, it requires a variety of data to
operate, making it challenging to deploy in the real world.

3 MEASUREMENT OF CRYPTOMINING AND
CRYPTOJACKING TRAFFIC

As discussed in Section 1, we classify cryptomining activities into
two categories: (1) user-initiated cryptomining, refers to the crypto-
mining conducted by the owner or legitimate user of the computing
device; (2) Cryptojacking, refers to the cryptomining conducted by
attackers using stolen computing resources. In this section, we
study and measure the network traffic generated from both types
of cryptomining activities. The design and evaluation of CJ-Sniffer
is based on these measurement results.

We mainly investigate the mining traffic related to XMR [30],
which dominates the cryptojacking [9] campaigns in today’s Inter-
net. XMR applies CryptoNight [31] as its hash function, which is
ASIC resistance and enables cryptojackers to obtain reasonable prof-
its through different types of computing devices [27]. Conversely,
other cryptocurrencies are much harder to mine with ordinary
computing devices, making them less profitable for cryptojackers.
In addition, other cryptocurrencies that employ PoW consensus
mechanisms, will generate similar cryptomining traffic to that of
XMR. We further demonstrate this point in Section 5.3 and show
that by studying the cryptomining traffic of XMR, we can detect
many other PoW-based cryptomining traffic

3.1 In-depth analysis of general cryptomining
traffic

In PoW-based cryptocurrency systems, cryptominers need to par-
ticipate in puzzle solving competitions to obtain rewards or transac-
tion fees. Due to the exceptional difficulty of solving these puzzles,
individual miners with limited computing capacities, particularly
the cryptojacked devices, have to join mining pools to ensure stable
and prompt profits [33]. Thus, the traffic between miners and the
mining pool is the key to detecting cryptomining.

For coordination, the mining pool and miners need to obey cer-
tain protocols, such as Stratum [40], to register nodes, distribute
tasks, and submit results. Figure 1 illustrates the mining process
and messages between miners and the mining pool. No matter what
types of protocols the mining pool utilizes, there should be at least
four types of messages to cover the necessary mining operations:
• The login or registration message𝑚𝑠𝑔𝑙 , enabling miners to
join the mining pool, can have 75 to 600 bytes per message.
• The login confirmation message 𝑚𝑠𝑔𝑐 , confirming the lo-
gin status, sometimes comes with an assignment allocation
message.
• The assignment allocation message𝑚𝑠𝑔𝑎𝑙𝑙𝑜 , allocating the
most recent mining task to the miner, should at least have
285 bytes.
• The result message𝑚𝑠𝑔𝑟 , returning calculated results to the
mining pool, usually has more than 200 bytes.
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Mining poolMiner
Login (msg_l)

Login Confirmation (msg_c) / 
Assignment  Allocation (msg_allo)

Wallet_ID: "XXX...XXX.worker_id", 
Method: "login",
Algo: ["algo1",...,"algon"],
......

ID: "J_1", Job_ID: "JOB_1",
Blob: "BLOB_1", Height: "H_1"
Algo: ["algo1"], Target: "T_1"
......

Assignment Allocation (msg_allo)

Job_ID: "JOB_1",
Blob: "BLOB_1", Height: "H_1"
Algo: ["algo1"], Target: "T_1"
......

Assignment Allocation (msg_allo)

......

Result (msg_rst)

Job_ID: "JOB_n",
Nonce: "XXX...X", Result: "HASH_n"
......

......

Necessary fields  
in the message

Figure 1: Network messages generated by cryptomining and
their necessary fields.

Besides, the login message and confirmation message often appear
only once during each connection. Thus, assignment allocationmes-
sages dominate the inbound traffic and result messages dominate
the outbound traffic during the whole cryptomining process. Fig-
ure 2 illustrates communication between a miner and mining pool.
Excluding TCP control packets such as SYN and ACK packets, we
can see that the inbound traffic is mainly composed of assignment
allocation messages and the outbound traffic is mainly composed
of result messages.

The size of the packet in the cryptomining traffic is distinctive.
Figure 3 illustrates packet size ranges of cryptomining traffic and
some contrast traffic (collected from our lab and campus network).
We can see that the sizes of cryptomining packets are more monot-
onous compared with others, since the same type of cryptomining
messages usually have similar lengths. In addition, cryptomining
packets generally have smaller sizes compared with other types
of traffic. For most web applications, their maximum packet sizes
are usually subject to the network’s maximum transmission unit
(MTU), which is usually around 1500 bytes. However, the informa-
tion in each cryptomining operation cannot fill even half of the
MTU. Besides, due to timeliness requirements, the miner or mining
pool cannot bank messages and send them in a single packet. Thus,
all the cryptomining packets are relatively small in size.

Moreover, the frequency of inbound packets is more stable than
that of outbound packets. This is because mining tasks expire
quickly with the growth of the blockchain. The mining pool needs
to keep sending assignment allocation messages (inbound packets)
with the growth of the blockchain to ensure thatminers always have
valid up-to-date tasks. In the short term, the speed of blockchain ex-
pansion is very stable, therefore the frequency at which assignment
allocation messages (inbound packets) are generated is also stable.
On the other hand, the frequency of result submission messages
(outbound packets) is related to the hash rate—the speed at which
a device is completing an operation in the cryptomining code. The
higher the computing performance of a device, the higher its hash
rate, and the higher the frequency it sends result messages (out-
bound packets) to the mining pool. Figure 4 illustrates this pattern,
where the frequency of outbound packets is proportional to the

hash rate while the frequency of inbound packets is relatively sta-
ble. It’s also important to note that the frequency of assignment
allocation messages doesn’t need to be higher than that of result
submission messages. Because one assignment can usually derive
more than one sub-results to fully complete.

Last but not least, the generation of cryptomining packets is not
subject to human behavior. The time to generate the next result
message depends on the time the device completes the hash back-
tracking. Analogously, the time to generate the next assignment
allocation message depends on the time the mining pool proposes
a new task. Hence, the intervals of cryptomining packets exhibit
stable and unique distributions. These interval distributions can be
treated as fingerprints of cryptomining traffic (illustrated in Figure 5
and 6). We can identify a cryptomining connection by checking
whether these interval distributions are obeyed.

3.2 Cryptojacking vs. user-initiated
cryptomining traffic

After studying cryptojacking activities, we found that they differ
from user-initiated cryptomining in the robustness of hash rate.
This further results in a difference in the network traffic generated
by the two.

1 <script src="https ://www.XXXpool.com/lib/base.js"></

script >
2 <script >
3 var miner=WMP.User('<your -site -key >','<username >'

,{

4 threads: 4, // number of maximum threads

5 autoThreads: true , // adjust the number of

threads automatically

6 throttle: 0.85, // maximum system load

7 forceASMJS: false
8 });

9 miner.start();

10 </script >

Listing 1: JavaScript code piece of web-based cryptojacking.

Unlike user-initiated cryptomining, cryptojacking activities have
the following features that can lead to unstable mining hash rate:
(1) First of all, as injected programs, the execution priority of cryp-
tojacking scripts is usually low, making them easy to be disturbed
by the resource manager of operating systems. Modern operating
systems will not blindly allocate a huge chunk of resources to ran-
dom processes (e.g., cryptojacking) because they need to ensure
there is enough redundant load to handle high-priority tasks that
may occur. Conversely, user-initiated cryptomining usually runs
with a high execution priority by system administrators. Even with
many background processes, user-initiated cryptomining still has
access to a large amount of hardware and software resources. (2)
Cryptojackers use stolen computing resources to mine cryptocur-
rencies. To prevent being discovered by legitimate users of the
computing device, cyptojackers usually conduct cryptojacking in
surreptitious ways. For example, cryptojackers may dynamically
adjust the hash rate of cryptojacked devices to prevent interference
with the normal use of users. Listing 1 shows part of the JavaScript
code that is used for browser-based cryptojacking. We can see that
the hacker lets the device automatically adjust the number of min-
ing threads to make sure the system load is under 85%. By doing
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Figure 2: Visualized network packets between an XMRmining pool and an XMRminer. Other messages refer to packets that do
not carry meaningful payloads, such as TCP SYN and FIN packets.
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Figure 6: Interval distribu-
tion of result submission
messages (outbound packets
larger than 200 bytes).

so, legitimate users will not sense any abnormality in the comput-
ing device, thereby allowing the cryptojacking program to run in
the background for a long time. Otherwise, the user will quickly
sense the abnormality and scan the device for a virus. (3) Moreover,
executions of cryptojacking scripts usually rely on executions of
existing software running in the system such as the browser, termi-
nal, or Apache server. Due to the uncertainty of human behavior,
the execution situation of such software is inconstant, making the
computing resources devoted to cryptomining erratic.

We measured the hash rate trends of user-initiated cryptomining
and cryptojacking in the real world on the same machines (demon-
strated in Figure 7). The measurement results are consistent with
our previous analysis that cryptojacking produces unstable hash
rates in most cases. Furthermore, according to measurements in
Section 3.1, this hash-rate instability will generate result submission
messages in unstable frequencies.
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(c) Some cryptojacking activities
have stable hash rates. However,
these hash rates are still lower
than that of user-initiated crypto-
mining using the same hardware.
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Figure 7: Trends in hash rate of different types of cryptojack-
ing activities (extracted from our collected dataset described
in Table 2).
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Figure 8: One operational model of CJ-Sniffer, where it is
deployed apart from the IDS.
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4 DESIGN OF CJ-SNIFFER
In this section, we describe the design details of CJ-Sniffer, an in-
network-based cryptojacking traffic detection approach.

CJ-Sniffer can be deployed within the intrusion detection system
(IDS) of any router or switch between the mining pools and devices
to be protected. Particularly, CJ-Sniffer functions effectively at the
gateway of a network, since this vantage point enables CJ-Sniffer
to access complete inbound and outbound traffic from all the de-
vices in the network. In addition, people can treat CJ-Sniffer as a
cloud service and stream the network traffic to it for detection. To
prevent leakage of user information in this case, the IP addresses
in the traffic flows are anonymized with Crypto-PAn [48] and sent
encrypted through a Kafka message queue. Thus, the CJ-Sniffer
service provider or any third parties cannot fetch necessary informa-
tion to trace back to individuals in the network. Figure 8 illustrates
the operational model of CJ-Sniffer in this type of deployment,

As stated in Section 1, CJ-Sniffer detects cryptojacking activities
in three phases. The first detection phase can quickly filter out
irrelevant traffic flows, leaving only suspicious ones for future
analysis. The second phase inputs suspicious traffic and outputs
confirmed cryptomining traffic. At last, the third detection phase
utilizes an LSTM model to distinguish cryptojacking traffic from
user-initiated cryptomining traffic.

4.1 Preprocessing
CJ-Sniffer requires the timestamps and six fields in the IP packet
headers for detection, which are the source and destination IP
addresses, the source and destination port numbers, the protocol
type, and the packet size. CJ-Sniffer is therefore content-agnostic,
as it does not require any payload information.

To obtain this content-agnostic data, we recommend installing
sFlow [39] in the router or switch to stream traffic flows to CJ-
Sniffer in real time. Other network traffic capturing engines like
Netmap [41] and PF-RING [7] are also compatible with the pro-
posed approaches. Once CJ-Sniffer fetches the traffic flows, it ex-
tracts the aforementioned data fields and stores them in a table
for future analysis. In the table, each entry represents a received
packet. Meanwhile, CJ-Sniffer discards all other information from
the traffic flows.

4.2 Phase one: rapid filtration
In phase one, CJ-Sniffer rapidly filters out irrelevant network traffic
and picks out only suspicious traffic for future analysis. This step
can significantly reduce the size of the traffic data for inference,
increasing the throughput of CJ-Sniffer.

To conduct rapid filtration, CJ-Sniffer first eliminates packets
without payload (e.g., TCP SYN, ACK, and FIN packets), packets of
irrelevant protocols (e.g., ICMP), and internal packets. CJ-Sniffer
then groups remaining packets by connections, which are defined
as consecutive packets that are sent between the same IP addresses
and port numbers. Then, CJ-Sniffer inspects the packet sizes in each
connection to judge whether it could be a suspicious cryptomining
connection.

We define a sliding time window to monitor each connection and
make a judgment. During each time window 𝑡 , CJ-Sniffer collects a
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Figure 9: Packet size distribution of different types of traffic.

list of packets 𝑃 (𝑃 = {𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑛}) from the ongoing connec-
tion. It then represents inbound and outbound packets with their
size values and stores them into two lists (𝑙𝑖𝑛 for inbound packets
and 𝑙𝑜𝑢𝑡 outbound packets) respectively. Once this time window is
about to end, CJ-sniffer will check the value distributions of 𝑙𝑖𝑛 and
𝑙𝑜𝑢𝑡 to determine whether the connection is suspicious. According
to the traffic measurement study in Section 3.1, CJ-Sniffer utilizes
three sets of rules to determine suspicious connections:
• The majority of the packets’ sizes should lie within the cryp-
tomining packet size range;
• The majority of the outbound packets’ sizes should be uni-
form (illustrated in Figure 9a);
• The majority of the inbound packets’ sizes should have val-
ues drawn from the same narrow interval (illustrated in
Figure 9b).

Once packets within a connection follow these three rules, CJ-
Sniffer will label this connection as suspicious and pass it onto
the next phase for deeper analysis. Note, labeling a connection as
suspicious does not mean this connection is confirmed to be related
with cryptomining. For example, some connections generated by
NTP or DNS can have similar distribution of packet sizes. Hence,
CJ-Sniffer only filters out obviously irrelevant traffic in this phase
to accelerate the detection process.

4.3 Phase two: detection of cryptomining
In phase two, CJ-Sniffer uses filtered network traffic from phase
one as input and outputs detected cryptomining traffic. According
to the cryptomining traffic study in Section 3.1, to accurately iden-
tify cryptomining traffic, CJ-Sniffer inspects the packet intervals of
suspicious connections to determine whether they are generated
by the cryptominer or the mining pool. Specifically, CJ-Sniffer com-
pares both the inbound and outbound packet interval distributions
to distributions from collected cryptomining traffic. As long as one
of the inbound or outbound packet intervals follow the same dis-
tribution with cryptomining traffic data, CJ-Sniffer will label the
connection as a cryptomining connection.
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Figure 10: Illustration of the two-sample Kol-
mogorov–Smirnov statistic. The blue line corresponds
to the empirical distribution function of labeled crypto-
mining traffic. The red line corresponds to the empirical
distribution function of downloading traffic. The black
arrow is the two-sample KS statistic.

The distribution compliance test is conducted with the Two-
Sample Kolmogorov–Smirnov (KS) test [34], which is a nonpara-
metric testing approach to determine whether two data samples
come from the same distribution. Compared with other approaches
to testing the distribution compliance, the KS test has no restric-
tions on the size of data sample, which means little cryptomining
traffic data can help achieve decent accuracy. Moreover, the KS test
is distribution-free. Users can easily update the contrast sample
to cover the latest cryptomining traffic regardless of the sample’s
distribution.

The Two-Sample KS test works as follows. Suppose that the
inbound or outbound packet interval sample from 𝑃 has size𝑚 with
an observed cumulative distribution function of 𝐹 (𝑥). Furthermore,
suppose that the labeled cryptomining sample 𝑄 has size 𝑛 with
an observed cumulative distribution function of 𝐺 (𝑥). CJ-Sniffer
defines the null hypothesis (𝐻0) as: both samples come from a
population with the same distribution. It also defines the Two-
Sample KS statistic 𝐷𝑚,𝑛 with Equation 1 (illustrated in Figure 10).

𝐷𝑚,𝑛 = max
𝑥
|𝐹 (𝑥) −𝐺 (𝑥) |. (1)

After calculating 𝐷𝑚,𝑛 , CJ-Sniffer rejects the null hypothesis at
significance level 𝛼 if 𝐷𝑚,𝑛 > 𝐷𝑚,𝑛,𝛼 , where 𝐷𝑚,𝑛,𝛼 is the critical
value and can be calculated with Equation 2.

𝐷𝑚,𝑛,𝛼 = 𝑐 (𝛼)
√︂

𝑛 +𝑚
𝑛 ·𝑚

=

√︄
− ln(𝛼

2
) ·

1 + 𝑚
𝑛

2𝑚
.

(2)

Conversely, if 𝐷𝑚,𝑛 ≤ 𝐷𝑚,𝑛,𝛼 , CJ-Sniffer will accept the null hy-
pothesis 𝐻0 and label the incoming traffic as cryptomining.

The significance level 𝛼 in the Two-Sample KS test is the prob-
ability of rejecting the null hypothesis when it is true. Users of
CJ-Sniffer can adjust the value of 𝛼 to reach different detection
sensitivities. A large significance level 𝛼 can lead to a small criti-
cal value 𝐷𝑚,𝑛,𝛼 , which will raise the standard of the distribution

compliance test. In our implementation, we set 𝛼 as 0.10, which is
a relatively large value but can increase the usability of CJ-Sniffer
by reducing the false positive rate.

Algorithm 1 Cryptomining traffic detection using KS test.

1: Input: 𝑃 ,𝑚, 𝑄 , 𝐺 (𝑥), 𝑛, 𝑘 , 𝛼 ⊲ 𝑃 is the packet
list with𝑚 packets, 𝑄 is the labeled cryptomining packet list
with 𝑛 packets,𝐺 (𝑥) is the cumulative distribution function of
𝑄 , 𝑘 is the granularity for calculating the KS statistic, 𝛼 is the
significance level

2: Output: 1 for cryptomining traffic, 0 for other traffic
3: 𝑙𝑃 = 𝑖𝑛𝑏𝑜𝑢𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑃) ⊲ extract the inbound packet

intervals and store them in a list
4: 𝑙𝑄 = 𝑖𝑛𝑏𝑜𝑢𝑛𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑄)
5: 𝑟 =𝑚𝑎𝑥 (𝑙𝑄 ) −𝑚𝑖𝑛(𝑙𝑄 ) ⊲ calculate the range of 𝐺 (𝑥)
6: initialize list 𝑙𝑑 ⊲ to store the differences of two cumulative

distribution functions (CDFs)
7: for 𝑖 in 𝑟𝑎𝑛𝑔𝑒 (𝑘) do
8: 𝑥 ←− 𝑖 ·𝑟

𝑘
+𝑚𝑖𝑛(𝑙𝑄 )

9: 𝑙 ←− { 𝑗 | 𝑗 ∈ 𝑙𝑃 𝑎𝑛𝑑 𝑗 ≤ 𝑥}
10: 𝑓 ←− 𝑙 .𝑠𝑖𝑧𝑒 ()

𝑙𝑃 .𝑠𝑖𝑧𝑒 () ⊲ calculate the CDF value at 𝑥 for 𝑃
11: append |𝑓 −𝐺 (𝑥) | to 𝑙𝑑
12: if 𝑓 == 1 then
13: break
14: end if
15: end for
16: 𝐷𝑚,𝑛 ←−𝑚𝑎𝑥 (𝑙𝑑 )

17: if 𝐷𝑚,𝑛 ≤
√︃
− ln( 𝛼2 ) ·

1+𝑚
𝑛

2𝑚 then
18: return 1 ⊲ accept the hypothesis 𝐻0
19: else
20: return 0
21: end if

Algorithm 1 demonstrates the detailed procedure that CJ-Sniffer
utilizes to determine cryptomining traffic. CJ-Sniffer only tests the
distribution compliance of inbound packet intervals, as inbound
packet intervals are more robust compared with outbound packet
intervals (discussed in Section 3). Moreover, to reduce the process
time, the cumulative distribution function of labeled cryptomining
traffic is calculated beforehand. Therefore, when receiving new
suspicious traffic, CJ-Sniffer only needs to build one cumulative
distribution function.

Once CJ-Sniffer completes the analysis in phase two, network
operators can choose the next step according to their needs. For
instance, if some companies and institutions prohibit any crypto-
mining inside their networks, then they can stop at this phase and
block any connection that is labeled as cryptomining. Meanwhile,
some network operators allow user-initiated cryptomining activi-
ties. Nonetheless, they still want to distinguish cryptojacking traffic
to safeguard users’ computing resources. In this case, CJ-Sniffer
can enter phase three to dig further into the labeled cryptomining
traffic.

4.4 Phase three: detection of cryptojacking
In the third phase, CJ-Sniffer uses detected cryptomining traffic
as input and outputs identified cryptojacking traffic. According to
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Figure 11: Structure of the LSTMmodel that CJ-Sniffer uti-
lizes.

the detection results of CJ-Sniffer, network operators can conduct
access control only on cryptojacking connections while still leaving
user-initiated cryptomining connections alive.

Enlightened from the measurement results in Section 3.2, CJ-
Sniffer distinguishes cryptojacking traffic from user-initiated cryp-
tomining traffic by inspecting the long-term robustness of the re-
sult submission messages. For various reasons, the hash rate of
cryptojacking activities is relatively unstable compared with user-
initiated cryptomining. This hash rate instability further affects the
frequency of result submission messages (𝑚𝑠𝑔𝑟 ). The key to iden-
tifying cryptomining connections is to recognize such frequency
instability.

To achieve the goal, CJ-Sniffer utilizes a LSTM machine learning
model to learn the cryptojacking traffic patterns, with cryptojacking
traffic as positive samples and user-initiated cryptomining traffic
as negative samples. Then, CJ-Sniffer applies the trained LSTM
model to identify cryptojacking traffic. LSTM is a type of artificial
recurrent neural network (RNN) architecture used in the field of
deep learning [23]. Compared with other candidate approaches,
LSTM is particularly suitable to detect cryptomining traffic for the
following reasons: (1) as an RNN variant, LSTM is good at pro-
cessing time series or sequential data, such as cryptomining traffic;
(2) LSTM introduces both a short-term and a long-term memory
component, allowing it to uncover hidden frequency changes out
of traffic data from a long-term perspective; (3) LSTM is a learning-
based approach, which means it can automatically and dynamically
learn the detection thresholds from our collect dataset without any
human interventions. Nonetheless, the detection component here
is modular. Users may use other machine learning algorithms or
statistical approaches to fit their environments once the inputs are
the same.

As for the input data, CJ-Sniffer extracts the variation vector 𝑣
from outbound traffic to profile the changes in result submission
message frequency. CJ-Sniffer first picks out only the outbound
packets from the traffic and divides them into batches. Every batch
consists of six consecutive packets with five consecutive packet
intervals. Then, CJ-Sniffer generates a variation vector 𝑣 to repre-
sent each batch of data, where 𝑣 = [𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5] and 𝑡𝑛 denotes
the interval of two consecutive packets. CJ-Sniffer will input the
variation vectors into the LSTM model and conduct cryptojacking
detection batch by batch.

Figure 11 illustrates the structure of the LSTM model that CJ-
Sniffer utilizes. As the input data is not complicated, CJ-Sniffer
employees a Vanilla LSTM model, which has a single hidden layer
of LSTM units, and an output layer used to make the decision. We

Table 2: Information of the collected cryptomining dataset.

Cryptocurrencies Size Length Mining Chips

Intel Core i5-5257U, Intel Core i7-6820HQ,
Apple M1, AMD Ryzen 5 1400 quad-core,

XMR, ETH 250 MB ∼ 750 hours NVIDIA GeForce GTX 1080, Intel Core i7-8700K,
Intel Xeon CPU E5-2430, AMD Radeon RX 570,

AMD Ryzen 5 1400 quad-core + AMD Radeon RX 570.

Table 3: Information of the collected contrast network traffic.

Network Size Length Types of Traffic Contained

Traffic without obvious periodic regularities:
∼ 35,100 Media streaming, VoIP service, HTTP, SMTP, FTP,

Campus (10 Gbps), 316 GB connections, Skype, Zoom, Gaming, Tunneling and proxy services, etc.
Lab (1 Gbps) ∼ 2,000 Traffic with obvious periodic regularities:

hours in total NTP, DNS, Control services of IoT appliances,
Notification services, STUN, Google static content, etc.

set the number of neurons in the hidden layer to 20 according to a
rule of thumb that was introduced in [17]. Equation 3 demonstrates
the rule, where𝑁𝑖 denotes the number of input neurons,𝑁𝑜 denotes
the number of output neurons, 𝑁𝑠 denotes the number of samples
in the training set, 𝛼 is an arbitrary scaling factor (usually ranges
from 2 to 10), and 𝑁ℎ denotes the maximum number of neurons in
the hidden layer.

𝑁ℎ =
𝑁𝑠

𝛼 · (𝑁𝑖 + 𝑁𝑜 )
. (3)

Moreover, the LSTM uses binary cross entropy as the loss function
and Sigmoid as the activation function for the output neuron, as
this combination is the most commonly used for binary classifi-
cation problems. CJ-Sniffer keeps inputting variation vectors as
time-series data to the LSTM, until the incoming traffic is identified
as cryptojacking or all the batches have been processed.

The LSTM model requires training before it can be used. Since
there are no existing cryptojacking traffic datasets available in
public repositories, we captured both user-initiated cryptomining
traffic and cryptojacking traffic to train the LSTM model. We also
release part of the packet-level dataset with this paper.

5 EVALUATION
We evaluated CJ-Sniffer in campus network environments with
real-world network traffic. In this section, we first describe how
we collect labeled cryptomining traffic and real-world contrast
traffic (Section 5.1). Then, we show our evaluation results of CJ-
Sniffer regarding the efficacy of cryptomining traffic detection (Sec-
tion 5.2), the ability of detecting other cryptocurrencies’ mining traf-
fic (Section 5.3), the efficacy of cryptojacking traffic detection (Sec-
tion 5.4), and comparisons with other network-based approaches
(Section 5.5). In the end, we evaluate the operation efficiency and
the real-world deployability of CJ-Sniffer (Section 5.6.2).

5.1 Data collection
To support the measurement study of cryptomining traffic, train
the statistical model and the machine learning model, and promote
related research, we collected a labeled cryptomining traffic dataset
from multiple calculation platforms, including both servers and per-
sonal computers, CPUs and GPUs. The cryptomining traffic dataset
contains both user-initiated cryptomining traffic and cryptojacking
traffic.
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Figure 12: Accuracy scores of detecting
cryptomining traffic with different hash
rates and length.
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Figure 14: False positive rates of detect-
ing cryptomining traffic with different
hash rates and length.

To collect the dataset, we installed both user-initiated cryptomin-
ing and cryptojacking software on different computing devices in
different network environments (e.g., home, lab, campus, etc.). We
also created several websites with cryptojacking scripts from Web-
MinePool [5], CoinIMP [1], Easy Pool Miner [3], and Minero [4].
Then, we used Wireshark [35] to capture the packet-level traffic
along with labeling information generated by these cryptomin-
ing activities. Table 2 shows the basic information of the collected
dataset. The development and evaluation of CJ-Sniffer is based on
this dataset. Moreover, we release a subset of the dataset to pub-
lic [18], which has around 550 hours of cryptomining traffic, with
all the noise and human-behavior-related traffic removed due to
ethical considerations.

Besides, we captured around 316 GB of contrast traffic from
our lab network (link bandwidth: 1 Gbps) and campus network
(link bandwidth: 10 Gbps) 1. Table 3 shows the basic information
of the collected contrast traffic. By using port-based and graphlet-
based [29] traffic classification approaches, we classified the con-
trast network traffic into several categories (e.g., HTTP, NTP, SMTP,
etc.). Furthermore, according to the traffic patterns, we divided these
categories into two groups. One is traffic without obvious periodic
regularities, which is easier to distinguish from cryptomining traffic.
The other is traffic with obvious periodic regularities, which is more
difficult to distinguish from cryptomining traffic. The collected con-
trast traffic basically cover most types of network traffic we can
see from medium-sized companies/institutions. We later mixed all
the contrast traffic with the cryptomining traffic to evaluate the
detection accuracy of CJ-Sniffer.

5.2 Efficacy of cryptomining traffic detection
To evaluate CJ-Sniffer’s efficacy of detecting general cryptomining
traffic, we divided the dataset into two parts—the training set and
testing set. The training set is used to train the detection model,
containing around 200 hours of labeled cryptomining traffic. The
testing set is treated as the input of CJ-Sniffer to evaluate its efficacy.
As cryptomining traffic and other types of traffic are unbalanced
in reality, the ratio of contrast traffic to cryptomining traffic is

1We anonymously collected the contrast traffic and omitted all the private content data
before storage. We have also obtained the Institutional Review Board (IRB) approval
for the traffic collection.

more than 20:1 in our testing set. Besides, to evaluate the detection
accuracy in different scenarios, we further divided the testing set
into seven groups according to the cryptomining hash rates.

Figure 12 demonstrates the accuracy scores of detecting cryp-
tomining connections using CJ-Sniffer. Figure 13 demonstrates
the false negative rates of detecting cryptomining traffic using
CJ-Sniffer; We can see that detecting cryptomining traffic of differ-
ent hash rates or lengths will derive totally different accuracy and
false negative scores. As a statistics-based cryptomining detection
approach, CJ-Sniffer can achieve a better efficacy with a larger data
sample. Under this scenario, cryptomining traffic with longer dura-
tions or larger hash rates is easier to be detected by CJ-Sniffer, since
these sets of traffic contain more interval samples for analysis. In
general, to reach an accuracy of more than 0.95 in detecting both
low-hash-rate and high-hash-rate cryptomining traffic, CJ-Sniffer
needs to collect around 160 network packets generated from the
device in each processing unit. If the cryptojacked devices are all
high-performance devices (with hash rates of more than 2000h/s),
they only need 15 minutes to generate this many network pack-
ets, which is significantly quicker compared with MineHunter that
needs around 2 hours of traffic to achieve a similar efficacy.

Figure 13 demonstrates the false negative rates of detecting cryp-
tomining traffic using CJ-Sniffer. Similar to accuracy scores, CJ-
Sniffer needs shorter time to detect high-hash-rate devices’ crypto-
mining traffic. Once CJ-Sniffer collects 55 minutes of traffic in each
processing unit, it can achieve zero false negative rates for detecting
both low-hash-rate and high-hash-rate cryptomining traffic.

5.3 Adaptability to other cryptocurrencies
CJ-Sniffer is mainly built upon XMR mining data. However, cryp-
tomining/cryptojacking traffic may be associated with other cryp-
tocurrencies. In this section, we examine the adaptability of CJ-
Sniffer. We collected several hours of cryptomining traffic of other
cryptocurrencies (i.e., ETH, ETC, BTC, DCR, LBC, ZEC, and CHIA).
The data volume may be insufficient for thorough measurement but
is enough for testing. We then evaluated the ability of CJ-Sniffer
(trained with XMR traffic) in detecting such cryptomining traffic.

The test is conducted on normalized traffic data. Figure 15 demon-
strates the two-sample KS statistics between XMR and other cryp-
tocurrencies’ cryptomining packet intervals. The closer these values
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Figure 15: Two-sample KS
statistics between XMR and
other cryptocurrencies’ min-
ing traffic.
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Table 4: Efficacy of cryptojacking traffic detection with dif-
ferent system loads of background processes.

System load of background processes.

0% 10% 20% 30% 40%

Accuracy 0.4714 0.5467 0.6176 0.7244 0.9390
Precision 0.8750 0.9130 0.9231 0.9348 0.9770
Recall 0.0875 0.2413 0.3673 0.5181 0.9140
FPR 0.0167 0.0317 0.0417 0.0411 0.0282
FNR 0.9125 0.7586 0.6327 0.4819 0.0860
F1 Score 0.1591 0.3818 0.5255 0.6667 0.9444

System load of background processes.

50% 70% 80% 90% 100%

Accuracy 0.9630 0.9877 0.9877 0.9938 0.9890
Precision 0.9770 0.9888 0.9891 0.9890 0.9897
Recall 0.9551 0.9888 0.9891 1 0.9897
FPR 0.0274 0.0135 0.0143 0.0143 0.0118
FNR 0.0449 0.0112 0.0109 0.0000 0.0103
F1 Score 0.9659 0.9888 0.9891 0.9945 0.9897

are to 0, the more similar these traffic intervals are to XMR’s, and
the more likely CJ-Sniffer can detect such traffic. From the results,
we can see that cryptomining packet intervals of ETH, ETC, BTC,
DCR, LBC, and ZEC come from the same distribution as XMR’s,
because their KS test statistics are too small to reject the𝐻0 hypoth-
esis. Conversely, CHIA, possibly due to the adoption of a different
consensus mechanism (i.e., Proof of Space), is quite different from
XMR regarding cryptomining traffic. The detection evaluation is
consistent with the statistics (Figure 16). CJ-Sniffer achieves decent
precision and recall scores in detecting almost all the PoW-based
cryptomining traffic.
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Figure 17: ROC curves of selected approaches for cryptomin-
ing traffic detection.

5.4 Efficacy of cryptojacking traffic detection
CJ-Sniffer observes the hash rate robustness of ongoing cryptomin-
ing traffic to distinguish cryptojacking from user-initiated crypto-
mining. Therefore, the efficacy of cryptojacking traffic detection
may be influenced by the background process running on the device.
Here, the background process refers to all the computing processes
executed by the legitimate user of the cryptojacked device. The-
oretically, if the background processes cause a high system load,
the computing resource allocated to cryptojacking programs will
be volatile, leading to obviously unstable hash rates and becoming
easier to be detected by CJ-Sniffer. However, when the background
processes only cause a little system load, the system is more likely
to allocate stable computing resources to cryptojacking programs,
even if they are in low priorities. Therefore, CJ-Sniffer may fail to
detect such cryptojacking activities.

We evaluate the efficacies of cryptojacking traffic detection with
different background processes and present the results in Table 4.
From the table, we can see that CJ-Sniffer can achieve good ac-
curacy scores and false positive rates in any situation. However,
we also notice that it can only reach decent recall scores and false
negative rates when the loads of background processes are higher
than 30%. Otherwise, CJ-Sniffer may have difficulty distinguishing
cryptojacking traffic from user-initiated cryptomining traffic. For-
tunately, in these scenarios, the computing device is in idle time,
thereby limiting the effect such cryptojacking activities have on
legitimate processes. Therefore, a cryptojacking attack is less of a
concern under such circumstances. Still, CJ-Sniffer can tell network
administrators that these traffic are cryptomining traffic in all the
cases.

5.5 Comparison evaluation
In this subsection, we compare CJ-Sniffer with four other represen-
tative solution: 1. Cisco’s commercial solution [8] that integrated
in routers; 2. SVM-based approach proposed by Munoz et al. [26];
3. Naïve Bayes-based approach proposed by Munoz et al. [26]; 4.
MineHunter [50].

5.5.1 Comparison of cryptomining traffic detection. We use similar
evaluation approaches in Section 5.2 to conduct the comparison
evaluations for cryptomining traffic detection. The only difference
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is that each testing unit contains around 2 hours of traffic, so ap-
proaches that require a large amount of traffic (i.e., MineHunter
and Munoz et al.) can achieve the best efficacy. Figure 17 illustrates
receiver operating characteristic (ROC) curves generated by the five
approaches. We can see that CJ-Sniffer and MineHunter perform
obviously better than approaches proposed by Munoz et al. and
Cisco. CJ-Sniffer and MineHunter achieve similar accuracies, while
CJ-Sniffer is better in false-positive rates, and MineHunter is better
in true-positive rates.

As for the processing delay, all these five approaches can output
the detection results within 2 seconds. Therefore, all of them can
meet the velocity requirements in cryptomining traffic detection.

5.5.2 Comparison of cryptojacking traffic detection. Among the
five approaches, CJ-Sniffer is the only one that can distinguish
cryptojacking traffic from user-initiated cryptomining traffic. Other
approaches simply treat these two groups of traffic as the same.
Hence, CJ-Sniffer allows network operators to conduct more elastic
and flexible security managements. For example, a network ad-
ministrator can only filter cryptojacking traffic while preserving
user-initiated cryptomining traffic from a device, which is a com-
mon requirement for many Virtual Private Servers (VPS) providers.
For networks with strict usage restrictions (e.g., campus networks,
enterprise networks, etc.), network administrators can simply uti-
lize the first two phases of CJ-Sniffer to identify all cryptomining
traffic.

5.6 System Efficiency
In this section, we evaluate the efficiency of CJ-Sniffer by time
complexity analysis and measuring the system’s processing delay
in real-world environments.

5.6.1 Time complexity. Assume the total number of input packets
is 𝑛. The time complexity of the preprocessing module is𝑂 (𝑛), as CJ-
Sniffer simply receives network traffic from traffic capture engines
and extracts necessary attributes from each packet header.

Then, CJ-Sniffer moves to phase one. CJ-Sniffer goes through
each packet’s extracted information to filter out noise and group
them by connections, which takes𝑂 (𝑛) time to complete. After that,
assume there are 𝑎𝑛 (0 ≤ 𝑎 ≤ 1) packets left, CJ-Sniffer still needs
𝑂 (𝑎𝑛) time to complete rapid filtration. As a result, CJ-Sniffer’s
time complexity for phase one is 𝑂 (𝑛 + 𝑎𝑛).

In phase two, assume there are 𝑏𝑛 (0 ≤ 𝑏 ≤ 1) packets left. Since
the labeled samples’ cumulative distribution function 𝐺 (𝑥) is pre-
built, CJ-Sniffer can utilize Algorithm 1 to detect cryptomining
traffic, allowing it to complete the analysis in 𝑂 (𝑘𝑏𝑛) time.

In phase three, CJ-Sniffer employees an LSTM model to detect
cryptojacking traffic. The LSTM model performs detections batch-
by-batch and needs𝑂 (1) time to process each batch. Assumes there
are 𝑐𝑛 (0 ≤ 𝑐 ≤ 1) batches, CJ-Sniffer needs 𝑂 (𝑐𝑛) to complete
phase three.

Overall, CJ-Sniffer takes 𝑂 ((𝑎 + 𝑘𝑏 + 𝑐)𝑛) time to detect crypto-
jacking traffic from captured network traffic, as it conduct all the
detection processes sequentially. In addition, 𝑘 is a constant and 𝑎,
𝑏, 𝑐 are numbers between zero and one. Therefore, CJ-Sniffer’s time
complexity is 𝑂 (𝑛), where 𝑛 is the total number of input packets.
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Figure 18: Processing delays of CJ-Sniffer under different
operation circumstances (different link bandwidths & sizes
of processing units).

5.6.2 Processing delay. We then measured the processing delay
of CJ-Sniffer in the different real-world environments. Here, the
processing delay refers to the time it takes for CJ-Sniffer to output
the detection result after the data collection is completed. According
to the design of CJ-Sniffer, there are two factors that can affect the
processing delay: (1) the number of packets in each processing unit,
and (2) the bandwidth of the link that CJ-Sniffer is monitoring. We
changed both of the factors to evaluate the efficiency of CJ-Sniffer.
We used a personal computer with an i7 8700k 4.7-GHz CPU and
32-GB memory to conduct the evaluation. The network traffic was
ported from the gateway routers of our campus network and lab
network.

Figure 18a demonstrates the delay with different number of
packets in each processing unit. CJ-Sniffer takes 89 milliseconds on
average to output the result when there are 200 packets per unit.
If the number increases to 300, the processing delay just slightly
increases to around 100 milliseconds. Although there is a noticeable
performance drop when the number of packets in each processing
unit reaches 400, according to evaluations in Section 5.2, 200 packets
per detection unit is enough to reach a deployable accuracy.

Figure 18b demonstrates the delay with different link bandwidths.
We can see that with a personal computer’s computing power, CJ-
Sniffer is able to monitor a campus-level or medium-company-level
network (10 Gbps) and finish processing the data in less than 0.25
seconds.

Therefore, the processing time data from the real deployment of
CJ-Sniffer supports the aforementioned time complexity analysis
result. CJ-Sniffer’s monitoring and detection can reach line speed for
most companies, campuses, or institutes, with affordable computing
power.

6 DISCUSSION
A primary contribution of CJ-Sniffer is to use content-agnostic data
to detect cryptomining traffic and further distinguish cryptojack-
ing traffic from user-initiated cryptomining traffic in the network,
which can protect users’ privacy and increase the efficiency dur-
ing the detection process. However, CJ-Sniffer still has a few open
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issues. In this section, we discuss these open issues, indicating pos-
sible limitations of CJ-Sniffer and raising several avenues for future
research.

6.1 Bypassing CJ-Sniffer
CJ-Sniffer is essentially a detection approach based on traffic analy-
sis. In the last two decades, researchers and developers have pro-
posed a variety of countermeasures to bypass traffic analysis (e.g.,
packet padding [28], dummy packets [45], traffic morphing [47],
etc.). However, cryptojackers cannot directly modify their crypto-
mining traffic to escape our detection system, because current cryp-
tomining activities rely highly on public mining pools that require
miners to strictly follow public mining protocols (i.e., Stratum [40])
and remove unnecessary content in packets to prevent virus injec-
tion. Hence, any modification of cryptomining traffic would pos-
sibly cause disconnections to the mining pool. On the other hand,
bypassing CJ-Sniffer by creating a private mining pool with a newly
designed cryptomining protocol is also unlikely. Due to intense
computing power competition [13] among mining pools, private
mining pools’ hash rates are significantly less than commonly-used
public mining pools, making private mining pools inefficient in
mining new coins. Still, it is feasible for cryptojackers to lever-
age third parties to help hide their cryptomining traffic (e.g., proxy,
VPN, Tor with traffic obfuscation [19]), thereby bypassing CJ-Sniffer.
Although we have not observed this defense design in current cryp-
tojacking software, investigating cryptojacking traffic detection
in the presence of traffic tunneling is a promising future research
direction.

6.2 Adaptability to other network environments
CJ-Sniffer’s adaptability in different network environments can
significantly affect its usability because re-training the detection
model is a time-consuming process for learning-based approaches.
Fortunately, according to our collected data in different network
environments and investigations of the cryptomining mechanism,
changes in cryptomining traffic are independent of different net-
work environments. Therefore, a cryptomining detection model
trained in one network environment can be directly applied to an-
other network environment if the input traffic is of the same format
(e.g., sFlow, in our implementation). However, blockchain systems
may evolve by upgrading their mining mechanisms, such as the
Arrow Glacier upgrade of ETH [6] and the CryptoNight V7 upgrade
of XMR [15]. These upgrades can bring changes to the cryptomin-
ing traffic patterns, thereby making detection models trained by
previous data no longer effective. To tackle this issue, researchers
need to continue enriching and updating the cryptomining traffic
dataset so that the dataset can cover most recent cryptomining
traffic patterns.

6.3 Direct hash rate inference
CJ-Sniffer detects cryptojacking by identifying hash rate fluctua-
tions. A more straightforward method is to directly identify the
specific hash rates from the traffic, which not only can help de-
tect cryptojacking, but also can estimate the amount of computing

power that is devoted to cryptomining. However, identifying spe-
cific hash rates is more challenging than identifying hash rate fluc-
tuations, especially when there is no content data involved. In the
future, extending CJ-Sniffer with more traffic features, preprocess-
ing steps, or training data so that it can discover more information
from content-agnostic traffic data is a promising research direction.

7 CONCLUSION
Cryptojacking is becoming far more sophisticated and threaten-
ing than before. To tackle this problem, we propose CJ-Sniffer, a
privacy-aware cryptojacking detection approach that only relies on
content-agnostic network traffic to conduct detections. CJ-Sniffer
applies a three-phase procedure to identify cryptojacking traffic. It
first filters out obviously irrelevant traffic to increase the detection
throughput. It then accurately detects cryptomining traffic by con-
ducting distribution compliance tests on packet intervals. Lastly,
CJ-Sniffer digs deeper into the packet interval patterns, utilizing an
LSTMmodel to distinguish cryptojacking traffic from user-initiated
cryptomining traffic.

By introducing traffic analysis into cryptojacking detection, CJ-
Sniffer is able to safeguard computing resources with superior
efficiency and deployability. With a personal computer and traffic
flow access to the network gateway, CJ-Sniffer is able to provide
real-time traffic monitoring for a company-level network. More
importantly, the privacy of users will not be violated throughout the
detection process. In addition, unlike other network-based solutions
that simply treat all types of cryptomining activities the same, CJ-
Sniffer can distinguish cryptojacking traffic from user-initiated
cryptomining traffic through their subtle differences. Therefore, CJ-
Sniffer can provide hierarchical detection results, allowing network
operators to conduct more elastic security management.

We have evaluated CJ-Sniffer with real-world network traffic
and found that its efficacy and efficiency are both high. With the
computing power of an i7 8700k 4.7-GHz CPU and 32-GB memory,
CJ-Sniffer is able to achieve an accuracy of over 99% for PoW-based
cryptocurrency systems with reasonable delays when monitoring
a campus-level network.
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