Application-Layer DDoS Defense
with Reinforcement Learning

Yebo Feng, Jun Li, Thanh Nguyen
Department of Computer and Information Science
University of Oregon
{yebof, lijun, thanhhng}@cs.uoregon.edu

Abstract—Application-layer distributed denial-of-service (L7
DDoS) attacks, by exploiting application-layer requests to over-
whelm functions or components of victim servers, have become
a rising major threat to today’s Internet. However, because the
traffic from an L7 DDoS attack appears legitimate in transport
and network layers, it is difficult for traditional DDoS solutions
to detect and defend against an L7 DDoS attack.

In this paper, we propose a new, reinforcement-learning-based
approach to L7 DDoS attack defense. We introduce a multi-
objective reward function to guide a reinforcement learning
agent to learn the most suitable action in mitigating L7 DDoS
attacks. Consequently, while actively monitoring and analyzing
the victim server, the agent can apply different strategies under
different conditions to protect the victim: When an L7 DDoS
attack is overwhelming, the agent will aggressively mitigate as
many malicious requests as possible, thereby keeping the victim
server functioning (even at the cost of sacrificing a small number
of legitimate requests); otherwise, the agent will conservatively
mitigate malicious requests instead, with a focus on minimizing
collateral damage to legitimate requests. The evaluation shows
that our approach can achieve minimal collateral damage when
the L7 DDoS attack is tolerable and mitigate 98.73% of the
malicious application messages when the victim is brought to its
knees.

Index Terms—application-layer DDoS, distributed denial of
service (DDoS), reinforcement learning, anomaly detection

I. INTRODUCTION

Application-layer distributed denial of service attacks [1],
or layer 7 (L7) DDoS attacks, represent a type of malicious
behavior that attack the application layer in the network model.
These L7 DDoS attacks exploit application-layer messages
(e.g., web requests) to swamp specific application functions or
components of a victim server (e.g., a web server) to disable or
degrade their services, impacting legitimate users’ experience.

L7 DDoS attacks are on the rise and becoming conspicuous
threats on today’s Internet. One of the best-known L7 DDoS
attacks happened in March 2015 when a massive number of
HTTP requests poured towards GitHub [2], causing much
reduced availability and higher latency to GitHub’s service.
This attack worked by injecting nefarious JavaScript code
pieces into numerous web pages to redirect a high volume
of users’ HTTP traffic to GitHub. More recently, Imperva
reported a notable L7 DDoS attack [3] in July 2019. This
attack was the longest and largest that Imperva has ever
seen, lasting 13 days and reaching a peak volume of 292,000
requests per second.

978-1-7281-6887-6/20/$31.00 ©2020 IEEE

Unfortunately, the detection and defense of L7 DDoS at-
tacks are still not well-studied [1], [4]. Worse, attackers con-
tinuously evolve their toolkits and develop more sophisticated
L7 DDoS attack techniques. It is therefore compelling to
accurately identify L7 DDoS attacks and generate effective
mitigation tactics against them.

The key to addressing L7 DDoS attacks is to distinguish
L7 DDoS traffic from the legitimate application-layer traffic.
This task is difficult, however, given that an L7 DDoS attacker
can purposely fabricate application-layer messages that look
legitimate, as discussed above. An L7 DDoS message can even
be identical to a legitimate application-layer message.

Interestingly, the legitimacy of an application-layer message
is heavily dependent on its environment or context. The
same application-layer message may be legitimate in one
environment, but totally malicious in another. Or similarly,
depending on how a client has been interacting with a server
in the past, a newly received request from the client may be
legitimate in one case, but illegitimate in another. For example,
an HTTP GET message is totally legitimate during the routine
operation of an HTTP server but could be malicious during
an HTTP flooding attack. In another words, it is a Markov
decision process to determine whether an application-layer
message is legitimate or not.

We thus seek to discover what methodologies would be the
most effective in distinguishing L7 DDoS traffic from the le-
gitimate application-layer traffic by considering environmental
and contextual factors, instead of only inspecting the mes-
sages themselves. This paper proposes the first reinforcement-
learning-based method that incorporates environmental and
contextual factors to distinguish L7 DDoS traffic from the
legitimate application-layer traffic. It monitors and analyzes
a variety of environmental and contextual factors including
those related to the system and network load of the victim
server (e.g., disk /O , CPU operation, memory usage, or
link utilization) and the dynamic application-layer behaviors
of clients (e.g., request type, size, frequency, and content).

Furthermore, this method streamlines the L7 DDoS defense
by integrating the operations of attack detection, message
classification, and attack mitigation. Rather than producing
labels of each application-layer message for a separate L7
DDoS mitigation module to handle the message, in order to
mitigate L7 DDoS attacks, this method directly outputs the
action to take for each application message under different



circumstances. Actions can include blocking the message
upstream, blocking it locally, or postponing its processing.

In addition, this method receives feedback from the actions
taken, allowing it to fine-tune what actions are the best for
a given situation. With the design of a new multi-objective
reward function, this method can determine the most suitable
actions to take in a way that (1) minimizes the amount of
discarded legitimate messages to provide the service as much
as possible to clients when the victim load is low and (2)
maximizes the amount of filtered L7 DDoS messages to
prevent the server from collapse when the victim load is high.

The evaluation shows that this approach can identify the
majority of DDoS traffic and significantly increase the capacity
of the victim server. At the peak of L7 DDoS attacks its
accuracy is 0.9553 and true positive rate is 0.9873, while
when the attacks are not overwhelming the collateral damage
is as low as 0. The implementation of this method, while
not intricate, provides satisfying performance when running
on the server node. With less than 30,000 training episodes,
this method can easily adapt to an unacquainted victim server
environment.

II. RELATED WORK

The current defense models against L7 DDoS primarily
follow a two-phase procedure, which performs detection &
classification to identify the malicious sources or application
messages and then mitigates the attack by conducting access
control. These models treat the two phases as two separate
modules, making it difficult to modulate mitigation strategies
according to the conditions of specific attacks. On the contrary,
our approach considers attack classification and mitigation as
an integral whole to pursue the best L7 DDoS defense efficacy.
Below we detail the related work in each phase.

A. Detection & Classification Approaches

We categorize the previous approaches to L7 DDoS de-
tection & classification into three types: statistical methods,
learning-based methods, and Markov-based methods.

1) Statistical methods: Researchers build statistical models
on both benign and malicious L7 DDoS traffic and then apply
them to detect and classify L7 DDoS attacks. For example,
DDoS Shield [5] characterizes L7 DDoS attacks on the basis
of the application workload parameters that they exploit. It pre-
sets the threshold values on the workload parameters according
to the measurements and labels the behaviors that exceed the
thresholds as malicious; Yatagai et al. [6] proposed a method
that detects HTTP GET flood by modeling the browsing
order of webpages and the correlation between browsing time
and page information size. In general, statistical methods
are efficient and steerable. They have decent accuracies in
discovering simple L7 DDoS attacks such as HTTP flood and
low-and-slow DDoS attack, however, they may have non-ideal
effects on handling unseen and complicated attacks.

2) Learning-based methods: As machine learning algo-
rithms are becoming more and more sophisticated, many
researchers harness such techniques on big data for detecting

L7 DDoS attacks. Seufert et al. [7] proposed a three-layer
feed-forward neural network to detect L7 DDoS attacks,
using features extracted from the header fields of packets;
Yadav et al. [8] applies Stacked AutoEncoder, a deep learning
architecture that aims to receive high level features, to generate
features from web server logs and build a logistic regression
classifier to identify L7 DDoS attacks. Besides, researchers
also proposed unsupervised-learning-based detection methods
that can extract knowledge or patterns from unlabeled data.
ARTP [9] detects L7 DDoS by leveraging the K-means al-
gorithm and performing analysis on features such as request
interval, request chain context, and request length. In summary,
while a trend, leveraging machine learning in identifying
L7 DDoS has mixed results based on the feature extraction
method, the system design, and the learning algorithm.

3) Markov-based methods: A Markov model is a stochastic
model used to model randomly changing events in probability
theory [10]. It assumes that the future state depends only on
the current state, and we can infer the next state by performing
probability analysis on its past. Works such as [11]-[14] track
the related behavior of the users and utilize hidden semi-
Markov model along with random walk graph to trace the
attacks. We consider Markov-based methods as the state of
the art because L7 DDoS attacks are stateful. As solutions to
tackle stateful problems, Markov-based methods can provide
fine-grained detection and classification results with decent
accuracies. Inspired by this idea, we adopt reinforcement
learning to the L7 DDoS problem, which is a Markov decision
process that inherits advantages from both learning-based
approaches and Markov models.

B. Mitigation Approaches

As for the mitigation approaches of L7 DDoS, there are
mainly two research directions [1]. One is to mitigate attacks
on the victim side, such as blocking automated application re-
quests by utilizing user puzzles (e.g., [15], [16]) and setting up
specific IPTables or IDS rules [17]. They can reach message-
level mitigation granularities but may sacrifice the efficiency
of mitigation, since the victim is still required to receive the
malicious packets before mitigation, making the system still
vulnerable to volumetric L7 DDoS attacks. Another direction
is to mitigate L7 DDoS attacks in the network. Once the
victim determines the attack sources, it can leverage some
traffic filtering or rerouting systems (e.g., [1], [18], [19]) to
mitigate attacks from within the network, without consuming
any resources on the victim’s side. However, they may cause
a considerable amount of collateral damage since traffic from
benign IPs may also be filtered. Our approach, different from
the above directions, incorporates both victim-side mitigations
and in-network mitigations for efficient and effective defense
against L7 DDoS attacks.

III. THREAT MODEL

An L7-DDoS victim server can be a single-node application
server, or contain many components as illustrated in Figure 1.
We assume that L7-DDoS attackers can form a massive botnet



Architecture of the Victim System

Attackers

(
M

AS2

CDN
Servers

Routers

Load
Balancers

Web
Servers

Database
Server

Fig. 1: An example of the victim model. The attacker is
performing lethal attacks towards the database server of the
victim system.

to exploit the vulnerability of the victim system, with the
source [P addresses of the bots distributed over different
autonomous systems (ASes). Also, we assume that the attack-
ers can systematically measure the victim server’s operation
conditions in order to figure out the vulnerable spot, thus
adjusting their attack tactics accordingly.

After investigating the operational models of current L7-
DDoS attacks, we categorize L7 DDoS attacks into three types:
request flooding attack, leveraged attack, and lethal attack.

1) Request Flooding Attack: In this attack, the attacker
overwhelms the system by sending application-layer requests
at a high rate from different IP addresses. The attacker’s
bots may locate in certain IP blocks or distribute all over
the Internet among different ASes to make it challenging to
identify the attack sources. Then, the botmaster can control
the bots to generate requests of any arbitrary frequencies and
content to overwhelm the victim.

2) Leveraged Attack: This attack leverages the flaws of
the victim system to amplify the threat. Thus it can take
down the application server with minimal bandwidth and
very few requests. For example, low and slow attacks. The
attacker controls bots to utilize tools like R.U.D.Y. [20] or
Slowloris [21] to slowly send out the requests to the victim.
This procedure keeps many connections to the target server
open and holds them open as long as possible, tying up the
thread. Other types of leveraged attacks may leverage heavy
SQL queries, unbalanced API calls, or flawed message queues
to overwhelm the victim with a small amount of application-
layer requests.

3) Lethal Attack: In this threat, the attacker first scans the
victim system to pinpoint the current performance bottlenecks
or vulnerabilities (e.g., I/O, memory space, or database server),
which are also called lethiferous spots. Then, the attacker for-
mulates the optimal attack tactics to overwhelm the lethiferous
spots. Furthermore, the attacker may adjust attack tactics
dynamically based on the condition variations of the victim
server to make the attack even more effectual. In general, this
intelligent attack is highly threatening to all types of victim
systems and difficult to detect due to its dynamics.

IV. SYSTEM DESIGN
A. Overview

In this paper, we assume that L7 DDoS attacks cannot
be easily identified through flow-level data since malicious
messages will disguise their traffic flows as legitimate. Hence,
our solution is on victim-side and considers many factors, such
as clients’ behavioral information, the network load of the
victim server, and the system load of the victim server. We
also assume that launching an L7 DDoS attack is a stateful
process, just as the process of establishing a TCP connection
and collectively sending out the HTTP requests. Thus, we use
reinforcement learning (RL) [22], a stateful machine learning
technique based on Markov decision process, to construct the
attack classification model and formulate appropriate tactics
to protect the victim.

RL is a burgeoning area of machine learning concerned with
how software agents ought to take actions in an environment
to maximize some notions of cumulative rewards. Once the
RL agent has made a decision, it gets a reward value to sense
whether the current move is suitable or not. Then, it revises
the policy to adopt the feedback dynamically. Compared with
other L7 DDoS defense approaches, the following advantages
make RL more competent to deal with L7 DDoS attacks:

e As a Markov decision process [23], RL aims to maxi-
mize the cumulative rewards throughout the monitoring
process, which takes advantage of contextual information
to infer potential threats.

o In L7 DDoS attacks, the boundary between benign and
malicious messages is blurry. Instead of primitively clas-
sifying the message as either benign or malicious, the RL
agent focuses on formulating appropriate defense tactics
that suit current environmental conditions.

o RL allows us to use a multi-objective reward function to
mentor the agent on constructing an adaptive and dynamic
defense strategy against L7 DDoS attacks.

A typical RL system has five elements: agent, environment,
reward, state, and action. The environment is typically stated
in the form of a Markov decision process (MDP) and the
MDP transition function gives a new state for each incoming
application message, processed in sequence. The agent gets
the state from the environment (the environment includes the
victim server and some related network infrastructures in our
case), then sends the next action to the environment. The
environment will conduct the action and give feedback to the
agent about the suitability of the action by sending a reward
value.

Figure 2 shows the detailed system architecture of our
approach. The goal is to train a defense policy 7 in the training
phase and apply it in the monitoring phase to defend against
L7 DDoS attacks. The victim can be a single node webserver
or a complicated server cluster discussed in Section III. If the
victim is a large server cluster, the components (e.g., load
balancers, databases, and webservers) need to gather their
system information to form an aggregated state s and forward
it to the defense agent. In the training phase, there is a reward



l’ Reward r (in the training phase) R

Defense Agent Environment

Server

K .
Reward Modeling }

Other Network
> Infrastructures
(e.g., routers, switches)

Action a
o— ]

Policy t
(Deep Neural Network)

Observed State s

Fig. 2: System Architecture

modeling component on the victim-side, which gets access to
the ground truth of the simulated traffic. Therefore, the victim
server can evaluate the efficacy of the mitigation action and
generate the reward value r according to the reward function in
real-time. However, once we complete the training phase and
put the defense agent into the monitoring phase, the reward
modeling component, as well as the reward values, are no
longer needed. In the monitoring phase, the defense agent only
needs to generate action a according to the observed state s
and trained policy 7.

The actions generated by the agent have two categories:
the victim-side mitigation actions, which only need to be
conducted on the server-side (e.g., scheduling actions), and the
in-network mitigation actions, which need to be conducted on
some external network infrastructures for filtering out specific
traffic.

The rest of this section elaborates on the design details of
our approach.

B. States

The state is represented by a state vector s. In our imple-
mentation, each state s has twelve dimensions. Each dimension
of s is a value that represents a feature. In this L7 DDoS
detection system, we expect s to comprehensively represent
both the environmental situations and the current application
message’s features. Thus, we further divide s into two parts,
message state s’ and environmental state s” (s = s’Us"). State
s’ summarizes the content of the incoming message and the
sender’s historical behaviors. It helps the defense agent to infer
how abnormal the message or the client is. Meanwhile, state
s" extracts the information from the victim server’s system
situation. It gives the defense agent a perspective of the whole
system’s healthy degree.

To calculate the state vector in real-time, we define time ¢
as the primary resolution value. For example, if we want to
know the average behavior interval of a client, we only need to
sample all its past behaviors during the last time ¢ to calculate
the value.

1) Message state s': s’ is an eight-dimensional vector that
extracts eight features from the current application message.
It is designed to reflect the historical activities, resource

Mapping space Mapping space

GET /index.html
GET /index.htm/

GET /api/vl/examplel.json

GET /api/v2/result?=vall+val2

GH LSH

Fig. 3: Examples for the general hashing (GH) and Locality
Sensitive Hashing (LSH).

consumption, and behavioral characteristics of the message.
The eight features are shown below:

e bytes,,: the number of bytes in a message.

* bytesy: traffic size from the message’s IP block. The victim
will predefine some IP blocks to classify clients’ source IP
addresses. bytes, is a numeric value that indicates the total
number of bytes from the incoming message’s IP block within
time ¢. This feature is useful to identify request flooding attack.

* aqve: the average behavior interval of the client. Assume
that the client has sent n messages during the last time ¢, and
each interval is denoted by z; (where ¢ = 1,2,...,n — 1). ave
is defined as: ave = —2+ S .

e dev: the average absolute deviation of the client’s
behavior intervals. This feature is defined as: dev =
L Z:’;ll |z; — avel.

* numy,: the number of messages from the client. This
feature is the number of the message sent by this client during
the last time ¢.

* NUMgm: the number of all the similar received messages.
For each received message, the server will calculate the
number of similar messages within time ¢ promptly. This value
plays a crucial role in identifying request flooding attacks,
leveraged attacks, and lethal attacks. However, calculating this
value is expensive, as we need to buffer a considerable amount
of messages in the memory and perform complicated string
matchings. Thus, we leverage Locality Sensitive Hashing
(LSH) [24] to optimize the calculating process.

Different from traditional hashing functions, LSH can out-
put close or identical values from similar input strings, making
it efficient in the duplicate checking. Figure 3 shows an
LSH example, where the horizontal positions of the four dots
represent the difference in their contents. This method requires
training before conducting queries, so we collect request
message strings that can represent all the application messages
that the server can handle, then preprocess the message strings
to make them simplified but still informative enough to outline
the messages’ intentions, behavioral patterns, and the clients’
platforms. For example, the message below is a typical HTTP
GET message:

GET /index.html HTTP/1.1
Host: localhost

User—-Agent: Mozilla/4.0 (Windows; U; Windows NT 6.0;
en-US; rv:1.9.1.4)
Accept: text/html,application/xml;qg=0.9,*/x;g=0.8

Accept-Language:
Accept-Charset:
Keep-Alive: 300

en-us,en;g=0.5
IS0-8859-1,utf-8;9=0.7,*;9=0.7



Connection: keep-alive
Cookie: PHPSESSID=n465xmdh435may4ib0skrjqg360

The preprocessing procedure eliminates redundancies in the
strings (strings with red color). We then concat the rest of the
information in a fixed order, and joint them by deleting all the
spaces and line breaks.

/index.htmlMozilla/4.0 (Windows; U; WindowsNT6.0;en-US; rv
:1.9.1.4)text/html, application/xml;g=0.9, x/*;g=0.8en-us,
en;g=0.5I50-8859-1,utf-8;9=0.7, x;g=0.7300keep-
alivePHPSESSID=n465xmdh435may4ib0skrjg360

The original message string turns out to be the string above
after the preprocessing procedure, and we use such data to
train the LSH function for queries. Whenever there is an input
message string m, LSH will input the preprocessed string and
generate an output hashing value h. The system will store
this hashing value h in a set H with an expiration time of .
Every time the system checks the set H, it will remove all the
expired values. We also defined a difference threshold A to
find similar strings. Therefore, the number of similar messages
numgm, is defined as:

numsy, = [{klk € HA |k —m.h| < A}

e cons: request consumption. The sever estimates the con-
sumptions of all the requests that it can handle in advance
and builds a precalculated consumption score table. Given a
message m, the server will extract the request from m and
generate the cons value according to the consumption score
table. This feature is important to identify leveraged attacks.

e : the ratio of incoming traffic size to outgoing traffic
size. The server estimates the outgoing traffic size bytes, if
it responses this message, then calculate the ratio by: ¢ =
bytes,, /bytes,.

2) Environmental state s"”: s is a four-dimensional vector
that extracts four features from the server and network’s
current conditions. This vector is supposed to be a good
representative of the environmental metrics so that the agent
can correctly infer how dangerous the server’s condition is and
what is the system bottleneck currently. The four features are
shown below:

* utilep,: CPU utilization. This value is the occupancy rate
of the CPU. If the victim system has multiple servers, util p,
is equal to the maximum CPU occupancy rate in the cluster.

* Utilpem: memory utilization. This value is the occupancy
rate of the memory. If the victim system has multiple servers,
Utilmem 1S equal to the maximum memory occupancy rate in
the cluster.

* utilynk: link utilization. This value is the occupancy rate
of the link bandwidth. If the victim system has multiple link,
utily;ng is equal to the maximum link occupancy rate in the
system.

o eutilynk: expected link utilization. If the victim has
statistical data about the expected link utilization rates in
different periods of the week, this value is the expected link
utilization rate in an ordinary situation. Otherwise, this value
is the wutilj;n during the previous time t.

C. Actions

As discussed in Section II, individuals can utilize in-network
and victim-side mitigation approaches to defend against L7
DDoS attacks. We further derived six types of particular
actions (shown as below) that an agent can take in the
defense process. Each of the action a targets some specific
circumstances.

o Action a;: enabling the server to receive and respond the
current application message ordinarily.

« Action a;;: enabling the server to receive the current mes-
sage ordinarily but postpone the processing procedure.

o Action a;;;: drop the current application message on the
victim-side.

e Action a;,: drop all the application messages that have
the content similar to the current message on the victim-
side.

o Action a,: blocking all the traffic from the IP address of
the current application message in the upstream router.

o Action a,;: blocking all the traffic from the IP block of
the current application message in the upstream router.

a; and a;; are scheduling actions, a;i;, Gy, Ay, and ay;

are defensive actions. In another taxonomy, a;, a;;, and a;;
are single-targeted actions, which only affect the current
application message. @;y, Gy, and a,; are multiple-targeted
actions, which affect a group of application messages.

Conducting defensive actions on particular messages does

not necessarily mean the messages are malicious because the
agent can choose to sacrifice some false positive rates to ensure
the functioning of the server during a severe attack. Similarly,
conducting scheduling actions on a particular message does
not guarantee the legitimacy of the message. If the system is
on idle time, and the malicious message cannot cause some
real harm against the server, the agent will take conservative
strategies to minimize collateral damages.

D. Reward Function

The overall objective of the reward function is mentoring the
defense agent to form a defense policy to fulfill the following
requirements in the training phase:

« When system occupation rate is low, minimize the false
positive rate of mitigation to ensure all the legitimate
messages can be properly processed.

« When system occupation rate is high, maximize the true
positive rate of mitigation to block all possible attacks in
order to prevent the system from crushing.

o The agent is encouraged to conduct multiple-targeted ac-
tions rather than single-targeted actions so that the agent
can discover rules in the attacks instead of inefficiently
labeling every single message.

In order to address the goals above, we construct a piecewise
function R(a(m)) as the reward function to mentor the agent
conduct suitable actions on correct messages. Here, a(m)
denotes conducting action a on message m. In the training
phase, whenever the action a is placed, the reward modeling
component will use R(a(m)) to calculate the reward value



r, telling the defense agent how suitable the current action a
is. In this paper, if the agent conducts defensive actions on
the legitimate messages, we consider these messages as false
positive samples, and vice versa. We also define ~y the system
occupation rate, which is calculated as:

v = maz(utilepy, Wilmem, utiliing)-

Additionally, |fp| denotes the number of false positive sam-
ples, |tp| denotes the number of true positive samples, |fn|
denotes the number of false negative samples, and |¢n| denotes
the number of true negative samples. We define a policy
transition threshold value o to decide when the agent should
adjust the defense policy to minimize the false positive rate or
to maximize the true positive rate. In this paper, we set « as
0.75.

When v < «a, we set the reward function R;(a(m)) for
single-targeted actions as Equation 1.

-2 for false positive sample
_ 1 for true positive sample
Ra(a(m)) = -1 for false negative sample M
0 for true negative sample

This reward function gives the agent more penalties when false
positive generated, which aims to constraint the agent to ensure
all the possible legitimate messages can be properly processed
when the system load is within a safe zone.

In the scenario that the agent is making multiple-targeted
actions, and v < «. Assume that the action a will affect a
set of messages M = {mq,ma,...,m,}, we set the reward
function Ry (a) as Equation 2.

Ry(a(M)) = ﬁZRl(a(mi)) 2

=n(=2|fpl + [tp| = [fn])

Where 7 is the reward multiples. We can set ) as a value more
one so that the agent would get extra rewards or penalties when
making multiple-targeted actions. The larger 7 is, the more the
agent is encouraged by the reward functions to take multiple-
targeted actions for conducting the defense policy effectively.
This mechanism is necessary for the defense agent because
monitoring a large amount of incoming messages is an expen-
sive operation and could become the a system vulnerability
itself. The agent can fix this problem by frequently generating
multiple-targeted actions.

When v > «, the victim system is heavily loaded, which
means the highest priority of agent is to mitigate as many L7
DDoS attacks as possible to guarantee the proper functioning
of the server. In this scenario, we set the reward function
Rs(a(m)) for single-targeted actions as Equation 3.

f(g)g for false positive sample

Rs(a(m)) = (2)9 for true positive sample
—(2)9 for false negative sample
0 for true negative sample.

3

Where ¢ is the hazard index, an input parameter that deter-
mines how eager the victim wants the attack to be mitigated.
The larger g is, the more tactics shifts the agent will have
according to the environment, but g should always be larger
or equal to 1. Figure 4 shows the curves of the reward function
in this scenario with different g values (we set a = 0.75 in
the curves), we can intuitively see the variation of the reward
functions based on the change of +. The agent will get less and
less penalties from false positive samples with the increasing
of v. Conversely, both the rewards from true positive samples
and the penalties from false negative samples will rise signifi-
cantly. This reward function design will constraint the agent to
identify and block as many malicious application messages as
possible, with the cost of sacrificing a little bit false positive
rate.

-0.5 -1.0

&
o

-2.0

a s wN

i

-1.0 4

w
o

@ aaa
Reward Value

154 -3.0

N
o
Reward Value

Reward Value

L

Inoan

oA wN

-2.0 1

=
<]

0.8 0.9 1.0 0.8 0.9 1.0 0.8 0.9 1.0
Value of y Value of y Value of y

(a) For false positive (b) For true positive (c) For false negative
samples samples samples

Fig. 4: Single-targeted Reward Functions for v > o and o =
0.75

In the scenario that the agent is making multiple-targeted
action a on a set of message M (M = {mq,ma, ..., my}), and
v > «, we set the reward function Ry(a(M)) as Equation 4:

Ry(a(M)) =n>_ Ra(a(m;))
=1 @
=~ 1ol + (Lol = (L )
()9 ! !
R4 (a(M)) is in direct proportion to the summation of reward
values that returned by all the affected messages. Still, we
use the reward multiples parameter 7 to encourage the agent
to take multiple-targeted actions rather than single-targeted

actions.

E. Training

The training of the deep reinforcement learning agent fol-
lows Q-value iteration [25]. For every state s, the agent will
generate an action a, which creates a state-action pair. The
reward function will also return a reward value r based on the
state-action pair, therefore, we define a function () that calcu-
lates the quality of a state-action combination: @ : s X a — r.

At time 4, assuming the agent is located in s} and receives
a message state sg, it will select an action a; to take. After the
agent observed the reward r;, it will enter a new environmental
state s, ; and update the value of Q. The core of the algorithm
is the value iteration update, using the weighted average of the
old value and the new information:

Q" (si,ai) « (1-5)-Q(si, ai)+5'(7“z‘+4'mgx Q(si+1,a)),



Defense Agent

g Attacker

—> L7 DDoS Attack

! Legitimate Client

- -» Legitimate Traffic
q} Router

Fig. 5: Topology of Simulated Network Environment

Victim Server

where [ is the learning rate, and ( is the discount factor.

However, the state s we use in this schema is a twelve-
dimensional vector, which could generate too large value space
for the system to cover in both training and monitoring phases.
To tackle this problem, we use a deep neural network to serve
as a likelihood function for estimating the Q(s,a).

Just as the topology diagram in figure 2 shows, we leverage
a five-layer neural network to approximate the policy function.
There are three hidden layers, one input layer, and one output
layer in the neural network. The input layer has 12 nodes
to import the state vector s, and the output layer has six
nodes to generate the recommendation rates for six possible
actions respectively. The second and fourth layers have 14
nodes, while the third layer has 15 nodes. A unique aspect
about neural network is that the first and second layer are not
fully connected. Instead, we separate the nodes for s’ from s”
to ensure that the neural network can treat the two sub-state
vectors differently.

The training of the agent is similar to the training of ordinary
neural networks, in which we define a loss function to measure
how good the agent’s tactic is. The loss is a value that indicates
how far our action a is from the actual target:

loss = (r + emax Q(s, d) — Q(s,a)),

where e is the decay rate, and r + e max; Q(s, @) is the actual
target. The training of the neural network is also the process
of minimizing the loss value with back propagation.

Each state s consists of a message state and an environ-
mental state (s = s’ U s”). The agent will continuously get
environmental state s” but only get message state s’ when
there is an incoming application message. Thus, the agent
will only be activated when it receives s’ in both training and
monitoring phases.

V. EVALUATION

A. Implementation and Simulations

We utilized Open vSwitch [26] and Mininet [27] to con-
struct the simulation environment. Figure 5 shows the basic

topology of the simulated network environment. There are n
IP blocks in this network; each of them has 5 legitimate clients
and 5 malicious clients. Besides, we constructed the RL-based
L7 DDoS attack defense system with OpenAl Gym [28] and
Keras [29].

We simulated a victim system by constructing a Node.js
web server that handles HTTP requests and SMTP requests.
The server runs on a virtual machine with 6GB RAM and a
4-core 2.0 GHz CPU. It also maintains an HTTP-based API
that can read its hard disk and return selected images. The
API is a designed performance bottleneck (lethiferous spot)
for attackers to exploit.

For L7 DDoS attacks, we used simulated traffic rather
than captured traffic because L7 DDoS attacks are diverse —
malicious messages in one environment can be legitimate in
another. Moreover, there are few packet-level L7 DDoS traffic
available in public repositories. The majority of the existing
public L7 DDoS datasets are log files or preprocessed features.
Thus, we used the Application Layer DDoS Simulator [30] to
simulate request-flooding attacks. For leveraged attacks, we
used Slowloris [21] to simulate the most typical leveraged
attack — low and slow attack. In the end, we used modified
HULK program [31] to generate lethal attacks towards the
known performance bottleneck.

Based on our empirical studies (of which we skip the details
for space considerations), we set some of the parameters in
this approach as follows: for the number of IP blocks n in
the evaluation, we set it to be 10; for the policy transition
threshold value «, we set it to be 0.75; the learning rate 3 for
agent training is 0.25 in this implementation; for the hazard
index g, we set it to be 3.

B. Ability of Mitigating Attacks

Although the proposed method does not need to generate
the precise labels of incoming messages, we can still evaluate
its ability to mitigating L7 DDoS attacks by inferring the
correctness of output action a. As indicated in Section IV-C,
we count messages that trigger scheduling actions as legitimate
requests. Conversely, we count messages that trigger defensive
actions as malicious messages. All the evaluation metrics in
this section are based on this regulation.

We simulated benign messages and launched the L7 DDoS
attacks to the victim simultaneously for evaluating the agent’s
accuracy of mitigating L7 DDoS attacks. During the test, we
firstly ensured the volume of legitimate messages was always
under the victim server’s capacity so that the server would
not crash due to legitimate activities. Afterward, we adjusted
the amount of malicious messages to test the performance of
this approach with different system loads. Here, we consider
the system load as the system occupation rate ~ defined in
Section IV-D.

Figure 6 shows the trends of mitigation accuracies, false
positive rates, and true positive rates during different system
loads (we consider malicious messages as positive samples in
this paper), where the y-axis represents the system workload,
and the x-axis represents the rate value.



4 "

v {
Without Protection
—— With Protection

——r—-

-==- Without Protection ’quw b

N R W

Number of Monitored M
IS
o
o

1.0 . < 1.0 P
e o8 /
/ £ 06 i
08 7 o 0.4 X
i PR ST et o2 7
2 06 i VN B —— Accuracy @ 0.0+
T RN ! —*— True Positive Rate 3
o< i d .k 1 =9
0.4 H =-- False Positive Rate c9h10
I Lo~
i 8308
0.2 i S} &; 0.6 1 —— With Protection
i - Sc 04 A
/ - 25
0.0{ + + -t £202
ag 0.0
0.0 0.2 0.4 0.6 0.8 1.0 om
a

System Load

Fig. 6: Performance Metrics of Different
System Loads

When the system load is at a low rate, we can get a
nearly 100% mitigation accuracy, since the majority of the
messages are benign, the agent will minimize the false positive
rate at this point. However, when both the system workload
and the volume of attacks are increasing, the accuracy has
some apparent drops. Although the attack volume increased,
the defense agent still uses the defense tactic that aims at
minimizing the false positive, guiding the agent to sacrifice
the true positive rate for letting the server adequately process
most of the legitimate requests. Thus, the false positive rate
remains approximately zero within this zone. On the contrary,
the trend for true positive rates fluctuates in low system-load
scenarios, because the volume of malicious requests is still
low, making it hard to reach statistical significance.

The transition comes in when the system workload is at
0.75. From this point, the defense agent assumes that the server
system is in hazardous conditions, so it has to mitigate as many
attacks as possible to protect the victim server. As the system
load goes higher, the value of (2)¢ in the reward functions
becomes larger, and the false positive rate becomes less and
less critical. Hence, we can distinctly see that the defense agent
starts maximizing the true positive rate. This sacrifices some
false positive rates but still increases the overall accuracies. In
the end, when the system load stabilizes at 100%, the accuracy,
true positive rate, and false positive rate are 0.9553, 0.9873,
and 0.1756, respectively.

In brief, this evaluation result proofs that the reinforcement
learning agent can intelligently formulate applicable tactics to
defend against L7 DDoS attacks, and the mitigation accuracies
of the tactics are satisfactory.

C. Mitigation efficacy

We evaluated the efficacy of our approach and presented
the results in Figure 7. The x-axis in the figure represents the
number of application messages made to the victim server per
second, including both the legitimate messages and malicious
messages. The y-axis of the upper subplot represents the
system load, while the y-axis of the lower subplot represents
the proportion of denied benign messages.

Initially, the resource consumption of the server without
protection is lower than the server with the agent running
because the deployment of the defense agent costs a certain
amount of computing resources, especially for maintaining the

0 50 100 150 200 250 300 350 400 450 500 550
Number of Requests Per Second

Fig. 7: Efficacy of Attack Mitigation

02 03 04 05 06 07

System Overheads

08 09 1.0

Fig. 8: System Overheads for the Defense
Agent

LSH function, message monitoring, and the operation of the
deep neural network. However, this consumption will pay back
shortly with the increasing number of receiving messages.
We can see that the proportion of denied benign messages
increases observably for the server without protection. If we
assume that a server is considered to be proper functioning
when the deny rate of legitimate messages is lower than 20%,
the capability of the server without protection is approximately
140 messages per second. After reaching 250 messages per
second, the server without protection is almost useless, with
the majority of message requests getting denied. While for
the server with the defense agent’s protection, the deny rate
of legitimate messages goes higher than 20% only after the
number of messages per second hitting 440, which is 3.15
times the capability of the unprotected server.

Therefore, this approach can significantly enhance the ser-
vice capability of the server and make the victim resilient
during some severe L7 DDoS attacks.

Additionally, running the defense agent requires system
overheads. Figure 8 shows the system overheads for the
defense agent when monitoring different numbers of messages
per second. We experimented by removing the server function
of the victim system. Hence, all of the computing resources
were devoted to the defense agent, and we can directly
measure the system overheads. From previous experiments,
we already know that the capability of the server without
protection is approximately 140 messages per second. In
this figure, we can see the agent can monitor 1.5 times the
maximum messages that the server can process with less
than 20% of computing resources. Besides, the larger the
reward multiples 7 is, the more the agent is encouraged to
take multiple-targeted actions, thus increasing the monitoring
efficiency. We set 7 as 2 in other experiments. However, if we
increase the value of 7 to 4 and devote all the system overheads
to the agent, the agent can monitor nearly 1800 messages per
second, which is more than 12 times the server’s maximum
processing capability.

D. Comparison evaluation

We also compared our approach with two other DDoS attack
detection approaches. One is FastNetMon [32], a commercial
DDoS detection software that applies statistical methods. Al-
though this software is not designed for L7 DDoS attacks, it



1.0

il

B Proposed approach
0.6{ ™= FastNetMon
BN ARTP

Nk

mmm Proposed approach
0.2] ™= FastNetMon
= ARTP

0.0 0.5-
HTTP
flood

HTTP
flood

SMTP
flood

L&S
attack attack

Lethal Overall

SMTP
flood

L&S
attack attack

Lethal Overall

score score

(a) Accuracy (b) Precision

1.0

B Proposed approach
0.4{ mmm FastNetMon
I ARTP

0.8

0.6

ik

B Proposed approach
- FastNetMon
s ARTP

0.4

0.2

HTTP
flood

SMTP
flood

(c) Recall

L&S Lethal Overall
attack attack score

HTTP
flood

(d) False Positive Rate

SMTP
flood

L&S
attack attack

Lethal Overall
score

Fig. 9: Results of Comparison Evaluation

offers good performance on general DDoS detection. Another
is ARTP [9], a learning-based detection approach particularly
designed for L7 DDoS attacks.

To evaluate their performance, we simulated the traffic of
HTTP flood, SMTP flood, low and slow attacks, and lethal
attacks. Figure 9a shows the accuracies of these approaches.
Our approach achieves the best accuracy scores for detecting
HTTP flood, low and slow attack, and lethal attack. ARTP
only slightly exceeds our approach in detecting SMTP flood.
Although our approach does not have perfect scores in pre-
cision and false positive rate (as shown in Figure 9b and
Figure 9d), it still accomplishes the initial design objective,
which is to sacrifice a little bit false positive rate to block
as many malicious requests as possible during the peaks of
attacks. As we can see from Figure 9c, our method achieves
the best recall scores in identifying all types of attacks because
it can adjust the mitigation strategies dynamically based on the
condition of the victim server.

E. Robustness in different environments

We have noticed the importance of the robustness of RL-
based approaches. Therefore, we deployed the trained agent
in different environments to evaluate the adaptability of our
approach. Figure 10 shows the evaluation results of robust-
ness. Environment 2 is slightly different from the trained
environment, which is assigned with a 4GB RAM and a 3-
core 2.0 GHz CPU. Environment 3 has the same hardware as
environment 2 but runs different application services, which
offers video streaming and download services with HTMLS.
Environment 4 has a 12GB RAM and a 8-core 2.7 GHz CPU,
which is quite a different hardware environment compared
with others.

The evaluation results show that the accuracies of our
approach only drop a little bit if the environment changed
slightly. Even if the application service changed in environ-
ment 3, the agent could still achieve around a 90% accuracy at
the attack peak. In fact, the design philosophy of our approach
promotes adaptability. For instance, many of the features we
designed are proportions rather than an absolute value; we
avoided using the application-specific features in the state.

F. Agent training

In the training phase, we trained the defense agent in
the platform for 80 hours, with nearly 35,000 episodes. We
recorded the L7 DDoS attack detection accuracies during dif-
ferent stages to evaluate the efficiency of agent training. As we

can see from the results (Figure 11), the training process goes
relatively slow and precarious during the first 20,000 episodes.
Then it evolves quickly from around 65% accuracy to more
than 90% accuracy in the next 7,500 episodes, enabling the
defense agent to offer decent protection to the victim server.
Eventually, the accuracy of the agent stabilizes near 96% after
30,000 episodes of training. This evaluation also proves that
it is feasible to retrain the defense agent within half a week
to fit a whole new environment in a real deployment.

G. Service delay

Since the defense agent will continuously inspect all the
incoming application messages during the server operation, the
service delay could be an underlying concern that impacts the
user experience. Therefore, we measured the lengths of delays
under different system workloads and presented the results in
a boxplot (as shown in Figure 12).

Here, we define the length of delay as the time duration
from sending out a message to receiving the whole reply. A
delay less than 0.5 seconds is imperceptible to the users. As
we can see in the Figure 12, the average delay time for the
server remains under 0.5 seconds when the system workload is
less or equal to 90%. Although the delay without any defense
approaches implemented is around 0.25 seconds, the presence
of the defense agent is still unremarkable to the clients most
of the time. Even when the system workload reaches 100%
and the attackers are trying to overwhelm the victim server,
the service delay can still lay within an acceptable range (0.4
seconds to 1.25 seconds). Meanwhile, the system without any
protections is already in an unusable condition under this
circumstance.

VI. CONCLUSIONS

L7 DDoS attacks are becoming far more sophisticated and
threatening than before. Compared with traditional DDoS
attacks, L7 DDoS are difficult for conventional DDoS ap-
proaches to detect and mitigate. This paper proposes a
reinforcement-learning-based approach that can self-evolve
according to the interactions with the environment. It con-
tinuously monitors and analyzes a variety of metrics related
to the server’s load, the dynamic behaviors of clients, and the
network load of the victim, to detect and mitigate L7 DDoS
attacks, including choosing the most appropriate mitigation
tactic. Different from typical DDoS detection approaches that
label the traffic as either legitimate or malicious, this approach



1.0 1.0 —— Tested with Validation Dataset o 1.75
0.91 -a-- Tested with Simulated Dataset o= 1.50
> e g 25
Zos 0.7 =
£ g 8 1.00
2 3 0.6 2 B
3 0.7 o Iy]
< —=— Trained environment <05 s 0.75
0.6{ —— Environment 2 0.4 & 050
—+— Environment 3 0.3 5 é
0.51 —— Environment 4 02 0.25
0.0 0.2 0.4 0.6 0.8 1.0 0 5000 10000 15000 20000 25000 30000 35000 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 10: Accuracies in Different Environ- Fig. 11: Convergence Trend while Train-
ments i

System Load

ing

employs a new multi-objective reward function that minimizes
false positive rate to avoid collateral damage when the victim
system load is low and maximizes the true positive rate to
prevent the server from collapse when the victim system
load is high. Evaluation shows that this approach protects a
victim server from L7 DDoS attacks effectively; it can mitigate
98.73% of the malicious application messages when the victim
is brought to its knees and achieve minimal collateral damage
when the L7 DDoS attack is tolerable.

VII. ACKNOWLEDGMENT

The authors would like to thank Derek Strobel from the
University of Oregon for his proofreading and constructive
suggestions on this work.

(1]

(2]

[10]

[11]

REFERENCES

A. Praseed and P. S. Thilagam, “DDoS attacks at the application layer:
Challenges and research perspectives for safeguarding web applications,”
IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 661-685,
2018.

S. Anthony, “GitHub battles “largest DDoS” in site’s history, targeted
at anti-censorship tools,” https://arstechnica.com/, March 30, 2015.

V. Simonovich, “Imperva blocks our largest DDoS L7/brute force attack
ever (peaking at 292,000 RPS),” https://www.imperva.com/blog/, July
24, 2019.

Cloudflare, “Application layer DDoS attack,”
https://www.cloudflare.com/learning/ddos/application-layer-ddos-
attack/.

S. Ranjan, R. Swaminathan, M. Uysal, and E. W. Knightly, “DDoS-
Resilient scheduling to counter application layer attacks under imperfect
detection.” in INFOCOM, 2006.

T. Yatagai, T. Isohara, and I. Sasase, “Detection of HTTP-GET flood
attack based on analysis of page access behavior,” in 2007 IEEE Pacific
Rim Conference on Communications, Computers and Signal Processing,
Aug, pp. 232-235.

S. Seufert and D. O’Brien, “Machine learning for automatic defence
against distributed denial of service attacks,” in 2007 IEEE International
Conference on Communications, 2007, pp. 1217-1222.

S. Yadav and S. Subramanian, “Detection of application layer DDoS
attack by feature learning using stacked autoencoder,” in 2016 Inter-
national Conference on Computational Techniques in Information and
Communication Technologies (ICCTICT), 2016, pp. 361-366.

K. M. Prasad, A. R. M. Reddy, and K. V. Rao, “Anomaly based real time
prevention of under rated App-DDoS attacks on web: An experiential
metrics based machine learning approach,” Indian Journal of Science
and Technology, 2016.

P. A. Gagniuc, Markov chains: from theory to implementation and
experimentation. John Wiley & Sons, 2017.

Y. Xie and S.-Z. Yu, “A novel model for detecting application layer
DDoS attacks,” in First International Multi-Symposiums on Computer
and Computational Sciences (IMSCCS’06), vol. 2, 2006, pp. 56-63.

Episodes of Training

[16]

[17]

(18]

[19]

(27]

System Workload

Fig. 12: Box Plot for Service Delay

S.-Z. Yu and Y. Xie, “A large-scale hidden semi-markov model for
anomaly detection on user browsing behaviors,” IEEE/ACM transactions
on networking, vol. 17, no. 1, pp. 54-65, 2009.

Y. Xie and S. Yu, “Monitoring the application-layer DDoS attacks for
popular websites,” IEEE/ACM Transactions on Networking, vol. 17,
no. 1, pp. 15-25, Feb 2009.

C. Xu, G. Zhao, G. Xie, and S. Yu, “Detection on application layer DDoS
using random walk model,” in 2014 IEEE International Conference on
Communications (ICC), pp. 707-712.

H. Zhang, A. Taha, R. Trapero, J. Luna, and N. Suri, “Sentry: A novel
approach for mitigating application layer DDoS threats,” in 2016 IEEE
Trustcom/BigDataSE/ISPA, pp. 465-472.

S. Sivabalan and P. Radcliffe, “A novel framework to detect and block
DDoS attack at the application layer,” in IEEE 2013 Tencon-Spring, pp.
578-582.

D. Moustis and P. Kotzanikolaou, “Evaluating security controls against
HTTP-based DDoS attacks,” in /ISA 2013, pp. 1-6.

N. Z. Bawany, J. A. Shamsi, and K. Salah, “DDoS attack detection
and mitigation using SDN: methods, practices, and solutions,” Arabian
Journal for Science and Engineering, vol. 42, no. 2, pp. 425-441, 2017.
J. M. Smith and M. Schuchard, “Routing around congestion: Defeating
DDoS attacks and adverse network conditions via reactive bgp routing,”
in 2018 IEEE Symposium on Security and Privacy (S&P), 2018, pp.
599-617.

M. M. Najafabadi, T. M. Khoshgoftaar, A. Napolitano, and C. Wheelus,
“Rudy attack: Detection at the network level and its important features,”
in The twenty-ninth international flairs conference, 2016.

RSnake, J. Kinsella, H. Gonzalez, and R. E. Lee, “Slowloris HTTP
DoS,” https://github.com/XCHADXFAQ77X/SLOWLORIS, 2009.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp- 237-285, 1996.

R. A. Howard, “Dynamic programming and markov processes.” 1960.
M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
twentieth annual symposium on Computational geometry. ACM, 2004,
pp. 253-262.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279-292, 1992.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar er al., “The design and
implementation of open vswitch,” in The 12th NSDI, 2015, pp. 117-
130.

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX,
2010, pp. 19:1-19:6.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

F. Chollet et al., “Keras,” 2015.

Storm Security, “Application layer DDoS simulator,”
https://stormsecurity.wordpress.com/2009/03/03/application-layer-
ddos-simulator.

] B. Shteiman, “Hulk DoS tool,” https://github.com/grafov/hulk, 2017.

P. Odintsov, “FastNetMon-very fast DDoS analyzer with sflow/net-
flow/mirror support,” https://github.com/pavel-odintsov/fastnetmon/.



