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Abstract
Abnormal events, such as security attacks, misconfigu-
rations, or electricity failures, could have severe conse-
quences toward the normal operation of the Border Gate-
way Protocol (BGP) that is in charge of the delivery of
packets between different autonomous domains, a key op-
eration for the Internet to function. Unfortunately, it has
been a difficult task for network security researchers and
engineers to classify and detect these events. In our pre-
vious work, we have shown that with classification (which
relies on the labeling with domain knowledge from BGP
experts), it is feasible to effectively detect and distinguish
some worms and blackouts from normal BGP behaviors.
In this paper, we move one important step forward—we
show that we can automatically detect and classify be-
tween different abnormal BGP events based on a hierar-
chy discovered by clustering. As a systematic application
of data mining, we devise a clustering method based on
normalized BGP data that forms a tree-like hierarchy of
abnormal BGP event classes. We then obtain a set of
classification rules for each class (node) in the hierarchy,
thus able to label unknown BGP data to a closest class.
Our method works even as the BGP dynamics evolve over
time, as shown in our experiments with seven different ab-
normal events during a four-year period. Our work, in a
more general context, shows it is promising to conduct an
interdisciplinary research between network security and
data mining in solving real-world problems.

Keywords: clustering, hierarchy based classifi-
cation, BGP, abnormal events, worm, blackout

1 Introduction

One effective application of data mining techniques is
to address a serious concern facing today’s Internet:
knowing the negative impacts from abnormal events
that affect the Internet infrastructure, especially the
Border Gateway Protocol (BGP)[12]. Various abnor-
mal BGP events, such as large-scale power outage or
fast-spreading worms, can not only affect the reacha-
bility of certain networks, but also worsen the stabil-
ity, latency and reliability of reaching those networks.
It is therefore compelling to devise an approach to un-
derstand these events, classify them accurately, and
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detect them quickly.
In our previous study, we have applied classifica-

tion in our Internet Routing Forensics framework[8].
The training data are labeled based on the domain
knowledge from BGP experts. We have shown that it
is feasible to apply and devise classification techniques
to effectively detect and distinguish some worms and
blackouts from normal BGP behaviors. However,
BGP is a very complex protocol and there are thou-
sands of routers running BGP in today’s Internet.
Several factors could influence the effectiveness of a
human based process. Such factors include the human
resource cost of monitoring Internet health, the error-
prone nature of human interaction and delay due to
abnormal event discovery.

In this paper, we introduce clustering to advance
our study on this problem. We focus first on those
global-level events, such as worms and large-scale
blackouts, which tend to affect the largest number of
networks over the Internet. It is worth noting that,
although few global-level events have significantly
impacted BGP, studying global-level events is still
extremely important. One single unknown or timely
undetected global-level event could seriously damage
the Internet. Understanding their hierarchy and then
distinguishing and identifying them based on that
hierarchy is a critical step in their detection and
prevention.

To accomplish this, however, is challenging.
First, the normal data and the six already-known ab-
normal BGP events that we study in this paper span
a four-year duration (i.e., 2001-2005), a long period
for the fast-evolving Internet. Recent studies on BGP
dynamics[9] have shown that while the Internet size
is becoming bigger, BGP routers are also becoming
busier, making it difficult to compare those events
without normalization. Second, the impact from dif-
ferent abnormal events could be different in subtle
ways. For example, we have found that the impact
of different worms may be different and some worm’s
impact is more close to a blackout event than other



worms. Or, the impact on BGP from certain abnor-
mal events could be very slight whereas such event
still must be studied.

We introduce a systematic data mining and
statistics based methodology to cluster normalized
temporal BGP data to form a tree-like hierarchy of
abnormal BGP events. We then derive sets of classi-
fication rules based on the hierarchy—without BGP
expert’s supervising. As a result, we can detect (la-
bel) if some unknown BGP data match one of the
classes in the hierarchy, or detect which class is the
closest match.

2 Related Works

Networking researchers have conducted several stud-
ies to discover anomalies by mining massive amounts
of network data. In an early work, Lee et al. [7, 6] ap-
plied standard data mining algorithms on traffic flows
for misuse detection. In a very recent work, Lakhina
et al. [5] used traffic feature distributions to mine
anomalies from network data. Not only did they show
that the existence of anomalies can be detected from
traffic flow, but also that they can use unsupervised
learning to automatically classify different anomalies.
Specific network data has also been mined.

Data mining approaches have been found effec-
tive for the detection of BGP anomalies. For exam-
ple, Zhang et al. [18] proposed an instance-learning
framework to identify deviations from “normal” dy-
namics of BGP updates, where BGP update behav-
iors are represented by a vector of quantified features.
El-Arini et al. [3] employed a Bayesian framework to
identify statistical anomalies in router configurations,
which could be applied to discover BGP misconfigu-
rations.

Our research is essentially using hierarchical clus-
tering to guide the process of classification. It has
some similarity with conceptual clustering, which can
produce a classification schema over unlabeled ob-
jects. For example, COBWEB [4] has created a hier-
archical clustering in the form of a classification tree
by incrementally incorporating objects into the tree.
In this tree each node refers to a concept and con-
tains a probabilistic description of that concept. It
places new objects to a node by computing the best
category utility (i.e., a heuristic evaluation measure)
from placing the object in each node. There are also
some techniques which automatically create a hierar-
chy of clusters, such as bisecting k-means[14], or a hi-
erarchy of classifiers, such as Punera et al.’s work[10]
and Vural and Dy’s work[17] for extending SVM to
multi-class classification.

3 Data Preparation and Normalization

Our work in this paper begins with data normaliza-
tion: we apply our data mining algorithms to data
that are normalized based on cubic spline, rather than
directly to the raw data.

3.1 Data We retrieve BGP updates from BGP up-
date archives at either RouteViews [16] or RIPE [13]
for the period when an event occurred. We then cal-
culate the values of 12 relevant attributes about these
BGP updates. The detail description of those at-
tributes can be found in [8]. We put the calculated
values into a chronological sequence of 1-minute bins
into a data table, where each bin is a data row and
can be regarded as a summary of the BGP activity in
a 1-minute window (i.e., the smallest time interval)
in terms of selected attributes.

In this paper, we will focus on six already-known
abnormal events and six normal periods. The six
events include three worm events and three black-
out events. The three worm events are the CodeRed
worm, Nimda worm, and Slammer worm; the three
blackout events are the Eastcoast Blackout, Florida
Blackout, and Katrina Blackout. Each of the six nor-
mal periods begins eleven days before each abnormal
event, and ends one day before the abnormal event.
The three worm events occurred during 2001 to 2003
and the three blackout events happened from 2003 to
2005.

3.2 Justification of normalization The Internet
is changing and becoming busier. For example, the
numbers of routers and address prefixes are both
increasing over the past years. Our previous work [8]
shows that, among other attributes, the number of
announcements and the number of withdrawals of
each data row (per minute) are useful attributes
to distinguish between normal and abnormal BGP
behavior. We gathered some statistics for the average
number of announcements and withdrawals for one
normal day before each event. Our study shows
that the number of announcements per minute in
a normal day of 2005 is about 1,000, or nearly 5
times as much as during a normal day of 2001. The
number of withdrawals also shows about a five-fold
increase. Without normalization, it is very possible to
classify a normal time period from 2005 as a “worm”
event based on one highly accurate and effective
classification rule (reported in [8]) discovered from the
worm data in 2001 and 2002.

3.3 Cubic spline based normalization We ex-
tended a standard and simple data fitting technique—
cubic splines[15] to normalize the BGP data based on



the values of 12 attributes (e.g., announcements and
withdrawals). For each attribute, suppose we have n
data rows in one normal period (e.g., 10 days) from
the raw data. We try to normalize some data rows
which are randomly selected from n data rows. For
any selected data point to be normalized, we basi-
cally use the cubic spline going through two near-
est time points to normalize it. Suppose y[t]

′
is the

y-coordinate value at x[t] in the cubic spline going
through (x[low], y[low]) and (x[high], y[high]) which
are two nearest time points to (x[t], y[t]). The formu-
las for normalizing y[t] to y[t] are as the following:

y[t] =
(y[t]− y[t]

′
)

(α ∗ y[t] + β ∗ y[t]′)
+ 1

where

α + β = 1

In most cases, since we choose a small value for
α (e.g. 0.01) and a big value for β (e.g., 0.99), y[t]
is very close to the value of y[t]

y[t]′
except for the case

where y[t]
′
= 0, which is possible for some attributes

(e.g., withdrawals).

3.4 Normalization result To evaluate the result
of our normalization algorithm, we calculated the
standard deviation of the normal data from six dates.
For announcements, the standard deviation of the
6 normal events’ raw (e.g., un-normalized) data is
265.06 while the average of these 6 events is 408.12.
The standard deviation of normalized data is 0.206
while the average is 0.863. For withdrawals, the
standard deviation of original data is 29.34 while
the average is 36.09. The standard deviation of
normalized data is 0.22 while the average is 0.79.
It clearly shows that normalizing the data decreases
the change in the number of announcements and
withdrawals. The data points from different years
can be comparable.

4 Clustering

Instead of relying on BGP experts to determine
what classes of abnormal events may exist and label
whether or not data from certain periods belong to
a specific class of abnormal events, we now develop a
clustering-based methodology to show that BGP data
can be “automatically” clustered and then classified.
Our methodology is based on the impact on BGP
from abnormal events (or no impact from normal
periods). A variety of factors contribute to the
observed impact. For example, the duration of an
event can be long and sustained, or it can be brief.

Also, the volume of updates can be dramatic such as
in the Slammer worm event, or volume changes can
be subtle.

After normalizing the data points related to the
CodeRed worm, Nimda worm, Slammer worm, East-
coast blackout, Florida blackout, Katrina blackout
and the normal periods before they happened, we
can try to find the relationships among the impacts
of those events and normal periods. We are mainly
interested in two issues: (i) whether the impacts of
worms to BGP are similar to each other and if the
same is true for blackouts, (ii) whether all worms or
blackouts can be distinguishable from normal periods.

4.1 Expectation-Maximization-based clus-
tering To get the hierarchy of BGP events, we
have used Expectation-Maximization (EM) [2]
clustering in a hierarchical way with both top-down
and bottom-up strategies. After normalizing the
data we chose approximately 400 data rows for each
abnormal event. We then randomly selected 400 data
rows of normal events from all events occurring 10
days before an abnormality. Then we used the tool
based on the Expectation-Maximization algorithm
provided by WEKA [1] to do the clustering.

In the top-down approach, we put all the data
from seven events (i.e., data rows from six abnormal
events and data rows randomly chosen from normal
periods) together in one cluster. Our goals is to sub-
divide this cluster into 2 clusters by setting up the
number of clusters. Then we repeatedly sub-divide
each cluster until the majority of data rows from each
event forms a cluster. In each step, the data rows
of a particular event (differentiated by timestamp
automatically) may go to different clusters. We
always keep the majority of data rows for each event
in one cluster but take out those in other clusters. In
bottom-up approach, we put the data rows into seven
clusters first based on which event they come from.
Then we try to merge them to 6 clusters by setting
up the number of clusters. Again, we only keep the
majority data rows for each event. We further merge
them into fewer clusters until all data rows can be put
into a one cluster.

4.2 Clustering result For the seven events just
described (including normal events), both top-down
and bottom-up clustering approaches result in the
same hierarchy shown in Figure 1.
We use the first day data (August 1, 2004) from the
Florida blackout and the first day data (August 29,
2005) from the Katrina blackout. Both the Florida
and Katrina blackout periods spanned several days.
We have conducted a preliminary study to find the



Figure 1: The hierarchy graph of six abnormal events
together with normal events, where “Nor” means Nor-
mal event, “E” means Eastcoast blackout, “C” means
CodeRed blackout, “K” means Katrina blackout and
“F” means Florida blackout.

day which has biggest impact to BGP during the
Florida and Katrina periods. We basically chose all
four days of data for the Florida blackout together
with normal data to do the clustering. We found that
the first and the second days of the Florida blackout
had the most impact to BGP, compared with normal
days. Choosing the first day or the second day of the
Florida blackout does not change the hierarchy we got
in Figure 1. We did a similar study of all two days
of the Katrina blackout and found that the first day
had the most impact.

The hierarchy in Figure 1 shows that the impacts
of the Slammer and Nimda worms are more similar to
each other than the CodeRed worm, three blackouts
and normal events. On the other hand, it is interest-
ing that the impacts of the CodeRed worm is more
similar to blackouts and normal events than the other
two worms.

5 Hierarchy-Based Classification

In this section, we describe our approach to classify-
ing different abnormal BGP events and normal peri-
ods based on the hierarchy we obtained through clus-
tering. Our general approach is to derive rules for
different classes of abnormal events through a train-
ing process and then verify (test) these rules. Every
class here corresponds to a leaf or non-leaf node in
the hierarchy.

5.1 Training with “Polluted” Data During the
period of an abnormal event, not every single minute
will display anomalies. In fact, depending on the scale
and magnitude of an event’s impact on BGP, some
1-minute bins may be completely normal, and some

1-minute bins may be just slightly abnormal. On the
other hand, BGP data over a normal period could
contain outliers. In spite of the training data my
be “polluted” and complicated, the training process
needs to obtain classification rules with as much
accuracy as possible. Since not all training bins
from an abnormal event are guaranteed to display
abnormalities, when bins that are actually normal
are labeled to map to an abnormal event related class
(node), the training process can produce invalid rules.
Manually removing these problematic bins is costly. If
a large portion of training bins for an abnormal event
class is normal (thus not really used), the classifier
may not have a sufficient amount of useful training
data to produce valid rules. In our classification
study, it is effective to simply duplicate the training
data for such an abnormal event class a few times
(i.e., boosting).

5.2 Probability based Representation We use
C4.5 classification algorithm [11] to get classification
rules. Each rule returned has an accuracy value
between 0% and 100%. We take that accuracy and
treat it as the probability that the rule will be correct
when it matches a testing bin during the detection
phase. Now, when a given rule R with accuracy Racc

matches a testing bin, the probability that R will
incorrectly identify that bin’s class label is then

1.0−Racc.

For a given class of abnormal events, say C, there
may be multiple rules for C that all match a testing
bin. Say R1, R2, ..., Rm match the testing bin with
rule accuracy R1

acc, R
2
acc, ..., R

m
acc , respectively. The

probability that all of these rules incorrectly label the
testing bin as class C is then

PC
incorrect =

m∏
1

(1.0−Ri
acc)

The probability that the testing bin matches class C
is the probability that at least one of R1, R2, ..., Rm

correctly labels the testing bin as class C, which is:

PC
correct = 1−

m∏
1

(1.0−Ri
acc)

5.3 Alerting with “Polluted” Data We collect
and test data that we have not used for the training
process, which simulates new (unknown) abnormal
events, and see which nodes (classes) the events
should belong to. We also call this step the detection
phase. The testing data used to verify classification
rules may not be “clean” either. For testing bins



Table 1: Hierarchy based Classification Result.
Event NoEKFC SN N S C NoEKF E NoKF K NoF F No

CodeRed 94.4 2.4 63.5 26.2

Slammer 15.9 84.1 21.4 78.6

Nimda 17.5 80.2 97.6 2.4

Eastcoast 90.5 6.3 4.8 81.7 41.3 34.1

Florida 99.2 0.8 0.0 100.0 9.5 68.3 8.7 91.3 22.0 74.5

Katrina 88.9 7.1 0.0 100.0 0.0 95.2 51.6 48.4

Normal 99.2 2.4 2.4 92.9 19.8 70.6 15.9 84.1 18.6 78.6

LosAngeles 78.0 7.9 14.2 70.1 7.1 73.2 34.6 45.7 35.7 77.9

collected from the period of an abnormal event, some
testing bins are simply not abnormal, thus actually
map to a class (node) in the path of the hierarchy
which includes the normal class (node), while some
map to the class of an abnormal event—but only with
a certain probability.

Our alerting algorithm works as follows. First, if
the probability that a testing bin matches a particular
class (node) is greater than a threshold value ε, we
call the testing bin a “hit” for that class. Then, if
the percentage of “hits” for an abnormal related class
(i.e., the class is related to one or more abnormal
events) within a time window of W minutes exceeds
a threshold Γ, an alert will be issued signifying that
an event of the abnormal related class is occurring
during the time window. In our results shown in the
following section, we use the following values for these
parameters: ε = 0.5, Γ = 40%, and W ≥ 100.

5.4 The Result of Hierarchy based Classifica-
tion We can conduct the classification based on the
parent-children relationship between nodes on a clus-
tering hierarchy. For example, in Figure 1, “Nor, C,
E, K & F” and “Slammer & Nimda” are two child
nodes of the root node (all events). We select the
training data from normal, CodeRed worm, Eastcoast
blackout, Katrina blackout and Florida blackout and
label them as “Nor, C, E, K & F” respectively. We
then select the training data from Slammer worm and
Nimda worm and label them as “Slammer & Nimda”.
Using C4.5 algorithm with such data as the input for
the training process, some example output classifica-
tion rules look like:

Withdraw > 1.93136

Withdraw_prefix <= 4.56595

AW > 2.20632

-> class NorEKFC [97.7%]

Withdraw > 5.20867

Withdraw <= 9.44596

Withdraw_prefix > 9.44532

-> class SlammerNimda [93.6%]

where Withdraw, Withdraw prefix and AW are at-
tributes and all the values (numbers) in the rules are
from normalized data. Similarly, we can obtain clas-
sification rules for all 12 classes (nodes) in Figure 1.
Then we use all testing data from six abnormal events
and normal periods to see whether the data will be la-
beled with the name(s) of certain node(s), or class(es).
We also test a new abnormal event which has not been
used for training process.

For any testing data, we first test them at the
first level (e.g., “Nor, C, E, K & F” and “Slammer
& Nimda”) and see which class does the majority
of the testing data belong to. Then we go to the
next level (sub-tree) to conduct further testing. Such
a hierarchy-based classification continues until we
can no longer divide a class into more detailed sub-
classes (child nodes). As such, we are constructing
a hierarchy-based classifier, using the same C4.5
classifier at every level of the hierarchy. In our case
study, this is for all six abnormal events and selected
normal data, plus the data from a Los Angeles
blackout. The Los Angeles blackout is the most recent
abnormal event (September 12, 2005), and is used for
testing only, i.e., to see which node (class) is found to
be the best match.

Our results are reported in Table 1. The values
in each row show the percentages of testing data
bins within a time window that match a class (node)
during the hierarchy based classification. We also
use bold numbers to show which class (node) the
majority of data matches at each level. It shows
that, among the six already-known abnormal events,
CodeRed, Slammer, Nimda, Eastcoast, and Katrina
testing data are labeled as abnormal classes that
relate to the themselves only. Florida testing data
is labeled as “Normal” although it is labeled as
“NoF” (a Florida related class) at a higher level.
Normal testing data is labeled as “Normal.” It
is interesting to view the classification of recently
collected Los Angeles blackout data. It is labeled
as “Normal” and as “NoF” at a higher level. This



shows that the impacts of the Florida and Los Angeles
blackouts on BGP are similar to each other but not
distinguishable from normal dates. On the other
hand, the impact of all three studied worms, along
with the Eastcoast and Katrina blackouts, are more
severe and distinguishable.

6 Conclusions and Future Work

We discussed in this paper a systematic and auto-
matic approach to clustering and classifying abnor-
mal events that affect the Border Gateway Protocol
(BGP), which is a critical component in today’s In-
ternet. Manually analyzing large sized temporal BGP
data is daunting. We demonstrated that we can ob-
tain classification rules based on the hierarchy discov-
ered by clustering with normalized data from different
abnormal events.

The potential for automatic, real-time applica-
bility of our approach is likely even more important.
Since our approach can be easily automated, detect-
ing abnormal events as they occur (especially in their
early stages) could be feasible. On the other hand, our
approach can also continuously evolve the hierarchy
and the associated rules. A newly detected abnormal
event can be verified to see if it matches an already-
known abnormal event class (or its related class) on
the hierarchy; data from this event can also be used
to update the hierarchy, and can be further used to
update the classification rules. For example, after de-
termining that the impact of a Los Angeles blackout
is similar to the Florida blackout as well as close to
normal days, we can easily put it in the hierarchy.

The research presented in this paper takes us
one step further toward successful interdisciplinary
research between network security and data mining
in solving real-world problems, such as studying BGP
events. In addition to the global events we studied
in this paper, we will study abnormal events at a
smaller scale (which tend to be harder to detect) that
may only affect individual networks. The derivation
of rules that can evolve over an extended period of
time, the integration of other data mining techniques
(such as outlier analysis and graph mining), and
the applicability of our work towards BGP problem
analysis and other BGP-based security research, also
warrant further study.
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