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Abstract—Network Coordinate (NC) systems provide a scal-
able means for Internet distance prediction and are useful for
various Internet-based services, such as cloud or web-based
services. Decentralized, matrix factorization-based NC (MFNC)
systems have received particular attention recently. They can
serve large-scale distributed services (as opposed to centralized
NC systems) and do not need to satisfy the triangle inequality
(as opposed to Euclidean-based NC systems). However, because
of their decentralized nature, MFNC systems are vulnerable to
various malicious attacks.

In this paper, we provide the first study on attacks toward
MFNC systems, and propose a trust and reputation-based
approach called NCShield to counter such attacks. It is fully
decentralized and can easily be customized. Different from
previous approaches, NCShield is able to distinguish between
legitimate distance variations and malicious distance alterations.
Using four representative data sets from the Internet, we show
that NCShield can defend against not only the typical disorder,
repulsion and isolation attacks, but also more advanced attacks
such as frog-boiling attacks. For example, when selecting node
pairs with a shorter distance than a predefined threshold in an
online game scenario, even if 30% nodes are malicious, NCShield
can reduce the false positive rate from 45.5% to 3.7%.

Index Terms—Service computing, Internet topology, network
coordinate systems, security

I. INTRODUCTION

Nowadays the Internet plays a key role in people’s daily-life.
Numerous online services are provided through the Internet.
To serve end users all over the world, online service providers
always want to build an efficient networking infrastructure by
carefully considering the underlying Internet topology. The
end-to-end distance information (a.k.a. Round Trip Time or
RTT) can help determine the proximity among Internet nodes.
In a network of N nodes, there are N(N − 1)/2 end-to-
end paths. For large-scale distributed systems, obtaining the
distance information of all end-to-end node pairs is extremely
difficult due to the high measurement overhead. To provide
a scalable Internet distance prediction, Network Coordinate
(NC) systems have been widely used. Using NC systems,
we only need O(N) measurements to scalably predict the
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distances of all N(N − 1)/2 end-to-end paths, thus signifi-
cantly reducing the measurement overheads. NC systems can
be used in various distributed applications, such as cloud or
web-based services [15], [20], [26], [29], [35], [44], [51],
overlay networks [40], [48], anonymous communications [39],
network monitoring [9], [37], and online social networks [10],
[49]. NC systems can play an important role particularly in
the emerging field of services computing. Existing examples
include selecting servers for cloud services [15], [26], [44],
composing cloud services [20], positioning web services [51],
locating cloud resources [35], and aggregating resources across
multiple data centers [29].

NC systems follow two basic models. Most traditional
NC systems (such as GNP [33], PIC [13], NPS [34], and
Vivaldi [14]) are Euclidean-based NC (ENC) systems. All
nodes are embedded in an Euclidean space Rd, and every
node is assigned a d-dimensional coordinate (d � N ). The
distance between any two nodes can be predicted by typical
Euclidean distance calculation. However, ENC systems require
the estimated distances among every three Internet nodes to
satisfy the triangle inequality, a condition that often does not
hold true on today’s Internet [21], [25], [30], [32], [50]. The
other model, which has recently received much attention, is
the matrix factorization-based NC (MFNC) systems, including
IDES [32], Phoenix [9], and DMFSGD [27]. MFNC systems
do not have the triangle inequality constraint anymore, and
thus can achieve a better distance prediction accuracy than
ENC systems. Such improvement in distance prediction ac-
curacy will be especially beneficial for cloud-based services,
as today’s public cloud providers always have multiple data
centers around the world. Choosing the “closest” data center
based on accurately predicted distances will minimize the data
delivery latency, leading to a better experience for users.

An NC system can be either centralized or decentralized.
Centralized NC systems, such as GNP [33] and IDES [32], rely
on a small set of landmark nodes, which could easily become
the scalability bottleneck. Nowadays a large number of online
services and systems need to serve millions of users simultane-
ously (e.g., cloud or web-based services, CDNs, multi-player
gaming), decentralized NC systems are the only feasible option
for scalable distance prediction in such systems. We therefore
focus on decentralized NC systems (such as Phoenix [9] and
DMFSGD [27]) in this paper.

Decentralization, however, makes a decentralized NC sys-
tem vulnerable to certain security attacks. While every node in
the system can advertise to other nodes arbitrary information
at its own discretion, malicious nodes in the system can falsify
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coordinates or delay the responses to RTT probing packets in
order to disrupt an NC system.

While several approaches [17], [36], [38], [46] have been
proposed to secure ENC systems, unfortunately, little has been
done towards MFNC systems which yields to higher accuracy
than ENC systems when there are no attacks for both types
of systems. It is thus interesting to study the impact of attacks
to MFNC systems. We tackle this deficiency in this paper. In
particular, we make the following contributions:

1) We formalize potential malicious attacks toward de-
centralized MFNC systems. So far, protecting MFNC
systems from malicious attacks has not been considered,
and no attack model for such systems exists. Also,
through extensive evaluation using four representative
data sets collected from the Internet, we show how
these attacks can disrupt existing MFNC systems such
as Phoenix [9] and DMFSGD [27].

2) We propose a trust and reputation-based approach, called
NCShield, to defend decentralized MFNC systems.
Different from the approaches for ENC systems, our
solution is able to distinguish between ordinary distance
variation and malicious distance alteration. When choos-
ing nodes to calculate coordinates, instead of relying
on additional infrastructures, such as distributed hash
tables (DHTs) (as in [6]) or a centralized reputation
computation agent (RCA) (as in [36]), NCShield uses
secure gossip [4] to ensure lightweight and unbiased
node sampling. Based on their scalable measurements,
nodes can vote in a distributed way to identify malicious
nodes.

3) NCShield is fully decentralized and can be easily inte-
grated into existing MFNC systems. It is also easy to add
new, customized modules to NCShield in order to tackle
more advanced attacks, such as frog-boiling attacks.

4) NCShield achieves a high distance prediction accuracy.
In our experiments using classic aggregate data sets, a
dynamic data set, and an online game scenario, NC-
Shield consistently shows a high accuracy in the distance
prediction. For example, in the online game scenario
when selecting node pairs with a shorter distance than a
pre-defined threshold, even if 30% nodes in the system
are malicious, NCShield can reduce the false positive
rate from 45.5% to 3.7%.

Part of our manuscript appeared in [45]. Compared to [45],
in this article we advance our study substantially in following
several important ways:

1) Rather than inspecting the DMF [28] coordinate system
that we studied earlier, in this article we instead inspect
a new, more advanced network coordinate system called
DMFSGD [27]. We not only study whether NCShield is
effective in this new system (Section II), but also evalu-
ate its performance with this new system (Section VI-B).

2) We further handle the new emerging frog-boiling at-
tack [7] that has been found more harmful to NC
systems. We describe and model this attack (Section III),
introduce an anti-frog-boiling module into NCShield
(Section IV-C), and evaluate NCShield’s performance

against this newly introduced attack (Section V-C, VII).
3) Furthermore, we upgrade the algorithm of NCShield

in multiple ways. For example, it divides the original
secure coordinate calculation process into the indepen-
dent grading and voting steps (Section IV-B); besides
conventional attacks, it now can cope with the new
emerging frog-boiling attacks (Section IV-C).

Overall, compared to what we have published earlier, the
NCShield system we presented in this article is more up-
to-date in terms of network coordinate systems to protect,
more robust and flexible in terms of attacks it can handle, and
more comprehensive and informative in terms of the evaluation
results.

The rest of the paper is organized as follows. We first
describe the background of our work in Section II, including
how decentralized MFNC systems function and how malicious
nodes conduct attacks in decentralized ENC systems. We list
prospective attacks towards MFNC systems in Section III,
including both conventional attacks and advanced attacks.
In Section IV we present our defense approach, NCShield.
Then in Section V we describe the evaluation methodology
and metrics. In Section VI, we present the communication
overhead analysis and results of NCShield with aggregate data
sets. In Section VII, we evaluate NCShield with a dynamic
data set against all five attacks we modeled. In Section VIII,
we emulate NCShield in an online game scenario with Phoenix
to show its feasibility and effectiveness. We summarize the re-
lated work in Section IX and conclude this paper in Section X.

II. BACKGROUND

In this section, we describe how a decentralized MFNC
system works, how its accuracy is evaluated, and two rep-
resentative MFNC systems—Phoenix and DMFSGD.

We assume that we have a network with N nodes. We can
use an N ×N matrix D to represent the Internet distance be-
tween each two of them, i.e., D(i, j) represents the measured
distance between node i and node j (1 ≤ i ≤ N, 1 ≤ j ≤ N ).
The key idea of MFNC systems is that a large N × N
matrix D can be approximated by the product of two smaller
N × d matrices X and Y with methods such as Singular
Value Decomposition (SVD) [23] and Non-negative Matrix
Factorization (NMF) [24]. The intuition behind this model is
the low rank nature of Internet distance matrices [41].

In MFNC systems, for each host i, it will be assigned a d-
dimensional outgoing vector Xi and a d-dimensional incoming
vector Yi (d� N ). Therefore, the predicted distance between
node i and node j is determined by the dot product of node
i’s outgoing vector and node j’s incoming vector, as in Eq.
1, where DE(i, j) is the predicted distance from node i to
node j, ~Xi and ~Yj are respectively i’s outgoing vector and j’s
incoming vector:

DE(i, j) = ~Xi · ~Yj (1)

Compared with ENC systems, MFNC systems do not have
the restriction of the triangle inequality for predicted distances.
Therefore, MFNC systems are able to achieve a much better
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prediction accuracy [9], [27], as it does not need to satisfy the
triangle inequality principle.

Two representative distributed MFNC systems are Phoenix
and DMFSGD. We describe them below.

In the Phoenix NC system, assuming a node H has m
neighbors as its reference nodes (d < m << N ), its new
coordinates will minimize both the error of the predicted
distances from H to reference nodes and the error of the
predicted distances from reference nodes to H , as shown in
the two equations below:

~Xnew = arg min
~x∈<d

+

m∑
i=1

wYi
‖~x · ~Yi −Dout

i ‖2 (2)

~Ynew = arg min
~y∈<d

+

m∑
i=1

wXi‖ ~Xi · ~y −Din
i ‖2 (3)

~Xnew and ~Ynew are the calculated d-dimensional outgo-
ing/incoming vectors of node H . ~Xi and ~Yi(1 ≤ i ≤ m, i ∈ N)
are the outgoing vectors and incoming vectors of H’s i-th
reference node, respectively. Dout

i is the measured distance
from node H to its reference node i, and Din

i is the measured
distance from reference node i to node H . The weights wXi

and wYi
(i = 1...m) are both within the range of [0,1], and

are calculated by a weight-based algorithm that improves the
overall prediction accuracy by alleviating error propagation.

The DMFSGD NC system adopts a stochastic gradient
descent (SGD) algorithm. This algorithm tries to update the
coordinates gradually along the directions to minimize a
regularized loss function. The update rules are:

~Xnew = (1− ηλ) ~Xold + η

m∑
i=1

(Dout
i − ~Xold

~Y T
i )~Yi (4)

~Ynew = (1− ηλ)~Yold + η

m∑
i=1

(Din
i − ~Xi

~Y T
old) ~Xi (5)

where η, called learning rate or step size, is a positive
number which controls the speed of the updates; and λ, the
regularization factor, is a fixed positive number which restricts
the coordinates from overfitting and drifting gradually.

Finally, an NC system is considered accurate if the predicted
distance between two nodes based on their coordinates is
roughly equal to the measured distance.

For a pair of nodes i and j, denoting their predicted distance
DE(i, j) and their measured distance D(i, j), the accuracy of
DE(i, j) can be evaluated using its Relative Error (RE) [8],
[9], [11], [14], [25], [32]–[34] as shown in Eq. 6 below.
Clearly, a RE has a non-negative value. If predicted distance
equals to measured distance, the RE will be zero.

RE =
|DE(i, j)−D(i, j)|

min(DE(i, j), D(i, j))
(6)

For evaluating an NC system, the main metric that has been
widely used is ninetieth percentile relative error (NPRE) [8],
[9], [11], [32]–[34]. It guarantees that 90% of the links have a
RE value lower than the NPRE value. A smaller NPRE value
indicates a higher overall prediction accuracy [17], [36], [38],
[46].

III. PROSPECTIVE ATTACKS IN DECENTRALIZED MFNC
SYSTEMS

We list prospective malicious attacks towards decentralized
MFNC systems in this section. We investigate five different
types of attacks, i.e., disorder attack, repulsion attack, isolation
attack, frog-boiling attack I, and frog-boiling attack II. The
first three are conventional attacks classified based on their
objectives, and the two frog-boiling attacks are emerging ad-
vanced attacks with more complicated attacking methods and
more threatening effects. These attacks have been identified in
the context of traditional Euclidean-based NC (ENC) systems
and shown to be dangerous to ENC systems [7], [18]. We now
introduce these attacks in MFNC systems.
Disorder attack: In this type of attack, malicious nodes try to
cause a disorder for the entire NC system. A malicious node
can inject fake information into the system by announcing its
outgoing vector and incoming vector with randomly generated
values. Also, it can add a random delay for the round-trip
time (RTT) probing packets. As a result, the overall prediction
accuracy will be decreased and the NC system will become
harder to converge.
Repulsion attack: The objective of this type of attack is
to convince legitimate nodes that they are far away from a
victim node. In topology-aware distributed applications, they
will naturally avoid to select the victim to communicate with.
Recall a node’s distance to a vicim node is the dot product of
the node’s outgoing vector and the victim’s incoming vector. In
this attack, malicious nodes mislead the victim node to derive
its incoming vector ~Y to become a vector ~Ytarget such that
other legitimate nodes would believe that their distances to the
victim would be far. A straightforward way is to assign large
values to the elements of ~Ytarget. However, this can easily
be detected by checking against extreme values. In our attack
model, the following equation will be used:

~Ytarget = α ∗ ~R1 ∗ ~Ymax + β ∗ ~Ymax (7)

In Eq. 7, ~R1 is a randomly generated d-dimensional vector
with every element randomly chosen between (0,1]. ~Ymax

is a multiplier. Every element of ~Ymax is configured as the
maximum value of the elements of ~Y before the attack is
launched. We ensure α + β = 1 so that the element values
of ~Ytarget will not be too large, and it cannot be discovered
by extreme value-based detection. To mislead the victim’s
outgoing vector towards ~Ytarget, a malicious node will falsify
its coordinates and delay RTT probes. In our attack model,
we set ~Xmal = γ ∗ ~R2 ∗ ~Xmax, and accordingly the RTT will
be delayed as ddelay = ~Xmal · ~Ytarget. Similar to ~R1, ~R2 is
also a random-generated d-dimensional vector, and γ can be
randomly chosen between (0, 1].
Isolation attack: The objective of this type of attack is to
convince a victim node that it is located in a particular area
of the network and is isolated from legitimate nodes, thus
more easily connecting with malicious nodes. The outgoing
vector of the victim becomes compromised as ~Xtarget = ~C

(~C is a d-dimensional vector), so that the victim believes
it is faraway from regular nodes but near malicious nodes
(recall the distance from the victim to a given node is the dot
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produce of the victim’s outgoing vector and the given node’s
incoming vector), and tries to connect to the latter when it
needs neighbors to connect to.
Frog-boiling attack I: As introduced in [7], in this type of
attack, malicious nodes gradually alter their own coordinates
with only a small, hardly noticeable change at every round
of updating coordinates. Such attack is very hard to detect.
However, after a number of rounds, the change will become
large enough for the attackers to mislead legitimate nodes.
Specifically, at each round for updating coordinates, a mali-
cious node can falsify both of its coordinates with a fixed small
amount (~δ) using the following form: ~Xmal = ~Xori + ~δ ∗ t
and ~Ymal = ~Yori + ~δ ∗ t, while ~Xori and ~Yori are its
legitimate coordinates before the attack begins, and t is the
current number of rounds. This type of frog-boiling attack
requires a pair of pre-selected target coordinates ( ~Xtarget

and ~Ytarget). The attacker gradually alters the coordinates to
approach this pair of coordinates. We can see that between two
continuous rounds, a node’s coordinates just change slightly.
However, once t becomes a large value, ~Xmal and ~Ymal will
be significantly different from ~Xori and ~Yori.
Frog-boiling attack II: We also introduce another type of
frog-boiling attack for further investigation of NCShield. Dif-
ferent from frog-boiling attack I, this type of frog-boiling
attack requires not only a pair of pre-selected target coordi-
nates ( ~Xtarget and ~Ytarget), but also a pre-defined RTT delay
dtarget. It then gradually alters the coordinates and RTTs to
approach these pre-set values over totally T rounds. Within
each round, it falsifies the coordinates as: ~Xmal = ~Xori +
( ~Xtarget− ~Xori)/T ∗t and ~Ymal = ~Yori+(~Ytarget−~Yori)/T ∗t.
The RTT is delayed as ddelay = dori +(dtarget− dori)/T ∗ t.

IV. DESIGN OF NCSHIELD

We design a score-and-vote based approach called NC-
Shield to protect decentralized MFNC systems from being
attacked. We let the nodes in an MFNC system help each
other check whether some reference nodes (neighbors) provide
untrustworthy coordinates and RTTs. For each node, besides
choosing a list of reference nodes (NList), it randomly picks
a list of verification nodes (VList) to determine whether its
neighbors are malicious or not. The VList nodes can vote
together to provide an aggregate opinion.

There are four challenges in our system design: (1) We need
a robust node sampling protocol to ensure all nodes in NList
and VList are selected randomly, even in a large dynamic
system with a number of malicious nodes. (2) We need to
propose a fair voting policy to discover malicious nodes, and
we need to seamlessly integrate the voting results into the NC
calculation. (3) Besides handling typical disorder, repulsion,
and isolation attacks, our system should be able to defense
the new emerging frog-boiling attacks. (4) The system should
be lightweight and scalable. As NC systems aim to play as a
building block in large-scale distributed systems, we require
our system to introduce a moderate overhead.

As shown in Fig. 1, for a new node to join the NCShield
system, it needs four steps to obtain its coordinates. In the first
step, it needs to discover existing nodes in the system without

any bias (Section IV-A). Then in the second step, it measures
its distances to nodes in NList and retrieves their coordinates.
For the third step, on one hand, its VList nodes will do
independent grading and voting to defend against conventional
attacks such as disorder attack, repulsion attack, or isolation
attack (Section IV-B). On the other hand, it will use an anti-
frog-boiling module (Section IV-C) to defend against frog-
boiling attacks. In the last step, the node determines the
reliable nodes in its NList, and uses their information to
calculate its own coordinates.

We describe the key components of NCShield in this sec-
tion. In Section IV-A, we discuss the unbiased peer discovery.
In Section IV-B, we introduce the voting-based malicious node
detection. In Section IV-C, we describe the anti-frog-boiling
module. Finally, in Section IV-D, we demonstrate how we
integrate NCShield into MFNC systems.

A. Peer Discovery

Peer discovery is a fundamental building block in NCShield.
In an MFNC system with NCShield, every node needs a
list of neighbors (NList) for the NC calculation, and a list
of verification nodes (VList) to judge the trustworthiness of
the neighbors. We believe that attackers would have a strong
incentive to be chosen as either a neighbor or a verification
node, in order to mislead the NC calculation and verification.
Malicious nodes might collude together to increase their
chance to be included in a legitimate node’s NList or VList.

In NCShield, we employ the Brahms protocol [4] for peer
discovery. Brahms is a gossip-based protocol to achieve an
unbiased sampling of peers in distributed systems, and it
can overcome Byzantine attacks by a linear portion of the
system. When a node Hnew joins the system, in addition to
maintaining its NList and VList, it also launches a sampler
required by Brahms, and implements a balance algorithm to
control the contribution of pushes and pulls in gossip sessions,
thus achieving an unbiased sampling of both NList and VList
members. More specifically, it will operate in the following
steps:
Contacting the rendezvous point (RP): Node Hnew registers
itself to the RP, and obtains a list of existing nodes randomly
selected by RP.
Contacting candidates: Node Hnew sends probe messages
to nodes on the candidate list. When node Hnew receives a
confirmation message from a node, it will add this node to
its NList or VList. Hnew repeats this operation until both
lists reach the pre-set scale. Note that due to node churns
or insufficient candidates, NList and VList might be short of
enough nodes.
Secure gossip process: In order to discover more nodes in
the system, Hnew can start a Brahms process. Brahms is
a gossip protocol, which allows online nodes to exchange
their knowledge. The stream of new nodes discovered through
the above exchanges is balanced and sampled with min-wise
independent permutations [5], so that node Hnew can update
its sample list and maintain the unbiased property of its sample
list. Finally a new unbiased sample of candidates can be
obtained.
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Fig. 1: Basic Structure of NCShield

With the help of Brahms, malicious nodes will not be able
to intensively advertise themselves to legitimate nodes and
increase the percentage of malicious nodes in every legitimate
node’s NList and VList.

B. Voting-Based Malicious Node Detection

As we have mentioned in Section II, every node refers to the
reference nodes in its NList to calculate and update its own
coordinates periodically. In this subsection, we demonstrate
how to leverage VList nodes to find out malicious nodes in
NList, and eliminate their impact in the NC calculation.

Once a node H has obtained its NList and VList, it starts to
calculate its incoming vector and outgoing vector. Let m and
u represent the number of neighbors assigned to node H and
the number of verification nodes, respectively. For every node
Hn in the NList, node H asks it for the latest coordinates, and
conducts measurement to obtain the RTT between itself and
Hn. To ensure whether Hn is trustworthy, the node H uses a
two-step verification procedure as follows.

Independent grading: In this step, every VList member
of H retrieves coordinates of node Hn and conducts the RTT
measurement. For a node Hv in VList, based on the suspicious
outgoing and incoming vectors of node Hn and the RTTs
between itself and node Hn. Hv calculates two scores: sinHvHn

and soutHvHn
, as in Eq. 8 and Eq. 9.

sinHvHn
=
|DE(Hv, Hn)−D(Hv, Hn)|

min(DE(Hv, Hn), D(Hv, Hn))
(8)

soutHvHn
=
|DE(Hn, Hv)−D(Hn, Hv)|

min(DE(Hn, Hv), D(Hn, Hv))
(9)

A smaller score value indicates a higher level of trust. To
determine whether a score value is acceptable, we introduce a
pre-defined score threshold (ST ). If the score value is smaller
than ST , we find it as “trustworthy”. Otherwise, we find it as
“malicious”.
H collects the reports from all nodes in its VList, then it

can have an aggregate opinion for the incoming and outgoing
vectors of Hn as follows.

ainHn
=

∑
Hv∈V List

(sinHvHn
< ST ) (10)

aoutHn
=

∑
Hv∈V List

(soutHvHn
< ST ) (11)

Voting: Node H integrates the returned information and
calculates vHn

(Eq. 12) to decide whether adopting or ignor-
ing node Hn’s coordinates according to a pre-defined vote
threshold (V T ).

vHn = (ainHn
≥ V T )&&(aoutHn

≥ V T ) (12)

Finally, after collecting the voting information of all neigh-
bors, node H calculates the total number of reliable neighbors
r (Eq. 13) and decides whether to start the NC update pro-
cess, according to a pre-defined number of reliable neighbor
threshold (RT ).

r =
∑

Hn∈NList

vHn
(13)

Besides the process described above, several details are
noteworthy:

1) Before calculating vHn
for neighbor node Hn, a com-

parison should be made in case that Hn sends different
coordinates of itself to node H and the VList members
of H . If we can safely conclude that Hn is providing
inconsistent information to different nodes, we can di-
rectly mark it as a malicious node.

2) To obtain input for the independent grading, every node
Hv in VList needs to ask Hn for its coordinates and
measures the RTT between itself and Hn. This proce-
dure should have no difference from what node H does.
Otherwise, a malicious node Hn can act legitimately if
it is aware that the request is from a node in VList,
including sending reliable coordinates to Hv and not
delaying the RTT measurement requests.

3) Since each node maintains two vectors and at least one
of them needs to be verified, various voting strategies
can be applied. In this paper, we apply a relatively
stringent strategy such that a positive vote is made only
if both ainHn

and aoutHn
are larger than or equal to the

threshold (V T ).
4) Malicious nodes may also appear in VList. Brahms

guarantees an unbiased percentage of malicious nodes in
both VList and NList, (i.e., the same ratio of malicious
nodes as that in the whole network). In our simulation,
these nodes will vote randomly.

5) A specific module is integrated into the secure NC
calculation to prevent frog-boiling attacks (or other more
advanced attacks). We present the details of this module
in Section IV-C.
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Fig. 2: Detection of Frog-Boiling Attacks

C. Handling More Complicated Attacks: an Anti-Frog-Boiling
Module

For more complicated attacks such as frog-boiling at-
tacks, voting-based solutions cannot be accurate and effective
enough. To discover nodes in the NList conducting frog-
boiling attacks, we introduce a specified anti-frog-boiling
module. For a node Hv , this module will check against every
node in its NList, and find out the nodes performing frog-
boiling attacks.

Since frog-boiling attackers manipulates their own coor-
dinates in the same direction round after round gradually,
we use this feature for the detection. A pair of δ(·) vectors
is introduced. For a node Hn, within round t, δ(·) can be
calculated as in Eq. 14 and 15.

~δX(t) = sign( ~XHn
(t)− ~XHn

(t− 1)) (14)

~δY (t) = sign(~YHn
(t)− ~YHn

(t− 1)) (15)

Here “sign” means the signum function 1. For example, in
Fig. 2, we can see that ~δX(100) and ~δX(99) are identical,
since every element in ~X grows gradually from time to time.
However, if we change the third element in ~X(99) from 0.8 to
1.1, then we can see that ~δX(100) and ~δX(99) are not equal.
In other words, not all the elements in vector X move in the
same direction round after round.

Based on these δ(·) vectors, we calculate a “frog factor” (f )
for this neighbor:

f = (~δX(t) == ~δX(t− 1))&&(~δY (t) == ~δY (t− 1)) (16)

The value of f indicates whether a frog-boiling attack is
going on. If f equals to 0, we apply the aforementioned grad-
ing and voting steps. In contrast, if f equals to 1, NCShield
will find that Hn is performing a frog-boiling attack, and will
ignore its information in updating H’s coordinates.

The anti-frog-boiling module is highly extensible. We can
upgrade this module to prevent from more complicated mali-
cious attacks in the future.

D. Integrating NCShield with MFNC Systems

NCShield is compatible with different MFNC systems such
as Phoenix and DMFSGD. In this subsection, we use a piece
of pseudocode shown in Fig. 3 to demonstrate the overall
workflow of NCShield. In the first three lines, we define ST,

1For any x > 0, sign(x) = 1; for any x = 0, sign(x) = 0; for any
x < 0, sign(x) = −1.

VT and RT. For a new host, it will contact the RP to obtain
a list of existing hosts (line 4). Based on this list, it will
connect to NList and VList members (lines 5-7). Afterwards,
the host will conduct measurements and update its coordinates
periodically (lines 8-24). As in any existing NC system without
security considerations, the host communicates with nodes
in its NList to get the RTT information, and these latest
coordinates. Particularly, line 10 denotes the peer discovery in
NCShield, line 11 shows how the new host delivers necessary
information to VList members. In lines 12-17, we demonstrate
how VList members work, including frog-boiling detection
(line 14), independent grading (line 15), and voting (line 16).
In lines 18-22, we can see how the new host finally get
feedbacks from VList members, and updates its coordinates
accordingly.

V. EVALUATION METHODOLOGY AND METRICS

To show the usefulness of NCShield in various respects, we
conduct a series of simulation to evaluate NCShield in both
Phoenix and DMFSGD systems. In this section, we describe
the evaluation methodology, metrics, data sets, scenarios, and
system parameters.

A. Communication Overhead Analysis

We aim to have a lightweight NC system. Therefore, the
communication overhead is a critical issue. We analysis the
communication overhead of NCShield, and compare it with
the DHT-based Veracity system in Section VI-A. We have
found that NCShield is more cost-effective, and it generates
less additional traffic.

B. Evaluation with Aggregate Data Sets

Three representative aggregate data sets are used in this
evaluation in Section VI-B. The first data set is the AMP
data set [32], which includes the RTTs among 110 Internet
hosts. The hosts are mainly at NSF supported HPC sites, with
about 10% outside the US. The AMP data set has been used
in [32], [48]. The second data set is the PlanetLab data set [52],
which includes the RTTs among 335 PlanetLab hosts all over
the world, collected during March-April, 2010. The PlanetLab
data set has been used in [14], [32], [48], [52]. The third data
set is the King data set which includes the RTTs among 1740
Internet DNS servers [14]. The King data set has been used
in [14], [42], [43], [48]. These data sets can present three
different Internet delay spaces [47].

Since an aggregate data set only provides one “snapshot” of
a pairwise RTT matrix, frog-boiling attacks and the anti-frog-
boiling module do not function in this evaluation. Therefore
we evaluate NCShield against disorder, repulsion and isolation
attacks in Section VI-B. As described in Section III, in
disorder attacks, malicious nodes would send false coordinates,
including both outgoing vectors and incoming vectors. We use
Emax to represent the value of the largest element of these
vectors before launching the attack. For malicious nodes, each
element of these two vectors is randomly generated within
the range of [0, Emax]. In repulsion attacks, each element
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1: define ST SCORE THRESHOLD
2: define VT VOTE THRESHOLD
3: define RT RELIABLE NEIGHBORS THRESHOLD
4: Get Initial Host Candidates(RP )
5: Generate NList and V List()
6: Connect to NList Members()
7: Connect to V List Members()
8: while forever do
9: Get(d(·),X,Y ) {Probing RTT and requesting incoming and outgoing coordinates from NList}

10: Check and Renew Candidates with Brahms() {Secure gossip}
11: Deliver to V List(X,Y , neighbor addrs) {Providing information for VList members}
12: for all Members ∈ V List do
13: dv to n(·) =Measure to Neighbor(neighbor addrs) {Probing RTT from verification nodes to neighbor nodes}
14: δ(·) = Cal δ(current(X,Y ), history(X,Y )) {Anti-frog-boiling}
15: s(·) = Cal Score(dv to n(·),X,Y ,Xv,Yv) {Grading}
16: v(·) = Cal V ote(s(·), ST, δ(·)) {Voting}
17: end for
18: Deliver to Host(v(·)) {Node H collects votes}
19: r = Parse V ote(v(·), V T ) {Node H makes decisions}
20: if r ≥ RT then
21: MFNC Update Coordinate() {NC calculation}
22: end if
23: Wait(NC UPDATE INTERVAL)
24: end while

Fig. 3: Pseudocode of MFNC Systems with NCShield

in the incoming and outgoing vectors of malicious nodes are
randomized within the range of [0, 1

2Emax]. Thus, the RTT
probes are delayed according to the randomly generated target
vectors. In isolation attacks, the coordinates of malicious nodes
are randomized the same way as in repulsion attack. However,
the attack targets are outgoing vectors of victims, which are
aimed to be set to a vector of pre-defined maximum values.
The RTT probes are also delayed correspondingly.

Futhermore, we assume that the attackers are “smart”
enough, and they can be injected into the NC system success-
fully. We foresee that they will act as legitimate nodes in the
very beginning, and launch malicious attacks later. Simulations
for each scenario are repeated 5 times and the average results
are obtained.

C. Evaluation with a Dynamic Data Set

The Internet distances are time-varying. However, existing
security schemes for ENC systems do not consider this varia-
tion at all. To the best of our knowledge, whether existing NC
security schemes are robust to the Internet distance variation
remains an unknown problem. We believe that a practical
security scheme should be able to distinguish between ordinary
distance variation and maliciously generated distance provided
by the attackers.

To evaluate the robustness of NCShield in dynamic envi-
ronments, we introduce the “K200-allpairs-1h” dynamic data
set [30]. This data set contains 200 nodes and the data
collection lasts 44 hours using King method. We have obtained
99 continuous snapshots of all pairwise RTTs. NCShield is
evaluated not only against disorder, repulsion and isolation

attacks, but also against the two types of frog-boiling attack.
In frog-boiling attack I, malicious nodes alter their coordinates
by increasing 0.1 in each dimension, within each round. The
RTT probing packets are also delayed by the value which is
evenly assigned to the 98 rounds, generated from uniform
randomness in [100..1000] ms. Thus the alteration is small
enough to make detections difficult. In frog-boiling attack II,
malicious nodes not only change their coordinates gradually,
but also delay RTT probing packets in a smooth way.

We run on the first one of 99 snapshot matrices to achieve an
acceptable convergence of coordinates. Then from the second
snapshot matrix, the malicious nodes start their attacks. The
results are presented in Section VII.

D. Evaluation in an Online Game Scenario

Besides using typical RE metric for evaluating the pre-
diction accuracy, we also evaluate NCShield in a practical
scenario, i.e., a popular online game scenario, in Section VIII.
As introduced in [12], [31], identifying all end-to-end links
with shorter latencies than a pre-defined threshold is critical
for various real-time interaction games, and NC systems are
a scalable solution to get a prediction of RTTs of all links.
According to the requirement of first-person shooter games,
we set this threshold as 100ms [12].

A link is defined as a good (resp. bad) link when its mea-
sured RTT is below (resp. above) the pre-defined threshold.
A true positive (TP) indicates that a good link is correctly
predicted as “good”, while a false positive (FP) shows that
a bad link is wrongly predicted as “good”. Likewise, a true
negative (TN) tells that a bad link is correctly predicted
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TABLE II: NPRE of Repulsion Attacks

NC Data Defense Percentage of Malicious Nodes
0% 10% 30% 50%

Phoenix

AMP OFF 0.284 0.505 1.059 2.706
ON 0.285 0.289 0.307 0.394

PL OFF 0.444 0.701 1.410 2.259
ON 0.492 0.558 0.674 0.752

King OFF 0.450 1.170 1.558 4.029
ON 0.456 0.548 0.590 0.619

DMFSGD

AMP OFF 0.183 0.556 1.766 1.992
ON 0.183 0.194 0.293 0.250

PL OFF 0.559 0.866 2.992 3.796
ON 0.559 0.634 1.111 1.009

King OFF 0.782 1.525 2.491 2.583
ON 0.782 0.776 0.965 0.854

as “bad”, while a false negative (FN) points that a good
link is wrongly predicted as “bad”. False positive rate (FPR)
and false negative rate (FNR), the metrics we adopt in this
evaluation, are defined by FPR = FP/(FP + TN) and
FNR = FN/(TP + FN), respectively.

We conduct this simulation with AMP, PL335 and King
data sets against disorder attacks, and with the dynamic data
set against frog-boiling attacks. Half of the nodes, i.e. 55
nodes, 167 nodes, 870 nodes and 100 nodes in each data set,
respectively, are chosen to be participants of online game, and
these nodes are legitimate nodes. We vary the percentage of
malicious nodes from 10% to 50%, with an interval of 10%.

E. System Parameters

In both Phoenix and DMFSGD, each node is assigned
32 [9], [27] neighbors and 7 [38] VList members, which
are selected randomly. The coordinate dimension is set to
10 [9], [27]. Using default values in [9], [27], we set up-
date rounds of Phoenix and DMFSGD to 30 and 50, re-
spectively. For Phoenix, the constant C is set to 10 [9],
ST (SCORE THRESHOLD defined in Algorithm § IV-D)
is 1.0, VT (VOTE THRESHOLD) is 6, and RT (RELI-
ABLE NEIGHBORS THRESHOLD) is 10. While in DMF-
SGD, the regulation coefficient λ is set to 1, learning rate η is
1e-2 [27], ST is 0.4, VT is 4, and NT is 10. Later we will see
that the parameters of NCShield are not sensitive to the delay
space. The malicious group size is set from 10% to 50%, with
an interval of 10%.

VI. RESULTS WITH AGGREGATE DATA SETS

In this section, we evaluate NCShield with aggregate data
sets. We first analyze the communication overhead of NC-
Shield using a gossip algorithm, and compare it with Veracity
using DHT. We then present the results of our simulation study
in Phoenix and DMFSGD using three aggregate data sets.

A. Communication Overhead Analysis

As NC systems are aiming at reducing traffic overhead, it
is necessary to guarantee that a defense approach does not
introduce viable overhead. According to the pseudocode in
Section IV-D, table I summarizes the coordinate verification
steps of Veracity using a DHT and NCShield using a gossip
protocol. The communication overhead of each step is also

TABLE III: NPRE of Isolation Attacks

NC Data Defense Percentage of Malicious Nodes
0% 10% 30% 50%

Phoenix

AMP OFF 0.285 0.558 1.157 3.412
ON 0.285 0.301 0.305 0.373

PL OFF 0.445 0.689 1.328 2.567
ON 0.469 0.529 0.653 0.676

King OFF 0.444 0.988 1.582 5.001
ON 0.463 0.531 0.557 0.586

DMFSGD

AMP OFF 0.145 0.416 0.582 1.348
ON 0.145 0.160 0.308 0.319

PL OFF 0.611 0.685 1.616 1.731
ON 0.611 0.643 1.061 1.169

King OFF 0.781 1.196 3.644 3.225
ON 0.781 0.801 0.911 0.998

shown, counted in number of messages. In the table, m
represents the number of neighbors, u stands for the number
of VList members of each node, and N is the number of
nodes in the NC system. According to the table, NCShield
can significantly save the communication costs from Veracity.
According to the parameter configuration above, m = 32
and u = 7, with a node scale of 1024, the communication
overhead in one round of coordinate verification process of
all nodes are 2674688 messages and 997376 messages in
Veracity and NCShield, respectively. Compared with DHT
based solution, our gossip-based approach can save 62.7%
traffic for coordinate verification operations.

B. Results with Aggregate Data Sets

In this subsection, we use the parameter settings of Phoenix,
and DMFSGD defined in § V-E. In this subsection, “defense
on” means that we have applied NCShield to secure an MFNC
system, and “defense off” means that we have not applied
NCShield.

We first launch disorder attacks, and Fig. 4 shows the re-
sults. Particularly, we examine both systems by both enabling
and disabling NCShield. The NPRE results are calculated with
all the participant nodes EXCEPT malicious nodes. The figure
indicates that NCShield can largely reduce the negative effect
of disorder attacks. By using NCShield, when we increase the
percentage of the malicious nodes, the NPRE will not increase
remarkablely. Differently, if we do not apply NCShield, we
can see a rapid increase of NPRE. For example, using the
AMP data set to simulate Phoenix (Fig. 4(a)), we can see that
the NPRE is 0.223 when there is no attacker in the system.
If we do not apply NCShield, when 30% malicious nodes
exist, the NPRE increases to 0.998 which is a significant
jump. In contrast, when we apply NCShield in Phoenix, the
NPRE drops to 0.315. Therefore, we can see that NCShield
can prevent Phoenix from disorder attacks. Moreover, in Fig.
4(b)-4(f), we can see that for both Phoenix and DMFSGD
systems, NCShield performs very well using different data
sets.

The results of launching repulsion attacks are shown in
Table II. The NPRE results are calculated with the outgo-
ing vectors of all nodes EXCEPT malicious nodes and the
incoming vectors of victim nodes. From the table we can see
that NCShield can significantly protect legitimate nodes from
repulsion attacks. As we can identify and terminate repulsion
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TABLE I: Comparison of Communication Overhead between Veracity and NCShield

Veracity using DHT Overhead NCShield using Gossip Overhead
Pub. contact VSets Nu(log2N) H contacts NList Nm ∗ 2
VSets ping pub. Nu ∗ 2 H contacts VList Nu
Invest. contacts pub. Nm ∗ 2 VList contact NList Nmu ∗ 2
Invest. contacts VSets Nmu(log2N) VList ping NList Nmu ∗ 2
VSets return results Nmu VList return results Nu

(a) Phoenix with AMP Data Set (b) Phoenix, PlanetLab Data Set (c) Phoenix, King Data Set
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Fig. 4: NCShield against Disorder Attacks with Aggregate Data Sets
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(a) Phoenix, Disorder Attack
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(b) Phoenix, Repulsion Attack
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Fig. 6: Average NPRE Results with the Dynamic Data Set
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Fig. 5: NCShield against Disorder Attacks with the Dynamic
Data Set (“K200-allpairs-1h” )

attacks, other nodes will not believe that the victims are far
away from them.

Similarly, the results of isolation attacks are shown in Table
III. The NPRE results are calculated with the outgoing vectors
of victim nodes and the incoming vectors of all nodes EXCEPT
malicious nodes. Our results have also shown that NCShield
can remedy isolation attacks well, and accordingly the victims
will no longer be pushed to somewhere near the malicious
nodes in the delay space.

VII. RESULTS WITH THE DYNAMIC DATA SET

In this section, we examine NCShield with a dynamic
data set. We use the same parameter settings of Phoenix and
DMFSGD defined in Section V-E. For instance, we present
the evaluation against the conventional disorder, repulsion and
isolation attacks as those in Section VI-B.

Fig. 5 shows the NPRE variations in Phoenix under disorder
attack with the “K200-allpairs-1h” data set. In Fig. 5(a),
without defense, the RE increases significantly when malicious

nodes increase. As Internet distances varying from time to
time, the performance degrades when the system is under
disorder attack. While in Fig. 5(b), with NCShield, the NPRE
values are much smaller than the corresponding ones in Fig.
5(a). Therefore, NCShield achieves a very good performance
in the dynamic data set as well. The increase of RE is
obviously mitigated, which indicates NCShield works well in
this scenario.

Fig. 6 shows the average NPRE results both in Phoenix
and DMFSGD systems under all first three attacks. From
the figure we can see that NCShield can remedy the three
attacks significantly for both systems. For example, in Phoenix
with 30% malicious nodes, NCShield can help decrease the
average NPRE from 1.133 to 0.585 under repulsion attack.
In DMFSGD, when 10% malicious node conducting disorder
attack, NCShield decreases the average NPRE from 1.661 to
0.904.

Furthermore, we present the evaluation against frog-boiling
attack I and II, which aim at disrupting the NC systems in the
way of gradually falsifying the coordinates and delaying RTT
probing packets.

Figs. 7(a), 7(b), 8(a) and 8(b) show the simulation results of
NCShield against frog-boiling attack I. The NPRE values are
calculated with the outgoing and incoming vectors of all nodes
EXCEPT malicious nodes. Figs. 7(c), 7(d), 8(c) and 8(d) show
the simulation results of NCShield against frog-boiling attack
II. The NPRE values are calculated in the same way. The
comparison of each two subfigures shows that NCShield can
defend the systems against frog-boiling attacks significantly.
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Fig. 9: Online Game Scenario, Disorder Attacks, Phoenix
System (PL335 Data Set)

VIII. ONLINE GAME SCENARIO EVALUATION

We use an online game scenario [2], [31] as a representative
service to evaluate the usefulness of NCShield. To simulate
Phoenix, we adopt the same parameter settings as previous
sections. Here we only show the results of PL335 data set
in Fig. 9, while the results of the other two aggregate data
sets are similar. For the Phoenix NC system, when 30%
malicious nodes are conducting the disorder attack, NCShield
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Fig. 7: NCShield against Frog-boiling Attacks in Phoenix

can reduce the FPR and FNR from 45.5% and 25.2% to
3.7% and 5.8%, respectively. Most of the negative impacts
on link selection introduced by attackers are eliminated. This
shows that in an online game scenario using Phoenix for
link selection, NCShield is practical to prevent performance
degradation caused by disorder attacks. We have also found
similar results in simulating DMFSGD.

IX. RELATED WORK

Researchers have proposed several approaches to defend
decentralized ENC systems. All existing approaches are based
on a common idea, i.e., using additional scalable measurement
to judge whether a reference node is trustworthy. These
approaches can be broadly classified into two categories: node
behavior based approaches [17], [46], and trust and reputation
based approaches [36], [38].

Kaafar et al. [17] propose a node behavior based approach
for ENC system defense. Their intuition is that the dynamics
of a node in a normal system can be modeled by a linear state
space, and accordingly can be tracked by a Kalman filter. In

their solution, a set of dedicated nodes are chosen as trusted
surveyors to observe the dynamics of nodes and maintain the
parameters of Kalman filter. Malicious behaviors of a node can
be identified by its neighboring surveyors using the Kalman
filter. The bottleneck of this approach is the large number
of dedicated surveyor nodes, which produce a significant
overhead when the scale of the system becomes large (e.g.,
800-1000 surveyors are suggested for an NCS serving 10,000
nodes). To overcome this weakness, Zage et al. [46] propose a
fully distributed approach without relying on a set of dedicated
surveyors. It detects malicious nodes by observing inconsistent
behaviors with their neighbors (temporal outlier) or the space
of metrics (spatial outlier). This approach can get rid of a
large number of dedicated surveyors. However, as the detection
of temporal outliers depends on nodes’ history information
[38], it does not perform well with frequent node churns.
Furthermore, the Kalman filer and outlier detection methods
cannot defend the frog boiling attacks, as stated in [7], since
the gradual coordinate alteration shows little impact within
each update round.
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Fig. 8: NCShield against Frog-boiling Attacks in DMFSGD

Both RVivaldi [36] and Veracity [38] use a trust and repu-
tation system to secure ENC systems. RVivaldi employs two
types of entities: a centralized Reputation Computation Agent
(RCA) and surveyors, where surveyors monitor nodes and
RCA performs centralized computation for every node’s trust
and reputation score. As a result, the centralized RCA becomes
a single point of failure since it is responsible for computing
the reputation scores for all nodes in the system. Veracity [38]
does not need a centralized RCA. Instead, it employs two sets
of nodes, VSet (voting node set) and RSet (reference node
set), to help verify the process of updating node coordinates.
It deploys a Distributed Hash Table (DHT) to help VSet and
RSet construction as well as neighbor selection. However, as
shown in § VI-A, this approach requires a significant amount
of communication overhead in order to maintain its overlay
routing structure. In addition, it requires additional security
methods such as [6] to protect this additional infrastructure,
which further adds extra overhead.

In addition, all of the four defense approaches above are
only evaluated using aggregate data sets, in which the RTT

between any two hosts in the data set is a single value,
based on either the median [14] or the minimum of measured
RTTs [47], [50] over a period of time (days or even weeks).
However, the Internet distances are changing from time to
time [30]. These approaches do not consider the distance
variation in their investigation, and their performance on the
real Internet remains unknown.

X. CONCLUSIONS

As decentralized MFNC systems can scale to millions of
Internet users and are more accurate than Euclidean-based NC
systems by getting rid of the limit of the triangle inequality,
they have become a useful choice for helping large-scale
Internet services, such as cloud-based services. Therefore,
securing MFNC systems is critical for various Internet services
and applications. As we have shown in this paper with the
disorder, repulsion, isolation and two types of frog-boiling
attacks towards Phoenix and DMFSGD systems, the security
threats of decentralized MFNC systems can be very severe,
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and even a small number of malicious nodes can deteriorate
the accuracy of the entire MFNC system significantly.

We proposed a score and vote based approach, called NC-
Shield, to secure MFNC systems. Besides preventing MFNC
systems from classic attacks, NCShield can handle the new
emerging frog-boiling attacks. Through extensive simulations
using both aggregate data sets and a dynamic data set, NC-
Shield is able to effectively defend MFNC systems. We have
also investigated how to apply NCShield in Internet applica-
tions based on MFNC systems. We introduced an online game
scenario, and studied the widely used link selection operation.
Our results have shown that NCShield can significantly reduce
the negative effects introduced by malicious attacks. To the
best of our knowledge, our work is the first work to address
the frog-boiling attacks in NC systems, and we are the first
to consider the Internet distance variation in securing NC
systems.

In the near future, we plan to deploy NCShield on the
commodity Internet. We believe NCShield can be an integrated
and useful part of a series of running Internet-based services,
especially for cloud or web-based services. As an example,
we aim to integrate NCShield into CloudGPS [15], which is
a server selection scheme in cloud computing environments.
CloudGPS uses Phoenix as the distance prediction module, and
accordingly NCShield can play an important role in securing
CloudGPS.
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