Type-Based Publish/Subscribe: Concepts
and Experiences

PATRICK EUGSTER
Purdue University

A continuously increasing number of interconnected computer devices makes the requirement for
programming abstractions for remote one-to-many interaction yet more stringent. The publish/
subscribe paradigm has been advocated as a candidate abstraction for such one-to-many interac-
tion at large scale. Common practices in publish/subscribe, however, include low-level abstractions
which hardly leverage type safety, and provide only poor support for object encapsulation. This
tends to put additional burden on software developers; guarantees such as the aforementioned
type safety and object encapsulation become of increasing importance with an accrued number of
software components, which modern applications also involve, besides an increasing number of
hardware components.

Type-based publish/subscribe (TPS) is a high-level variant of the publish/subscribe paradigm
which aims precisely at providing guarantees such as type safety and encapsulation. We present the
rationale and principles underlying TPS, as well as two implementations in Java: the first based on
a specific extension of the Java language, and a second novel implementation making use of recent
general-purpose features of Java, such as generics and behavioral reflection. We compare the two
approaches, thereby evaluating the aforementioned features—as well as additional features which
have been included in the most recent Java 1.5 release—in the context of distributed and concur-
rent programming. We discuss the benefits of alternative programming languages and features for
implementing TPS. By revisiting alternative abstractions for distributed programming, including
“classic” and recent ones, we extend our investigations to programming language support for dis-
tributed programming in general, pointing out that overall, the support in current mainstream
programming languages is still insufficient.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed applications; D.1.5 [Programming Techniques]: Object-Oriented
Programming; D.1.3 [Programming Techniques]: Concurrent Programming—Distributed
programming; D.3.2 [Programming Languages]: Language Classifications—Object-oriented
languages

General Terms: Languages, Design

This work was supported in part by Agilent Laboratories, Lombard Odier Darier Hentsch and Co.,
the Swiss Group for Object-Oriented Programming, and the Swiss National Science Foundation.
P. Eugster was formerly associated with Sun Microsystems, Inc. and the Swiss Federal Institute of
Technology in Lausanne.

Author’s address: P. Eugster, Department of Computer Science, Purdue University, West Lafayette,
IN 47907; email: p@cs.purdue.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 0164-0925/2007/01-ART6 $5.00. DOI 10.1145/1180475.1180481 http://doi.acm.org/
10.1145/1180475.1180481

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

2 J P. Eugster

Additional Key Words and Phrases: Abstraction, generics, Java, publish/subscribe, reflection, type,
distribution

ACM Reference Format:

Eugster, P. 2007. Type-based publish/subscribe: Concepts and experiences. ACM Trans. Pro-
gram. Lang. Syst. 29, 1, Article 6 (January 2007), 50 pages. DOI = 10.1145/1180475.1180481
http://doi.acm.org/10.1145/1180475.1180481.

1. INTRODUCTION

When programming distributed applications—and nowadays, virtually any
application of industrial scale involves physically separated components—
communication abstractions supporting other than strict pairwise (“one-to-
one”) interaction have proven extremely useful. Indeed, there is an unlimited
number of scenarios where we can identify interaction patterns involving com-
ponents that produce data which is of interest for several consumers. This is
typical of multicast-style (“one-to-many”) interaction.

One-to-many is not many one-to-one. The scalability requirements posed
by modern distributed applications, culminating in peer-to-peer and grid com-
puting, mandate specific support for multicast and broadcast communication.
Building corresponding primitives on top of high-level abstractions for one-
to-one interaction such as derivates of the remote procedure call (RPC) would
clearly hamper the efficiency of these primitives. The increasing system scale
of the aforementioned settings furthermore leads to an increased dynamism,
which is possibly exacerbated by supporting mobile participants. These con-
straints already make it unfeasible for data producers to know and keep track
of all potential consumers. An adequate abstraction imlemented by a dedicated
middleware substrate is needed to deal with these issues.

The shooting star publish/subscribe. An abstraction which has proven its
value for providing such one-to-many interaction is the publish / subscribe [Oki
et al. 1993] paradigm. Consumers subscribe to whatever “kind” of events they
are interested in. Producers anonymously' and asynchronously publish events,
which are then notified to consumers with matching subscriptions, by sending
them the data associated with these events. Many systems provide such event-
based interaction models, and implement one or several specifications out of an
established large family (e.g., Happner et al. [2002], Freeman et al. [1999] for
Java, OMG [2000, 2001b, 2003] for CORBA [OMG 2002]; see Section 8).

Having emerged from group communication [Powell 1996], it is not surpris-
ing that seminal publish/subscribe systems promoted subscriptions based on
topics (or subjects), which roughly represent groups of participants with com-
mon interests. For example, the topic “StockQuotes” regroups all stock bro-
kers interested in stock quotes. These topics were then augmented by inclu-
sion relationships, leading to topic hierarchies (e.g., TIBCO [1999], Talarian
Corp. [1999], and Altherr et al. [1999]). A consumer subscribing to a topic

IThis constitutes the main difference to the observer design pattern [Gamma et al. 1995] (which
publish/subscribe is often confused with) from an abstraction point of view, which, however, results
in a sensible difference in terms of scalability.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 3

“/StockQuotes” hence expresses interest in events published under this topic,
and under any subtopic thereof, for example, “/StockQuotes/Telco.” Yet more ex-
pressiveness was then achieved by taking event content into account when sub-
scribing to, and subsequently routing, events. Seminal work includes Carzaniga
et al. [2000] and Aguilera et al. [1999]. Corresponding content-based subscrip-
tions then also encompassed content filters, some form of predicates that are
expressed on the content of (the data associated with) events, such as “all stock
quotes which cost less than $100.” Most topic-based systems have been aug-
mented with content filtering capabilities.

Implementing publish /subscribe. To disseminate events both reliably and
efficiently in large-scale distributed systems manifesting network and process
failures, most publish/subscribe engines employ overlay networks [Carzaniga
et al. 2000; Aguilera et al. 1999]. To fully exploit these infrastructures, events
are viewed as plain structures composed of event properties, rather than as
objects, and subscriptions are expressed in some SQL-like grammar based on
these properties. Most of these systems only support predefined event types
which represent maps of property-value pairs. When put to work in object set-
tings, such systems offer no support for the encapsulation of (the state of) events,
and do not leverage type safety, since events are viewed as sets of publicly ac-
cessible fields—each of an arbitrary type. In addition, through the expression of
subscriptions as strings following some SQL-like grammar, it becomes impos-
sible to verify even the invariable parts of these subscriptions at compilation,
making the already burdensome development and debugging of distributed ap-
plications even harder.

Such practices are motivated by the need for late binding [Oki et al. 1993],
and efficiency: As observed by Carzaniga et al. [2000], routing and filtering
infrastructures can hardly scale in the face of overly expressive subscription
schemes. Intuitively, if much expressiveness is provided, interests of consumers
tend to manifest only little overlap, and an important benefit of overlay net-
works, namely, the possibility of regrouping common interests [Aguilera and
Strom 2000] (and thus common communication), is strongly diminished. Based
on such arguments, event-based communication has been claimed to be inher-
ently incompatible with the principles of object-orientation [Koenig 1999].

Type-based publish/subscribe. The goal of type-based publish/subscribe
(TPS), our high-level abstaction for multicast interaction, is precisely to pro-
vide guarantees such as type safety and encapsulation, without hampering the
efficiency of routing and filtering mechanisms.

In short, events in TPS are objects which are instances of “arbitrary”
application-defined types. In essence, the TPS paradigm uses an “ordinary”
type scheme, without explicitly introducing a topic hierarchy nor any other
specific notion of event kind: the type is the topic. Effective application events
neither have to be explicitly inserted into, or extracted from, any containers
or predefined general-purpose types, which greatly leverages type safety. Sim-
ilarly, consumers neither have to transform nor cast received events or event
properties. Furthermore, it turns out that this type information, when provided
to a TPS engine, can be employed to set up “connections” (e.g., to preconfigure
an overlay network), just like topics in a topic-based system.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

4 J P. Eugster

Subscriptions in TPS moreover include content filters expressed on the public
members of the types of events subscribed to. The content of an event object is
hence implicitly defined: the state is the content. TPS nevertheless preserves
the encapsulation of event objects by not forcing event (types) to reveal their
state because content filters can make use of public methods. General-purpose
event types such as maps are merely a specific type of event, and can still be used
whenever late binding is required, that is, the content of events is unknown at
compile-time.

Going the last mile. When going the last mile, that is, when making these con-
cepts of type safety and encapsulation concrete without hampering efficiency of
filtering and routing mechanisms, more care is required than when implement-
ing pure content-based schemes [Eugster et al. 2002]. However, by restricting
the use of methods in content filters to field access methods, and introducing
simple conventions on their naming (possibly with inherent support from the
language itself, see [Meyer 1992b]), we can even build TPS on top of promi-
nent content-based engines [Baehni et al. 2002]. The salient difference is that
we replace content filters as strings, for example, “‘price’ <100.0” (a classical
example for SQL-like languages in publish/subscribe systems) by something
expressed in the programming language itself, and hence type-checked, for
example, e.getPrice()<100.0 (where e is a formal argument representing an
event). Through such transformations, ugly aspects of distribution are hidden
without introducing a performance penalty, as events can still be efficiently
routed and filtered at a low level, that is, without (repetitive) deserialization.
Independently of the semantics we support in content filters, the grand chal-
lenge of TPS consists in providing a means of expressing subscription criteria,
including content filters such as previously described, in the programming lan-
guage itself, without these being simply compiled and applied locally.

With such an approach, and a set of type conformance rules between lan-
guages (ala CORBA), interoperability, a further argument for current practices
in addition to efficiency, can also be achieved [Baehni et al. 2003].

Contributions. This article presents the concepts underlying TPS, and expe-
rience we have gathered when putting these concepts to work. While we have
devised several distributed algorithms for disseminating events (e.g., Eugster
et al. [2003], Eugster and Guerraoui [2002], and Baehni et al. [2004]), this ar-
ticle focuses on the last mile. More precisely, the contributions of this work are
the following:

—The design principles underlying TPS are presented from a general point of
view. These principles are also compared with related work on typed event-
based distributed programming schemes.

—We illustrate these principles (in a first step) through an extension of the
Java programming language, with two primitives added specifically for TPS
programming [Eugster et al. 2001]. This extension approach, which never
aimed at a standardization effort, has served as reference for subsequent
TPS implementations.

—We present a new “library” prototype, that is, a prototype implemented with-
out any specific language extensions or hooks into the runtime environment.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 5

This approach relies on recent general-purpose features of the Java lan-
guage [Sun 2005]—generics and (a limited mechanism for behavioral)
reflection—which are idealized in a first step for presentation simplicity. This
approach supercedes seminal library implementations of TPS [Eugster and
Guerraoui 2001; Eugster et al. 2000, 2004; Damm et al. 2004], which were
initiated prior to the finalization of the aforementioned features.

—We also evaluate the library approach in more detail by comparing it with
the language approach, pointing out weaknesses of the aforementioned fea-
tures [Damm et al. 2004]. Roughly, generics lack runtime support, and only
a limited mechanism for behavioral reflection is available, which is further-
more not supported uniformly. While the first omission has already been
criticized in the context of orthogonal persistence (e.g., Solorzano and Alagic
[1998]), we present here its ramifications in the context of distributed pro-
gramming in general by looking also at alternative distributed programming
abstractions, such as remote method invocations (RMI) and tuple spaces. Sim-
ilarly, limitations of the core mechanism for behavioral reflection adopted by
Java have been pointed out earlier (e.g., Liebermann [1986]). We focus here
on the impact of the type system on this mechanism and on distributed pro-
gramming in general, as well as on other new features of the Java language
at the 1.5 “Tiger” release [Sun 2005], such as boxing/unboxing, or variable
arguments.

—We then investigate alternative general-purpose language features, in addi-
tion to .NET, the main rival of Java, in the context of implementing dis-
tributed programming abstractions as libraries, without specific support.
We point out that in general the support for implementing distributed in-
teraction is insufficient in current mainstream programming environments
[Eugster et al. 2004].

Roadmap. The rest of this article is organized as follows. Section 2 presents
background information on the publish/subscribe paradigm, and assumptions
made. Section 3 introduces the principles underlying TPS. Section 4 presents
our TPS-specific extension of the Java language, illustrating the difficulties in
putting TPS to work. Section 5 presents our novel library implementation of
TPS, exploiting recent features of the Java language. Section 6 evaluates gener-
ics and reflection in Java through our library implementation, and discusses
the impact of Java’s type system on these features. Section 7 discusses various
issues, such as alternative languages and/or language features and alternative
abstractions for distributed interaction. Section 8 compares our efforts with re-
lated notions of typed event-based programming, and programming languages
with specific support for distribution. Section 9 presents conclusions drawn
from our experience.

2. PRELIMINARIES

This section provides background information on the publish/subscribe
paradigm, and introduces the system model and assumptions made. More in-
sight into related event-based models and systems, including a notion of event
type, is provided in Section 8.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

6 . P. Eugster

2.1 A Historical Survey of Publish/Subscribe

The publish/subscribe paradigm has found wide acceptance wherever a one-to-
many interaction style is required, including many applications in finance and
telecommunications. The propagation of news (in the sense of news groups) or
of any kind of update reflects such interaction models.

2.1.1 It All Began One of the main spiritual ancestors of the pub-
lish/subscribe abstraction is the group communication paradigm [Powell 1996],
which has found widespread application in fault-tolerant distributed systems
as the foundation for replication [Birman 1993]. Based on the observation that
a set of distributed processes cannot even reach a consensus on a common value
if these processes are error-prone (e.g., some of them might fail) [Fischer et al.
1985], many distributed systems are built by making use of the group paradigm
as a communication-centric, more than a concurrency-centric, mechanism (see
Section 8.2). This helps in avoiding direct synchronization of remote (failure-
prone) parties. The incentive for this consists in that mutual exclusion is even
harder to solve (e.g., requires even stronger assumptions to be solvable) among a
distributed set of failure-prone processes than consensus [Delporte-Gallet et al.
2005]. Synchronization of parties can be achieved more indirectly by making
use of multicast algorithms with specific ordering guarantees that build on
minimal assumptions. For example, total order broadcast has been shown to
be equivalent to consensus. Group communication, however, also encompasses
one-to-many interaction with weaker guarantees.

2.1.2 Topic-Based Publish/Subscribe. Most early commercial publish/
subscribe systems proposed schemes based on groups. Subscribing to a group
“StockQuotes” entails becoming member of this group (e.g., TIB/Rendezvous
[TIBCO 1999], SmartSockets [Talarian Corp. 19991, IBus [Altherr et al. 1999]).
These groups also often appeared under the name of topics, leading to the widely
adopted term topic-based publish [subscribe. Most of these systems support one
or several specifications out of a proliferating family of standards, for example,
Java message service (JMS) [Happner et al. 2002], CORBA event and notifica-
tion services [OMG 2000, 2001b], or JavaSpaces [Freeman et al. 1999], which
promote some form of first-class named communication channel for which the
name is typically the topic.

The term subject-based publish/subscribe is sometimes used as a synonym
for topic-based publish/subscribe, while sometimes, the hierarchical disposition
of names is viewed as specific to subject-based publish/subscribe. All prototypes
cited previously propose a hierarchical orchestration of groups with a URL
kind of notation for referring to these groups (e.g., “/StockQuotes/Telco”), where
a subscription to a node in the hierarchy triggers subscriptions to the entire
subtree.

2.1.3 Content-Based Publish [Subscribe. The content-based (also property-
based) publish/subscribe variant originated in academia (e.g., Siena [Carzaniga
et al. 2000], Gryphon [Aguilera et al. 1999]), and has made its way into
most of the aforementioned systems and specifications. In content-based

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 7

public class DynamicEvent {
public static final int IntegerType
public static final int FloatType
public static final int StringType

1;
2;
3;

public void addInteger(String fieldName, int i) {...}
public void addFloat (String fieldName, float f) {...}
public void addString (String fieldName, String s) {...}

public int getInteger (String fieldName) throws WrongTypeException {...}
public float getFloat(String fieldName) throws WrongTypeException {...}
public String getString(String fieldName) throws WrongTypeException {...}

public String|[] getFieldNames() {...}
public int getFieldType(String fieldName) {...}

}

public class WrongTypeException extends Exception {...}

Fig. 1. Dynamically structured events.

publish/subscribe, subscribers can express interest in events with certain run-
time properties.

Subscriptions are expressed as predicates based on these properties, and
these subscription patterns are viewed as content filters when (generated and)
applied by the communication middleware.

In most content-based systems, events are viewed as sets of values of prim-
itive types, or records, and properties of events are viewed as fields of such
structures. Dynamically structured events (self-describing messages [Oki et al.
1993]) supporting some form of introspection on their content, as illustrated
in Figure 1 with Java syntax, can be found in most content-based publish/
subscribe systems. As an example, an event representing a stock quote would
have a field called price of floating point type. Likewise, most standardized APIs
(e.g., Happner et al. [2002], OMG [2000, 2001b]) view properties as character-
istics explicitly attached to events.

Subscription criteria consist of desired values for given properties, and can
be expressed in various ways. The most prominent approach consists in us-
ing a subscription language (complementary to the programming language) to
express property-value pairs (e.g., Bacon et al. [2000]; OMG [2000]) such as
“‘price’<100.0.” Relying on such pairs enables very efficient realizations, since
computational overhead is reduced by allowing events to be represented and
handled by indexed structures. Alas, such languages provide little safety, since a
misspelled property name can only be detected at execution. Examples of query
languages are provided in Section 8.1, along with alternative mechanisms for
content-based subscription.

2.1.4 Event Correlation. Event correlation [Mansouri-Samani and Sloman
1997; Krishnamurthy and Rosenblum 1995] is a spin-off of the publish/
subscribe abstraction. With event correlation, subscribers can express inter-
est in being notified upon the occurrence of specific combinations of events only.

Event correlation has been sometimes viewed as a publish/subscribe style in
itself. We view event correlation as orthogonal to the main addressing scheme.
For example, a subscriber could be interested in being notified of the occurrence

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

8 . P. Eugster

IV. APPLICATION

Iil. DISTRIBUTION ABSTRACTION

II. RUNTIME ENVIRONMENT

|. OPERATING SYSTEM

NETWORK = @® ROUTER O PUBLISHER © SUBSCRIBER

- PHYSICAL NETWORK —OVERLAY NETWORK

(a) layers (b) nodes

Fig. 2. Architecture overview.

of a pattern of events appearing under respective topics. A straightforward
event correlation scheme could hence be built by permitting the logical combi-
nation of single content filters.

More advanced event correlation models introduce many additional issues,
which represent active research topics, and we thus do not consider this model
in the following.

2.2 Reference Architecture

To simplify presentation, as well as comparison with prominent publish/
subscribe systems, we assume in the following that a “reference implementa-
tion” underlies the publish/subscribe communication substrate. More precisely,
we assume a topic-/content-based publish/subscribe engine providing hierar-
chical topics, together with a SQL-like query language (such as that used in
JMS [Happner et al. 2002]).

2.2.1 Vertical Decomposition. We assume that the complete system covers
the layers depicted in Figure 2(a). Above the actual network itself, these layers
are, from bottom to top:

(I) Operating system: The operating systems provide basic primitives for net-
working and concurrency, such as sockets and threads.

(I1) Runtime environment: We assume a language runtime such as the Java
virtual machine, which we focus on in major parts of this article. The
.NET runtime, which we consider in a second step, is another example.
We furthermore assume libraries for accessing and managing rumtime
internals and operating system mechanisms such as the aforementioned
to be part of this layer.

(ITI) Distribution abstraction: This layer is assumed to provide higher-level
(than earlier mentioned plain sockets) abstractions for distribution, such
as remote method invocations or type-based publish/subscribe.

(IV) Application: Distributed applications make use of one or several of these
abstractions for distributed programming.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 9

We assume that the distributed applications and distribution abstractions
are written in the same programming language, and that the runtime envi-
ronment does not provide any specific hooks or functionalities for any of these
individual abstractions. Rather, we are interested in general support for such
abstractions.

2.2.2 Horizontal Decomposition. The underlying publish/subscribe en-
gine, which can be viewed as part of Layer III in Figure 2(a), is presumed
to construct an overlay network, such as that presented in Figure 2(b). This
overlay network exploits information regarding:

—Content filters. Content filter semantics are taken into account (to construct
the overlay, such as) to perform efficient and scalable filtering. In particu-
lar, router nodes in the overlay network can identify and take advantage of
redundancies between the content filters of different subscribers [Aguilera
et al. 1999].

—Locality. The proximity of subscribers (and publishers) in terms of “loca-
tion” (e.g., communication latency) is usually orthogonal to their proximity
in terms of interests, and thus to the amount of overlap in respective content
filters [Eugster and Guerraoui 2002]. Combining both notions of proximity
yields the best results.

As briefly alluded to in Section 1, routing and filtering events does not
necessarily require the deserialization of these events at each filtering step.
A publish/subscribe engine can transform dynamic events to an even lower-
level representation (e.g., based on XML [Baehni et al. 2003]), and make use
of highly efficient dedicated routers (see Figure 2(b)) involving a different
stack of layers than those of Figure 2(a). For the following, it is only impor-
tant to keep the rationale behind design choices of content-based publish/
subscribe systems in mind, not the actual realization of the corresponding
mechanisms.

3. TYPE-BASED PUBLISH/SUBSCRIBE

In this section, we first describe the type-based publish/subscribe (TPS)
paradigm from a general point of view, in other words, its principles and con-
cepts without deployment within a particular statically typed language in mind,
and then discuss incarnations of TPS in a programming language such as Java.

3.1 Principles

Together with industrial partners (see Acknowledgements), we have come up
with a set of requirements that a typed publish/subscribe abstraction should
provide:

—Type safety (TS): In a statically typed language, type safety is enforced in local
interactions, and as far as possible, should also be provided for remote object
interaction. Type errors should be recognized at compilation, alleviating the
already cumbersome debugging of distributed applications.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

10 . P. Eugster

—Encapsulation preservation (EP): Events are to be considered as objects, and
hence as instances of (abstract) types. Their implementation details should
not be systematically revealed, particularly not in the goal of describing sub-
scription criteria.

—Application-defined events (AE): Events (event types) should be defined as
part of the application design, with minimal imposed design choices.

—Open content filters (OF): To support efficient dissemination of events, con-
tent filters should be expressed in a manner which provides the underlying
publish/subscribe engine insight into these filters for the configuration of
routing and filtering algorithms.

—Event semantics (ES): To express some form of Qualities of Service (QoS),
different basic semantics should be assignable to events.

Achieving these principles in combination is not straightforward, as already im-
plied previously. For instance, providing content-based subscription to events
by preserving encapsulation of these event objects (EP, that is, not systemat-
ically expressing subscriptions as property-value pairs, ruling out any query
languages) is already commonly pictured as a contradiction per se [Koenig
1999]. Further complexity is added by requiring transparency of content fil-
ters (OF, that is, giving the publish/subscribe implementation—see Layer III
in Section 2.2.1—full access to subscription criteria in order to optimize the
filtering of events).

Satisfying the preceding principles in the context of subscriptions boils down
to providing a means of expressing these subscriptions in the considered pro-
gramming language itself. This constitutes the main challenge of TPS, which
distinguishes it from related notions of typed publish/subscribe, as presented
in Section 8.1. Roughly, the task of the TPS abstraction can be imagined as
consisting of transforming events to a lower-level representation, such as dy-
namic events, and constructing queries (see Section 2.1.3) from content filters
expressed in the programming language. We will not attempt to quantify ex-
pressiveness at the language level, nor its impact on scalability or efficiency;
any sensible scheme should, however, retain at least the expressiveness and ef-
ficiency of a “classic” approach based on dynamic events and a query language,
as discussed in Section 2.2.

3.2 Model

The core idea underlying our integration of publish/subscribe with objects con-
sists in viewing events as first-class citizens.

3.2.1 Events. By considering events as first-class citizens, that is, not as
specific constructs (e.g., Haahr et al. [2000]), but as specific application-defined
objects, we strongly enforce TS and AE (see Thomas [2004]). To emphasize the
object nature of events, we call these event objects, or to abbreviate notation,
simply obvents.

Similarly to Oki et al. [1993], we distinguish between two main categories of
objects, but also introduce two further (sub)types:

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 11

— Unbound objects. Unbound objects are locality-unbound, that is, their seman-
tics do not depend on any local resource. Such objects can be transferred to
another address space (in OKki et al. [1993], these are termed data objects).
—Obvents. Obvents represent a specific kind of unbound object. Such objects

are used to notify events in the context of publish/subscribe interaction
(and can, in a nested way, contain other unbound objects).

—Bound objects. These objects are local to an address space (locality-bound)
and remain in this address space during their entire lifetime. They may
make use of specific local resources (service objects in OKki et al. [1993]).
—Subscribers. Potentially, any bound object could take the role of subscriber,

but in general, only particular objects subscribe to obvents. Of course,
subscribers could be mobile; presentation is, however, simplified by leaving
aside this possibility.

Note that a generic notion of events can also capture dynamic events, as these
can still be used whenever the late binding they offer is really required. This
retains flexibility.

3.2.2 Publishing Obvents. The only contracts between publishers and sub-
scribers are the types of published obvents. A publisher has no explicit notion
of “destination” when publishing such an obvent. The set of destinations is im-
plicitly and dynamically defined by the subscribers whose criteria match that
obvent.

A published obvent o acts as a template, and a publication can be pictured
as a distributed form of object cloning where a clone of the prototypical object o
is created for every subscriber. The set of processes where this action will take
place is given by the set of processes that are willing to host such objects, in
other words, whose subscription criteria match the template object. Inversely, a
subscription expresses the desire of obtaining a clone of every published object
which corresponds to the subscription criteria.

More precisely, a distinct copy of a published obvent is created for each sub-
scriber:

—Obvent global uniqueness. Suppose that an obvent o1 is published from an
address space al:if an address space a2 contains two subscribers s1 and s2,
these will receive references to two new distinct clones of 01, say 02 and 03.

—Obvent local uniqueness. In the previous scenario, if the address space al also
contains a subscriber s3, then s3 will receive a reference to a new obvent o4.

The notion of cloning here corresponds to a deep cloning: When a clone of an
object is created, its fields are recursively cloned [Gregono and Sakkinen 2000].

This deep cloning is implicitly given by the serialization which is applied,
that is, published obvents are traversed, and their state extracted and used
to generate a representation more suitable for the underlying communication
layers, which take care of routing these as “messages” to every process that hosts
matching subscribers. There, these messages are deserialized to instantiate
new objects.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

12 . P. Eugster

3.2.3 Type-Based Subscription. The main subscription criterion for con-
sumers in TPS becomes the (abstract) type of the event object of interest. When
subscribing to a type T, we express interest in instances of T, that is, instances
of any types which conform to T.

A subscription can in this sense be seen as a contract for hosting objects
that are created as copies of published objects. Note that if the same obvent is
published twice, two distinct copies will be created again for every subscriber.

By using the types of obvents as the basic subscription criterion, we strongly
leverage type safety (T'S): By matching the notion of event kind with that of
event type, that is, using the type scheme of the programming language as the
subscription scheme, the type of “received” event is known, and compile time
type-checks can be performed on corresponding formal arguments.

Yet, object types offer richer semantics than just information about inclusion
relationships. An object type encompasses contracts guiding the interaction
with its instances: An interface composed of public members describing its
incarnations.

This information can be naturally used to express more fine-grained sub-
scriptions, that is, encompassing content filters. Ideally, when expressing con-
tent filters, the full semantics of the programming language in which they are
expressed can be exploited. Certain restrictions on the semantics of content
filters can, however, help to ensure an efficient and scalable implementation of
the underlying TPS engine, as mentioned already.

3.3 Type-Based Publish/Subscribe in Java

The semantics of TPS hence strongly depend on the interpretation of confor-
mance in the considered context, which itself depends naturally on the con-
sidered type system. A type system for events can be derived from a single
programming language, leading to a first-class TPS package comparable to a
first-class RPC package, like Java RMI in the case of the Java programming
language. An event type system can also be based on a neutral event definition
language (EDL) to enforce interoperability, leading to a second-class TPS pack-
age [Baehni et al. 2003]. Note in this context that interoperability is also an
argument often used for promoting query languages. The validity of this argu-
ment is, however, somewhat limited by the existence of a plethora of different
query languages (see Section 8.1).

In the following, we illustrate TPS through the Java programming language.

3.3.1 Background: Java Types. In many strongly typed object-oriented
languages like C++ [Ellis and Stroustrup 1992] or Eiffel [Meyer 1992b], the
inheritance hierarchy determines the conformance (subtype) relation. In such
type schemes, the notions of type (abstract type, type definition, interface, sig-
nature) and class (concrete type, type implementation) are quasi-identical.

To avoid problems known from multiple inheritance, Java offers only sim-
ple inheritance, yet introduces multiple subtyping through interfaces. In Java,
types can be defined in the following two ways:

—Explicit declaration. A type can be explicitly declared by defining an in-
terface which can subtype several superinterfaces: an interface 11 which

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 13

package java.tps;

import java.io.x*;
import java.rmi.x;

/* obvents x/

public interface Obvent extends Serializable {...}
public interface ReliableObvent extends Obvent {}
public interface CertifiedObvent extends ReliableObvent {}
public interface TotalOrderObvent extends ReliableObvent {}
public interface FIFOOrderObvent extends ReliableObvent {}
public interface CausalOrderObvent extends FIFOOrder {}
public interface TimelyObvent extends Obvent {

public long getTimeToLive ();

public long getBirth ();

public interface PrioritaryObvent extends Obvent {
public int getPriority ();
}

/x exceptions x/

public abstract class NotificationException extends RemoteException {...}
public final class CannotPublishException
extends NotificationException {...}
public final class CannotSubscribeException extends
public final class CannotUnsubscribeException extends

Fig. 3. Basic obvent types and exceptions for TPS in Java.

extends another interface 12 represents a subtype of the type declared by
I2.

—Implicit declaration. Defining a class C implicitly declares a type, and at the
same time gives the class which implements it. If a class C1 inherits from
another class C2, then the type defined by C1 is a subtype of the type of C2.
A class can subtype multiple interfaces: For any interface I implemented by
a class C, the type defined by C is a subtype of I’s type.

Note that a class C which implements a single interface I, without adding any
new methods, also defines a new type, which is a subtype of I’s type.

3.3.2 Subscriptions and Java Types. As a consequence of the intertwining
of types and classes in Java, it makes sense to support subscriptions to inter-
faces as well as to classes. We could, however, argue for supporting interfaces
only, both for alignment with Java RMI (in which remotely invocable types must
be interface types), and for promoting encapsulation (interfaces can not declare
fields). In the following, we will nonetheless support subscriptions to classes as
well, for illustration purposes.

3.3.3 Obuvents in Java. Obvents are objects that are serialized, sent over
the wire, and deserialized. Java incorporates a default serialization mechanism
which can be exploited by subtyping java.io.Serializable.

The basic Java Obvent type (Figure 3) thus subtypes former type. This eases
the implementation of our obvent model in general. Such a built-in (default)
serialization mechanism strongly supports AE by relieving developers from the
burden of implementing specific operations or hooks in their obvents. This way,

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

14 . P. Eugster

&

“Event bus”

OB

StockObvent
57 3
StockQuote

Fig. 4. Stock trading with type-based publish/subscribe.

the design phase of obvents can be cut down to the essential meaning of the
represented logical event. With a simple convention, for example, event field x
is accessible (only) through a method getX (), events can easily be transformed
to a lower-level representation of the underlying publish/subscribe reference
engine.

In our model, such characteristics are associated with obvents, and should
thus be part of these obvents. Indeed, it makes sense for every obvent to reflect
its semantics (which can be seen as a context) such that a correct handling of
the obvent can be assured at every moment of the transfer. Since types are the
only (implicit) contracts between publishers and subscribers, we have chosen
to use these to express a simple form of QoS mandated by ES. A per obvent
description of QoS would of course offer more flexibility, and might be more
advisable in certain contexts [Araujo and Rodrigues 2002], but would come at
the price of requiring negotiation. Figure 3 depicts Java types corresponding to
different semantics. For example, ReliableObvent is the root type of all obvents
that are to be conveyed with end-to-end reliability guarantees. Each distinct
obvent type can lead to the use of an individual protocol by the underlying
engine.

3.4 Running Example: Stock Trade

Figure 4 illustrates the intuitive idea underlying TPS through a recurring
example for publish/subscribe interaction, which is stock trading. A possible
scenario is the following. The stock market p1 publishes stock quotes and re-
ceives purchase requests. These can be “spot price” requests, which have to be
satisfied immediately, or “market price” requests for purchasing quotes either
only at the end of the day or once another given criterion is fulfilled. As out-
lined in Figure 4, these different kinds of events result in corresponding custom
obvent types, rooted at the StockObvent type depicted in Figure 5 (details of
these types are omitted here for simplicity).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 15

import java.tps.x;

public class StockObvent implements ReliableObvent {
private String company;
private int amount;
private float price;
public StockQuote(String company, int amount, float price) {

this .company = company ;
this .amount = amount;
this . price = price;

public String getCompany () { return company; }
public int getAmount() { return amount; }
public float getPrice() { return price;}

}

public class StockQuote extends StockObvent {
private long time;
public StockQuote(String company, int amout, float price, long time) {
this (company, amount, price);
this.time = time;

public StockQuote(String company, int amount, float price) {
this (company, amount, price, System.currentTimeMillis())

)

Fig. 5. Stock quotes in Java.

Market price requests can expire, and for the broker’s (e.g., p2) convenience,
an intermediate party (p3), for example, a bank, might also handle such re-
quests on his or her behalf, for instance by issuing spot price requests to the
stock market once the broker’s criteria are satisfied. In the following, we will
assume that p2 in Figure 4 is only interested in stock quotes from a company
called “Telco” that cost less than $100. In Java, a corresponding content filter
expressed through a formal argument quote could look like the following:

quote.getCompany().equals(“Telco”) && quote.getPrice() < 100.0

Note that by subscribing to a type StockObvent, p3 receives instances of the
subtypes StockQuote and StockRequest, and thus all objects of type SpotPrice
and MarketPrice.

These concepts are made concrete in the next two sections.

4. JAVAps

In this section we present a first approach to implementing TPS by extending
the Java language. This approach illustrates inherent difficulties of implement-
ing TPS.

4.1 Syntax

More precisely, this approach consists in augmenting the Java language with
two specific primitives, for publishing obvents and subscribing to obvent types,
respectively [Eugster et al. 2001]. In doing so, Layer III of Figure 2(a) permeates
Layer IV.

4.1.1 The publish Primitive. With this primitive, an obvent can be pub-
lished, which implies that it is asynchronously sent to any concerned subscriber.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

16 . P. Eugster

SubscriptionExpression:
subscribe SubscriptionDeclaration
SubscriptionDeclaration:
SubscriptionDeclarator FilterBody HandlerBody
SubscriptionDeclarator:
(SubscriptionFormalParameter)
SubscriptionFormalParameter:
ObventType Identifier
FilterBody:
Block
HandlerBody:
Block
ObventType:
Interface Type

Fig. 6. Detailed syntax of subscription statements.

Following the Java language specification grammar [Gosling et al. 2000], based
on a LALR(1) syntax, we introduce a new statement (our specific definitions are
typed in bold).

PublishStatement:
publish Expression ;

Here, Expression is a non-null expression of type Obvent, as opposed to most
libraries relying on Java serialization: In Java, a serializable root type is often
faked by using formal arguments of the root type java.lang.Object, yet expect-
ing an actual argument to be of the more specific type java.io.Serializable and
throwing an exception if this expectation is not fulfilled. We prefer detecting
such type errors at compilation. The publish primitive can, however, throw an
exception of type CannotPublishException (see Figure 3) to signal communi-
cation problems in the underlying TPS engine.

4.1.2 The subscribe Primitivee We introduce a second primitive,
subscribe, to express subscriptions. A subscription expression has the follow-
ing syntax in Java (details are given in Figure 6):

SubscriptionExpression:
subscribe (ObventType Identifier) Block Block

ObventType represents a type which can be widened to the Obvent type, that
is, ObventType is a special case of the InterfaceType (Sect. 4.3 in Gosling et al.
[2000]). The filter represented by the first block must return an expression of
type boolean, while the evaluation block, which we refer to as the obvent handler
or simply handler, returns nothing. An exception CannotSubscribeException
is thrown if any problems appear when advertising the subscription. A success-
ful subscription returns an object of type Subscription (see Figure 7). Such a
handle uniquely identifies a subscription, and is required for the activation and
deactivation of subscriptions.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 17

package java.tps;

public final class Subscription {
public void activate() throws CannotSubscribeException {...}
public void deactivate () throws CannotUnsubscribeException {...}

public void setSingleThreading() {...}
public void setMultiThreading(int maxNb) {...}

Fig. 7. Subscription handles in Java.

4.2 A Closer Look at Subscriptions

In short, a subscription expression combines the subscription to a type T with:
(1) a closure declaration representing a content filter of the form

boolean (T t) {...};
and (2) the declaration of a second closure of the following form:
void (T t) {...};

4.2.1 Background: Closures. Different notions of “local” closures have ap-
peared in the literature, such as the block closure in Smalltalk [Goldberg
and Robson 1983], or the anonymous function in Cecil [Chambers 1995]. The
different notions of closures vary mainly in the degree of self-containment they
advocate. A first-class block closure in Smalltalk can use any variable in scope
of the closure declaration (at compilation), and these variables are bound for
the entire lifetime of the closure, even if the closure is then executed in a context
where some of these variables are not visible. To avoid this binding of variables,
only final variables in scope at compilation can be used within an anonymous
class in Java.

4.2.2 Obvent Handlers. Obvent handlers, or simply handlers, adopt the
latter closure semantics, as they represent an intuitive way of handling call-
backs from the underlying event dissemination system and are executed locally.
The use of such closures enables the regrouping of all code related to individual
subscriptions in succinct expressions.

By viewing these closures as objects, the handlers take on the role of the
subscribers, outlined in Section 3.2.1.

4.2.3 Content Filters. Akin to handlers, content filters are closures with a
specific signature. Besides the concentration of subscription-related code, the
use of such a syntax in the case of filters is further motivated by the desire not
only to confine the code for filtering, but to “reveal” it to the TPS implementa-
tion. This enables the configuration of an overlay network to be responsible for
routing obvents by: (1) constructing queries from filters and their application
on foreign hosts, as well as (2) factoring out redundancies between these filters
from different subscribers.

The compilation of these filters is hence deferred, similar in a sense to the de-
ferred code evalution underlying two-level programming [Nielson and Nielson
1988] (or generalized to more than two levels: multistage programming, as ad-
vocated by MetaML [Taha and Sheard 1997]).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

18 . P. Eugster

4.2.4 Restrictions on Content Filters. Javapg supports the same semantics
for closures representing content filters as for anonymous classes. However,
since the goal is not to quantify the impact of expressiveness on the scalability
of the underlying publish/subscribe engine, we restrict the semantics of these
closures to make the inference of remotely evaluatable queries from content
filters more tractable:

—Methods. The only method invocations allowed in a content filter are: (nested)
invocations on its variables.

—Variables. The only variables allowed in a content filter are: (1) the formal
argument representing a filtered obvent, (2) local variables, and (3) final
outer variables. The latter two types of variable are restricted to primitive
types (e.g., float) and their object counterparts (e.g., java.lang.Float), as well
as java.lang.String.

—Operators. Any kind of comparison operators or Boolean operators are al-
lowed.

—Control structures. Only if / else control structures are supported.

With these restrictions, content filters become reducible to a set of elementary
predicates combined by Boolean operators (if /else can be transformed to logical
ANDS and ORs).

4.3 lllustration

Using the aforementioned primitives, a stock quote can be published like the
following:

StockQuote quote = new StockQuote(“Telco”, 100, 90.0);
publish quote;

Subscribing to stock quotes can be expressed as follows:

Subscription quoteSubscription = subscribe (StockQuote quote)

{
return (quote.getCompany().equals(“Telco”) &&

quote.getPrice() < 100.0);
}

{
System.out.println(“Got offer: 7 + quote.getPrice());

|8

quoteSubscription.activate();

Note that the content filter, that is, the first block, is expressed in Javapg with
the exact same code as in Section 3.4.

4.4 Implementation

Javapg has been implemented with a specific compiler psc. More precisely, we
have made use of the extensible compiler JaCo [Zenger and Odersky 2001] to
deal with our specific primitives. We refer to our instance of this compiler as psc.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 19

import java.tps.x;

public final class TAdapter {
public static Subscription subscribe(LocalFilter 1, RemoteFilter r,
Subscriber s) {...}
/* if T is a class */
public static void publish (T t) throws CannotPublishException {...}

}
Fig. 8. Adapter for a type T.

4.4.1 Typed Adapters. To avoid making the dJava virtual machine
distribution-aware, and to exploit a class-based dissemination implemented
by our engine and its multicast algorithms (mapping obvent classes to groups
[Eugster and Guerraoui 2002; Baehni et al. 2004]), we adopt the notion of
adapter from OKi et al. [1993]. Adapters are intermediate entities between the
communication substrate and application, whose role in TPS consists mainly in
mediating between serialized data and typed obvents. Our adapters are type-
specific, and are generated for each obvent type by the psc compiler. For any
given obvent class C, psc generates a class CAdapter with code for publishing
instances of C, and subscribing to C. To support subscriptions to abstract types
(interfaces), psc generates a class IAdapter for any abstract obvent type I with
code for subscribing to instances of 1.

Correspondingly, psc transforms publish statements and subscribe expres-
sions to invocations of methods in corresponding adapter classes. Figure 8 de-
picts an adapter class for a given obvent type T.

4.4.2 Publishing. Since a published obvent is disseminated through the
adapter for its dynamic type, which is only known at runtime, a PublishState-
ment cannot be directly transformed to a call to publish on the corresponding
adapter class. Hence, a publish() method is added to the Obvent interface in
Java (Figure 9), whose body is, however, automatically generated by psc for
each obvent class C:

public class C ... {
/* generated by psc */
public void publish() throws CannotPublishException
{ CAdapter.publish(this); }

}

Accordingly, a PublishStatement expressing the publishing of an obvent o,
publish o;

is transformed into a call to the publish() method of o:

o.publish();

provided, of course, that o’s static type can be widened to Obvent (see Sec-
tion 4.1.1). The publish() method then can generate a dynamic event from
the obvent passed as a parameter. To support nested queries involving obvent
fields, such as the first predicate of our running example, dynamic events can
be generated as “flattened” representations of the corresponding obvents.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

20 . P. Eugster

package java.tps;
import java.io.x;
/% obvents x/

public interface Obvent extends Serializable {
/* implementation generated by psc x/
public void publish () throws CannotPublishException;

}

/* top level x/

public final class ObventAdapter {
public static Subscription subscribe(LocalFilter 1, Subscriber s)
throws CannotSubscribeException {...}
public static Subscription subscribe(RemoteFilter r, Subscriber s)
throws CannotSubscribeException {...}

}
/% filters x/

public interface Filter {...}

public interface RemoteFilter extends Filter {...}

public interface LocalFilter extends Filter {
public boolean matches(Obvent o0);

}

/* handlers x/
public interface Subscriber { public void notify (Obvent o); }

Fig. 9. Details on Obvent, Subscription, and further types in Javapg.

4.4.3 Subscriptions. By similarly transforming subscriptions to (static)
calls to corresponding obvent types, subscriptions to interfaces would be im-
possible. Hence, subscriptions, as well as unsubscriptions, are handled differ-
ently. In short, a subscription statement involving a type T is transformed to
an invocation of the subscribe() method in class TAdapter.

An instance of an anonymous class is created from the handler of a subscrip-
tion expression, such as the following:

subscribe (T t) {...} { /* handler */ }

This is an instance of an anonymous class implementing the Subscriber type
given in Figure 7:
new Subscriber() {
public void notify(Obvent o) {
Tt = (T)o;
/* handler */

}
}

Such an anonymous class declaration represents an expression, and can thus be
passed as argument to the subscribe() method of the corresponding adapter.

4.4.4 Content Filters. The handling of filters represents the most complex
task during precompilation. An anonymous class (here representing a unary

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 21

predicate of type LocalFilter, depicted in Figure 9) is generated for every
content filter. It represents the full filter, and is applied locally. More precisely,
a subscription such as:

subscribe (T t) { /* filter */ } {...}

is transformed into an invocation of the corresponding adapter class:

TAdapter.subscribe(
new LocalFilter() {
public boolean matches(Obvent o) {
Tt = (T)o;
/* filter */
}

b

new RemoteFilter() {

N
new Subscriber() {...}

)

We note that psc also generates an intermediate representation of the filter,
which can be used to generate query expressions that are passed to the underly-
ing publish/subscribe engine. These RemoteFilters thus resemble application-
specific handlers [Engler et al. 1996], low-level message filters, except that the
latter kind of filters is applied locally and expressed in a neutral specification
language, while our filters more resemble parse trees by promoting the use of
the native language syntax.

4.4.5 Representing Subscriptions. Our precompiler generates two tree-
like constructs, which are more specific than for instance the parse trees used
in Smalltalk [Rivard 1996] due to the restrictions imposed (see Section 4.2.4).

—Invocation tree. First, a representation of the invocations made in the filter
is generated. The root represents the filtered obvent, and every edge leading
to a nonleaf node represents a method invocation. A nonleaf node represents
the value obtained by applying the methods of edges on the path down to
this node in a nested fashion to an instance of the considered obvent type.
Edges leading to leaf nodes are comparisons or methods yielding a Boolean
value. A leaf node thus stands for the outcome of a condition on obvents of
the considered type. Of course, edges can also represent field accesses.

—Evaluation tree. Second, a tree representing the relationships between leaves
of the former tree and the outcome of the filtering is generated: Its nodes
represent mainly logical combinations of its subnodes, etc., and the leaves
are references to leaves of the former tree.

For the following, we assume that the TPS engine applies (nested) methods
on events, including arguments locally at the subscriber sites, and generates
queries from direct (nested) field reads combined with comparisons for re-
mote application by the underlying topic-/content-based engine, as described in
Section 2.2.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

22 . P. Eugster

5. TPS AS A LIBRARY

The experience gathered with Javapg has motivated and served us to implement
a library version of TPS, roughly consisting of promoting the adapter concept
introduced in the previous section to first class. This work, which has enabled
the exploration of recent and (at that point) future concepts of Java, has also
benefitted from previous efforts on using collections (distributed asynchronous
collections, or DACs [Eugster et al. 2000; Eugster and Guerraoui 2001]) as such
adapters.

5.1 Generics

With a library approach, that is, by making use of only standard class libraries,
we cannot rely on the generation of type-specific adapters. Yet, the handler and
content filter of a subscription have to “agree” on the obvent type subscribed
to, which can be different for every subscription. As the choice of type (and
agreement on it between handler and content filter) is sealed by instantiating
the TPS abstraction, an approach that immediately comes to mind consists of
making the adapters of Javapg generic [Milner 1977].

5.1.1 Background: Generics in Java. While languages like C++ or Ada 95
incorporate generic types, languages such as Java or Oberon were initially
designed to replace variable types by the root of the type hierarchy.

Several dialects of the Java language, providing some form of generics, have
been proposed. Generic Java (GJ) [Bracha et al. 1998], an approach support-
ing parametric polymorphism (F-bounded polymorphism [Canning et al. 1989])
through a specific compiler, has quickly taken the lead. GJ has served as base
for Sun’s own efforts to integrate generics into Java, which became concrete in
Java 1.5 [Bracha 2004].

5.1.2 Generic Adapters with GJ. We implemented the first generic
adapters for TPS based on GdJ. These provide type safety, that is, they su-
percede explicit casts in TPS applications, without requiring the generation of
type-specific code. The resulting generic Adapter type is depicted in Figure 10.
The Subscription type, as well as Subscriber type (used behind the scenes
in Javapg), have accordingly been added respective type parameters.

5.2 Reflection

The big open question now is how to support the type safe expression of content
filters in a way that provides third-party publish/subscribe libraries with an
insight into these filters. Reflection seems to be the ideal means of providing
static type-checking while deferring the “interpretation” of the corresponding
code.

5.2.1 Background: Behavioral Reflection in Java. A candidate mechanism
for the type safe expression of content filters was anticipated with the inte-
gration of a limited mechanism for behavioral reflection in Java 1.3 through
the Proxy class in package java.lang.reflect. Invoking its get ProxyClass()
method (see Figure 11) leads to creating (unless this already happened) a proxy

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 23

package java.tps;

public final class Adapter<T> {
public void publish (T obvent) throws CannotPublishException {...}
public Subscription<T> subscribe(Subscriber<I’> subscriber) {...}

}

public final class Subscription<T> {
public void activate() throws CannotSubscribeException {...}
public void deactivate() throws CannotUnsubscribeException {...}

public void setSingleThreading() {...}
public void setMultiThreading(int maxNb) {...}

public T constrain() {...}

}

public interface Subscriber<I> {
public void notify (T t);

}
Fig. 10. Basic interfaces in the library implementation.
package java.lang.reflect;

public class Proxy implements Serializable {

public static Class getProxyClass (ClassLoader 1, Class[] is)
throws IllegalArgumentException {...}

public static Object newProxylInstance (ClassLoader 1, Class|[] is,

InvocationHandler h)

throws IllegalArgumentException {...}

public static InvocationHandler getInvocationHandler (Object p)
throws IllegalArgumentException {...}

¥

public interface InvocationHandler {
public Object invoke(Object p, Method m, Object[] as) throws Throwable;
}

Fig. 11. Proxy and InvocationHandler types.

class as a subclass of Proxy which implements a set of interfaces specified by
Class metaobjects. Proxy classes are created directly as byte code, and automat-
ically loaded and linked. The newProxyInstance() method also instantiates
the (possibly generated) proxy class. Such a dynamic proxy object can then be
used in a consistent manner wherever an expression of (one of) the type(s) it
was created for is expected.

While the introspection mechanisms provided in Java since version 1.1 en-
able the reification and dynamic invocation of methods (deferring to runtime
the choice of which method to invoke), dynamic proxies allow the interception
of (in addition) statically typed method invocations, and the performing of any
action within the confines of these invocations (deferring to runtime what to do
upon invocation of a method).

In the following illustrations, dynamic proxies (as well as generics) are ide-
alized. Caveats are the subject of Section 6.

5.2.2 Recording Predicates with Dynamic Proxies. We devised a scheme
allowing the developer to express content filters by making use of proxies as

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

24 . P. Eugster

Recording content filter Applying content filter

=ly—~ — >
N N /m1() /m1() - J

— ma() ma(-

Proxy, — —
Proxy+ Obvent

A

A

(ewr(luw

Fig. 12. Expressing content filters with dynamic proxies.

formal arguments for expressing corresponding invocations. The proxy then
records these invocations (reifying these) such that they can be replayed on
the effective obvents for filtering (by simply performing them, or “applying”
them differently, e.g., by reading the corresponding field in the case of a field
access method). This is illustrated by Figure 12, where one can imagine that
the getCompany() method is invoked on a first proxy. After recording the
invocation (along with arguments, if any), a second proxy, mimicking the
return value, is returned. This second proxy is then recursively invoked, in
this context through the equals() method.

To support this scheme, the Subscription class, used together with first-
class adapters, has been added a method constrain(), which returns a dynamic
proxy of the exact type of the subscribed type. An identical proxy can be used to
record several predicates which are conjoined. A disjunction of predicates can
be achieved by expressing these predicates through different proxies obtained
through successive calls to constrain().

5.3 lllustration

The use of these generic and reflective first class adapters is best illustrated by
the following example of stock quote publication:

Adapter<StockQuote> quoteAdapter = new Adapter<StockQuote>();
StockQuote quote = new StockQuote(“TelcoOperators”, 100, 90.0);
quoteAdapter.publish(quote);

In the following, we attempt to express the criterion of the ongoing example on
stock quotes, that is, interest in all stock quotes from the “Telco” group. The
subscriber is created through an anonymous class:

Adapter<StockQuote> quoteAdapter = new Adapter<StockQuote>();
Subscription<StockQuote> quoteSubscription =
quoteAdapter.subscribe(new Subscriber<StockQuote>() {
public void notify(StockQuote quote) {
System.out.println(“Got offer: 7 + quote.getPrice());
}
Dk

Stockquote formalQuote = quoteSubscription.constrain();
formalQuote.getCompany().equals(“Telco”);
formalQuote.getPrice() < 100.0;
quoteSubscription.activate();

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 25

5.4 Implementation

Figure 13 presents the skeleton of the implementation of the generic Subscrip-
tion class, which is instantiated upon invocation of the subscribe() method in
class Adapter.

5.4.1 Background: Dynamic Proxies and Invocation Handlers. An invoca-
tion performed on a dynamic proxy object is reified and passed to an Invo-
cationHandler (Figure 11) object, associated to this proxy at instantiation,
through the handler’s invoke() method. The arguments for invoke () include:
(1) the proxy object on which the method was originally invoked, (2) a meta-
object representing the method (Method) that was originally invoked, and (3)
the effective arguments (an array of Objects) to this invocation. This makes
the invoke() method capable of handling any method invocation. Arguments
of primitive types are transformed to the corresponding wrapper types.

5.4.2 Invocation Chains. Accordingly, the implementation of the Sub-
scription class introduces two inner classes, called InvocationRegistrar and
Invocation, to register invocation chains with dynamic proxies and to repre-
sent these chains, respectively: Whereas the former class is an implementation
of the InvocationHandler interface and is used to “interpret” each invocation
recorded, the latter is used subsequently to store the information about the
method that was actually invoked, along with any arguments.

The constrain() method of the Subscription class thus creates an instance
of class Invocation, which in turn creates and returns a proxy which is associ-
ated an instance of InvocationRegistrar. The latter object does the actual job
of recording the invocation, which it passes back to its associated Invocation
object. In the case where the invocation involves a return object of a type other
than Boolean, the handler recursively creates a new Invocation, etc.

An instance of Subscription stores all invocation chains recorded through
it in a vector, called predicates, in the code sketched in Figure 13. As outlined
previously, these chains are then conjoined.

It is important to note that, as mentioned previously, both reflection (dy-
namic proxies) and generics are idealized. Hence, the preceding example can
not be made to work exactly as such, due to restrictions of these features. These
limitations are discussed in the next section.

6. EVALUATION

In this section, we present an evaluation of the previously presented library
implementation, comparing it with Javaps. We point out weaknesses of current
implementations of generics and reflection, as well as of other features, in the
Java programming language [Damm et al. 2004].

6.1 Generics

Generics have proven extremely useful in TPS for implementing type safe inter-
faces. However, for presentation simplicity, the example in the previous section
passed over an important limitation.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

26 . P. Eugster

package java.tps;
public final class Subscription<T> {
private Class type;

private Vector predicates;

Subscription(Class type) { this.type = type; }

/* return a ‘‘fake’’ instance of T x/
public T constrain () {
Invocation nestedInvocation = new Invocation (type);

predicates.add(nestedInvocation);
return (T)nestedInvocation.getProxy ();

}

private static class Invocation {
private Class type;
private Invocation nested;
private Method method;
private Object [] args;

private Invocation (Class type) { this.type = type; }

private void setNested(Invocation nested) { this.nested = nested; }
private void recordInvocation(Method method, Object[] args)
{ this.method = method; this.args = args; }
private Object getProxy () {
return Proxy.newProxylnstance (type.getClassLoader (),
new Class [] { type },
new InvocationRegistrar (this));
}
}

private static class InvocationRegistrar implements InvocationHandler {
private Invocation invocation;
private InvocationRegistrar(Invocation invocation)
{ this.invocation = invocation; }

public Object invoke(Object proxy, Method method, Object[] args) {
/* register the invocation x/
invocation.recordInvocation(method, args);

/% if the method returns a non—bool object, return another prozy x/
Invocation nested = new Invocation (method.getReturnType ());
invocation.setNext (nested);

return nested.getProxy ();

Fig. 13. Using dynamic proxies for content filter expression.

6.1.1 Runtime Support. The implementation presented in the previous
section suffers from a lack of runtime support for type parameters in the
current implementation of generics in Java. Clearly, although a type pa-
rameterized adapter is instantiated for a given type StockQuote in the ex-
ample in Section 5.3, the constructor would require an explicit argument
representing a reification of this type precisely such that a given adapter in-
stance would have the possibility of knowing the value of its very type pa-
rameter. This is somewhat visible through the implementation outline of the
Subscription class in Figure 13, which requires the reification of the type
parameter (stored in its type field) for instantiating dynamic proxies in the

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 27

context of invocations of the constrain() method. The implementation of
the Adapter class would hence have to be extended somehow, as portrayed
next:

public class Adapter<T> {
private Class type;

public Adapter(Class type) { this.type = type; ... }
public Subscription<T> subscribe(Subscriber<T> s) {

return new Subscription<T>(type);
}
}

and instantiated as follows:

Adapter<StockQuote> quoteAdapter =
new Adapter<StockQuote>(StockQuote.class);

With runtime support, this somewhat redundant (and in fact, error-prone) ar-
gument to the constructor could be avoided. In Javapg, adapters can obviously
be generated by psc with a private field, which is immediately assigned the
value of this argument.

Note that in the context of an invocation of the publish() method, the
adapter could obtain the type reification of the published obvent by query-
ing the getClass() method on that obvent. However, this reification does not
necessarily represent the (precise) value of the type parameter T, but possibly
only a subtype thereof. This does not represent a mismatch, but simply makes
it impossible to pre-establish a “connection” from such a publisher to a compo-
nent acting as pure subscriber of T, before any instances have actually been
issued by this publisher. In other words, the TPS engine can not preconfigure
the multicast algorithm and overlay network employed underneath by setting
up topics.

6.1.2 Beyond TPS—Statically Type Safe Components. The benefits of
generics—roughly speaking, the ensuring of type safety in interactions be-
tween library classes (of programming abstractions) and instances of (new)
application-defined types—have already become apparent in centralized con-
texts (e.g., collections). As illustrated by Javapg, integrating primitives into a
programming language can obviously leverage type safety, as well. However,
such an approach provides no flexibility, and tends to pollute programming
languages.

In a distributed context, generics become even more important. The in-
creased potential size of applications, along with constraints such as 24 x 7
requirements, make it even more unfeasible to rewrite, regenerate, or recom-
pile code in order to ensure type safety. Generics, as a mechanism enforcing
reuse of code, can fully develop its power in a distributed setting where late
binding is required.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

28 . P. Eugster

Generics are hence not only useful in the context of TPS. A generic lookup
service (“registry”) could also improve type safety in RMI implementations, and
help in avoiding type checks and casts. This is particularly valid in Java RMI,
since all remote interactions are statically typed (there is no such thing as a
dynamic remote invocation a la dynamic invocation interface in CORBA [OMG
2002]), and thus, the type of an obtained reference to a remote object has to be
known upfront (see Section 7.2).

No matter what the types involved in remote interaction represent, com-
ponents making use of the same types must have a means to “connect.” This
calls for runtime type information, for example, the possibility of reifying types.
Indeed, verifying how types are related and performing runtime type inclu-
sion checks on objects ensures type safety at the communication infrastructure
level. The (current) implementation of generics in Java, which relies on a ho-
mogenous translation consisting of erasing type parameters at compilation and
inserting type casts where necessary, is slim, yet loses track of the values of
type parameters.

6.2 Reflection

The latter kind of mechanism is sometimes also viewed as being part of in-
trospection, or more generally, structural reflection. The mechanism for behav-
ioral reflection used for content filter expression in our TPS library prototype
has been idealized in the previous section.

6.2.1 Uniform Proxies. As a mechanism for general behavioral reflection,
proxies have well-known disadvantages. These are mainly caused by the fact
that an object, which is associated to a behavior through a proxy by “shielding” it
with this proxy, has its own identity distinct from that of the proxy. The resulting
drawbacks are well-enumerated and documented in Liebermann [1986], and
hence not repeated here.

An important, more specific, shortcoming of the implementation of dynamic
proxies in Java is that we cannot create such a proxy (class) for a class [Eugster
2006]. More precisely, a dynamic proxy can only be assigned to a variable of
interface type. Hence, the example in the previous section cannot be made
to work as such, since the StockQuote type is a class (see Section 3.3.2). In
order to be able to create a dynamic proxy through the constrain() method, the
StockQuote type would have to be defined as an interface with a corresponding
implementation class, as in the following:

public interface StockEvent extends ReliableObvent {...}
public class StockEventImpl implements StockEvent {...}
public interface StockQuote extends StockEvent {...}
public class StockQuotelmpl

extends StockEvent implements Stockquote {...}

This could be enforced by mandating the types of obvents used with TPS, that
is, obvent types used as values for the type parameter of the Adapter class,
to be such interface types (see Section 3.3.1). This constraint would enforce

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 29

encapsulation by making it impossible to specify content filters based on obvent
fields. However, such a constraint cannot be enforced at compilation, and, as
shown in the previous application to stock quotes, can become burdensome.
But even more importantly, this workaround is, in fact, still not sufficient to
express the content filter as presented in Section 5.3. As a nested invocation
leads to a recursive creation of dynamic proxies, each return type of a method
of type StockQuote would have to be an interface type, as well. The same
would apply recursively to any return types of methods of these interface types,
etc. In the example, this would require the definition of (own) interface types
corresponding to the predefined primitive classes, such as for the String class
(as it is invoked through the equals() method in the example). Ultimately, to
avoid unexpected restrictions later on, this leads to programming with only
interface types for variable and parameter declarations, and making use of
classes solely when creating new object instances and assigning these to such
placeholders.

6.2.2 Beyond TPS—Safe Dynamic Composition. As discussed in
Section 5.1, generics enable the implementation of libraries, for example,
(representing abstractions) for concurrent or distributed programming in a
way that ensures type safe interaction with these libraries. In a centralized
setting, certain implementations of generics may suffice to ensure type safety
statically, that is, resulting code, once verified at compilation, can be run safely
without runtime type-checks.

In a distributed context, however, it is very unlikely that no runtime type-
checks have to be performed. Indeed, network channels and, thus, layers
“close” to the network and corresponding lower-level libraries are inherently
untyped. It appears natural that any implementation of a library for dis-
tributed interaction requires explicit type inclusion checks performed dynam-
ically (e.g., against types unknown at compilation). In fact, this requirement
holds even in an approach such as Javapg, as long as remote interaction is
involved.

Furthermore, through the increasing presence of distribution, and hence
the omnipresence of distribution-related issues, more recent abstractions
for distributed interaction, such as TPS or mobile agents, lead to an in-
tertwining of code that is related to both the application logic, and the
distribution.

Reflection can address these needs, by providing means to program in a
dynamic style. Reification of both types (structural reflection), and computa-
tion (behavioral reflection), though potentially associated with performance
penalties, appears to be the best way to combine: (1) statically safe interaction
between individual components and the abstractions for distributed interaction
they rely upon, and (2) the dynamically established connections and composi-
tions of these components.

Similarly, dynamic class loading and serialization can be viewed as faces
of reflection, and have been exploited in both Javaps and our library imple-
mentation of TPS as fundamental building blocks for implementing remote
interaction.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

30 . P. Eugster

6.3 Types

Just as the first condition expressed in the content filter of our ongoing example
cannot be put to work, as presented in the previous section, the second condition
fails by involving an instance of a primitive type.

6.3.1 Pure Object Type System. Indeed, when using dynamic proxies for
content filter expression, methods returning primitive types cannot be used
(except equals(), and this only in a limited sense, as it is conventionally used to
express that the condition must return true), since instances of primitive types
are not objects, and hence, no dynamic proxies can be created for such values.
The second condition expressed on the value of stock quotes in the ongoing
example, though sound at compilation, could not be “registered” by a proxy,
as the value of a quote is of primitive type. Even when attempting to create
an instance of Float from the value returned by getPrice() and expressing
the condition with the compareTo() method (Java’s object counterpart to
operators such as “<”), the interception chain is interrupted, since this method
again returns a value of primitive type (float).

In the exact same way, the composition of filters, such as in the following
example, would require the operators defined on primitive types to be reflected
by methods on corresponding wrapper types:

String company = formalQuote.getCompany();
company.equals(“Telco”) || company.equals(“Other”);

This sometimes comes as part of operator overloading, yet is not present in Java.
The boxing and unboxing for primitive types included in Java at release 1.5 only
covers automatic passing from primitive types to object types and vice versa,
and does not transform operators to method invocations. In the case of Obvents,
these shortcomings force programmers to think of possible comparisons, and
to include these in the design of obvent types. In the case of the StockQuote
class, could include a method cheaperThan() for expressing conditions on the
price, as follows:

public class StockQuote... {
private float price;

public boolean cheaperThan(float than) {
return price < than;
}
}

Subscription<StockQuote> quoteSubscription = ...;
StockQuote formalQuote = quoteSubscription.constrain();
formalQuote.getCompany().equals(“Telco”);
formalQuote.cheaperThan(100.0);
quoteSubscription.activate();

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 31

We must, however, be aware that efficiency at the routing and filtering level
might be reduced by doing so, as this method has to be executed, that is,
corresponding obvents must be invoked and hence deserialized. This can be-
come costly when performed several times in an overlay graph connecting pub-
lishers and subscribers. Javapg is in this sense clearly superior, since operators
can be used within content filters.

6.3.2 Beyond TPS—Supporting Uniform Remote and Local Programming.
As shown by TPS in Java, a complex type system potentially leads to many com-
plications when deployed at a distributed scale. While primitive types might
indeed be useful in certain strongly performance-sensitive applications, and
the distinction between interfaces and classes definitely doesn’t appear to be
harmful in itself, these “irregularities” lead to different semantics and hence,
require specific handling and implementations. They tend to represent special
cases with respect to generics and reflection which are difficult to take into
account, just like the possibility of directly manipulating fields (the main ob-
stacle to the creation of dynamic proxies for classes in addition to interfaces).
A pure object-oriented type system inherently enforcing type safety and also en-
capsulation at compilation, that is, avoiding direct field accesses (possibly by
unifying field accesses and method calls, as in Eiffel [Meyer 1992b]), has the
advantage of more easily supporting uniform interaction, even at a distributed
scale.

If features such as primitive types are really required, effort should be in-
vested in specific support for generics and reflection, possibly by fitting (e.g.,
by translation) these constructs into a more uniform underlying representa-
tion, and providing operator overloading. In Eugster [2006], for instance, we
propose a first step in this direction through an extension to dynamic prox-
ies in Java that supports both interfaces and classes. In order to ensure that
proxy classes can be generated for classes by inheriting from these original
classes and overriding their members, we introduce a uniformly virtual object
model layer at which the runtime environment can override any member of any
class.

The need for uniformity is particularly valid in the face of “modern” dis-
tributed programming abstractions, such as TPS (see also Section 7 for further
cases), which tend to blend application logic with distribution-specific code.
Since remote interaction introduces different semantics than local interaction,
a lack of uniformity at a local scale already is likely to hamper safety when
stepping to a distributed setting.

The next section extends the scope of this discussion.

7. DISCUSSION

In this section we discuss related distributed programming abstractions, and
alternative programming language features for implementing distributed in-
teraction through libraries [Eugster et al. 2004]. Finally, we compare the Java
platform with Microsoft’s NET [Thai and Lam 2001] with respect to its support
for the implementation of such abstractions.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

32 . P. Eugster

7.1 Tuple Spaces

The tuple space abstraction was initially introduced in the Linda programming
language [Gelernter 1985], in which these spaces served as the means of coor-
dination between cooperating processes.

7.1.1 Original Flavor. Through a tuple space, processes can exchange
arbitrary-length tuples of values. Inserting a tuple into the tuple space is done
using the out primitive. Fetching a tuple from the tuple space is done using a
blocking primitive, either in to subsequently remove the read tuple from the
space or read to enable the same tuple to be read by several consumers (note
that the tuple space abstraction has since been extended with further primi-
tives, e.g., nonblocking primitives and callbacks on the consumer side).

Consider the following example expressed in Linda:

out (“StockQuote”, “Telco”, 100, 90.0); // 1
float f = 90.0; // 2
in (“StockQuote”, “Telco”, 100, f); // 3
in (“StockQuote”, “Telco”, 100, var f); /] 4
in (“StockQuote”, “Telco”, 100, g: float); // 5

In Line 1, a tuple consisting of four values is put into the tuple space. In Line
3, a tuple with four values is requested. Since the value of f is 90.0, the tuple
from Line 1 matches the request, which means that this tuple may be extracted
from the tuple space. The var keyword in Line 4 causes the f to be treated as
a formal argument, that is, it can match any value. The tuple added in Line
1 may be extracted by Line 4, and the actual value of f would then be 90.0.
In Line 5, g is declared as a variable and used as a formal argument like f in
Line 4.

7.1.2 Jada. Implementing tuple spaces in Java poses similar problems to
those described for TPS. As an example, Jada [Ciancarini and Rossi 1997] in-
struments Java with a library that supports tuple spaces. In Jada, class Tuple
represents lists of Java Objects, and has constructors for up to ten values.
Clients thus have to cast these objects explicitly upon reception, thereby re-
ducing type safety. Formal arguments are represented by objects that stand
for the desired type (instances of java.lang.Class). The aforementioned Linda
example can be expressed in Jada as follows (Line 5 has no equivalent in Jada):

TupleSpace space = ...;
space.out(new Tuple(

“StockQuote”, “Telco”, new Integer(100), new Float(90.0))); /] 1
float f = 90.0; // 2
Tuple tuplel = space.in(new Tuple(

“StockQuote”, “Telco”, new Integer(100), new Float(f))); // 3
Tuple tuple2 = space.in(new Tuple(

“StockQuote”, “Telco”, new Integer(100), Float.class)); // 4

f = ((Float)tuple2.getItem(4)).floatValue();

As illustrated by Jada, such a tuple space library becomes clumsy compared
to the original support in the Linda language. A slight improvement can be

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 33

achieved with Java 1.5, which supports methods with a variable number of
arguments. Using this feature, we can avoid declaring several constructors for
different numbers of arguments, and simply define a single one:

public class Tuple {
public Tuple(Object ... args) { ... args[i] ... }
}

Yet, this removes only a small portion of the problem, namely, on the implemen-
tation side. The elusive syntax remains for the instantiation of such tuples. In
terms of type safety, no gain is observed.

7.1.8 JavaSpaces. More recent approaches to tuple space interaction in
Java, such as JavaSpaces [Freeman et al. 1999], apply a different model, view-
ing tuples as single objects whose fields reflect tuple values. Custom events are
defined by subtyping the basic Entry type, which again does not ensure type
safety, since type-checks and type casts are necessary. Also, no encapsulation is
provided by forcing fields to be declared public; expressing and performing any
content-based filtering through these fields. More precisely, a given subscriber
to a JavaSpace advertises the type of events it is interested in by providing
a template object t. A necessary condition for o, an object notifying an event,
to be delivered to this subscriber is that o conforms to the dynamic type of t.
Furthermore, the field values of t have to match the corresponding field values
of o, with null playing the role of wildcard.

With Javaspaces, stock quotes can be expressed as follows:

public class StockQuote extends Entry {
public String company;
public Integer amount;
public Float price;
public StockQuote(String company, Long amout, Float price) {
this.company = company;
this.amount = amount;
this.price = price;
}
}

JavaSpace space = ...;
space.write(new Stockquote(

“Telco”, new Integer(100), new Float(90.0)), ...); /] 1
float f = 90.0; /] 2
Entry entryl = space.read(new StockQuote(

“Telco”, new Integer(100), new Float(f)), ...); // 3
Entry entry2 = space.read(new StockQuote(

“Telco”, new Integer(100), null), ...); // 4

f = ((StockQuote)entry2).price.floatValue();

7.1.4 Satisfactory Library Implementation?. The tuple space paradigm il-
lustrates the difficulty of achieving the full features of a hardwired abstraction

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

34 . P. Eugster

with a library. Rather surprisingly, a separation of the programming language
from the concurrency mechanism had been advocated by Carriero and Gelernter
themselves earlier [Gelernter and Carriero 1992], while their Linda language
is widely viewed as a monolithic solution to merging a coordination language
with a programming language.

By type parameterizing the JavaSpace type, and changing the read()
method so as to give access to a dynamic proxy, a similar “subscription” scheme
to that used with TPS could be achieved. Through the official support for gener-
ics in Java 1.5, we could in fact expect a type parameterized version of the
JavaSpace API to appear:

public interface JavaSpace<T extends Entry> {
public T read(T t, Transaction txn, long timeout) throws ...
public Lease write(T t, Transaction txn, long lease) throws ...

}

The template object-based matching would, however, lead to a potential mis-
match between the type parameter and the type of template object with an
extension such as that portrayed previously. Any aforementioned template ob-
ject t is obviously an instance of a class type C, which is a subtype (distinct —
see Section 3.3.1) of the type passed for T. In other words, though seemingly
manifesting interest in all instances of the type passed for T, a subscriber will
be actually only receiving instances of a more derived type given by the class
C of the template object, but no instances of any class C’ which subtypes T
without being derived from C.

The distributed implementation of JavaSpaces could also strongly benefit
from runtime information on actual type parameters (see Section 6.1) for setting
up connections.

7.2 RMI

Despite the emergence of many contestants, the remote method invocation
(RMI) paradigm (or remote procedure call, RPC) remains the most prominent
abstraction for remote interaction in distributed object settings.

7.2.1 Java RMI. Java RMI relies on the inherent Java type system, yet
further constrains the use of this type system in its own context: (1) Static
types of remote references must be abstract types, that is, interfaces, and (2)
any method in such an interface must imperatively declare RemoteException
in its throws clause. Originally, Java RMI could be considered as a language
add-on in the sense that a separate compiler (rmic) was used to generate type-
specific proxies—the absence of corresponding proxies only being signalled at
runtime. The original implementation of Java RMI could in this sense be viewed
as an intermediate solution between a language-integrated RMI package and
a standard library.

7.2.2 Satisfactory Library Implementation?. A form of RMI can be imple-
mented in Java as a pure library (without specific compilation) with dynamic

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 35

proxies to defer the binding to a remote object to runtime. This proxy mecha-
nism has, by all evidence, been devised with the requirements of Java RMI
in mind, and in fact as of Java 1.5, is the preferred means of obtaining
proxies for RMI, thus making the rmic precompiler obsolete. The absence
of dynamic proxies for classes is, in the context of Java RMI, not a short-
coming, since by following the RMI specification, remotely invocable types
are still to be declared as interfaces. However, an implementation of a fu-
ture-like (future type message passing [Yonezawa et al. 1987]) asynchronous
RMI for Java—where an invoking thread is not blocked, but immediately re-
turned a handle for the result (with possible blocking when querying the han-
dle prematurely, known as wait-by-necessity [Caromel 1993])—is not unprob-
lematic. Indeed, to support implicit future invocations, where such handles
are of the same type as the return values, types of return values of meth-
ods would have to be limited to abstract types in order to ensure that dy-
namic proxies could be returned as future objects. This would mean adding
further constraints to the specification of Java RMI. Without these, a type
parameterized interface Future defined in package java.lang.reflect must
currently be used to convey return types of explicit future invocations, and
building implicit futures on top of these requires complex static analysis
[Pratikakis et al. 2004].

Providing both Java RMI and our TPS library side by side (including the
possibility of passing around proxies as part of events) could lead to a powerful
framework for programming distributed applications. By providing dynamic
proxies for classes and possibly also primitive types, the TPS library could
become more expressive, and implicit future invocations could be catered to,
leading to much flexibility.

7.3 Join Patterns

More recently, Fournet and Gonthier proposed the join pattern abstraction in
the context of their Join calculus [Fournet and Gonthier 1996] for concurrent
and distributed computing. Join patterns were first put to work in the JoCaML
language [Fournet et al. 1997] before more recently giving rise to an extension
of C# [Hejlsberg and Wiltamuth 2001] called Polyphonic C# [Benton et al. 2004].
Our discussions here focus on the latter implementation of join patterns, as it
is closer in syntax to Java.

7.3.1 Chords. Forthedeclaration ofjoin patterns (termed chords in Benton
et al. [2004]), Polyphonic C# includes asynchronous methods. Such methods sig-
nal their absence of return values by the async tag in place of a return type, and
return “immediately” by executing in a separate thread. Join patterns them-
selves each consist of a header and body. The header is composed of a set of
body less method declarations (referred to as pattern methods in the following),
separated by “&.” Join pattern bodies are executed once all methods declared
in the header have been called. Benton et al. [2004] describe the implemen-
tation of various predating abstractions for concurrent, but also distributed,
programming, such as rendez-vous, active objects, and (asynchronous) re-
quest/reply, based on join patterns.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

36 . P. Eugster

public class JoinPattern<T> {
public class Pattern {
public T registerMethod () throws AlreadyRegisteredException
{ /* return a dynamic prozy to register the sync patterns method */ }
public T registerAsyncMethod ()
{ /* return a dynamic proxzy to register an async pattern method x/ }
public T registerBody () throws AlreadyRegisteredException
{ /* return a dynamic prozy to register the pattern body */ }

public T getlnvocationProxy()
{ /* return a dynamic prozy to register an invocation */ }

Fig. 14. A library approach to join patterns in Java.

To better illustrate join patterns, consider the example of a buffer introduced
in Benton et al. [2004], expressed in Java syntax:

public class Buffer {
public String get() & async put(String s) {
return s;
}
}

Through the pattern expressed here, invocations to get () and put () are paired.
Ifno execution of put () is pending, an invocation of get () is blocked until put()
is invoked and the pattern body executes, returning the value of the string.
The inverse does not lead to blocking put (), as this method is asynchronous.
Note, however, that this example, as pointed out in Benton et al. [2004], does
not specify which invocations are paired: An invocation of get () following two
unmatched put()s may return either value.

7.3.2 Translating to Java. Implementing the essential features of join pat-
terns is possible in Java with generics and reflection features such as required
by TPS. A corresponding abstraction is sketched by Figure 14 (details omitted
for presentation).

Class JoinPattern defines an inner class Pattern for expressing single
patterns. The latter class provides three methods enabling the specification
of: (1) a synchronous pattern method (if any), (2) asynchronous pattern
methods, and (3) a method representing the body of the corresponding pattern,
respectively. For type safety, these are all expressed by invoking dynamic
proxies returned by these methods. This requires that classes expressing join
patterns define methods for all pattern methods used in pattern headers.
Since the original join patterns use these pattern methods for synchronization,
the bodies of these methods in our library implementation indicate their
invocations to the corresponding pattern by simply forwarding them to a
proxy, created through the getInvocationProxy() method. Concretely,
the aforementioned Buffer defined would be translated as sketched in
Figure 15.

7.3.3 Satisfactory Library Implementation?. Clearly, the Buffer class out-
lined in Figure 15 is far more complex than the variant based on specific

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 37

public class Buffer {

static JoinPattern<Buffer> joins = new JoinPattern<Buffer >();

static {
/* describe the first join pattern */
JoinPattern<Buffer >.Pattern pattern = joins.new Pattern ();
pattern.registerMethod (). put(null);
pattern.registerAsyncMethod (). get ();
pattern.registerBody ().putGetBody(null);

/* create a proxy to forward the invocations to the pattern */
private Buffer proxy = join.getInvocationProxy();

/* pattern methods for pattern header x/

public String get() { return proxy.get(); }

public void put(String s) { proxy.put(s); }

/* method body for the pattern x/

public String putGetBody(String s) { return s; }

Fig. 15. Buffer implemented with join patterns in Java.

constructs, yet achieves the same functionalities. More important are the
shortcomings in terms of safety and performance. Indeed, only at runtime are
errors detected, such as omitted invocation forwards in pattern methods, or
attempts made to register more than one synchronous pattern method for the
same pattern. Furthermore, just like in the case of the Adapter class in our
library implementation of TPS, the JoinPattern class here would require run-
time information regarding the type parameter. As regards performance, we
would have to investigate whether the heavy use of reflection in the Pattern
class would justify language primitives.

7.4 Alternative Support for Distributed Programming Abstractions

The prominent mechanisms discussed so far have all been investigated in the
context of TPS in variants of Java. The intention is by no means to claim that
the outlined mechanisms cover all possibilities, since there are many other
languages and features to think about. As illustration, we discuss a small set
of alternative language features.

7.4.1 Closures. In our library implementation of TPS, a subscriber imple-
ments a callback object that is passed to the adapter upon subscription. The
code for such an obvent handler, that is, a class that implements Subscriber,
is defined in a specific class. This is likely to lead to a scattering of the code
related to single subscriptions unless making use of inner classes, as in our
example in Section 5.3.

In our Javaps implementation, the preceding obvent handler is viewed as
a closure whose signature is implicitly given as part of the syntax of the sub-
scription expression, and all code related to a subscription is colocated, making
it easy to understand what the subscription does. Given that the content filter
and event handler are two sides of the same story, it seems more apropriate to
concentrate these at the same place.

The closures used for expressing content filters have very specific seman-
tics. As already mentioned in Section 4.2.3, these closures are characterized
by deferred evaluation. To be fully accurate, these closures actually undergo

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

38 . P. Eugster

a deferred compilation, as they are transformed at compilation into instanti-
ations of first class parse trees. This makes these closures “migratable” and
transformable, for example, partially evaluatable.

Such a mechanism could in a more general sense be interesting for dis-
tributed programming. It could help implement pre- and postconditions (see
Meyer [1992a]) efficiently in a distributed heterogenous RMI environment (e.g.,
by evaluating parts of preconditions on the client side before attempting any
remote interaction), other forms of distributed filtering of objects passed by
value between remote components, such as required by TPS previously, or even
queries on object databases. Clearly, the expression of content filters reflects
the need for future abstractions to seemlessly integrate with application code,
and in TPS represents the most tedious part, with only few languages providing
nearly adequate mechanisms.

7.4.2 myType and Mixins. The myType type qualifier was introduced by
Bruce et al. [1995] in PolyTOIL, and inherited by Loom [Bruce et al. 1997].
In any given method body, this qualifier refers to the dynamic type of the
considered object the type of this. In the words of the authors, “myType is
anchored to the type of the object in which it appears.” This paradigm en-
ables an inherently clean implementation of binary methods. In the context
of TPS, this could be used in combination with behavioral reflection and sim-
ple unbounded parametric polymorphism (also part of PolyTOIL) to ensure
type safe direct subscriptions to application-defined event classes (e.g., without
first-class adapter abstraction), which subtype a specific root obvent type, Ob-
vent. Following the Java syntax, we could imagine having something like the
following:

public class Obvent implements Serializable {
public final void publish()
throws CannotPublishException {...}
public final Subscription<myType>
subscribe(Subscriber<myType> s) {

}
}

public class StockEventImpl extends Obvent ... {...}

Subscribing to an application-defined obvent class, such as the previous Stock-
Quote class, can be done simply by first creating an instance of this class, and
then invoking the subscribe() method (assuming the Subscriber class imple-
mentation follows that from Section 5.3):

Subscription<StockQuote> quoteSubscription =

new StockQuote().subscribe(new Subscriber<StockQuote>() {...});
StockQuote quote = quoteSubscription.constrain();
quotes.getCompany().equals(“Telco”);

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 39

The preceding subscription scheme could fulfill all our requirements in a
language which, unlike Java, does not provide any purely abstract types (since
these are not supported by the aforementioned design). Furthermore, if the
myType type qualifier is available in class (static) methods, we could omit
creating an instance of an event class just for subscribing to that type.

Similarly to myType, the concept of mixin [Bracha and Cook 1990] could
enable merging the abstraction for subscribing with these very event types;
here, by “adding” methods that express subscriptions and unsubscriptions to
application-defined obvent types, instead of inheriting them from a root obvent

type.

7.5 .NET

The experiences presented thus far have been mostly conducted with the Java
programming language, and it has turned out that providing interoperability
for TPS involves more delicate issues than in the case of RPC. Although, just like
TPS, RPC relies on the invocation semantics and type systems of the supported
programming languages, it seals (in most cases) distinct address spaces from
each other, letting only invocations enter and exit. TPS, on the other hand, does
not cause the invocation of coarse-grained remote, bound objects, but rather
relies on the transfer of fine-grained, unbound objects, which might require
transfering the code of such transferred objects, and possibly those of other
objects. Interoperability in the case of TPS hence requires further assumptions,
such as the implementation of obvent types in all involved languages (see OMG
[2001a]), or a common intermediate programming language (e.g., byte code)
with dynamic class loading and linking (see Section 6.2).

The claimed advantage of Microsoft’s .NET platform over the Java suite
is precisely the focus on programming language-independence. Though sev-
eral programming languages can be compiled for deployment on Java virtual
machines currently, .NET offers more inherent support for programming lan-
guage heterogenity, for example, through reflection features or other core class
libraries. Based on this fact, we have implemented our TPS library also for
.NET [Baehni et al. 2003]. Definitely inspired by the historically preceding Java
technology, .NET lends itself well to a side-by-side comparison with Java. It is
hence interesting to investigate whether (besides in terms of interoperability),
.NET is better qualified for distribution than Java, particularly in supporting
demanding abstractions such as TPS.

From a general point of view, .NET indeed provides many mechanisms for
distribution, with slightly more variants than Java. Merely for serializing ob-
jects, NET provides three mechanisms (binary, SOAP, custom). Moreover, NET
remoting, the NET counterpart to Java RMI, provides many means of config-
uring remote invocations. With respect to the previous shortcomings of Java,
.NET can be summarized as follows:

—Generics. Generics were investigated in the context of .NET shortly after
corresponding efforts for Java [Kennedy and Syme 2001]. The outcome was,
however, only integrated into the common language runtime at release 2.0.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

40 . P. Eugster

—Reflection .NET provides roughly the same introspection features as Java,
and moreover provides dynamic proxies, albeit similarly restricted to inter-
face types. However, NET provides support for generating field access meth-
ods automatically.

—Types. Remotely invocable objects in .NET can also be of class types, and
direct field accesses are automatically transformed to access method invoca-
tions. Since its very first release, NET offers support for boxing and unboxing
(here .NET seems to have preceded Java).

Hence, it appears that .NET has, from the type system point of view, introduced
certain interesting support mechanisms. This is probably a consequence of the
fact that it aims at providing language interoperability, and therefore has to
be able to deal with various type systems. When considering reflection and
generics from our TPS-biased perspective, NET nonetheless still plays in the
same league as Java.

8. RELATED WORK

This section presents related efforts, focusing on systems for event-based pro-
gramming on one hand, and on programming languages for distributed pro-
gramming on the other. In the former case, we emphasize the differences to
our design principles for TPS outlined in Section 3.1, and in the latter case, we
discuss the (differences to) the TPS model/abstraction.

8.1 Event Systems

Many sytems and models for distributed event-based programming have been
described in the literature with some form of typed events. We outline some of
the most prominent approaches.

8.1.1 COM+. Microsoft’s COM+ [Oberg 2000] promotes a model that is
based on the types of subscribers, rather than on the types of events: Similar
to RPC, objects can provide specific interfaces defining the methods through
which they can be invoked. Applications must provide typed dummy proxies
that publishers invoke. At runtime, these invocations are then intercepted by
the event service and forwarded to those subscribers implementing the same
type as the proxy. To respect the asynchronous nature of event-based program-
ming based on the publish/subscribe paradigm, such methods are not allowed
to return values.

Method invocations hence play the role of events, the “content” of these events
being made up of the actual arguments. Nevertheless, content filters in COM+
are obtained by specifying admissible values for invocation arguments of meth-
ods, and are expressed through a limited subscription grammar, which clearly
hampers TS.

8.1.2 CORBA. Several event-based systems have been designed and spec-
ified for the common object request broker architecture (CORBA) [OMG 2002].
With the CORBA event service [OMG 2001b], a consumer registers with an
event channel, expressing thereby an interest in receiving all the events from

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 41

the channel. These channels are named objects, coming close to nonhierarchical
subject names.

A form of typed interaction is provided, similar to the model in COM+, en-
abling the use of the types of not only consumers, but also producers (the CORBA
event service supports pull- and push-style interaction) as the main subscrip-
tion criterion. According to the type of interaction, methods only have input
parameters or return values so as to respect the asynchronous nature of pub-
lish/ subscribe. Typed proxies are generated based on the application’s interface,
which in practice requires a specific compiler. Content-based subscriptions are,
however, not supported.

Shortly after the first commercial implementations of the CORBA event ser-
vice became available, several deficiencies (e.g., missing support for QoS and
real-time requirements, difficulties with the aforementioned typed events) be-
came apparent, leading to extended event service implementations. One of the
most significant was that used in the TAO real-time ORB [Harrison et al. 1997].
It addresses mainly real-time issues, but also enforces subscriptions based on
the identity of the publisher and/or event types. In the latter case, the “type” is
an integer value explicitly assigned to every event by storing it in a dedicated
property. This goes against T'S, while the content-based subscription lacks sup-
port for EP.

Based on the observed deficiencies of the CORBA event service, the OMG
issued a request for proposal of an augmented specification, the CORBA noti-
fication service [OMG 2000]. A notification channel is an event channel with
additional functionalities, including notions of priority and reliability. A new
form of semityped event, called structured events, was introduced. This rep-
resents general-purpose event types which manifest fields like event type and
event name, and are roughly composed of an event header and event body. Both
parts each consist of a fixed part and variable part.

The variable parts of structured events (as well as the fixed header part)
are composed of name-value pairs for which the specification mentions a set
of standardized and domain-specific compositions that contradict both AE and
EP. Standard properties include a notion of event type which is however, rep-
resented by a name.

In the context of content filtering, these name-value pairs are used to describe
content filters, called filter objects. These are described as strings (following a
complex subscription grammar called the default filter constraint language)
which are interpreted at runtime, thus contradicting TS.

8.1.3 Java. dJust as for CORBA, several publish/subscribe schemes have
been proposed for Java.

Sun’s answer to the CORBA event and notification service specifications is
the Java message service (JMS) [Happner et al. 2002]. Different types of events
are predefined, varying by the format of their body, yet all inheriting from a
basic event type representing a map for name-value pairs. A set of keys are
predefined, including a property representing the event type. However, just like
in the case of the CORBA notification service specification, these consist simply
of a type name. Content filters are expressed as message selectors, which are

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

42 . P. Eugster

essentially strings based on an SQL-like grammar. Hence, just like the CORBA
notification service, JMS hampers TS, EP, and AE.

When consumers register callback objects with a JavaSpace, we end up with
a publish/subscribe communication scheme in which JavaSpace plays the role
of the event channel aimed at multicasting event notifications to a set of sub-
scriber objects. As mentioned in Section 7.1.3, a given subscriber of a JavaSpace
advertises the type of events it is interested in by providing a template object t.
A necessary condition for o (an object notifying an event to be delivered to this
subscriber) is that o conforms to the type of t. Furthermore, the field values
of t have to match the corresponding field values of o, with null playing the
role of wildcard. JavaSpaces hence do not support TS and EP. As outlined in
Section 7.1.3, these shortcomings could be avoided by making use of a predicate
expression scheme, as in our TPS library implementation, as well as generics.
By doing so, we could also relax the inherent limitation of a template-based
matching scheme such as that promoted by JavaSpaces, which is the fact that
only strict equality matching can be expressed by subscribers.

8.1.4 CEA. The Cambridge event architecture (CEA) [Bacon et al. 2000]
is based on an interoperable object model in which event types are described
through the ODMG’s object definition language (ODL). C++ and Java mappings
for this language are mentioned. Precompilers generate specific adapters (called
stubs in the CEA) for exchanging typed events. Filtering mechanisms are also
included, however, again these are based on viewing the events as sets of fields,
hence contradicting EP.

8.2 Programming Languages

Many programming languages have been described with inherent support for
distribution (and concurrency). We overview a select set of such languages,
focusing on their abstraction(s) for distribution and the differences to TPS (or
Javapg), as well as on the use of reflection and generics for implementing these
abstractions.

8.2.1 Remote Objects. Originally introduced for procedural programming
models (e.g., Sun RPC [Srinivasan 1995], DCE RPC [Rosenberry et al. 1993]),
remote invocations have been rapidly applied to object-oriented languages,
promoting some form of remotely accessible entities, such as guardians in
Argus [Liskov 1988] (follow-up of CLU [Liskov 1993]), or network objects in
Modula-3 [Cardelli et al. 1989] and Obliq [Cardelli 1995] (and of course Java,
as presented already in Section 7).

In Obliq, every object is potentially a network object. Objects which are de-
clared serialized are objects on which no more than a single method can exe-
cute at a time. One of the distinguishing features of protected objects is that
they can shield some of their methods from the “outside world” (e.g., physically
remote hosts). The benefits of distinguishing between remote and local (views
of) objects, and thereby introducing a form of granularity (large, location-bound
objects versus smaller ones; see Section 3.2.1) have been retained by most subse-
quent languages—many through specific syntax like Obliq. In Eiffel, separate

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 43

objects are serialized in the sense of Obliq, and furthermore (potentially) under
the control of a different thread of execution than the denoting objects [Meyer
2002]. The invocation of such an object then inherently leads to synchroniza-
tion.

Both Obliq and Eiffel provide a notion of conditional execution of methods.
In Obliq, guards are specific constructs added to this end, while the contracts
inherent to Eiffel (more precisely, preconditions, in this case) are interpreted
as wait conditions in certain cases, thereby conveying similar semantics as
guards.

As discussed in Section 7, proxies such as those present in Java provide
an ideal mechanism for remote invocations. Similarly, they can be used for
expressing guards, just as they have been used for predicates in our library
implementation of TPS. An inherent support for “distributed predicates,” such
as those found in Javapg, could be generalized for expressing various forms of
wait conditions (e.g., guards, preconditions).

8.2.2 Asynchronous Objects. Many concurrent programming languages
build on the actor model [Agha 1985] in which actors (autonomous computa-
tional entities) communicate by asynchronous message passing. The behavior
of such an actor consists essentially in handling one incoming message after an-
other by reacting with some local computation, and possibly sending out further
messages in conclusion. The semantics of the actor model has been thoroughly
studied, and the model continues to be applied in the functional languages for
which it was originally devised. An example of this is the Erlang programming
language, which provides explicit asynchronous message sends/receives and
further includes wait conditions [Armstrong et al. 1996].

In object-oriented languages, these asynchronous messages often appear as
asynchronous one-way invocations, that is, asynchronous calls to methods with-
out return values, which can thus be viewed as unicast events. Two early ex-
amples are Actalk [Briot 1989] and Act++ [Kafura et al. 1993].

Oz is a multiparadigm language which includes many features and
paradigms for concurrent and distributed programming. Oz promotes the
actor model, providing the concept of mailboxes for asynchronous message
passing, and inherently supports wait conditions. Mobility is endorsed by the
possibility of migrating computation [Havelka et al. 2004], and distribution is
supported by leveraging on semantics of remote invocations [Grolaux et al.
2004].

Salsa is another more recent example of an actor-based language. Salsa
builds on Java and proposes asynchronous (remote) message sends, introduced
by “<-”, side-by-side with synchronous (local) method invocations. The “Q” op-
erator is used explicitly for forcing ordering on multiple message sends that
appear subsequently in the client code (e.g., leading to a FIFO ordering with
respect to the client side).

Many object-oriented programming languages, even without being based on
the actor model, have been augmented with a form of asynchronous invocation.
An example is given by the aforementioned Eiffel model, which similarly in-
cludes asynchronous semantics for calls to methods without return values. For

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

44 . P. Eugster

method calls with return values, most languages proposing an idiom of asyn-
chronous messaging are inspired by futures. As already outlined in Section 7.2,
such asynchronous return values make a very strong case for dynamic proxies,
just like any form of remote (asynchronous) invocation. In addition, proxies can
also act as decorators, providing access to parameters for remote interaction
(such as QoS) through an added interface.

8.2.3 Mobile Objects. Several languages aiming at mobility of objects (in
the sense of mobile agents) have been founded on calculi. For instance, nomadic
Pict [Unyapoth and Sewell 2001] builds on 7 calculus [Milner 1999] for con-
current computing, which similarly to the actor model, provides asynchronous
message passing as the basic interaction paradigm. Nomadic Pict adds primi-
tives for agent creation and migration, and location-independent communica-
tion of agents between sites. To achieve this location-independence, Nomadic
Pict may use broadcast techniques, but these are not reflected at the language
level.

Ambients [Cardelli and Gordon 1998] are another approach to mobile agents
through an explicit notion of location and corresponding boundaries. Mobil-
ity is endorsed by giving ambients the ability to cross boundaries. Ambients
also include a notion of security on the basis of these boundaries. Just like in
Nomadic Pict, Ambients are presented without inherent support for broad-
casting. A more recent proponent of similar guidelines underlying Ambients
is AmbientTalk [Dedecker et al. 2006]. AmbientTalk provides both first-class
future invocations and broadcast support. The integration of these features is
facilitated by the absence of static typing; AmbientTalk is dynamically typed
and object-based (prototype-based) rather than class-based, which pragmati-
cally does away with issues of type agreement and conformance.

8.2.4 Event Objects. In contrast tothe aforementioned languages, in which
multicast interaction can be achieved by explicitly addressing multiple destina-
tions, the ECO (events + constraints + objects) model [Haahr et al. 2000] is an
approach to integrating event-based multicast interaction with a programming
language akin to Javapg. In ECO, which builds on C++, events are added as
specific language constructs decoupled from the main application objects, ne-
cessitating a considerable number of language add-ons. Filtering can be based
on the publisher’s identity (the source), and several types of constraint. Notify
constraints are expressed based on the fields of events, and preconstraints as
well as postconstraints use the state of the subscriber object. Methods cannot,
however, be used to express constraints, as events do not include code. Hence,
ECO does not provide EP. Various constraints found in the ECO model could be
implemented with dynamic proxies (and generics) satisfying the requirements
posed by TPS.

Prasad et al. (e.g., Ostrovsky et al. [2002]) have proposed several broadcast
calculi. These come closer in spirit to Javaps. Expressing Javapg in a broadcast
calculus variant, bears the nontrivial problem of expressing content filters on
broadcast channels. When mapping content-based channels (e.g., dissemination
based on dynamic criteria) to named channels (e.g., static channels), several

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 45

assumptions are required to avoid explosion of complexity (see Opyrchal et al.
[2000]).

9. CONCLUSIONS

We have presented type-based publish/subscribe (TPS), a high-level abstraction
for anonymous, one-to-many interaction at large scale. Javapg, our extension of
the Java language, was motivated by the obvious lacks manifested by the Java
language with respect to supporting the implementation of abstractions like
TPS as libraries. To achieve some level of type safety with a library implemen-
tation, we started out by making use of a “future” version of Java incorporating
generics. To enable a satisfactory expression of content filters, we explored the
use of a recent reflection mechanism, resulting, however, in many restrictions.

In general, and in the face of today’s heterogenity across platforms, we be-
lieve that programming languages should not be implemented with specific
(support for) abstractions for distributed interaction as primitives. We rather
believe that designers of future languages should foresee a more general sup-
port for distributed interaction abstractions. In particular, avoiding an inte-
gration avoids the intrinsically hard question of which abstractions should be
supported.

Although TPS is surely not the last paradigm for distributed programming,
the constraints imposed by TPS should be kept in mind when conceiving future
support for distributed programming. As shown by the difficulty in expressing
content filters, TPS, as a paradigm emphasizing scalability and performance, re-
quires a strong interaction with the native programming language, and is hence
avery demanding abstraction. Most abstractions established for distributed in-
teraction, such as tuple spaces or RMI, probably require only a subset of the
features mandated by TPS.

We argue that reflection and generics, as faces of extensibility, are key con-
cepts for a general language support of distributed programming, and that a
straightforward type system can support the implementation of such features.
With inherent reflective capabilities and generics, we believe it is possible to
implement a powerful TPS library, and, as pointed out in this article, also al-
ternative abstractions for distributed interaction, such as tuple spaces, RMI,
and even a more recent paradigm, join patterns.

Other authors have pointed out that extensibility of an object-oriented lan-
guage requires generics (e.g., Steele [1999]) and reflection, and as a result,
generics have been recently added to Java. In this article, we have identified
through TPS a precise case for this argument in the area of distributed pro-
gramming. We have illustrated how this case poses more stringent demands
on programming languages than those previously expressed and partially ad-
dressed without distribution in mind. We have also argued, through Java, that
current features in mainstream languages are still not sufficient for distributed
programming.

We insist on the fact that in the face of modern abstractions for distributed
interaction such as TPS, generics need to be provided in a form that includes
runtime support for type parameters, and that reflection has to go beyond sim-
ple message reification (considered sufficient in the context of RMI, e.g., Aksit

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

46 . P. Eugster

et al. [1993]). We pointed out that from our perspective, the current support
in Java for generics and reflection is clearly insufficient, and we illustrated
how primitive types as well as direct field accesses contribute to these defi-
ciencies. Last but not least, we have had a look at how these features map to
Microsoft’s .NET platform [Thai and Lam 2001]. Inspired by Java, .NET pro-
poses closely related concepts of generics, as well as reflection, with nearly the
same limitations. For instance, field accesses cannot be intercepted, which is,
however, counterbalanced by the fact that types in NET languages such as C#
can declare properties, a form of fields with inherent support for getter/setter
methods.

ACKNOWLEDGMENTS

We are very grateful to Agilent Laboratories, Lombard Odier Darier Hentsch
and Co., the Swiss Group for Object-Oriented Programming, and the Swiss
National Science Foundation for financially supporting efforts leading to the
results presented in this article. Many thanks go also to the following indi-
vidual contributors for fruitful discussions and invaluable feedback: Sébastien
Baehni, Christian Damm, Rachid Guerraoui, Sidath Handurukande, Martin
Odersky, Manuel Oriol, and Joe Sventek. Last but not least, we would like
to thank the various reviewers which have invested time in commenting on
this work.

REFERENCES

AcHA, G. 1985. Actors: A model of concurrent computation in distributed systems. Ph.D. thesis,
University of Michigan, Computer and Communication Science.

AGUILERA, M. AND STrROM, R. 2000. Efficient atomic broadcast using deterministic merge. In Pro-
ceedings of the 19th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC). 209-218.

AcgurLera, M., StroM, R., STURMAN, D., ASTLEY, M., AND CHANDRA, T. 1999. Matching events in a
content-based subscription system. In Proceedings of the 18th ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing (PODC). 53—62.

AxsIT, M., WakiTa, K., BoscH, J., BERGMANS, L., AND YoNEzawA, A. 1993. Abstracting object interac-
tions using composition filters. In Proceedings of the 7th European Conference on Object-Oriented
Programming (ECOOP). 152-184.

ALTHERR, M., ERZBERGER, M., AND MAFFEIS, S. 1999. iBus—A software bus middleware for the Java
platform. In Proceedings of the International Workshop on Reliable Middleware Systems of the
13th IEEE Symposium On Reliable Distributed Systems (SRDS). 43-53.

ARrauJgo, F. AND RoODRIGUES, L. 2002. On QoS-Aware publish/subscribe. In Proceedings of the Inter-
national Workshop on Distributed Event-based Systems (DEBS).

ARMSTRONG, dJ., VIRDING, R., WIKSTROM, C., AND WiLLiaMS, M. 1996. Concurrent Programming in
Erlang, 2nd ed. Prentice-Hall, Upper Saddle River, NJ.

Bacon, J., Moopy, K., BaTgs, J., Havton, R., Ma, C., McNEIL, A., SEIDEL, O., AND SpiTERI, M. 2000.
Generic support for distributed applications. IEEE Comput. 33, 3 (Mar.), 68-76.

Bagnni, S., EUGSTER, P., AND GUERRAOUI, R. 2002. OS support for peer-to-peer programming: A
case for TPS. In Proceedings of the 22th IEEE International Conference on Distributed Computing
Systems (ICDCS). 355-362.

Baknni, S., EUGSTER, P., AND GUERRAOUTL, R. 2004. Data-Aware multicast. In Proceedings of the 5th
IEEE International Conference on Dependable Systems and Networks (DSN). 233-242.

Baenni, S., EucsteRr, P, Guerraour, R., aND P.Arraerr. 2003. Pragmatic type onteroperability.
In Proceedings of the 23rd IEEE International Conference on Distributed Computing Systems
(ICDCS).

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 47

Benton, N., CArDELLI, L., AND FourneT, C. 2004. Modern concurrency abstractions for C#. ACM
Trans. Program. Lang. Syst. 26, 5 (Sept.), 769-804.

Birman, K. 1993. The process group approach to reliable distributed computing. Commun.
ACM 36, 12 (Dec.), 36-53.

Bracua, G. 2004. Generics in the Java programming language. Tech. Rep., Sun Microsystems,
Inc. July.

BracHa, G. aND Cook, W. 1990. Mixin-Based inheritance. In Proceedings of the 5th ACM Confer-
ence on Object-Oriented Programming Systems, Languages and Applications and 4th European
Conference on Object-Oriented Programming (OOPSLA /ECOOP). 303-311.

BracHaA, G., ODERSKY, M., STOUTAMIRE, D., AND WADLER, P. 1998. Making the future safe for the
past: Adding genericity to the Java programming language. In Proceedings of the 13th ACM
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA).
183-200.

Briot, J.-P. 1989. Actalk: A testbed for classifying and designing actor languages in the Smalltalk-
80 environment. In Proceedings of the 3rd European Conference on Object-Oriented Programming
(ECOOP). 109-129.

Bruck, K., PETERSEN, L., aND FiecH, A. 1997. Subtyping is not a good “match” for object-oriented
languages. In Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP). 104-127.

Bruck, K., SCHUETT, A., AND VAN GENT, R. 1995. PolyTOIL: A type-safe polymorphic object-oriented
language. In Proceedings of the 9th European Conference on Object-Oriented Programming
(ECOOP). 27-51.

CannINg, P., Cook, W., HiLr, W., OrtHOFF, W., AND MITCHELL, J. 1989. F-Bounded polymorphism
for object-oriented programming. In Proceedings of the 4th ACM International Conference on
Functional Programming and Computer Architecture (FPCA). 273-280.

CarpeLLi, L. 1995. A language with distributed scope. In Conference Record of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). 286—
297.

CarpELLI, L., DONAHUE, J., JorDaN, M., Karsow, B., anp NELsoN, G. 1989. The modula-3 type sys-
tem. In Conference Record of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). 202-212.

CarpELLI, L. AND GORDON, A. 1998. Mobile ambients. In International Conference on Foundations
of Software Science and Computation Structures (FOSSACS). 140-155.

CaroMEL, D. 1993. Towards a method of object-oriented concurrent programming. Commun.
ACM 36, 90-102.

CARzANIGA, A., RosENBLUM, D., AND WoLF, A. 2000. Achieving scalability and expressiveness in
an Internet-Scale event notification service. In Proceedings of the 19th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC). 219-227.

CHaMBERs, C. 1995. The cecil language specification and rationale: Version 2.0. Tech. Rep. UW-CS
93-03-05, Department of Computer Science and Engineering, University of Washington. Dec.
Ciancaring, P. anD Rossi, D. 1997. Jada—Coordination and communication for Java agents. In
Mobile Object Systems: Towards the Programmable Internet. Lecture Notes in Computer Sceince,

vol. 1222. Springer, 213-228.

Dawmm, C., EuGSTER, P., AND GUERRAOUL, R. 2004. Linguistic support for distributed programming
abstractions. In Proceedings of the 24th IEEE International Conference on Distributed Computing
Systems (ICDCS). 244-251.

DEDECKER, J., CutsiM, T. V., MosTiNckx, S., D'Honpt, T., AND MEUTER, W. D. 2006. Ambient-
Oriented programming in AmbientTalk. In Proceedings of the 20th European Conference on
Object-Oriented Programming (ECOOP). 230-254.

DELPORTE-GALLET, C., FAUCONNIER, H., GUERRAOUTL, R., AND KouzNETsov, P. 2005. Mutual exclusion
in asynchronous systems with failure detectors. J. Parallel Distrib. Comput. 65, 492-505.

ErLis, M. AND STROUSTRUP, B. 1992. The Annotated C++ Reference Manual. Addison-Wesley, Read-
ing, MA.

EncGLER, D., WaLLAcH, D., anp KaasHoEk, M. 1996. Design and implementation of a modular,
flexible, and fast system for dynamic protocol composition. Tech. Rep. TM-552, Massachusetts
Institute of Technology, Laboratory for Computer Science. May.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

48 . P. Eugster

EuastEr, P. 2006. Uniform proxies for Java. In Proceedings of the 21st ACM Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA). 139-152.

EuastEr, P., Damym, C., aND GUERraOUI, R. 2004. Towards safe distributed application develop-
ment. In Proceedings of the 26th International Conference on Software Engineering (ICSE). 347—
356.

EuGsTER, P., FELBER, P., GUERRAOUI, R., AND HANDURUKANDE, S. 2002. Event systems: How to have
ones cake and eat it too. In Proceedings of the International Workshop on Distributed Event-Based
Systems (DEBS). 625-630.

EucstEr, P. AND GUErraoul, R. 2001. Content-Based publish/subscribe with structural reflec-
tion. In Proceedings of the 6th Usenix Conference on Object-Oriented Technologies and Systems
(COOTS). 131-146.

EucstER, P. AND GUERRAOUI, R. 2002. Probabilistic multicast. In Proceedings of the 3rd IEEE
International Conference on Dependable Systems and Networks (DSN). 313-323.

EucstERr, P., GUERRAOUI, R., AND Damm, C. 2001. On objects and events. In Proceedings of the
16th ACM Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA). 131-146.

Eucster, P., GUERRaouUl, R., HANDURURANDE, S., KERMARREC, A.-M., aND KouzneTrsov, P. 2003.
Lightweight probabilistic broadcast. ACM Trans. Comput. Syst. 21, 4 (Nov.), 341-
374.

EucsTER, P., GUERRAOUT, R., AND SVENTEK, J. 2000. Distributed asynchronous collections: Abstrac-
tions for publish/subscribe interaction. In Proceedings of the 14th European Conference on Object-
Oriented Programming (ECOOP). 252-276.

FiscHER, M., LyncH, N., AND Paterson, M. 1985. Impossibility of distributed consensus with one
faulty process. J. ACM 32, 2 (Apr.), 217-246.

Fournet, C. AND GoNTHIER, C. 1996. The reflexive chemical abstract machine and the join cal-
culus. In Conference Record of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). 372—385.

FournEr, C., LANEVE, C., MARANGET, L., AND REmy, D. 1997. Implicit typing a la ML for the join-
calculus. In Proceedings of the 8th International Conference on Concurrency Theory (CONCUR).
196-212.

Freeman, E., HuprEr, S., AND ArNoLD, K. 1999. JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley, Reading, MA.

Gamma, E., HELM, R., JouNsoN, R., AND VLISSIDES, J. 1995. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA.

GELERNTER, D. 1985. Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7, 1
(Jan.), 80-112.

GELERNTER, D. AND CARRIERO, N. 1992. Coordination languages and their significance. Commun.
ACM 35, 2 (Feb.), 97-107.

GOLDBERG, A. AND RoBsoN, A. 1983. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, MA.

GOSLING, J., Joy, B., STEELE, G., AND BracHA, G. 2000. The Java Language Specification, 2nd ed.
Addison-Wesley, Reading, MA.

GRrEGONO, P. AND SARKINEN, M. 2000. Copying and comparing: Problems and solutions. In Pro-
ceedings of the 14th European Conference on Object-Oriented Programming (ECOOP). 226—
250.

Groraux, D., Giyny, K., anp Roy, P. V. 2004. A fault tolerant abstraction for transparent dis-
tributed programming. In the 2nd International Conference on Multiparadigm Programming in
Mozart/Oz (MOZ). 149-160.

HaaHR, M., MEIER, R., NxoN, P., CaHILL, V., AND JUL, E. 2000. Filtering and scalability in the ECO
distributed event model. In Proceedings of the 5th IEEE International Symposium on Software
Engineering for Parallel and Distributed Systems (PDSE). 83-92.

HappNER, M., BURRIDGE, R., AND SHARMA, R. 2002. Java message service. Tech. Rep., Sun Microsys-
tems, Inc. Mar.

Hagrrison, T., LEVINE, D., AND Scammot, D. 1997. The design and performance of a real-time CORBA
event service. In Proceedings of the 12th ACM Conference on Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA). 184-200.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

Type-Based Publish/Subscribe: Concepts and Experiences . 49

HAVELKA, D., ScHULTE, C., BranD, P., AND HARIDI, S. 2004. Thread-Based mobility in oz. In the 2nd
International Conference on Multiparadigm Programming in Mozart/Oz (MOZ). 137-148.

HrjisBErG, A. AND WiLTaMUTH, S. 2001. C# Language Specification. Microsoft Press, Redmond,
WA.

KaFURA, D., MUKHERJT, M., AND LAVENDER, G. 1993. ACT++: A class library for concurrent program.
in C++ using actors. J. Object Oriented Program. 6, 6 (Oct.), 47-55.

KenNEDY, A. anD SymE, D. 2001. Design and implementation of generics for the .NET common
language runtime. In Proceedings of the 2001 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI).

KoEenig, P. 1999. Messages vs objects for application integration. Distrib. Comput. 2, 3 (Apr.),
44-45.

KRrISHNAMURTHY, B. AND RosenBLUM, D. 1995. Yeast: A general purpose event—action system. I[EEE
Trans. Softw. Eng. 21, 10 (Oct.), 845-857.

LieBerMANN, H. 1986. Using prototypical objects to implement shared behavior in object-oriented
systems. In Proceedings of the ACM Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA). 214-223.

Liskov, B. 1988. Distributed programming in argus. Commun. ACM 31, 3 (Mar.), 300-312.

Liskov, B. 1993. A history of CLU. ACM SIGPLAN Not. 28, 3 (Mar.), 133-147.

MansourI-SaMant, M. anp Stoman, M. 1997. GEM: A generalized event monitoring language for
distributed systems. Distrib. Syst. Eng. 4, 2 (June), 96-108.

MEYER, B. 1992a. Applying design by contract. IEEE Comput. 25, 10 (Oct.), 40-51.

MEevYER, B. 1992b. Eiffel: The Language. Object-Oriented Series. Prentice-Hall, Upper Saddle
River, NJ.

MEevYER, B. 2002. Systematic concurrent object-oriented programming. Commun. ACM 36, 9, 56—
80.

MiLNER, R. 1977. A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17, 348—
375.

MiLNER, R. 1999. Communicating and Mobile Systems: The w-Calculus. Cambridge University
Press, New York.

NieLsoN, F. anp NieLson, H. 1988. Two-Level semantics and code generation. Theor. Comput.
Sci. 56, 1 (Jan.), 59-133.

OBERG, R. 2000. Understanding and Programming COM+. Prentice Hall, Upper Saddle River,
NJ.

Oki1, B., PFLUEGL, M., SIEGEL, A., AND SKEEN, D. 1993. The information bus—An architecture for
extensible distributed systems. In Proceedings of the 14th ACM Symposium on Operating System
Principles (SOSP). 58-68.

OMG. 2000. Notification Service Standalone Document. OMG.

OMG. 2001a. The Common Object Request Broker: Architecture and Specification, Chapter Value
Type Semantics. OMG.

OMG. 2001b. Event service. In CORBAservices: Common Object Services Specification. OMG.

OMG. 2002. The Common Object Request Broker: Architecture and Specification, Version 3.0.
OMG.

OMG. 2003. Data Distribution Service for Real Time Systems Specification. OMG.

OPYRCHAL, L., ASTLEY, M., AUERBACH, J., BANAVAR, G., STROM, R., AND STURMAN, D. 2000. Exploiting
IP multicast in content-based publish-subscribe systems. In Proceedings of the 3rd IFIP/ACM
International Conference on Distributed Systems Platforms and Open Distributed Processing
(Middleware). 185-207.

OsTrOVSKY, K., PrASAD, K., AND TaHA, W. 2002. Towards a primitive higher order calculus of broad-
casting systems. In Proceedings of the 4th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming. 2—-13.

PoweLL, D. 1996. Group communications. Commun. ACM 39, 4 (Apr.), 50-97.

Pratiraxkis, P., Spacco, J., anp Hicks, M. 2004. Transparent proxies for Java futures. In Pro-
ceedings of the 19th ACM Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA). 206-223.

Rivarp, F. 1996. Smalltalk: A reflective language. In Proceedings of the 1st International Confer-
ence on Metalevel Architectures and Reflection (Reflection). 21-38.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

50 . P. Eugster

RosenBERRY, W., KENNEY, D., anD Fisuer, G. 1993. OSF Distributed Computing Environment:
Understanding DCE. O'Reilly, Sebastopol, CA.

SoLoRzANO, J. AND ArAcIc, S. 1998. Parametric polymorphism for Java: A reflective solution. In
Proceedings of the 13th ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA). 216-225.

SrintvasaN, R. 1995. RFC 1831: Remote procedure call protocol specification version 2. Tech. rep.,
Sun Microsystems, Inc. Aug.

STEELE, G. 1999. Growing a language. Higher-Order Symb. Comput. 12, 3 (Oct.), 221-236.

Sun. 2005. Core Java J2SE 5.0. Sun Microsystems, Inc. http://java.sun.com/j2se/1.5.0/.

Tana, W. anD SHEARD, T. 1997. Multi-Stage programming. In Proceedings of the ACM Interna-
tional Conference on Functional Programming (ICFP). 321-321.

TavLaRIAN CORPORATION. 1999. Everything you need to know about Middleware: Mission-Critical
interprocess communication (white paper). Talarian Corporation, http://www.talarian.com/.

THar, T. aND Lam, H. 2001. .NET Framework Essentials. O'Reilly, Sebastopol, CA.

TaoMmas, D. 2004. Message oriented programming: The case for first class messages. J. Object
Technol. 3, 5 (May—June), 7-12.

TIBCO. 1999. TIB/Rendezvous white paper. TIBCO, Inc. http:/www.rv.tibco.com/.

UNvyaPoTH, A. AND SEWELL, P. 2001. Nomadic Pict: Correct communication infrastructure for mo-
bile computation. In Conference Record of the 28th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages (POPL). 116-127.

YonEzAWA, A., SHIBAYAMA, E., TakADA, T., AND Honpa, Y. 1987. 4: Modeling and programming in an
object-oriented concurrent language abcl/1. In Object-Oriented Concurrent Programming. MIT
Press, Cambridge, MA. 55-89.

ZENGER, M. AND ODERSKY, M. 2001. Implementing extensible compilers. In ECOOP Workshop on
Multiparadigm Programming with Object-Oriented Languages.

Received February 2005; revised November 2005; accepted July 2006

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 1, Article 6, Publication date: January 2007.

