
DEBS Grand Challenge: Glasgow Automata Illustrated

Alexandros Koliousis
School of Computing Science

University of Glasgow
alexandros.koliousis@glasgow.ac.uk

Joseph Sventek
School of Computing Science

University of Glasgow
joseph.sventek@glasgow.ac.uk

ABSTRACT
The challenge is solved using Glasgow automata, concise
complex event processing engines executable in the context
of a topic-based publish/subscribe cache of event streams
and relations. The imperative programming style of the Glas-
gow Automaton Programming Language (GAPL) enables
multiple, efficient realisations of the two challenge queries.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—patterns

Keywords
Complex event processing, measurement

1. INTRODUCTION
The DEBS ’12 Grand Challenge (DGC) organisers invited

event-based systems to engage in a competition by solving
two continuous queries with regards to monitoring large,
high-tech manufacturing equipment. We took up the chal-
lenge using our topic-based publish/subscribe system that
was originally developed for the purposes of home network
management [1]. Nonetheless, this challenge was a timely
opportunity to apply our system and its complex event pat-
tern programming language, GAPL, to a different applica-
tion domain.

A program in GAPL, termed an automaton, is not a mere
collection of predefined, nested, complex query operators.
The language rather exposes a number of memory and con-
trol structures that enable programmers to construct them
on the fly. This imperative programming style of Glasgow
automata is also the highlight of our solution, as it enables
aggregations of the proposed twenty-two query operators of
the challenge.

The paper provides a brief tour of the cache and its au-
tomaton programming language in §2. Once raw events
(measurements from manufacturing equipment) enter the
cache, a process described in §3, the paper describes how

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’12, July 16–20, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-1315-5 ...$15.00.

the output streams of the two queries are derived in §4. The
latency and throughput of the proposed DGC solution is
evaluated in §5. Finally, the paper concludes in §6.

2. THE CACHE IN A NUTSHELL
The keystone of our system is a topic-based, pub/sub

cache, written in C. Topics are organised in memory as ta-
bles, representing either append-only streams or static rela-
tions, each of them associated with a schema. E.g.,

1 # A stream ‘S’ and a relation ‘R’
create table S (i integer, b boolean, r real)

3 create persistenttable R (k varchar primary key, v...)

The ordering of topical events is the time of insertion. The
rows of a stream are ephemeral, stored in a circular buffer
and overwritten whenever the buffer wraps. The rows of
a relation, on the other hand, are persistent, stored in the
heap and overwritten explicitly on duplicate key:

4 insert into S values (‘1’, ‘true’, ‘0.1’)
5 insert into R values (‘‘A’’, ‘1’) on duplicate key update

At any point in time, a user process can select past events
from the cache or subscribe an interest in complex patterns
of future events. The ability to submit ad hoc select state-
ments, appropriately enhanced with time windows, enables
programmers to periodically harvest events from the cache
for storage or display purposes [1]. The thrust of our DGC
solution, however, exploits the other aspect of the system –
Glasgow automata.

Automata are programs written in GAPL, where users
specify complex patterns over the cached streams and rela-
tions. Programs compile into instructions for a stack ma-
chine; if compilation is successful, each compiled automaton
is bound to a separate execution thread.

Streams and relations are globally accessible in automata
by means of subscriptions and associations, respectively. Lo-
cal state is stored in variables:

6 subscribe e to S;
associate r with R;
int x;
bool b;
initialization { x = 0; }
behavior {

x = e.i;
b = hasEntry(r, Identifier(‘A’)); # true if R.k = ‘A’

14 }

The behavior clause of an automaton is executed each time
an event is inserted into a topic of interest. Therefore, an au-
tomaton must subscribe to at least one topic. The initial-

ization clause is executed once, when the execution thread

is created, usually to initialise any local variables. As events
arrive, their attributes are accessible using the dotted nota-
tion, with names taken from the corresponding schema.

The language is strongly typed. For example, an assign-
ment x = e.r in the example above would cause an execu-
tion error (since attribute r of S is a real) and the automaton
thread would terminate. Types are either basic (e.g. an int,
a string) or aggregates (e.g. a window of integers, a sequence

of strings).
An automaton can populate the cached streams and rela-

tions via the publish and insert procedures, respectively:

15 behavior {
publish(‘S’, 2, false, 0.2);
insert(r, Identifier(‘B’), value);

18 }

Besides storing derived events in the cache, an automaton
can also transmit them to its registering process. A sub-
scriber always registers details of a callback service (viz., a
host address, a port, and a service identifier) together with
the automaton source. This way, an automaton can publish
events back to the subscriber using the send procedure:

19 subscribe e to S;
20 behavior { send(e); }

Two recurring aggregate types in our solution are sequence

and window. A sequence is an unbounded, ordered list of arbi-
trary basic data type instances. The elements of a sequence
are accessible via the seqElement function, starting at index
0. The append function adds elements to a sequence:

21 sequence s;
int x;
initialization {

s = Sequence(1, true); # int & bool
x = seqElement(s, 0); # x = 1
append(s, 0.1); # seqElement(s, 2) = 0.1

27 }

A window, on the other hand, is an ordered list of in-
stances of a particular data type, constrained either to a
fixed number of items or a fixed time interval. A window
is also populated with the append function, but the window
“slides to the right” when filled to capacity. The elements of
a window are accessible via an iterator:

28 window w;
iterator i;
real x;
initialization {

w = Window(real, ROWS, 1); # a window of a real
append(w, 0.1);
append(w, 0.2); # the window slides; 0.1 is removed
i = Iterator(w);
while(hasNext(i)) {

x = next(i);
} # x = 0.2

39 destroy(i); # not strictly necessary
40 }

Certain variables are instantiated with constructors, like
the Iterator above. Although destroy is available to deallo-
cate them, the run-time system also automatically garbage
collects any dynamically allocated memory.

This concludes our quick overview of Glasgow automata.
The following sections present code listings that will shed
further light into the aforementioned features. Unfortuna-
tely, we found no use for associations, the cache’s global key-
value stores, or for the aggregate type map, an automaton’s

local key-value store, in solving the DGC queries. These are
powerful constructs for expressing stream-to-relation ope-
rators. The challenge, however, relies mostly on stream-to-
stream operators. GAPL also supports a wealth of built-in
functions, only some of which are used here.

3. DATA POPULATION
The cache is populated with measurements from manu-

facturing equipment stored in a text file – one measurement
per line – and ordered by their time of occurrence. For the
purposes of the challenge, the measurement data reach the
cache via two proxy programs.

The data collection was accompanied by two Java pro-
grams, a data generator and a data receiver. The data gen-
erator reads the text file and replays measurements in a way
that emulates their real-time rate of events (∼ 100 events/s).
The generator encodes the data as Google Protocol Buffers1

and transmits them over a TCP socket. The organisers also
provided a simple server that receives these protocol buffers
and decodes them into Java objects.

The cache receives events from population applications via
RPC channels. The supplied data receiver was extended to
open an RPC channel to the cache and translate measure-
ments from the Google interchange format to insert state-
ments, the format understood by our system, generating one
RPC/measurement. At the real-time rate of events, the
overhead of our RPC mechanism on the modified receiver
is negligible, achieving a maximum rate of ∼ 7000 events/s.
The schema for measurements in the cache is shown below.
Only those attributes required by the two DGC queries are
inserted into the cache.2

41 create table CDataPoint (time tstamp,
mf01 integer, mf02 integer, mf03 integer,
bm05 integer, bm06 integer, bm07 integer,
bm08 integer, bm09 integer, bm10 integer,
pp04 integer, pp05 integer, pp06 integer)

4. QUERIES
The DGC organisers have sketched two query plans using

a set of operators that generate and consume a number of in-
termediate event streams, derived from the initial measure-
ment stream, before finally producing the output streams.
The imperative programming style of GAPL enables multi-
ple realisations of these query plans, e.g. by merging two or
more operators together or by omitting certain intermediate
event streams; other combinations of streams and operators
are discussed later, in §4.3. For now, the automata pre-
sented herein remain true to the two sketches, generating
intermediate event streams as requested.

The challenge specified twenty-two operators, generating
twelve temporary streams. Figure 1 is a representation of
the aforementioned query diagrams where circles represent
operators and squares the events they generate. The schemas
for those events precede §4.1. It is assumed that the final
output streams are sent back to the process(es) that have
registered the corresponding automata. For economy of
space, the implementation of repetitive operators is omit-
ted from the discussion.

1
http://code.google.com/p/protobuf

2For reasons of simplicity, the boolean attributes bm05, ...,
bm10 are encoded as integers, with -1 representing their ini-
tial unknown value (cf. l.50).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

5

6

7

4

Query 1

Query 2
0

5

58

8

1

2

3

6

9

710

7

10

69

Figure 1: Queries illustrated.

42 create table S5 (time tstamp, edge integer)
S6-S10 are identical to S5
create table S58 (time tstamp, dt integer)
S69 and S710 are identical to S58
create table S1 (time tstamp, ave real, rng real)

47 # S2 and S3 are identical to S1

4.1 Query 1
The first query consists of fifteen operators. Its first six

operators use the six attributes bm05, ..., bm10, respectively.
The automaton that implements operator 1 follows. Its
function is to detect a value change – from false (0) to
true (1), and vice versa – in the sensor reading bm05. Upon
a change, the operator emits an event (a rising or falling
edge), along with its time of occurrence, to stream S5.

48 subscribe e to CDataPoint;
int bm05;

50 initialization { bm05 = -1 } # unknown previous value
behavior {

if (bm05 == 0 && e.bm05 == 1) {
publish(‘S5’, e.time, 1); # rising edge

} else if (bm05 == 1 && e.bm05 == 0) {
publish(‘S5’, e.time, 0); # falling edge

}
bm05 = e.bm05; # store variable

58 }

Two variables suffice to detect a value change of attribute
bm05. Variable e.bm05 holds the current value of the attribute
in question; and variable bm05 holds the previous one. When
a change is detected, the automaton publishes an event to
the intermediate event stream S5. The publish procedure
calls presuppose the creation of table S5 in the cache (cf.
l.42). Operators 2-6 have identical functionality and are
omitted.

The temporary streams S5 and S8 generated by operators 1
and 4 are consumed by operator 7 (Figure 1). In the follow-
ing automaton, the state change in sensor bm05 is correlated
with that of the valve bm08, calculating the time difference
between the two events.

59 subscribe s5 to S5;
subscribe s8 to S8;
int e5, dt;
tstamp t5;
initialization { e5 = -1; }
behavior {

if (currentTopic() == ‘S8’) {
66 if (e5 == s8.edge) {

dt = tstampDiff(s8.time, t5);
publish(‘S58’, s8.time, dt);

}
} else if (currentTopic() == ‘S5’) {

e5 = s5.edge;
t5 = s5.time;

}
74 }

In GAPL, the union of the two or more streams is sim-
ply a matter of multiple subscriptions. When an automaton
subscribes to two or more topics, the behavior clause dif-
ferentiates between them using the currentTopic() function.
Given the temporal ordering of events, it is straight-forward
to write the pattern “event s5 followed by event s8,” condi-
tional on the if clause in l.66 being true. Operator 8 cor-
relates streams S6 and S9 and operator 9 correlates streams
S7 and S10, with similar implementations to operator 7. The
remaining operators produce the output streams of Query 1.

Operator 10 and operator 11 are considered in uni-
son since both use the same local state, a 24-hour sliding
window of s58 events generated by operator 7. Within this
time window, operator 10 raises an alarm whenever s58.dt

increases more that 1%; and operator 11 monitors the line
y = a · s58.dt+ b using a least-squares linear regression. We
first construct and populate this window. Recall that when
the append procedure is called, the window slides to the right
– here, those events that occurred 24 hours before s58.time

will be removed.

75 subscribe s58 to S58;
window w;
initialization { w = Window(real, SECS, 86400); } # 24h 86400s
behavior {

append(w, float(s58.dt), s58.time);
80 }

The GAPL implementation of operators 10 and 11 de-
pends on the possible number of elements in the window.
One option, for example, is to compute the linear regression
line using a window of sequences:3

81 n = 0;
i = Iterator(windowofsequences);
while(hasNext(i)) {

s = next(i); # s is Sequence(s58.time, s58.dt)
if (n == 0)

first = seqElement(s, 0);
x = float(tstampDiff(seqElement(s, 0), first));
y = float(seqElement(s, 1));
X = X + x; # sum of x(i)
Y = Y + y; # sum of y(i)
XY= XY+ (x*y); # sum of x(i) y(i)
X2= X2+ (x*x); # sum of x(i) squared
n += 1;

}
N = float(n);
a = ((N*XY) - (X* Y)) / ((N*X2) - (X*X));

97 b = ((Y*X2) - (X*XY)) / ((N*X2) - (X*X));

Another alternative is to introduce a function, i.e. lsqrf,
into GAPL’s dictionary of built-ins that computes the co-
efficients a and b with a C implementation similar to the
automaton above. E.g., given the window w of reals,

98 line = lsqrf(w); # line is Sequence(a, b);

3Rather than raising timestamps – unsigned 64-bit inte-
gers representing the nanoseconds lapsed since 1970 – to
the power of 2, the automaton shifts the x-axis to the
left, starting at x = 0. Given first, the first times-
tamp in the window, the computed linear regression line
is y = a · (x− first) + b.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1 2 10 10
2

10
3

10
4

10
5

10
6

E
x
e
c
u
ti
o
n
 t

im
e
 (
µ

s
)

window size

imperative
built-in

Figure 2: The imperative vs. built-in execution time
of the least-squares regression line as a function of
the window size on a 2.4GHz Intel Core i7.

Figure 2 shows the execution time of the two implemen-
tations as a function of the window size. The number of
(x, y) points in the 24-hour window affects the real-time
performance of our DGC solution since, at 100 events/s,
automata have 10ms to execute their behavior before an-
other raw event arrives. As illustrated, the imperative com-
putation of the regression line finishes in under 10ms when
fitting fewer than 1000 points to a line; in the same time,
the built-in function can fit approximately 3 orders of mag-
nitude more points. The difference is due to the number of
instructions in the automaton’s stack machine. In the ab-
sence of an estimate of the number of transitions, we have
opted for the built-in choice in our solution.

The following automaton computes a and b, as well as the
relative increase in s58.dt.

99 subscribe s58 to S58;
sequence s;
real a, b, max, increase;
behavior {

103 append(w, float(s58.dt), s58.time);
if (winSize(w) > 1) {

s = lsqrf(w); # otherwise, replace with ll. 81-97
a = seqElement(s, 0);
b = seqElement(s, 1);
max = winMax(w);
increase = (float(s58.dt) - max) / max;
if (increase > 0.01)

send(‘Alarm!’, a, b);
else

send(‘OK.’, a, b); # to be plotted
114 }
115 }

Note that the output streams of operator 10 and 11 have
been merged under the same schema to ease processing at
the subscriber – e.g., a plotter process. These streams can
be split by implementing the two operators in separate au-
tomata, a trivial exercise. Operators 12-13 and operators
14-15 are pairwise similar (see Figure 1). This concludes the
solution to the first DGC query.

4.2 Query 2
The second query consists of seven operators. The first

three operators use attributes mf01-mf03. The following au-
tomaton implements operator 1. It calculates the average
value and relative variation of the sensor reading mf01 over
a period of 1 second and outputs the results every 1 second.
Operator 2 and operator 3 are similar.

116 subscribe e to CDataPoint;
subscribe t to Timer;

tstamp last;
int min, max, n, sum;
real avg, rng;
initialization {

min = 1234567890; # a value larger than life
max = -1;
n = 0;
sum = 0;

}
behavior {

128 if (currentTopic() == ‘Timer’) {
if (n > 0) {

avg = float(sum)/float(n);
rng = float(max - min)/float(max);
publish(‘S1’, last, avg, rng);

}
sum = 0;
n = 0;

136 } else { # current topic is CDataPoint
last = e.ts;
if (min > s.mf01) min = e.mf01;
if (max < s.mf01) max = e.mf01;
sum = sum + e.mf01;
n += 1;

142 }
143 }

In GAPL, there is a special topic, Timer, that delivers an
event to its subscribers every second. Since the challenge
requires operator 1 to publish events every second to stream
S1, the automaton above is driven by such a timer event.
Since only summary statistics are required, the code uses
variables sum, min, and max to derive them, rather than a
1-sec window.

Operator 5 computes the per minute power consumption
of the equipment, as measured by sensor mf01 and accumu-
lated by operator 1. Its corresponding automaton is shown
below. The code consumes stream S1, generating output
every 60 seconds. Operator 6 and operator 7 are similar.

144 subscribe s1 to S1;
subscribe t to Timer;
tstamp last;
real pwr, onethird;
int ticks;
initialization {

pwr = 0.0; ticks = 0;
onethird = 1.0/3.0;

}
behavior {

if (currentTopic() == ‘Timer’) {
ticks += 1;
if (ticks == 60) {

send(last, pwr);
pwr = 0.0; ticks = 0;

}
} else {

last = s1.t;
pwr = pwr + 208.0/power(s1.ave, onethird);

}
164 }

Finally, operator 4 records the sensor readings mf01-mf03,
and when the relative variation (as computed by operators
1-3) of any one of them exceeds 30%, the operator must out-
put these records. The recording starts 20 seconds before,
and ends 70 seconds after the threshold violation. When
multiple violations occur, the operator must always capture
raw data 20 seconds before the first and 70 seconds after
the last violation. The following automaton concludes the
solution to the second query of the challenge.

165 subscribe e to CDataPoint;
subscribe s1 to S1;
subscribe s2 to S2;
subscribe s3 to S3;

window w;
bool critical;
sequence s;
tstamp last;
real avg1, rng1, ...;
initialization {

w = Window(sequence, SECS, 20);
critical = false;
avg1 = 0.0; rng1 = 0.0; ...

}
behavior {

if (currentTopic() == ‘S1’) {
avg1 = s1.ave;
rng1 = s1.rng;

183 if (s1.rng > 0.3) {
last = tstampDelta(s1.t, 70, FALSE);
if (! critical) {

critical = true;
187 send(w);

}
189 }

} else if (currentTopic() == ‘S2’) {...} # same as S1
} else if (currentTopic() == ‘S3’) {...} # same as S1
} else { # current topic is CDataPoint

193 s = Sequence(e.time, e.mf01, e.mf02, e.mf03,
avg1, rng2, ...); # are these necessary?!

if (critical) {
if (tstampDiff(e.ts, last) < 0) send(s);
else {

critical = false;
append(w, s, e.time);

}
} else append(w, s, e.time);

202 }
203 }

4.3 Putting it all together
The sequential execution of an automaton’s behavior en-

ables groups of query operators to coexist in the context of
one execution thread. This section demonstrates how to fold
the intermediate streams of the challenge (ll.42-47) in local
state variables to produce one automaton per query.

To begin with, let us put together the operators of Query 1.
As discussed in §4.1, operator 7 asks for “events S5, followed
by events S8.” This means that if e.bm05 rises (or falls) at
the ith execution of the behavior clause, e.bm08 will rise (or
fall) at some later iteration j > i. In this temporal order,
operator 7 can be grouped with operators 1 and 4 as follows.

204 subscribe e to CDataPoint;
int bm05, bm08;
sequence s5;
initialization{ bm05 = -1; bm08 = -1; }
behavior {

if (
(bm08 == 0 && e.bm08 == 1 && seqElement(s5, 0) == 1)

||
(bm08 == 1 && e.bm08 == 0 && seqElement(s5, 0) == 0)
) {

dt = tstampDiff(e.ts, seqElement(s5, 1));
215 publish(‘S58’, dt, e.ts);

}
bm08 = e.bm08;
Rather than publish to S5, store edge in sequence
if (bm05 == 0 && e.bm05 == 1) {

s5 = Sequence(1, e.ts);
} else if (bm05 == 1 && e.bm05 == 0) {

s5 = Sequence(0, e.ts);
}
bm05 = e.bm05;

225 }

It is also possible to avoid the publish call to stream S58

by embedding operators 10 and 11 - i.e., in the automaton
above, replace l.215 with lines ll.103-114. It becomes appar-
ent that by repeating the above code segments for variables

bm01, ..., bm06, the fifteen operators of the first query can be
implemented in just one automaton.

Let us now revisit the second query of the challenge. The
first three operators are ideally synchronised because mf01-
mf03 are attributes of the same event e. In fact, since their
implementations are identical (cf. ll.116-143), it should be
s1.time = s2.time = s3.time when these temporary events
are published. It is trivial to extend ll.136-142 to com-
pute the minimum, maximum, and sum of variables e.mf02

and e.mf03 as well. Similarly, when a Timer event arrives,
the automaton can computes the average and range of all
three variables. The last operator to embed is operator 4
(cf. ll.128-136):

226 if (currentTopic() == ‘Timer’) {
if (n > 0) {

avg1 = float(sum1)/float(n);
rng1 = float(max1 - min1)/float(max1);
pwr1 = pwr1 + 208.0/power(avg1, onethird);
sum1 = 0;
...
repeat for mf02 and mf03
...
if (rng1 > 0.3 || rng2 > 0.3 || rng3 > 0.3) {

...
enter critical window as in ll. 183-189

}
}
ticks += 1;
if (ticks == 60) {

send(last, pwr1, pwr2, pwr3);
pwr1 = 0.0;
...

}
} else {

...
handle CDataPoint events as in ll.193-202

249 }

This concludes the discussion about grouping the twenty-
two operators of the challenge into two Glasgow automata,
where it has been demonstrated how GAPL can realise mul-
tiple user-defined execution plans of the same query. Other
possible combinations are beyond the scope of this paper.

5. EVALUATION
This section evaluates the performance of the nineteen

automata of §4.1 and §4.2 and the two automata of §4.3.
Their performance is evaluated with regards to two mea-
sures, queueing delay and execution (or wall-clock) time,
that affect the throughput and latency of our proposed GC
solutions. The queueing delay is the difference between the
time an event e is inserted into the cache, e.tstamp, and the
time the event arrives at an automaton. E.g.,

250 subscribe e to CDataPoint;
int dt;

252 behavior { dt = tstampDiff(tstampNow(), e.tstamp); }

The execution time is the difference between the time an au-
tomaton’s behavior starts and the time it finishes processing
an event. Experiments are run on a 2.4GHz Intel Core i7
with 8GB of RAM, running Mac OS X Lion 10.7.3. The
experimental setup is the one described in §3.

As more automata subscribe to a topic, the queueing delay
of its events increase. For example, ten out of the twenty-
two operators of the challenge await the arrival of CDataPoint
events (cf. Figure 1). Using one automaton per operator, the
cache notifies ten execution threads upon insertion. Figure 3
illustrates this effect for the first 100,000 events of the data

 0

 200

 400

 600

 800

 1000

Q1O1

Q1O2

Q1O3

Q1O4

Q1O5

Q1O6

Q1O7

Q1O8

Q1O9

Q1O10-11

Q1O12-13

Q1O14-15

Q2O1

Q2O2

Q2O3

Q2O4

Q2O5

Q2O6

Q2O7

E
x
e
c
u
ti
o
n
 t

im
e
 (
µ

s
)

 0

 50

 100

 150

 200

 250

Q1 Q2

E
x
e
c
u
ti
o
n
 t

im
e
 (
µ

s
)

Figure 4: The minimum, 25th, 50th, 75th, and 99th percentile of the per automaton execution time.

 0

 500

 1000

 1500

 2000

Q1O1

Q1O2

Q1O3

Q1O4

Q1O5

Q1O6

Q2O1

Q2O2

Q2O3

Q2O4
Q1 Q2

Q
u
e
u
e
in

g
 d

e
la

y
 (
µ

s
)

Figure 3: The minimum, 25th, 50th, 75th, and 99th

percentile of the queueing delay of CDataPoint events
per automaton. Points are average and maximum.

collection. The speed of the data generator is 1, i.e. the
insertion rate approximates the real-time rate of measure-
ments (100 events/s). The CDataPoint events arrive first at
operator 4 of Query 2 and last at operator 1 of Query 1.
Although the delay when running nineteen automata is well
within the 10ms threshold, using only two automata the
mean delay decreases, as does its variance (cf. Q1 and Q2

in Figure 3).
In estimating the execution time of the automata, we

speed up the simulation process by a factor of 100 and in-
sert the first 5,000,000 events of the data collection. Figure 4
shows the per automaton execution time. It demonstrates
that by grouping the twenty-two operators of the challenge
into just two automata, Q1 and Q2, the execution time de-
creases. Fewer automaton threads run faster since publish or
send procedure calls will cause an automaton to reschedule
either the main thread or the RPC thread, respectively.

The main source of latency for Query 1 operators, the
lsqrf function call, was discussed in §4.1. This discussion
focuses on Query 2, and in particular the 1% of execution
times for Q2 not shown in Figure 4. It is important to
characterise values greater than the 99th percentile because
some of them represent significant events.

Figure 5 shows Q2’s execution time frequency distribu-
tion. The most expensive operation of Query 2 is sending
a 20-sec window of sequences when a violation is detected
(l.187). At 100 events/s, the window contains 2000 events,
each being the sequence:

253 Sequence(e.time, e.mf01, e.mf02, e.mf03, avg1...rng3);

The cost of sending a window of 2000 such events is ∼ 18ms.
Once this critical violation occurs, and for 70s afterwards,

1

10

10
2

10
3

10
4

10
5

10
6

10
-2

10
-1

10
0

10
1

10
2

F
re

q
u
e
n
c
y
 (

1
0
µ

s
 b

in
s
)

Execution time (ms)

70-sec critical period

critical event

Figure 5: Q2’s frequency distribution.

the automaton sends one such sequence at a time. The lat-
ter cost is ∼ 200µs. These values are in agreement with
those shown in Figure 5. Sending the window momentarily
violates the 10ms threshold for the real-time system – but
the system catches up in the next iterations. If, however,
the last six reals are removed from the sequence, the cost of
sending the window decreases below 10ms. Being 1-second
aggregates of the first three columns of the previous 100
events, these values appear redundant.

By speeding up the simulation process by a factor of 100,
automata Q1 and Q2 process on average 5583 events/s.
Thus, on this hardware, and given the true rate of 100
events/s, our implementation has the capacity to process
×55 more events than it was originally intended to process
in real-time.

6. CONCLUDING REMARKS
This paper has presented solutions for the DEBS 2012

Grand Challenge using Glasgow automata, user-defined pro-
grams for complex event processing, originally designed for
home network management. In a potential deployment of
our system at the manufacturing site, the system can easily
cope with the real-time rate of measurements. The imper-
ative automaton programming style enables different, user-
defined optimisations of the query plan execution, some of
which are more performant than others. This is to be con-
trasted with traditional complex event processing engines
where the execution plan is determined by a fixed set of
nested query operators.

7. REFERENCES
[1] J. Sventek et al. An information plane architecture

supporting home network management. In Proceedings
of the IFIP/IEEE IM, 2011.

	CoversheetEnlighten.pdf
	http://eprints.gla.ac.uk/69026/

