
Cayuga: A General Purpose Event Monitoring System

Alan Demers1, Johannes Gehrke1, Biswanath Panda1

Mirek Riedewald1, Varun Sharma2
∗

, and Walker White1
†

1Department of Computer Science, Cornell University
2Computer Science and Engineering, Indian Institute of Technology Delhi

ABSTRACT
We describe the design and implementation of the Cornell Cayuga
System for scalable event processing. We present a query language
based on Cayuga Algebra for naturally expressing complex event
patterns. We also describe several novel system design and im-
plementation issues, focusing on Cayuga’s query processor, its in-
dexing approach, how Cayuga handles simultaneous events, and its
specialized garbage collector.

1. INTRODUCTION
A large class of both well-established and emerging applications

can best be described as event monitoring applications. These in-
clude supply chain management for RFID (Radio Frequency Iden-
tification) tagged products, real-time stock trading, monitoring of
large computing systems to detect malfunctioning or attacks, and
monitoring of sensor networks, e.g., for surveillance. There is
great interest in these applications as indicated by the establish-
ment of sites like http://www.complexevents.com, which
bring together major industrial players like BEA, IBM, Oracle, and
TIBCO. Event monitoring applications need to process massive
streams of events in (near) real-time.

Event processing differs from general data stream management
in two major aspects of the query workload. First, its has a dis-
tinct class of queries, which warrants special attention. In complex
event processing, users are interested in finding matches to event
patterns, which are usually sequences of correlated events. An im-
portant class of pattern is what we call a safety condition, where we
want to ensure that between two events “nothing bad” happens. For
example, between leaving the farm (start event) and arriving at the
store (end event), fresh produce should not have spent more than
1 hour total above a temperature of 25 ◦C. Traditional data stream
languages are not designed for event monitoring. While it is pos-
sible to express event patterns, this is cumbersome and results in
queries that are almost impossible to read and to optimize.

Second, in complex event processing, there is usually a large

∗Work done while visiting Cornell University.
†{ademers,johannes,bpanda,mirek,vs227,wmwhite}@cs.cornell.edu

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

number of concurrent queries registered in the event processing
system. This is similar to the workload of publish/subscribe sys-
tems. In comparison, data stream management systems are usually
less scalable in the number of queries, capable of supporting only
a small number of concurrent queries.

We have designed and built Cayuga, a general-purpose system
for processing complex events on a large scale [8]. Cayuga supports
on-line detection of a large number of complex patterns in event
streams. Event patterns are written in a query language based on
operators which have well-defined formal semantics. This enables
Cayuga to perform query-rewrite optimizations. All operators are
composable, allowing Cayuga to build up complex patterns from
simpler sub-patterns. In addition to an expressive query language,
the Cayuga system implements several novel techniques for query
processing, indexing, and garbage collection, resulting in an effi-
cient execution engine that can process data streams at very high
rates. Cayuga offers applications a unique combination of expres-
siveness and speed.

In this paper, we describe two core aspects of Cayuga. First, we
present a query language designed for naturally expressing com-
plex event patterns and illustrate its use through examples. Then
we describe the architecture of the Cayuga system. We discuss im-
portant design decisions that enable Cayuga to gracefully handle
many input streams, high event stream rates, and also a large num-
ber of continuous queries.

The rest of the paper is organized as follows. In Section 2 we
present the Cayuga data model and query language. Section 3 de-
scribes our automaton processing model and how queries are im-
plemented by automata. In Section 4 we give a detailed discussion
of the Cayuga system architecture and implementation. We sum-
marize related work in Section 5. Finally, Section 6 describes three
ongoing deployments of Cayuga at Cornell and then concludes the
paper.

2. THE CAYUGA QUERY MODEL
The Cayuga data model and query algebra are explained in detail

in Demers et. al [8]. Several unique features of the data model lead
to important design decisions in the Cayuga system. In this section,
we introduce the Cayuga Event Language (CEL), a query language
based on the Cayuga query algebra.

2.1 Data Model
Like a traditional relational database system, Cayuga treats data

as relational tuples, referred to as events. However, Cayuga is de-
signed to monitor streams of events, not static tables. Thus, rather
than sets of tuples, the Cayuga data model consists of temporally
ordered sequences of tuples, referred to as event streams. Each
event stream has a fixed relational schema. Each event in the stream

412

has two timestamps, the start timestamp, denoted as t0, and the end
timestamp, denoted as t1. Together they represent a duration in-
terval, defined by t1 − t0. Events are serialized in order of t1; for
this reason, t1 is also referred to as the “detection time” of a event.
Because of the semantic issues discussed in White et al. [16], we
consider events with the same detection time to be simultaneous,
and guarantee to produce the same result regardless of the order of
processing these simultaneous events. This guarantee is realized
through epoch-based processing in Cayuga, as will be described in
Section 4.3.

2.2 Query Language
The Cayuga Event Language is based on the Cayuga algebra [8],

designed for expressing queries over event streams. It is a simple
mapping of the algebra operators into a SQL-like syntax.

We introduce the query language through several examples. Our
application domain for these examples is stock monitoring. We
assume a stock ticker stream with the schema Stock(Name, Price,
Volume). Each CEL query has the following simple form:

SELECT < attributes >
FROM < stream expression >
PUBLISH < output stream >

The SELECT clause in CEL is similar to the SQL SELECT
clause. It specifies the attribute names in the output stream schema,
as well as aggregate computation. Attributes can be renamed by
AS constructs in the SELECT clause. The SELECT clause is
optional; omitting it is equivalent to specifying SELECT *. The
PUBLISH clause names the output stream, so other queries may
refer to it as input. When this clause is omitted, the output stream
is unnamed.

The simplest type of query is one that just reads all the events
from one stream and forwards them to another, as shown in Exam-
ple 1.

Example 1. Suppose we want to select every input event from in-
put stream Stock, and output it to a new stream named MyStock.
We can formulate this query in CEL as follows.

SELECT *
FROM Stock
PUBLISH MyStock

We refer to the expression in the FROM clause as a stream ex-
pression. This expression is the core of each query. A stream ex-
pression is composed using a unary construct, FILTER, and two
binary constructs, NEXT and FOLD. Each of these constructs pro-
duces an output stream from one or two input streams. We intro-
duce them by examples.

The FILTER{predExpr} construct selects those events from its
input stream that satisfy the predicate defined by predExpr, as
shown in the following example.

Example 2. Suppose we want to select all IBM stock quotes whose
price is above $83. We can formulate this query in CEL as follows.

SELECT Price AS IBMPrice
FROM FILTER{Name=‘IBM’ AND Price > 83}(Stock)
PUBLISH IBMStock

This query outputs only the Price attribute values of these events,
not the stock Name or Volume. Furthermore, it renames the Price
attribute to IBMPrice. The output stream is named IBMStock.

As in Cayuga algebra [8], a special attribute denoted as DUR, can
be used in the predicate associated with FILTER. A predicate con-
straint on DUR is referred as duration predicate. As is described

in Section 2.1, attribute DUR of an event e takes the duration in-
terval of e as the value. For example, an event e satisfies duration
predicate DUR > 10min if its duration interval is greater than 10
minutes.

CEL, like SQL, is compositional, allowing sub-queries in the
FROM clause. For example, Example 3 gives an equivalent for-
mulation of Example 2 using nested queries.

Example 3. Again suppose we want to select all IBM stock quotes
whose price is above $83. Another way to formulate this query in
CEL as follows.

SELECT Price AS IBMPrice
FROM FILTER{Name=‘IBM’}

(SELECT *
FROM FILTER{Price > 83}(Stock))

PUBLISH IBMStock2

The sub-query in the FROM clause first produces all quotes whose
Price is above $83. The top level query then further filters those
quotes to retain only the quotes on IBM.

Although not illustrated in Example 3, we can also publish the
outputs of the nested sub-query as a separate stream of its own. We
need only add an additional PUBLISH clause to the parenthesized
sub-query. This enables one query formulation to produce multiple
output streams.

Binary constructs in the stream expression allow us to
correlate events over time. The first binary construct is
NEXT{predExpr}. When applied to two input streams S1 and S2

as S1 NEXT{predExpr} S2, this construct combines each event e1

from S1 with the next event in S2 which satisfies the predicate de-
fined by predExpr and occurs after the detection time of e1. When
predExpr as the parameter of NEXT construct is omitted, it is by
default set to TRUE. For example, S NEXT S returns a pair of
consecutive events from stream S.

Example 4. Suppose we want to match pairs of stock quotes,
where the first is an IBM quote with a price above $83 and the
second is the next Microsoft quote to appear in the stream. We can
formulate this query in CEL as follows.

SELECT IBMPrice, Price AS MSFTPrice
FROM IBMStock

NEXT{Name=’MSFT’}(Stock)

Each event in the output stream of this query consists of a pair
prices: an IBM price above $83 and the next MSFT price. In this
query, the NEXT construct reads two input streams, where the first
stream IBMStock is produced by Example 2, whose schema con-
tains only one attribute IBMPrice, and the second stream is Stock.
Alternatively, we could have “inlined” the query from Example 2.

A more powerful use of the NEXT construct exploits what we
call “parameterization,” the ability of the predExpr to refer to at-
tributes from both its input streams, as in the following example.

Example 5. Suppose we want to match pairs of stock quotes,
where the first is an IBM quote with a price above $83 and the
second is the next quote (of any stock) with a price above the IBM
price from the first quote. We can formulate this query in CEL as
follows.

SELECT IBMPrice, Price, Name
FROM IBMStock

NEXT{IBMPrice < Price} (Stock)

413

Each event in the output stream of this query consists of an IBM
price together with the name and price of the next stock to sell at a
higher price.

In Examples 4 and 5 the two input streams of the NEXT con-
struct have disjoint schemas. Of course this is not typical – the
two input streams of a binary construct frequently contain identi-
cally named attributes. This situation happens to the binary join
operator in relational algebra or SQL as well, for example in self-
joins. When this happens to a binary construct, the reference to an
attribute name in the predicate associated with the construct could
become ambiguous, since the attribute could be from either one of
the two input streams.

To address such reference ambiguity in CEL, we introduce spe-
cial language constructs, referred to as decorators, to identify the
streams from which attributes are taken. $1.foo refers to attribute
foo in the first input stream of a binary construct, or the single in-
put stream of a unary construct. Similarly, $2.foo refers to attribute
foo in the second input stream of a binary construct. The decora-
tor of an attribute can be omitted when it is in the schema of only
one input stream. For simplicity of CEL, decorators are allowed
only in predicate expressions, and cannot be used in the SELECT
clause. It is helpful to view the SELECT clause as receiving one
input stream whose schema is produced by the FROM clause.

The following example illustrates a simple use of decorators.

Example 6. Suppose we want to match pairs of stock quotes with
identical prices, and return the stock name of the second quote of
each pair. We can formulate this query in CEL as follows.

SELECT Name
FROM (SELECT Price FROM Stock)

NEXT{$1.Price = $2.Price} (Stock)

Each event in the output stream of this query consists the name of
the second stock of a pair of quotes with identical prices. Note that
the Name parameter occurs only in the schema of the second input
to the NEXT construct, so its use is unambiguous.

While NEXT allows us to correlate two events, there are many
situations where we need to iterate over an a-priori unknown num-
ber of events until a stopping condition is satisfied. This capabil-
ity is supplied by the FOLD construct. A FOLD construct has
the form FOLD{predExpr1, predExpr2, aggExpr}. The three pa-
rameters respectively denote (1) the condition for choosing input
events in the next iteration; this plays the same role as predExpr in
NEXT{predExpr} (2) the stopping condition for iteration, and (3)
aggregate computation between iteration steps. Intuitively, FOLD
is an iterated form of NEXT that looks for patterns comprising two
or more events.

As with NEXT, we use decorators $1 and $2 respectively to refer
to attributes in the first and the second input streams of FOLD. To
refer to attributes in the last iteration of FOLD from the second
stream, we use decorator $.

Example 7. Suppose we want to find a monotonically increasing
run of prices for a single company, where the run lasts for at least 10
stock quotes, and the first quote has a volume greater than 10000.
We can formulate this query in CEL as follows.

SELECT *
FROM FILTER{cnt > 10} (

(SELECT *, 1 AS cnt FROM
FILTER{Volume > 10000}(Stock))

FOLD{$2.Name = $.Name, $2.Price > $.Price,
$.cnt+1 AS cnt}

Stock)

In Example 7 the first input stream of FOLD is produced by a
FILTER construct that retains only quotes of volume greater than
10000. A new attribute cnt is added to that stream schema and ini-
tialized with value 1. The second input stream of FOLD contains
all stock quotes. The first parameter of FOLD ensures that only
stock quotes on the same company will be iterated over. The sec-
ond parameter ensures that iteration will be stopped if the price of
the current quote is not greater than that of the price in the last itera-
tion. Finally, the third parameter computes the count aggregate, by
adding 1 to the the value of cnt attribute in each iteration. Finally,
for each output event of the FOLD construct, we run a filter over it
to check whether its duration is greater than 1 hour.

To ensure valid iterations in FOLD construct, we maintain a
schema inclusion invariant that the schema of its first input stream
be a superset of the schema of its second input stream. Queries that
violate this invariant will be rejected as being illegal. For more de-
tails on the formal semantics of FOLD and the invariant, we refer
readers to [8].

Note that when the two input streams of a binary construct have
identically named attributes, without proper renaming, the output
stream of the binary construct will have duplicate attribute names,
making the data semantics ambiguous. In relational algebra or
SQL, this situation is addressed by explicitly renaming the output
attribute names to make them distinct. Similarly for each NEXT
construct, explict renaming can be used to avoid name collisions
in its output schema. This is illustrated in Example 4, we had re-
named the attribute Price in the first input stream schema of NEXT
to IBMPrice.

For the FOLD construct, however, collisions cannot be avoided
due to the schema inclusion invariant. For example, without at-
tribute renaming, the output stream schema of Example 7 will con-
tain two attributes named Price, among other duplicate attributes.
We use an automatic renaming scheme as follows to make sure the
attributes in the output stream schema have distinct names. It ap-
plies to both NEXT and FOLD as follows.

For sub-expression R NEXT{predExpr} S, where R and S de-
note the input streams of the binary construct NEXT, if R and S do
not have attribute name collision, the output schema will be a cross
product of the two input schemas of R and S, and no renaming is
performed. Otherwise, we rename each attribute a in R to a 1. For
uniformity, even attribute names in R that do not appear in S are
renamed this way. However, no renaming is performed on attribute
names of S. It is possible that after this renaming operation, there
are still duplicate attribute names in the output schema (consider
the case when S has an attribute named a 1). In this case, the input
query will be rejected as illegal.

For sub-expression R FOLD{unaryExpr, predExpr, aggExpr} S,
for each attribute a that occurs in both R and S, the value of a in
R will be stored in attribute a 1 in the output schema of the above
sub-expression, and the value of attribute a in the latest iteration of
S will be stored in attribute a in the output schema. Each attribute
b in R but not in S will still be named b in the output schema. For
example, the output schema of Example 7 is (Name 1, Price 1, Vol-
ume 1, cnt 1, Name, Price, Volume, cnt). Note that with attribute
renaming, we avoided the use of hierarchical decorators such as
$1.$1.foo to refer to attribute foo in the first stream S of expres-
sion (S NEXT S) NEXT S. Hierarchical decorators are therefore
not allowed in CEL.

To illustrate the use of decorators and attribute renaming for
NEXT construct, we give the following query formulation.

Example 8. Suppose we want to match pairs of IBM stock quotes,
where the first quote has a price above $83 and the second is the
next IBM quote whose price is higher than the price in the first

414

Figure 1: A Cayuga Automaton

quote. We can formulate this query in CEL as follows.

SELECT Price 1 AS IBMPrice1, Price AS IBMPrice2
FROM (FILTER{Name=‘IBM’ AND Price > 83}(Stock))

NEXT{$2.Price > $1.Price}
(FILTER{Name=‘IBM’}(Stock))

Note that attribute Price 1 in the SELECT clause refers the at-
tribute Price in the first input stream of NEXT, while the attribute
Price comes from the second input stream.

We believe our renaming scheme, when used appropriately,
makes it easier to write queries by rendering explicit renaming un-
necessary, and thus improves the user-friendliness of CEL.

3. PROCESSING MODEL
Demers et al. [8] showed that any left- associated Cayuga al-

gebra expression can be implemented by a variant of a nondeter-
ministic finite state automaton, referred to as a Cayuga automa-
ton. Non-left-associated expressions can be broken up into a set of
left-associated ones, and will therefore be implemented by a set of
corresponding Cayuga automata. Since CEL is based on Cayuga
Algebra, these results are applicable to CEL queries as well. In
this section, we describe how to process CEL queries with Cayuga
automata.

Cayuga automata generalize on traditional NFAs in two ways:
(1) instead of a finite input alphabet they read arbitrary relational
streams, with state transitions controlled using predicates; and (2)
they can store data from the input stream, allowing selection predi-
cates to compare incoming events to previously encountered events.

Each automaton state is assigned a fixed relational schema,
as well as an input stream. All the out-going edges of a state
read that input stream. Each edge, say between states P and
Q, is labeled by a pair 〈θ, f〉, where θ is a predicate over
schema(P)× schema(S); and f , the schema map, is a par-
tial function taking schema(P)× schema(S) into schema(Q).
The Cayuga automata operate as follows. Suppose an automa-
ton instance is in state P with stored data x (note x conforms to
schema(P)). Let an event e arrive on stream S such that θ(x, e)
is satisfied. Then the machine nondeterministically transitions to
state Q, and the stored data becomes f(x, e).

In Cayuga automata, the self loop edges derived from predi-
cates that filter events (i.e., predExpr in NEXT{predExpr}, and
predExpr1 in FOLD{predExpr1, predExpr2, aggExpr}) are called
filter edges, and we call the associated predicates filter predicates;
self loop edges derived from predicates that “rebind” attributees
(i.e., predExpr2 in FOLD{predExpr1, predExpr2, aggExpr}) are
called rebind edges, and we call the associated predicates rebind
predicates; other edges are Forward edges. We adopt the conven-
tion that filter edges are drawn on top of the states, and rebind edges
below the states.

Intuitively, each intermediate state with a filter edge but no re-
bind edge implements a NEXT construct. Each intermediate state

with both a filter and a rebind edge implements a FOLD construct.
For example, an automaton implementing SELECT Name FROM
(SELECT Name AS N FROM Stock) NEXT{$1.N = $2.Name}
Stock is shown in Figure 1. According to the CEL formulation,
The schema of state Q1 has one attribute N, and the schema of Q2

has one attribute Name. Both Q0 and Q1 read input stream Stock.
Predicates in CEL formulations are translated into automaton

edge predicates in an obvious way. In particular, Attribute deco-
rators in CEL are translated into prefixes e. or Q. for a given au-
tomaton edge predicate, depending on whether the attribute comes
from the schema of the current event read by that edge, denote as
e, or from the schema of the automaton state, denoted as Q, from
which the edge emanates. For example, in Figure 1, the predicate
on the forward edge between Q1 and Q2 compares the value of at-
tribute N from state Q1 with the value of attribute N from the input
stream Stock.

Predicates in Cayuga automata are associated with edges. How-
ever, since there is always one filter edge for each state (except for
start and end states), we can associate predicates on filter edges
with automaton states without ambiguity. Similarly, since there
is at most one rebind edge for each state, associating rebind edge
predicates with automaton states is also not ambiguous.

Note that the predicate on a filter edge is the negation of the
corresponding filter predicate in CEL formulation. For example,
in Figure 1, the predicate on the filter edge associated with state
Q1 is Q1.N 6= e.Name, while its corresponding filter predicate in
the CEL formulation is $1.N = $2.Name. In the following text, to
avoid ambiguity, we avoid using the term filter edge predicate. To
be consistent with the notion of a filter predicate in CEL formula-
tions, in the context of automaton edge predicates, we use the term
filter predicate associated with state Q to refer to the negation of
the predicate of the filter edge associated with Q. For example, in
Figure 1, the filter predicate associated with state Q1 is Q1.N =
e.Name. Recall that we refer to the predicate on a rebind (resp.
forward) edge as its rebind (resp. forward) predicate.

The schema maps of Cayuga automata are also constructed from
the CEL formulations in an obvious way. Note that the schema map
associated with a filter edge is always the identity function, and our
implementation exploits this fact.

Any Cayuga automaton maintains the following invariants on its
edge predicates.

• For any automaton instance I under state P , if the current
event together with I satisfy the predicate of a forward edge
from state P to Q, then they must together satisfy the filter
predicate associated with state P .

• For any automaton instance I under state P , if the current
event together with I satisfy the predicate of a forward edge
from state P to Q, then they must together satisfy the rebind
predicate associated with state P , if there is one.

• For any automaton instance I under state P , if the current
event together with I satisfy the rebind predicate associated
with state P , then they must together satisfy the filter predi-
cate associated with state P .

A consequence of these invariants is that for any automaton in-
stance I under state P , if the current event together with I does not
satisfy the filter predicate associated with state P , then none of the
predicates on the rebind or forward edges associated with state P
will be satisfied. Therefore the instance I must traverse the filter
edge of P and is unmodified (due to the identity schema map of
the filter edge). In this case we say instance I is not affected by

415

the current event. Otherwise, if the current event together with I
satisfies the filter predicate of P , we say I is affected by the current
event.

These invariants can be easily realized in the implementation by
predicate conjunctions. For example, the first invariant could be
realized by attaching the filter predicate of state P as a conjunct
to the predicate of each forward edge leaving P , and to the rebind
predicate associated with P , if there is one. With an understanding
of these invariants, to simplify the presentation, in the automaton
figures we usually do not duplicate filter predicates on forward or
rebind predicates. For example, in the automaton shown in Figure
1, the predicate of the forward edge from Q1 to Q2 has semantics
Q1.N = e.Name. However, we decide not to show the filter pred-
icate of Q1 as a conjunct in this forward predicate, and therefore
denote the forward predicate as TRUE.

Complete details of the NFA construction can be found in [8].

3.1 Automaton Example
To illustrate how Cayuga automata process a query, we present

an extended example.

Example 9. Suppose we want to record the quotes for any stock
s, for which there is a monotonic decrease in price for at least 10
minutes, and which started at a large trade (Volume > 10,000).
Furthermore, suppose we are only interested in those monotonic
runs that which are followed by one last stock quote whose prices
is 5% above the previously seen (bottom) price. In other words, the
stock has been steadily decreasing, but now shows signs of rising
again. We can formulate this query in CEL as follows.

SELECT Name, MaxPrice, MinPrice, Price AS FinalPrice
FROM

FILTER{DUR≥ 10min} (
(SELECT Name, Price 1 AS MaxPrice, Price AS MinPrice
FROM FILTER{Volume > 10000}(Stock))

FOLD{$2.Name = $.Name, $2.Price < $.Price, }
Stock)
NEXT{$2.Name = $1.Name AND

$2.Price >1.05*$1.MinPrice}
Stock

In this formulation, the FOLD construct searches for a monoton-
ically decreasing sequence for the same stock, ignoring quotes from
other companies. During each iteration, the current lowest price is
compared to the price of the incoming event. If a new minimum
price is found, the concatenation overwrites the previously lowest
price by the new one, otherwise the monotonic sequence has ended.
When the duration constraint FILTER{DUR≥ 10min} evaluated on
the output of FOLD is satisfied, a complex event is output denoting
a mononotically decreasing sequence that lasts for no less than 10
minutes. Finally, the NEXT construct finds the next quote for the
same company. If the price of that quote is %5 above the previous
price, the query produces an output event. The output event retains
only four attributes Name, MaxPrice, MinPrice, and FinalPrice.

The corresponding automaton is shown in Figure 2. We associate
each edge with an edge predicate θi and an attribute mapping Fj .

They are defined as follows.

F1 = e.Name 7→ Name 1, e.Price 7→ Price 1,

e.Name 7→ Name n, e.Price 7→ Price n

F2 = ID : Schema(A) 7→ Schema(A)

F3 = A.Name 1 7→ Name 1, A.Price 1 7→ Price 1,

e.Name 7→ Name n, e.Price 7→ Price n

F4 = e.Name 7→ Name, A.Price 1 7→ MaxPrice,

e.Price 7→ MinPrice

F5 = ID : Schema(B) 7→ Schema(B)

F6 = e.Name 7→ Name, B.MaxPrice 7→ MaxPrice,

B.MinPrice 7→ MinPrice, e.Price 7→ FinalPrice

Note that these mappings are not true functions; F1 maps Name
to both Name 1 and Name n. This is to support the value dupli-
cation necessary for initializing an iteration loop. Given these at-
tribute mappings, we define the edge predicates as follows.

θ1 ≡ e.V olume > 10, 000

θ2 ≡ e.Name = A.Name n

θ3 ≡ e.Price < A.Price n

θ4 ≡ e.t1 −A.t0 ≥ 10min

θ5 ≡ e.Name = B.Name

θ6 ≡ e.Price > 1.05 ∗B.MinPrice

The predicates on automaton edges are much the same as the
predicates in CEL formulation, except that the attribute names are
decorated with the sources where they come from. By e.t1, we
mean the end time of the event traversing the edge with this predi-
cate; A.t0 is the start time of the instance stored at state A.

After the first large trade of a stock, the automaton begins look-
ing for a monotonically decreasing sequence, then for a sudden up-
move in price. At any given moment in time, there might be several
event sequences that satisfy some prefix of the subscription pattern.

For this example, we suppose that we have the event stream illus-
trated in Figure 3. Figure 4 illustrates how the automaton processes
these events. For an incoming event, the state of the automaton af-
ter processing it is indicated by the active automaton instances in
the same row. The table headers show the data schema of the in-
stances at a given automaton state. For readability, the timestamp
attributes are not shown in the schema.

Initially there is no active automaton instance, but the start state
is always active by default. When e1 arrives, the automaton checks
if it satisfies θ1, the predicate on the edge emanating from the start
state. This is the case, therefore it applies the attribute mapping
function F1 to the attributes of e1 and creates the resulting instance
I1 under state A.

The next event e2 does not satisfy θ1, hence the start state does
not create a new instance. For instance I1 at state A, to determine if
I1 can traverse any outgoing edge, predicates θ2, θ3 and θ4 on the
outgoing edges of A are evaluated with respect to e2. This event
satisfies θ3 on the rebind edge associated with state A. Therefore,
the event traverses this edge and instance I1 is updated by the map-
ping F3

1. The result is shown in Table 4.
Event e3 matches θ1; therefore a new instance I2 is created at

state A. For I1, I1 and e3 together do not satisfy θ2, the filter pred-
icate associated with state A, because in I1 the Name n attribute
1Technically, an automaton instance traversing the rebind edge cre-
ates a new instance, and then the original instance will be deleted
after processing this event. We use the term “update” here to sim-
plify the presentation.

416

Q0

Θ1, F1

A B C

Θ2, F2

Θ4, F4 Θ6, F6

Θ5, F5

Θ3, F3

Figure 2: Automaton for Example 9

Event (Name,Price,Volume)
e1 〈IBM, 90, 15000〉 9:10, 9:10
e2 〈IBM, 85, 7000〉 9:15, 9:15
e3 〈Dell, 40, 11000〉 9:17, 9:17
e4 〈IBM, 81, 8000〉 9:21, 9:21
e5 〈MSFT, 25, 6000〉 9:23, 9:23
e6 〈IBM, 91, 9000〉 9:24, 9:24

Figure 3: Example Event Sequence

Instances at State A Instances at state B Instances at state C
Event (Name 1,Price 1, Name n, Price n) (Name,MaxPrice, MinPrice) (Name, MaxPrice, MinPrice, FinalPrice)

e1 I1 = 〈IBM, 90, IBM, 90〉 9:10, 9:10
e2 I1 = 〈IBM, 90, IBM, 85〉 9:10, 9:15
e3 I1 = 〈IBM, 90, IBM, 85〉 9:10, 9:15

I2 = 〈Dell, 40, IBM, 40〉 9:17, 9:17
e4 I1 = 〈IBM, 90, IBM, 81〉 9:10, 9:21 I3 = 〈IBM, 90, 81〉 9:10, 9:21

I2 = 〈Dell, 40, IBM, 40〉 9:17, 9:17
e5 I1 = 〈IBM, 90, IBM, 81〉 9:10, 9:21 I3 = 〈IBM, 90, 81〉 9:10, 9:21

I2 = 〈Dell, 40, IBM, 40〉 9:17, 9:17
e6 I2 = 〈Dell, 40, IBM, 40〉 9:17, 9:17 I3 = 〈IBM, 90, 81, 91〉 9:10, 9:24

Figure 4: Example computation

has value IBM, while in e3 the Name attribute has value Dell. I1

is therefore not affected by this event.
The arrival of e4 illustrates the non-determinism of the FOLD

construct, implemented by state B. e4 is filtered for I2 (the Dell
pattern). However, for I1 both θ3 and θ4 are satisfied (the duration
condition in θ4 is now true). Hence I1 non-deterministically tra-
verses both the forward edge from A to B and the rebind edge of
state A. In the example, we update to content of I1 with the content
of e4, and create an new instance I3 under state B by applying F3

to I1 and the current event e4.
Events e5 and e6 are processed similarly. For e5, each of the

instances traverses the corresponding filter edge, and are thus not
affected. The interesting aspect of e6 is its effect on instance I1. I1

together with e6 satisfies the filter predicate associated with state
A, but does not satisfy the forward or rebind predicates of state A;
therefore the instance is deleted. Notice how the nondeterminism
ensures correct discovery of the IBM pattern for instance I3 (events
e1, e4, e6 match it), but prevents any later arriving IBM event from
generating another matching pattern starting with e1, because I1

has failed.

3.2 Additional Subtleties
While the previous example gives an good high level understand-

ing of our automata, there are several subtleties that it fails to illus-
trate. First of all, there might be simultaneous events in a stream,
produced either by an external stream source or by a Cayuga query.
Simultaneous events can pose several difficulties in ensuring cor-
rectness of automaton processing. Consider our example above, but
let there be another event e′6 = 〈IBM, 80, 8000〉 9:24, 9:24 which
has the same detection time as e6, and is processed by the automa-
ton between e5 and e6. Even though this event fails to satisfy θ5,
we cannot delete I3 immediately, since according to the Cayuga
query semantics, the output event produced by I3 together with
e6 should not be affected by the presence of e′6. This suggests
that after processing the current event e, we cannot delete those au-
tomaton instances that did not traverse their associated filter edges

immediately, since if any following events are simultaneous with
e, these automaton instances should remain visible while process-
ing these events. We handle simultaneous events correctly by using
epoch-based query processing, to be described in Section 4.3.

As stated earlier, not every Cayuga query can be implemented by
a single automaton. In order to process arbitrary queries, Cayuga
supports resubscription. Resubscription is similar to pipelining –
the output stream from a query is used as the input stream to another
query. Because of resubscription, query output must be produced in
real time. Each tuple output by a query has the same detection time
as the last input event that contributed to it, and thus its processing
(by resubscription) must take place in the same epoch in which that
event arrived. This decision motivates the Cayuga Priority Queue,
described in Section 4.2 and the “pending instance lists” described
in Section 4.3.

4. THE CAYUGA SYSTEM
In this section, we describe the Cayuga system architecture,

and we explain how we efficiently implement large number of au-
tomata.

4.1 Architecture
The Cayuga system architecture is shown in Figure 5. We first

describe the control and data flow in Cayuga, and how components
interact at a high level. We then focus on describing the major
components of the system in more detail.

External events arriving at the Cayuga system are received by
Event Receivers (ERs), each of which runs in a separate thread,
receiving events from a particular source. The ER threads are re-
sponsible for deserializing arriving events, assigning timestamps
if necessary, internalizing them in the Cayuga Heap and inserting
them on the input Priority Queue (PQ). The ERs and PQ are de-
scribed in Section 4.2.

The Cayuga Query Engine is a single thread that is responsi-
ble for most of the query processing work. The engine dequeues
events from the PQ in detection time order. It performs all indi-

417

Query
Engine

PQ

ER

ER

CN

CN

Heap/GC

events notifications

Figure 5: Cayuga System Architecture

cated automaton state transitions, using several index structures to
achieve high throughput. For each automaton instance reaching a
final state, it enqueues a new event on the PQ if required for re-
subscription, and passes events to the appropriate Client Notifier
threads (CNs). The engine is described in Section 4.3, and CNs are
described in Section 4.4.

Cayuga uses a customized Memory Manager with a Garbage
Collector (GC) to facilitate efficient object sharing for high per-
formance and a small memory footprint. The Memory Manager is
described in Section 4.5.

4.2 Event Receivers and Priority Queue
Cayuga has multiple Event Receiver threads. Each ER thread

converts events arriving from an external data source (such as a
TCP stream or a sensor device) into a sequence of internalized
Cayuga events. Since the external data sources may encode data
in different ways, there are multiple ER classes with deserializa-
tion methods specific to the data sources.

Internalized events have a common format, designed to allow
sharing of complex data such as large string bodies or user-defined
types. Shared data resides in the garbage-collected Cayuga Heap,
discussed in Section 4.5.1. This design enables us to manipulate
events and automaton instances using “shallow copy” operations
and exploit efficient block move procedures whenever possible.

Newly-internalized events are inserted on the Priority Queue
(PQ) which is ordered by event detection time. The events are later
dequeued and processed by the Query Engine, described in Section
4.3.

As mentioned above, the Cayuga query model requires that
events be processed in detection time order. Thus, the system must
correct for clock skew between data sources, as well as for network
delay and reordering. We address this problem as follows. Let T be
an a priori bound on the out-of-orderedness of the input streams.
That is, when an incoming event with timestamp t arrives at the
Cayuga system, it is guaranteed that the system’s local clock is at
most t + T . With T so defined, proper ordering can be achieved
by buffering events in the PQ until they appear to be at least T
time units old before allowing them to be dequeued. Specifically,
a dequeue operation will block (or return empty) until the smallest
detection time of any event in the queue is less than c− T , where
c is the current Cayuga system clock value.

If an arriving event has a timestamp smaller than the timestamp
of some event previously dequeued from the PQ, the event is ig-
nored. Thus, coping with high variance in arrival times requires a
large value for T . Note that increasing T adds latency but does not
affect throughput.

Our use of a fixed global parameter T could be overly conser-
vative in some cases. A more sophisticated (but less efficient) ap-
proach is described in [15].

Some data sources do not provide timestamps. For such data
sources, the ER assigns to each arriving event a point timestamp – a
0-length interval – with detection time equal to the current Cayuga
system clock. Clearly, a stream with such locally-generated times-
tamps can inter-operate with other streams whose timestamps are
provided by the data sources.

Note that if all streams have locally-generated timestamps, then
a suitable value for the global parameter T is 0. In this case, the
PQ behaves as a FIFO queue except for resubscription processing
as described in Section 4.3.

4.3 The Cayuga Query Engine
The Cayuga Query Engine processes internalized Cayuga events

drawn from the Priority Queue, by executing state transitions of
Cayuga automata and generating output events whenever final
states are reached. Output events can be fed back into the PQ for
resubscription, or they can be passed to CN threads and forwarded
to subscribers as described in Section 4.4. In the following subsec-
tions we describe the engine in detail.

4.3.1 Query Representation
The external representation of a Cayuga query uses an XML for-

mat we call Automaton Intermediate Representation (AIR). The
AIR encoding of automaton states and edges is basically straight-
forward; however, the following features are worthy of note:

• Final states are explicitly identified for subscribing clients
and for resubscription.

• Filter edges are explicitly identified, as they require different
treatment from FR edges.

• Edge predicates and schema maps (as discussed in Section 3)
are encoded as programs for a specialized bytecode inter-
preter discussed below.

• Predicate conjuncts that should be indexed are flagged appro-
priately (our indexing strategy is described in Section 4.3.3).

The AIR format is intentionally rather low-level, and can represent
arbitrary collections of automaton states. This design decision en-
hances modularity – the Query Engine deals only with automaton
execution, and is not concerned with the translation of algebra ex-
pressions into automata, or with multi-query optimizations involv-
ing automaton rewriting or sharing of sub-automata by resubscrip-
tion. The only form of query optimization performed by the Engine
is to merge manifestly equivalent states during AIR file loading.

When Cayuga loads an AIR file, the resulting internal data struc-
ture has an explicit representation of automaton states and edges.
The Cayuga automaton model is nondeterministic. Thus, during
query evaluation there may be many active instances of query au-
tomata, each in a different state and with different stored data.
Our internal representation associates a list of instance objects with
each automaton state, as depicted in Figure 6(a). An instance object
associated with state Q represents an instance of the query automa-
ton in state Q. The stored data of the automaton instance (conform-
ing to the schema of Q) is contained in the instance object.

Edge predicates and schema maps are represented internally by
bytecode interpreter programs, essentially copied from their AIR
representation. The Cayuga bytecode interpreter is a straightfor-
ward stack machine specialized for efficient “short-circuit” evalua-
tion of conjunctions of atomic formulas, and for efficient construc-
tion and copying of instance objects. The interpreter (as well as the

418

a

b

a

b
c

d

e

c

d

e

(a) (b) (c)

Figure 6: Instance Lists

AIR format) is designed to be extensible, so it can easily support
new user-defined predicates (UDFs) and event schemas including
new user-defined types (UDTs).

4.3.2 Simultaneity and Epochs
Cayuga’s data model allows events with simultaneous detection

times. To handle such events correctly, we use an epoch-based pro-
cessing strategy. During epoch t, all events with detection time
t are processed, but it is critical that no new automaton instance
created during epoch t can be visible to other events detected in
the same epoch. To achieve this effect, we put newly-created in-
stances under a state into a separate pending instance list. At the
end of each epoch, we perform instance installation, atomically
merging each state’s pending instance list with the state’s surviving
instances. This process is depicted in Figure 6(a-c).

Although instance installation is deferred to epoch boundaries,
processing of new events for instances reaching final states is not
deferred. Client notification, as well as insertion of new events into
the PQ to support resubscription, both happen immediately. This
scheme is a simple and efficient way to handle simultaneity and
resubscription. It also makes it possible to construct some pow-
erful recursive queries (arguably a good thing), or to construct an
automaton that can loop forever in an epoch, generating unbound-
edly many events with the same detection timestamp (a bad thing).
Fortunately, automata generated from Cayuga algebra expressions
are guaranteed not to exhibit this bad behavior.

4.3.3 Evaluation and Indexing
We can now describe the flow of processing for each incoming

event. The system components involved are shown in Figure 7.
Our design is specially driven by the invariants of Cayuga automata
described in Section 3.

Event processing is done in two stages. In the first stage, the
Filter Evaluator is invoked. As its name suggests, the Filter Evalu-
ator evaluates filter edge predicates with respect to the current input
event. It identifies the set of affected instances and the states they
are associated with. (Recall from Section 3 that an instance is af-
fected if it does not traverse its filter edge.) All affected instances
will be marked for deletion at the end of the current epoch.

In the second processing stage, for each affected state marked by
the Filter Evaluator, we invoke the Forward-Rebind Evaluator. The
FR Evaluator evaluates all the FR edge predicates of a state, and
creates new instances under the destination state of each edge it its
predicate is satisfied. Whenever an instance is created under a final
state, an output event is generated, which is inserted on the PQ for
resubscription and/or sent to the appropriate Client Notifiers.

In our implementation we convert edge predicates to Disjunctive
Normal Form and treat the top-level disjuncts separately. Thus, for

a

b

c

d

e

...
NFA
States

NFA
Instances

...FR
Evals

Bytecode
Interpreter

...Filter
Eval

Pred Index

Pred Index

...Pred Index

Pred Index

...Pred Index

Pred Index

Figure 7: Query Evaluation Architecture

the remainder of this discussion we assume each predicate is a con-
junction of atomic predicates. We classify atomic predicates as ei-
ther static or dynamic. A static atomic predicate compares an event
attribute to a constant. Any other atomic predicate is considered
dynamic.

In a straightforward implementation of a Filter Evaluator with
no indexing, each input event would need to be checked against
the static filter atomic predicates of all the states; then the dynamic
filter atomic predicates would need to be checked for all instances
present at the nodes whose static filter components were satisfied,
thereby identifying the affected instances and nodes. All these
predicate evaluations would be performed by the Bytecode Inter-
preter.

Similarly, in an unindexed implementation of an FR Evalua-
tor each input event would need to be checked against the static
atomic predicates of every FR edge of every affected state; then,
for those FR edges whose static components were satisfied, the dy-
namic atomic predicates would need to be checked for all affected
instances at the associated node.

Performance is greatly improved by the use of indexing. Our
current indexing structure addresses Static and Dynamic equality
Atomic predicates. Each Conjunctive Clause is segregated into four
components: Indexed Static, Unindexed Static, Indexed Dynamic,
and Unindexed Dynamic.

Static predicate indices for filter predicates are maintained at the
global level to efficiently identify (a superset of) the set of affected
States. Static predicate indices for FR predicates could be main-
tained at the global level (eliminating duplicate evaluation of in-
dexed static atomic predicates) or on a per-node basis (eliminating
unnecessary evaluation for unaffected nodes). Either choices could
be viable, depending on workload; we decided in favor of the sec-
ond. Dynamic predicate indices for filter predicates are maintained
on a per-node basis, since they index node instances rather than
the global constants in the static filter predicate, and each index is
associated with a particular filter predicate clause. We currently
maintain only one dynamic predicate index per node to avoid ex-
cessive maintenance overhead as instances are added and deleted at

419

the end of each epoch.
Upon event arrival, the following process is carried out for filter

predicate evaluation

1. The filter evaluator probes the relevant indices to enumerate
which nodes have the static indexed component of one of
their filter predicate clauses satisfied. (The clause number is
also output). The static unindexed component is evaluated
for these clauses, and if is is satisfied we move to step 2.

2. Once the node and clause numbers have been identified, the
corresponding dynamic filter predicate index is probed to get
the set of instances that satisfy the indexed dynamic compo-
nent of that clause.

3. For each such instance, the unindexed dynamic component
is evaluated by the interpreter to output the set of affected
instances at that node.

For Nodes that do not have filter predicate indexing enabled, the in-
dex output degenerates to a sequential list consisting of all instances
present at the node, unindexed predicate evaluation then proceeds
on this list. The process ultimately creates a list of affected nodes,
each containing a list of affected instances of its own. The FREval-
uator then probes the FR indices associated with each affected node
to output the FR Edges having the static component of one of their
clauses satisfied (the clause number is also output). Dynamic FR
indices are currently not supported in our system. Since the number
of affected nodes/instances is generally small, we believe the per-
formance advantage would be overcome by the maintenance over-
head. The unindexed component is evaluated on the node’s affected
instances to finally identify (edge, instance) pairs. New instances
are created and added to pending instance lists to effect the state
transition.

4.4 Client Notifiers
Client Notifier threads (CNs) are roughly analogous to ERs: ERs

receive events from external streams, while CNs send event noti-
fications to subscribing clients. There is one CN per connected
Cayuga client. Whenever the Query Engine detects that a query
has produced a match (i.e., an automaton instance reaches a final
state), the QE sends the corresponding event to all the CNs repre-
senting the subscribing clients for that event. Each CN serializes
the event appropriately and delivers it to the client.

4.5 Memory Management

4.5.1 Garbage Collector
During Cayuga event processing, large string bodies and ob-

jects of complex user-defined data types are created, copied and
destroyed frequently. To reduce the space and time overhead for
such objects, we share the objects as much as possible and rely on
a custom memory management scheme to reclaim them. In this
section we describe the memory manager and discuss some of our
design decisions.

The principle dynamic data structures in Cayuga are associated
with events and automaton instances. Here we discuss the treat-
ment of automaton instances; the treatment of events is similar, and
in fact most of the code is shared.

At the top level, automaton instances are allocated and freed
manually. Scalar data resides in each instance, while string bod-
ies and complex data structures reside in a garbage-collected heap
and are always shared among instances. Note this implies that the
size of an instance is determined by the schema of the correspond-
ing automaton state, and instances are fairly small. Copying an

instance is done by “shallow copy” – only the fixed-length instance
object is copied, increasing the degree of sharing of the sub-objects.

To manage instance objects, we use a simple size-segregated col-
lection of free pools.

To manage complex shared objects, we initially considered a
C++ “smart pointer” implementation based on reference counts.
Apart from reference counting’s inability to deal with cyclic struc-
tures – a restriction we could probably have lived with for our
application – this approach has considerable elegance. However,
Cayuga’s nondeterministic state transitions require frequent copy-
ing and deletion of instances, each involving reference count ma-
nipulation and possibly synchronization overhead as well. So we
implemented a garbage-collected heap for shared objects. This al-
lows us to do a shallow copy of an instance with no locking or
reference count manipulation – a simple and efficient block move
operation is safe.

Our GC design uses some familiar techniques in a somewhat
unusual combination driven by the needs of our application. Dis-
cussion of most of these techniques can be found in [17].

First, we remark that in the absence of pathologic query selectiv-
ities Cayuga’s object lifetime distribution is highly bimodal. Most
automaton instances fail filter predicates and die very early. A few
instances, such as those associated with a long-running µ operator,
live for a very long time. But hardly any instances have “medium”
lifetimes. Because of this observation, we chose a simple genera-
tional scheme with two generations [4]. The first generation uses
copying garbage collection [3]; objects that survive more than a
few copies are “promoted” to the second generation, which uses
non-copying collection.

Although copying collection is somewhat controversial [5, 14],
Cayuga’s object lifetimes are sufficiently short and skewed that we
believe copying should have a considerable performance advan-
tage. With a copying GC, object allocation is essentially free –
basically, just incrementing a limit pointer – and the cost of a col-
lection is linear in the number of bytes of live data, but is indepen-
dent of the number of bytes reclaimed. Thus, if the vast majority of
allocated objects do not survive until the next garbage collection,
the total cost of allocation using a copying collector can be lower
than the cost of manual memory management using malloc() and
free() [3].

To avoid the need to update all client reference variables when an
object is copied, we use a handle-based design similar to some Java
VMs. Our handle space data structure supports unit-cost reclama-
tion of the entire set of dead handles during a reclamation, preserv-
ing the asymptotic cost of the copying collection algorithm.

We now briefly discuss issues of root finding and concurrency.
Logically, the first step of a garbage collection is to find the values
of all “root variables” – program variables that might contain refer-
ences to objects in the heap. The collector then traces through the
heap, identifying all objects that are transitively reachable from any
of the roots. In a multi-threaded system like Cayuga, the GC must
either stop all other threads (a “stop-the-world” collector) or be pre-
pared to operate correctly in the presence of concurrent changes to
the heap made by other threads.

In general, these tasks represent considerable development ef-
fort. Precise root finding requires either (non-portable) compiler
support or (error-prone) application support. Stopping the world is
also non-portable, and is undesirable in any case; while concurrent
collection is extremely delicate and error-prone [refs].

We address these issues by exploiting our application design,
in which the majority of work is done by a single Query Engine
thread. Most GC systems collect as a side-effect of object alloca-
tion. The Cayuga GC collects only when explicitly invoked by the

420

Engine thread. This happens only at “GC-safe” points in the Engine
code2. At such points, all of the Engine’s live data is guaranteed to
be reachable from (1) events waiting to be processed in the PQ, or
(2) automaton instances contained in the query automata data struc-
ture. These are the only Engine root variables that are needed, and
enumerating them requires only a few lines of code.

Of course, this approach guarantees only that the Engine thread
is at a GC-safe point when a collection occurs. What about the ER
and CN threads? We guarantee that all points in such threads are
GC-safe by requiring them to access the heap using a stylized API
similar to a Java “native methods” API. This API is somewhat less
convenient than the direct API used in Engine code; but use of the
heap by the ER and CN threads is simple enough that the approach
is tolerable.

Finally, note that an allocation request may ask for more space
than is currently available in the heap. The usual response in this
situation is to invoke garbage collection, and to fail only if the col-
lection does not produce sufficient free space. However, we have
explicitly ruled out invoking garbage collection as a side effect of
an allocation request. Fortunately, this is not a serious issue in our
two-generation design. When insufficient memory is available in
the first-generation heap to satisfy a request, we immediately “pro-
mote” the request to the second generation, which uses the system
allocator and does not fail. 3

4.5.2 Internal String Table
The Internal String Table is a component that manages read-only

string objects stored (internalized) in the Cayuga Heap. The pur-
pose of the Internal String Table is to ensure that there is at most
one copy of any string value in the heap – if multiple clients inter-
nalize the same string value, the system returns identical references
to the same shared string body in the heap. This has two beneficial
effects:

• It reduces space consumption. If the same string appears in
multiple input events or automaton instances, storage will be
shared even if the events or instances were constructed inde-
pendently.

• It “canonicalizes” the strings, enabling equality test to be per-
formed by a single pointer comparison rather than byte-by-
byte character comparison. For certain workloads, in which
successful string comparisons occur frequently, this can yield
significant speedups.

The “obvious” implementation for the Internal String Table is to
place all internalized strings in a hash table, eliminating dupli-
cates. Unfortunately, this implementation does not work, because it
makes no provision for ever reclaiming an internalized string object
s even if no client holds a reference to it – the Internal String Ta-
ble itself holds a reference to s that keeps it from being reclaimed.
Thus, the Internal String Table can grow without bound even if
Cayuga’s space requirements at any particular time are modest.

A Canonical String Table like ours is not a new idea; solutions
to the unbounded growth problem typically involve some form of
“weak references,” a GC feature which, while still slightly arcane,
dates back to the 1980’s and is sufficiently mainstream to exist in
Java and C-#. Informally, a weak reference to an object enables a
client to use that object, but does not prevent the object from being
2In fact, Cayuga contains only one call to the collector, at the top
of the Query Engine’s main loop. Whether the call actually does a
collection, or just returns immediately, is a policy decision internal
to the GC.
3More precisely, it does not fail recoverably.

reclaimed. The Cayuga GC provides a very simple form of weak
reference: when all ordinary references to an object disappear, the
object is reclaimed, and all remaining weak references to the object
are atomically cleared to null. With this feature, we can easily
implement the Internal String Table as a hash table whose buckets
contain weak references to canonical string objects; code in the
hash table maintenance methods lazily deletes null references from
the table.

5. RELATED WORK
There is a lot of previous work relevant to complex event mon-

itoring. Due to space constraints, we discuss only a representative
subset here. The work falls into three broad classes:

Publish-subscribe systems such as [2, 9] are characterized by
very limited query languages, allowing simple selection predicates
applied to individual events in a data stream. Such systems trade
expressiveness for performance – when well engineered, they ex-
hibit very high scalability in both the number of queries and the
stream rate. However, their inability to express queries that span
multiple input events makes them unsuitable for complex event pro-
cessing.

Stream databases such as [13, 7, 12, 6] lie at the opposite end
of the spectrum, trading performance for expressiveness. Such
systems have very powerful query languages, typically subsuming
SQL with provisions for sliding windows stream grouping features.
Though powerful, these query languages can be awkward for ex-
pressing the kinds of sequential patterns that occur frequently in
our target applications. Moreover, the systems have yet to demon-
strate the scalability of the other approaches.

Complex event systems such as SNOOP [1], ODE [11] and
SASE [18] are closest in spirit to our own work. These systems
describe composite events in a formalism related to regular expres-
sions and use some variant of a NFA model. While many support
some form of parameterized composite events, none is as general as
Cayuga. In addition, the semantics of some of the more expressive
event systems is not well defined [10, 19].

6. OUTLOOK
We believe that Cayuga incorporates interesting novel design

decisions that will have impact on the community of researchers
and practitioners that are currently working on building com-
plex event systems. At Cornell, we currently have three on-
going deployments of Cayuga. We are collaborating with re-
searchers from the Cornell Parker Center for Investment Re-
search on real-time analysis and correlation of external data
streams and stock data streams. We are also working on an in-
tegration with CorONA, a distributed high-performance publish-
subscribe system for Web MicroNews running on PlanetLab
(http://www.cs.cornell.edu/People/egs/beehive/corona/). Our vi-
sion is to devise an infrastructure for stateful monitoring of the Bl-
ogosphere. Our third deployment is an ongoing collaboration with
system administrators at CTC, Cornell’s high-performance com-
puting center, on distributed infrastructure monitoring through OS
event log processing.

While our work here describes a working system that is currently
under deployment, our users have started to demand other features.
We are currently adding support for user defined types and func-
tions in Cayuga; this also allows us to extend Cayuga to XML for
deployment in service-oriented architectures. For an even more
scalable architecture, we want to distribute the event processing
task by setting up a hierarchy of Cayuga servers, where servers at
higher levels resubscribe to the output of servers at lower levels.

421

7. ACKNOWLEDGEMENTS
We wish to acknowledge the many contributions of our colleague

Mingsheng Hong, whose work has been crucial for all aspects of
Cayuga. Only the CIDR conference rule prohibiting multiple sub-
missions prevented him from being included among the authors of
this paper.

This work was supported by the National Science Foundation
under Grants IIS-0636259, IIS-0621438, and CRCD-0203449; by
AFOSR under grant FA9550-05-1-0055; by a Sloan Foundation
Fellowship; and by a gift from Xerox. Any opinions, findings, con-
clusions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the spon-
sors.

8. REFERENCES
[1] R. Adaikkalavan and S. Chakravarthy. Snoopib:

Interval-based event specification and detection for active
databases. In Proc. ADBIS, pages 190–204, 2003.

[2] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and
T. D. Chandra. Matching events in a content-based
subscription system. In Proc. PODC, pages 53–61, 1999.

[3] Andrew W. Appel. Garbage collection can be faster than
stack allocation. Information Processing Letters,
25(4):275–279, 1987.

[4] Andrew W. Appel. Simple generational garbage collection
and fast allocation. Software Practice and Experience,
19(2):171–183, 1989.

[5] Hans Boehm. Mark-sweep vs. copying collection and
asymptotic complexity.
ftp://parcftp.xerox.com/pub/gc/complexity.html.

[6] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams — a new class of data management
applications. In Proc. VLDB, 2002.

[7] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. R. Madden, V. Raman, F. Reiss, and M. A. Shah.
TelegraphCQ: Continuous dataflow processing for an
uncertain world. In Proc. CIDR, 2003.

[8] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and
W. White. Towards expressive publish/subscribe systems. In
Proc. EDBT, 2006.

[9] F. Fabret, H.-A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation for
very fast publish/subscribe. In Proc. SIGMOD, pages
115–126, 2001.

[10] A. Galton and J. C. Augusto. Two approaches to event
definition. In Proc. DEXA, pages 547–556, 2002.

[11] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Composite
event specification in active databases: Model and
implementation. In Proc. VLDB, pages 327–338, 1992.

[12] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. S. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, approximation, and resource
management in a data stream management system. In Proc.
CIDR, 2003.

[13] P. Seshadri, M. Livny, and R. Ramakrishnan. Sequence query
processing. In Proc. SIGMOD, pages 430–441, 1994.

[14] Frederick Smith and Greg Morrisett. Comparing
mostly-copying and mark-sweep conservative collection. In
ISMM ’98: Proceedings of the 1st international symposium

on Memory management, pages 68–78, New York, NY, USA,
1998. ACM Press.

[15] U Srivastava and J. Widom. Flexible time management in
data stream systems. In Proc. PODS, pages 263–274, 2004.

[16] W. White, M. Riedewald, J. Gehrke, and A. Demers. What’s
“next”? Technical Report TR2006-2033, Cornell University,
2006.

[17] Paul R. Wilson. Uniprocessor garbage collection techniques.
In Proc. Int. Workshop on Memory Management, Saint-Malo
(France), 1992. Springer-Verlag.

[18] E. Wu, Y. Diao, and S. Rizvi. High-performance complex
event processing over streams. In Proc. SIGMOD, 2006.

[19] D. Zimmer and R. Unland. On the semantics of complex
events in active database management systems. In Proc.
ICDE, pages 392–399, 1999.

422

