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ABSTRACT 
This chapter introduces PADRES, the publish/subscribe model with the capability to correlate 
events, uniformly access data produced in the past and future, balance the traffic load among 
brokers, and handle network failures. The new model can filter, aggregate, correlate and project 
any combination of historic and future data. A flexible architecture is proposed consisting of dis-
tributed and replicated data repositories that can be provisioned in ways to tradeoff availability, 
storage overhead, query overhead, query delay, load distribution, parallelism, redundancy and 
locality. This chapter gives a detailed overview of the PADRES content-based publish/subscribe 
system. Several applications are presented in detail that can benefit from the content-based nature 
of the publish/subscribe paradigm and take advantage of its scalability and robustness features. A 
list of example applications are discussed that can benefit from the content-based nature of pub-
lish/subscribe paradigm and take advantage of its scalability and robustness features. 
 
1.1 INTRODUCTION 
The publish/subscribe paradigm provides a simple and effective method for disseminating data 
while maintaining a clean decoupling of data sources and sinks (Cugola, 2001; Fabret, 2001; Cas-
tro, 2002；Fiege, 2002; Carzaniga, 2003; Eugster, 2003; Li, 2005; Ostrowski, 2006; Rose, 2007). 
This decoupling can enable the design of large, distributed, and loosely coupled systems that 
interoperate through simple publish and subscribe invocations. While there are many applications 
such as information dissemination (Liu, 2004; Nayate, 2004; Liu, 2005) based on group commu-
nication (Birman, 1999) and topic-based publish/subscribe protocols (Castro, 2002; Ostrowski, 
2006), a large variety of emerging applications benefit from the expressiveness, filtering, distrib-
uted event correlation, and complex event processing capabilities of content-based pub-
lish/subscribe systems. These applications include RSS feed filtering (Rose, 2007), stock-market 
monitoring engines (Tock, 2005), system and network management and monitoring (Mukherjee, 
1994; Fawcett, 1999), algorithmic trading with complex event processing (Keonig, 2007), busi-
ness process management and execution (Schuler, 2001; Andrews, 2003;), business activity 
monitoring (Fawcett, 1999), workflow management (Cugola, 2001), and service discovery (Hu, 
2008). 

Typically, a distributed content-based publish/subscribe systems is built as an applica-
tion-level overlay of content-based publish/subscribe brokers, with publishing data sources and 
                                                 
1 This paper will be published as a chapter in “Handbook of research on advanced distributed event-based systems, 
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subscribing data sinks connecting to the broker overlay as clients. In a content-based pub-
lish/subscribe system, message routing decisions are not based on destination IP-addresses but on 
the content of messages and the locations of data sinks that have expressed an interest in that 
content. 

To make the publish/subscribe paradigm a viable solution for the above applications, addi-
tional features must be added. This includes support for composite subscriptions to model and 
detect composite events, and to enable event correlation and in-network event filtering to reduce 
the amount of data transferred across the network. 

Furthermore, the publish/subscribe substrate that carries and delivers messages must be robust 
against non-uniform workloads, node failures, and network congestions. In PADRES2, robustness 
is achieved by supporting alternate message routing paths, load balancing techniques to distribute 
load, and fault resilience techniques to react to broker failures. 

It is also essential for a publish/subscribe system to provide tools to perform monitoring, de-
ployment, and management tasks. Monitoring is required throughout the system to oversee the 
actual message routing, the operation of content-based brokers, and the interaction of applications 
via the publish/subscribe substrate. Deployment support is required to bring up large broker fed-
erations, orchestrate composite applications, support composition of services and business proc-
esses, and to conduct controlled experiments. Management support is required to inspect and 
control live brokers. 

This chapter presents the PADRES content-based publish/subscribe system developed by the 
Middleware Systems Research Group at the University of Toronto. The PADRES system incor-
porates many unique features that address the above concerns and thereby enable a broad class of 
applications.  The remainder of this chapter beings with a description of the PADRES language 
model, network architecture and routing protocol in Section 1.2. This is followed, in Section 1.3, 
by an outline of the PADRES load balancing capabilities whereby the system can automatically 
relocate subscribers in order to avoid processing or routing hotspots among the network of 
brokers. Section 1.4 then addresses failure resilience describing how the PADRES routing proto-
cols are able to guarantee message delivery despite a configurable number of concurrent 
crash-stop node failures. Some of the PADRES distributed management features are presented in 
Section 1.5, including topology monitoring and deployment tools. Next, Section 1.6 discusses a 
wide variety of applications and illustrates how the features of the PADRES system enable or 
support the development of these applications. Finally, a survey of related publish/subscribe pro-
jects and the contributions of the PADRES project are presented in Section 1.7, followed by some 
concluding remarks in Section 1.8. 

 
1.2 MESSAGE ROUTING 
All interactions in the PADRES distributed content-based publish/subscribe system are 
performed by routing four messages: advertisements, subscriptions, publications, and no-
tifications.  This section outlines the format of each of these messages, then describes 
how these messages are routed in the PADRES network. 
 
1.2.1 Language model 

                                                 
2The project name PADRES is an acronym that was initially comprised of letters (mostly first 
letters of first names) of the initial group of researchers working on the project. Over time, the 
acronym was also synonymously used as name, simply written Padres. Both forms are correct. 
Also, various re-interpretations of the acronym have been published, such as Publish/subscribe 
Applied to Distributed REsource Scheduling, PAdres is Distributed REsource Scheduling, etc.  



The PADRES language model is based on the traditional [attribute, operator, value] predicates 
used in several other content-based publish/subscribes systems (Opyrchal, 2000; Carzaniga, 2001; 
Cugola, 2001; Fabret, 2001; Mühl, 2002; Bittner, 2007). In PADRES, each message consists of a 
message header and a message body. The header includes a unique message identifier, the mes-
sage type (publication, advertisement, subscription, or notification), the last and next hops of the 
message, and a timestamp that records when the message was generated.  The content and for-
mats of each message type are detailed below. 
 
Publications 
Data producers, or publishers, encapsulate their data in publication messages which consist of a 
comma separated set of [attribute, value] pairs. Each publication message includes a mandatory 
tuple describing the class of the message. The class attribute provides a guaranteed selective 
predicate for matching, similar to the topic in topic-based publish/subscribe systems. 3  A 
publication that conveys information about a stock listing may look as follows: 

    
P: [class, ‘STOCK’], [symbol, ‘YHOO’], [open, 25.2], [high, 43.0], 
[low, 24.5], [close, 33.0], [volume, 170300], [date, ‘12-Apr-96’]  

 
A publication is allowed to traverse the system only if there are data sinks, or subscribers, 

who are interested in the data. Subscribers indicate their interest using subscription messages 
which are detailed below.  If there are no interested subscribers, the publication is dropped. A 
publication may also contain an optional payload, which is a blob of binary data. The payload is 
delivered to subscribers, but cannot be referenced in a subscription constraint. 

 
Advertisements 
Before a publisher can issue publications, it must supply a template that specifies constraints on  
the publications it will produce. These templates are expressed via advertisement messages. In a 
sense, an advertisement is analogous to a database schema or a programming language type, and 
can specify the type and ranges for each attribute as shown in the following example: 

    
A: [class, eq4, ‘STOCK’], [symbol, isPresent, @STRING], [open, >, 0.0], 
[high, >, 0.0], [low, > ,0.0], [close, >, 0.0], [volume, >, 0],  
[date, isPresent, @DATE]  

 
The above advertisement indicates that the publisher will publish only STOCK data with any 

symbol. The isPresent operator allows an attribute to have any value in the domain of the 
specified type. 

An advertisement is said to induce publications: the attribute set of an induced publication is a 
subset of attributes defined in the associated advertisement, and the values of each attribute in an 
induced publication must satisfy the predicate constraint defined in the advertisement. Note that a 
publisher may only issue publications that are induced by an advertisement it has sent. Two 
possible publications P1 and P2 induced by the above advertisement are listed below, while P3 is 
not induced by the advertisement due to the extra attribute company. 

    
P1: [class, ‘STOCK’], [symbol, ‘YHOO’], [open, 25.25],  
[high, 43.00],[low, 24.50]  

                                                 
3The PADRES language is nevertheless fully content-based and supports a rich predicate language. 
4Operator ‘eq’ is used for String type values and ‘=’ is used for Integer and float type values. 

Vinod
The message format descriptions are not very rigorous.  Is that a problem? 

Vinod
Can we make this and other messages look nicer?



  
P2: [class, ‘STOCK’], [symbol, ‘IBM’], [open, 45.25]  
 
P3: [class, ‘STOCK’], [symbol, ‘IBM’], [company, ‘IBM’] 

  
Subscriptions 
Subscribers express their interests in receiving publication messages by issuing subscriptions 
which specify predicate constraints on matching publications. PADRES not only allows 
subscribers to subscribe to individual publications, but also allows correlations or joins across 
multiple publications. Subscriptions are classified into atomic and composite subscriptions.  
 
An atomic subscription is a conjunction of predicates. For example, below is a subscription for 
Yahoo stock quotes. 

    
S: [class, eq, ‘STOCK’], [symbol, eq, ‘YHOO’],  
[open, isPresent, @FLOAT]  

  
The commas between predicates indicate the conjunction relation. Similar to publications, each 
subscription message has a mandatory predicate specifying the class of the message, with the 
remaining predicates specyfing constraints on other attributes. 

A publication is said to match a subscription, if all predicates in the subscription are satisfied 
by some [attribute, value] pair in the publication. For instance, the above subscription is matched 
by publications of all YHOO stock quotes with an open value. A subscription is said to cover 
another subscription, if and only if any publication that matches the latter also matches the former. 
That is, the set of publications matching the covering subscription is a superset of those matching 
the covered subscription.  

Composite subscriptions consist of atomic subscriptions linked by logical or temporal 
operators, and can be used to express interest in composite events. A composite subscription is 
matched only after all component atomic subscriptions are satisfied. For example, the following 
subscription detects when Yahoo’s stock opens at less than 22, and Microsoft’s at greater than 31. 
Parenthesis are used to specify the priority of operators. 

 
CS: ([class, eq, ‘STOCK’], [symbol, eq, ‘YHOO’], [open, <, 22.0]) && 
    ([class, eq, ‘STOCK’], [symbol, eq, ‘MSFT’], [open, >, 31.0])     

 
Moreover, unlike the traditional publish/subscribe model, PADRES can deliver not only those 

publications produced after a subscription has been issued, but also those published before a 
subscription was issued. That is, PADRES realizes a publish/subscribe model to query both the 
future and the past (Li, 2007; Li, 2008). In this model, data from the past can be correlated with 
data from the future. Composite subscriptions that allow correlations across publications continue 
to work with future data, and also with any combination of historic and future data. In that sense, 
subscriptions can be classified into future subscriptions, historical subscriptions and hybrids of 
the two. 

For example, the following subscription is satisfied if during the period Aug. 12 to Aug. 24, 
2008, MSFT’s opening price was lower than the current YHOO opening price. The variable $X 
correlates the opening price in the two stock quotes. This is an example of a hybrid subscription. 

    
CS: ([class, eq, ‘STOCK’], [symbol, eq, ‘YHOO’], [open, eq, $X] &&  

[class, eq, ‘STOCK’], [symbol, eq, ‘MSFT’], [open, >, $X],  
[_start_time, eq, ‘12-Aug-08’], [_end_time, eq, ‘24-Aug-08’])  



 
PADRES also provides an SQL-like language called PSQL (PADRES SQL) (Li, 2008), which 

has the same expressiveness as described above and allows users to uniformly access data pro-
duced in the past and future. The PSQL language supports the ability to specify the notification 
semantic, and it can filter, aggregate, correlate, and project any combination of historic and future 
data as described below. 

In PSQL, subscribers issue SQL-like SELECT statements to query both historic and future 
publications. Within a SELECT statement, the SELECT clause specifies the set of attributes or 
aggregation functions to include in the notifications of matching publications, the WHERE clause 
indicates the predicate constraints to apply to matching publications, and the optional FROM and 
HAVING clauses help express joins and aggregations. 

    
SELECT [ attr | function ], ...  
[FROM src, ...]  
WHERE attr op val, ...  
[HAVING function, ...]  
   

The above composite subscription is translated as follows in PSQL. 
    
SELECT src1.class, src1.symbol, src1.open, src2.symbol, 
       src2.open  
FROM src1, src2  
WHERE src1.class eq ‘STOCK’,  
      src2.class eq ‘STOCK’,  
      src1.symbol eq ‘YHOO’,  
      src2.symbol eq ‘MSFT’,  
      src1.open < src2.open,  
      src2.start_time eq ‘12-Aug-08’,  
      src2.end_time eq ‘24-Aug-08’  

   
Notice that the reserved start_time and end_time attributes can be used to express time 

constraints in order to query for publications from the past, the future, or both.  The sources in 
the FROM clause specify that two different publications are required to satisfy this query, and are 
subsequently used to qualify the WHERE constraints. The two publications may come from dif-
ferent publishers and conform to different schema (i.e., advertisements). 

The HAVING clause is used to specify constraints across a set of matching publications. The 
functions AVG( ,N), MAX( ,N), and MIN( ,N) compute the relevant aggregation across 

attribute  in a window of  matching publications. The window may either slide over 
matching publications or be reset when the HAVING constraints are satisfied. The following 
subscription returns all publications about YHOO stock quotes in a window of 10 publications 
whose average price exceeds $20. 

ia ia ia

ia N

    
SELECT class, symbol, price  
WHERE class eq ‘STOCK’, symbol eq ‘YHOO’  
HAVING AVG(price, 10) > 20.00  
   

For more information about PSQL, please refer to the technique report (Li, 2008). 
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Notifications 
When a publication matches a subscription at a broker, a notification message is generated and 
further forwarded into the broker network until delivered to subscribers. Notification semantics 
do not constrain notification results, but transform them. Recall that notifications may include a 
subset of attributes in matching publications indicated in the SELECT clause in PSQL. Most ex-
isting publish/subscribe systems use matching publication messages as notifications whereas 
PSQL supports projections and aggregations over matching publications. This simplifies the noti-
fications delivered to subscribers and reduces overhead by eliminating unnecessary information. 

 
1.2.2 Broker network and broker architecture 
 

 
 

 Figure 1. Broker network 
 

    
 

Figure 2. Router architecture 
 

Figure 1 shows a deployed PADRES system consists of a set of brokers connected in an overlay 
which forms the basis for message routing. Each PADRES broker acts as a content-based router 
that matches and routes publish/subscribe messages. A broker is only aware of its neighbors 
(those located within one hop), which information it stores in its Overlay Routing Tables (ORT). 
Clients connect to brokers using various binding interfaces such as Java Remote Method Invoca-
tion (RMI) and Java Messaging Service (JMS). 

Vinod
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Publishers and subscribers are clients to the overlay. A publisher client must first issue an ad-
vertisement before it publishes, and the advertisement is flooded to all brokers in the overlay 
network. These advertisements are stored at each broker in a Subscription Routing Table (SRT) 
which is essentially a list of [advertisement, last hop] tuples. 

A subscriber may subscribe at any time, and subscriptions are routed based on the information 
in the SRT. If a subscription intersects an advertisement in the SRT, it is forwarded to the last hop 
broker the advertisement came from. A subscription is routed hop-by-hop in this way until it 
reaches the publisher who sent the matching advertisement. Subscriptions are used to construct 
the Publication Routing Table (PRT). Similar to the SRT, the PRT is a list of [subscription, last 
hop] tuples, and is used to route publications. 

If a publication matches a subscription in the PRT, it is forwarded to the last hop broker of that 
subscription until it reaches the subscriber that sent the subscription. Figure 1 shows an example 
PADRES overlay and the SRT and the PRT at one of the brokers. In the figure, in Step 1 an ad-
vertisement is published at broker B1. A matching subscription enters through broker B2 in Step 
2 and since the subscription overlaps the advertisement at broker B3, it is sent to broker B1. In 
Step 3 a publication is routed to broker B2 along the path established by the subscription. 

Each broker consists of an input queue, a router, and a set of output queues, as shown in Fig-
ure 2. A message first goes into the input queue. The router takes the message from the input 
queue, matches it against existing messages according to the message type, and puts it in the 
proper output queue(s) which refer to different destination(s). Other components provide other 
advanced features. For example, the controller provides an interface for a system administrator to 
manipulate a broker (e.g., to shut it down, or to inject a message into it); the monitor maintains 
statistical information about the broker (e.g., the incoming message rate, the average queueing 
time and the matching time); the load balancer triggers offload algorithms to balance the traffic 
among brokers when a broker becomes overloaded (e.g., the incoming message rate exceeds a 
certain threshold); and the failure detector triggers the fault-tolerance procedure when a failure is 
detected in order to reconstruct new forwarding paths for messages and ensure timely delivery of 
publications in the presence of failures. 

   

   
Figure 3. Rete network 

   



PADRES brokers use an efficient Rete-based pattern matching algorithm (Forgy, 1982) to 
perform publish/subscribe content-based matching. Subscriptions are organized in a Rete network 
as shown in Figure 3. Each rectangle node in the Rete network corresponds to a predicate and 
carries out simple conditional tests to match attributes against constant values. Each oval node 
performs a join between different atomic subscriptions and thus corresponds to composite sub-
scriptions. These oval nodes maintain the partial matching states for composite subscriptions. A 
path from the root node to a terminal node (a double-lined rectangle) represents a subscription. 
The Rete matching engine performs efficient content-based matching by reducing or eliminating 
certain types of redundancy through the use of node sharing. Partial matching states stored in the 
join nodes allow the matching engine to avoid a complete re-evaluation of all atomic subscrip-
tions each time new publications are inserted into the matching engine. Experiments show that it 
takes only 4.5 ms to match a publication against 200,000 subscriptions which is nearly 20 times 
faster than the predicate counting algorithm (Ashayer, 2002). Moreover, the detection time does 
not increase with the number of subscriptions, but is affected by the number of matched publica-
tions. That is, the more publications that match a subscription, the longer it takes the matching 
engine to process the subscription. This indicates that the Rete approach is suitable for large-scale 
publish/subscribe systems and can process a large number of publication and subscription mes-
sages efficiently. Also, the Rete-based matching engine naturally supports composite subscription 
evaluation. 

 
1.2.3 Content-based routing protocols 
Instead of address-based routing, PADRES uses content-based routing, where a publication is 
routed towards the interested subscribers without knowing where subscribers are and how many 
of them exist. The content-based address of a subscriber is the set of subscriptions issued by the 
subscriber. This provides a decoupling between the publishers and subscribers. 

PADRES provides many content-based routing optimizations to improve efficiency and ro-
bustness of message delivery, including covering-based routing, adaptive content-based routing in 
cyclic overlays, and routing protocols for composite subscriptions. 
 
Covering and merging based routing 
In content-based publish/subscribe systems, subscribers may issue similar subscriptions. The goal 
of covering-based routing is to guarantee a compact routing table without information loss, 
thereby avoiding the propagation of redundant messages, and reducing the size of the routing ta-
bles and improving the performance of the matching algorithm. 

When a broker receives a new subscription from a neighbor, it performs the following steps to 
determine how to forward it. First, it searches the routing table to determine if the subscription is 
covered by some existing subscription from the same neighbor. If it is, the new subscription can 
be safely removed without inserting it into the routing table and, of course, without forwarding it 
further. If the new subscription is not covered by any existing subscriptions, the broker checks if 
it covers any existing subscriptions. If so, the covered subscriptions should be removed. 

Subscriptions with no covering relations but which have significant overlap with one another 
can be merged into a new subscription, thus creating even more concise routing tables. There are 
two kinds of mergers: if the publication set of the merged subscription is exactly equal to the un-
ion of the publication sets of the original subscriptions, the merger is said to be perfect; otherwise, 
if the merged subscription’s publication set is a superset of the union, it is an imperfect merger. 
Imperfect merging can reduce the number of subscriptions but may allow false positives, that is, 
publications that match the merged subscription but not any of the original subscriptions. These 
false positives are eventually filtered out in the network, and subscribers will not receive any false 
positives, but they do contribute to increased message propagations. However, by selectively and 
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strategically employing subscription merging the matching efficiency of the publish/subscribe 
system can be further improved. For additional information, please refer to (Li, 2005; Li, 2008) 
 
Adaptive content-based routing for general overlays 
The standard content-based routing protocol is based on an acyclic broker overlay network. With 
only one path between any pair of brokers or clients, content-based routing is greatly simplified. 
However, an acyclic overlay offers limited flexibility to accommodate changing network condi-
tions, is not robust with respect to broker failures, and introduces complexities for supporting 
other protocols such as failure recovery.  

We propose a TID-based content-based routing protocol (Li, 2008) for cyclic overlays to 
eliminate the above limitations. In the TID-based routing, each advertisement is assigned a 
unique tree identifier (TID) within the broker network. When a broker receives a subscription 
from a subscriber, the subscription is bound with the TIDs of its matching advertisements. A 
subscription with a bound TID value only propagates along the corresponding advertisement tree. 

Subscriptions set up paths for routing publications. When a broker receives a publication, it is 
assigned an identifier equal to the TID of its matching advertisement. From this point on, the 
publication is propagated along the paths set up by matching subscriptions with the same TID 
without matching the content of the publication at each broker. This is referred to as fixed publi-
cation routing. 

Alternative paths for publication routing are maintained in PRTs as subscription routing paths 
with different TIDs and destinations. More alternate paths are available if publishers’ advertise-
ment spaces overlap or subscribers are interested in similar publications, which is often the case 
for many applications with long-tailed workloads. Our approach takes advantage of this and uses 
multiple paths available at the subscription level. Our dynamic publication routing (DPR) algo-
rithm takes advantages of these alternate paths by balancing publication traffic among them, and 
providing more robust message delivery. 
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Figure 4. Higher publication rate 
 
We observe in our experiments that an increase in the publication rate causes the fixed routing 

approach to suffer worse notification delays. For instance, in Figure 4, when the publication rate 
is increased to 2400 msg/min, the fixed algorithm becomes overloaded with messages queueing 
up at brokers along the routing path, whereas the dynamic routing algorithm continues to operate 
by offloading the high workload across alternate paths. The results suggest that dynamic routing 
is more stable and capable of handling heavier workloads, especially in a well connected network. 
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Composite subscription routing 
Composite events are detected by the broker network in a distributed manner. In topology-based 
composite subscription routing (Li, 2005), a composite subscription is routed as a unit towards 
potential publishers until it reaches a broker B at which the potential data sources are located in 
different directions in the overlay network. The composite subscription is then split at broker B, 
which is called the join point broker. Each component subscription is routed to potential publish-
ers separately. Later, matching publications are routed back to the join point broker for it to detect 
the composite event. Notice that topology-based routing assumes an acyclic overlay and does not 
consider dynamic network conditions. 

In a general (cyclic) broker overlay, multiple paths exist between subscribers and publishers, 
and topology-based composite subscription routing does not necessarily result in the most effi-
cient use of network resources. For example, composite event detection would be less costly if 
the detection is close to publishers with a higher publishing rate, and in a cyclic overlay, more 
alternative locations for composite event detection may be available. The overall savings are sig-
nificant if the imbalance in detecting composite events at different locations is large. PADRES 
includes a dynamic composite subscription routing (DCSR) algorithm (Li, 2008) that selects op-
timal join point brokers to minimize the network traffic and matching delay while correctly de-
tecting composite events in a cyclic broker overlay. The DCSR algorithm determines how a 
composite subscription should be split and routed based on the cost model discussed below. 

A broker routing a composite subscription makes local optimal decisions based on the knowl-
edge available to itself and its neighbors. The cost function captures the use of resources such as 
memory, CPU, and communication. Suppose a composite subscription CS  is split at broker B. 
The total routing cost (TRC) of  is: CS

      
=1

( ) = ( ) (
n

B B BN Ni ii

TRC CS RC CS RC CS+∑ )B

and includes the routing cost of CS at broker B, denoted as ( )BRC CS , and those neighbors 

where publications contributing to CS may come from, denoted as . ( )B BN Ni i
RC CS BNi

CS  

denotes the part of CS routed to broker Ni
B , and may be an atomic or composite subscription. 

The cost of a composite subscription CS at a broker includes not only the time needed to 
match publications (from n neighbors) against CS, but also the time these publications spend in 
the input queue of the broker, and the time that matching results (to m neighbors) spend in the 
output queues. This cost is modeled as 

 
=1 =1 =1

( ) = | ( ) | | ( ) | | ( )
n n m

B in B m B outN N ii ii i i

|RC CS T P CS T P CS T P CS+ +∑ ∑ ∑   

where Tm is the average matching time at a broker,  and  are the average time messages 

spend in the input queue, and output queue to the i
inT outi

T
th neighbor. |P(S)| is the cardinality of subscrip-

tion S, which is the number of matching publications per unit time. To compute the cost at a 
neighbor, brokers periodically exchange information such as Tin and Tm. This information is in-
corporated into an M/M/1 queueing model to estimate queueing times at neighbor brokers as a 
result of the additional traffic attracted by splitting a composite subscription there. 

Evaluations of the DCSR algorithm were conducted on the PlanetLab wide-area network with 
a 30 broker topology. The metrics measured include the bandwidth of certain brokers located on 
the composite subscription routing path. In Figure 5, the solid bars represent the number of out-
going messages at a broker, and the hatched bars are the number of incoming messages that are 
not forwarded. Note that the sum of the solid and hatched bars represents the total number of in-
coming messages at a broker. Three routing algorithms are compared: simple routing, in which 
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composite subscriptions are split into atomic parts at the first broker, topology-based composite 
subscription routing, and the DCSR algorithm. The topology-based routing imposes less traffic 
than simple routing by moving the join point into the network and the DCSR algorithm further 
reduces traffic by moving the join point closer towards congested publishers as indicated by the 
cost model. In the scenario in Figure 5, compared to simple routing, the DCSR algorithm reduces 
the traffic at Brokers 1B  by 79.5%, a reduction that is also enjoyed by all brokers downstream 
of the join point. 
 

 
      

Figure 5. Composite subscription traffic 
   
 

1.3 Historic Data Access 
 

 

Figure 6. Historic data access architecture 
 
PADRES allows subscribers to access both future and historic data with a single interface as de-
scribed in Section 1.2.1. The system architecture, shown in Figure 6, consists of a traditional dis-
tributed publish/subscribe overlay network of brokers and clients. Subscriptions for future publi-
cations are routed and handled as usual (Opyrchal, 2000; Carzaniga, 2001).  To support historic 
subscriptions, databases are attached to a subset of brokers as shown in Figure 6.  The databases 



are provisioned to sink a specified subset of publications, and to later respond to queries. The set 
of possible publications, as determined by the advertisements in the system, is partitioned and 
these partitions assigned to the databases.  A partition may be assigned to multiple databases to 
achieve replication, and multiple partitions may be assigned to the same database if database 
consolidation is desired.  Partition assignments can be modified at any time, and replicas will 
synchronize among themselves.  The only constraint is that each partition be assigned to at least 
one database so no publications are lost.  Partitioning algorithms as well and partition selection 
and assignment policies are described in (Li, 2008).  Subscriptions can be atomic expressing 
constraints on single publications or composite expressing correlation constraints over multiple 

ublications. We describe their routing under the extended publish/subscribe model. 

 historic parts, with the historic subscription routed to potential databases as described 

bscription.  This broker also un-
ubscribes future subscriptions whose end_time has expired. 

p
 
1.3.1 Atomic Subscription Routing 
When a broker receives an atomic subscription, it checks the start_time and end_time at-
tributes. A future subscription is forwarded to potential publishers using standard pub-
lish/subscribe routing (Opyrchal, 2000; Carzaniga, 2001).  A hybrid subscription is split into fu-
ture and
next.  
For historic subscriptions, a broker determines the set of advertisements that overlap the subscrip-
tion, and for each partition, selects the database with the minimum routing delay.  The subscrip-
tion is forwarded to only one database per partition to avoid duplicate results.  When a database 
receives a historic subscription, it evaluates it as a database query, and publishes the results as 
publications to be routed back to the subscriber. Upon receiving an END publication after the final 
result, the subscriber’s host broker unsubscribes the historic su
s
 
1.3.2 Adaptive Routing 
Topology-based composite subscription routing (Li, 2005) evaluates correlation constraints in the 
network where the paths from the publishers to subscriber merge. If a composite subscription cor-
relates a historic data source and a publisher, where the former produces more publications, cor-
relation detection would save network traffic if moved closer to the database, thereby filtering 
potentially unnecessary historic publications earlier in the network. Based on this observation, the 
DCSR algorithm we discussed in Section 1.2.3 can be applied here. The WHERE clause con-
straints of a composite subscription can be represented as a tree where the internal nodes are op-
erators, leaf nodes are atomic subscriptions, and the root node represents the composite subscrip-
tion. A composite subscription example is represented as the tree in Figure 6. The recursive 
DCSR algorithm (Li, 2008) computes the destination of each node in the tree to determine how to 
split and route the subscription.  The algorithm traverses the tree as follows: if the root of the tree 
is a leaf, that is, an atomic subscription, the atomic subscription's next hop is assigned to the root. 
Otherwise, the algorithm processes the left and right children's destination trees separately.  If 
the two children have the same destination, the root node is assigned this destination, and the 
composite subscription is routed to the next hop as a whole. If the children have different destina-
tions, the algorithm estimates the total routing cost for potential candidate brokers, and the mini-



mum cost destination is assigned to the root. If the root’s destination is the current broker, the 
composite subscription is split here, and the current broker is the join point and performs the 
omposite detection. The algorithm assigns destinations to the tree nodes bottom up. 

 composite subscriptions stored at 

 description of the historic data access function, please refer to our technique 
report (Li, 2008).

c
 
When network conditions change, join points may no longer be optimal and should be recom-
puted. A join point broker periodically evaluates the cost model, and upon finding a broker able 
to perform detection cheaper than itself, initiates a join point movement.  The state transfer from 
the original join point to the new one includes routing path information and partial matching 
states. Each part of the composite subscription should be routed to the proper destinations so rout-
ing information is consistent. Publications that partially match
the join point broker must be delivered to the new join point.  
For more detailed



1.4 Load Balancing 
In a distributed publish/subscribe system, geographically dispersed brokers may suffer from un-
even load distributions due to different population densities, interests, and usage patterns of 
end-users. A typical scenario is an enterprise-scale deployment consisting of a dozen brokers lo-
cated at different world-wide branches of an international corporation, where the broker network 
provides a communication service for hundreds of publishers and thousands of subscribers. It is 
conceivable that the concentration of business operations and departments, and thus pub-
lish/subscribe clients and messages, is orders of magnitudes higher at the corporate headquarters 
than at the subsidiary locations. Such hotspots at the headquarters can overload the broker there in 
two ways. First, the broker can be overloaded, if the incoming message rate into the broker ex-
ceeds the maximum processing or matching rate of the broker’s matching engine. Because the 
matching rate is inversely proportional to the number of subscriptions in the matching engine, this 
effect is exacerbated if the number of subscribers is large (Fabret, 2001). Second, overload can 
also occur if the output transmission rate exceeds the total available output bandwidth. In both 
cases, input queues at the broker accumulate with messages waiting to be processed, resulting in 
increasingly higher processing and delivery delays. Worse yet, the broker may crash when it runs 
out of memory from queueing too many messages. 

The matching rate and both the incoming and outgoing message rates determine the load of a 
broker. In turn, these factors depend on the number and nature of subscriptions that the broker 
services. Thus, load balancing is possible by offloading specific subscribers from higher loaded to 
lesser loaded brokers. The PADRES system supports this capability using load estimation meth-
odologies, a load balancing framework, and three offload algorithms (Cheung, 2006). 

 

 
 

Figure 7. PEER architecture 
   

The load balancing framework consists of the PADRES Efficient Event Routing (PEER) ar-
chitecture, a distributed load exchange protocol called PADRES Information Exchange (PIE), and 
detection and mediation mechanisms at the local and global load balancing tiers. The PEER ar-
chitecture organizes brokers into a hierarchical structure as shown in Figure 7. Brokers with more 
than one neighboring broker are referred to as cluster-head brokers, while brokers with only one 
neighbor are referred to as edge brokers. A cluster-head broker with its connected set of edge 
brokers, if any, forms a cluster. Publishers are serviced by cluster-head brokers, while subscribers 



are serviced by edge brokers. Load balancing is possible by moving subscribers among edge bro-
kers of the same or different cluster. With PIE, edge brokers within a cluster exchange load in-
formation by publishing and subscribing to PIE messages of a certain cluster ID. For example, a 
subscription to PIE messages from cluster C01 is [class, eq, ‘LOCAL_PIE’], 
[cluster, eq, ‘C01’]. The detector invokes load balancing if it detects overload or the 
load of the local broker is greater than another broker by a threshold. Load is characterized by 
three load metrics. First, the input utilization ratio (Ir) captures the broker’s input load and is cal-
culated as: 
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where ir is the rate of incoming publications and mr is the maximum message match rate calcu-
lated by taking the inverse of the matching delay. Second, the output utilization ratio captures the 
output load and is calculated as: 
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where twindow is the monitoring time window, tbusy is the amount of time spent sending messages 
within twindow, brx represents the messages (in bytes) put into the output queue in time window 
twindow, and btx represents the messages (in bytes) removed from the output queue and sent success-
fully in time window twindow. A utilization value greater than 1.0 indicates overload. Third, the 
matching delay captures the average amount of time to match a publication message. 

The core of the load estimation is the PADRES Real-time Event to Subscription Spectrum 
(PRESS), which uses an efficient bit vector approach to estimate the input and output publication 
loads of all subscriptions at the local broker. Together with locally subscribing to the 
load-accepting broker’s covering subscription set, PRESS can estimate the amount of input and 
output load introduced at the load-accepting broker for all subscriptions at the offloading broker. 

Each of the three offload algorithms are designed to load balance on each load metric of the 
broker by selecting the appropriate subscribers to offload based on their profiled load characteris-
tics. Simultaneously, the subscriptions that each offload algorithm picks minimize the impact on 
the other load metrics to avoid instability. For example, the match offload algorithm offloads 
subscriptions with the minimal traffic, and the output offload algorithm first offloads highest traf-
fic subscriptions that are covered by the load accepting broker’s subscription(s.) 

This solution inherits all of the most desirable properties that make a load balancing algorithm 
flexible. PIE contributes to the distributed and dynamic nature of the load balancing solution by 
allowing each broker to invoke load balancing whenever necessary. Adaptiveness is provided by 
the three offload algorithms that load balance on a unique performance metric. The local mediator 
gives transparency to the subscribers throughout the offload process. Finally, load estimation 
with PRESS allows the offload algorithms to account for broker and subscription heterogeneity. 
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Figure 8. Components of the load balancer  
  

   
The components that make up the load balancing solution, shown in Figure 8, consist of the 

detector, mediator, load estimation tools, and offload algorithms. The detector detects and initi-
ates a trigger when an overload or load imbalance occurs. The trigger from the detector tells the 
mediator to establish a load balancing session between the offloading broker (broker with the 
higher load doing the offloading) and the load-accepting broker (broker accepting load from the 
offloading broker). Depending on which performance metric is to be balanced, one of the offload 
algorithms is invoked on the offloading broker to determine the set of subscribers to delegate to 
the load-accepting broker based on estimating how much load is reduced and increased at each 
broker using the load estimation algorithms. Finally, the mediator is invoked to coordinate the 
migration of subscribers and ends the load balancing session between the two brokers. The load 
balancing solution is integrated as a stand-alone module in the PADRES broker as shown in 
Figure 9. 

    

 
 

Figure 9.  Internal view of the PADRES broker 



  
(a) Output util ratio on cluster testbed         (b) Homogeneous cluster testbed 

 
Figure 10.  Experiment results 

   
Evaluations of the PADRES load balancing algorithms in the shared wide-area PlanetLab 

testbed, a dedicated local cluster environment, and a simulator all show that the load balancing 
algorithms prevent overload by distributing subscribers while simultaneously balancing the three 
load metrics among edge brokers. The algorithms are effective in both homogeneous and hetero-
geneous environments and enable the system to scale with added resources. Figure 10(a) shows 
an experiment with four heterogeneous clusters arranged in a chain with two edge brokers per 
cluster and having all subscribers join at an edge broker on one end of the chain, namely B1x. As 
time progresses, subscribers get distributed to other clusters down the chain until the algorithm 
converges around 3500 s into the experiment. Not shown on this graph is the observation that the 
subscriptions that sink higher traffic are assigned to brokers with more computing capacity than 
to brokers with limited capacity. Figure 10(b) shows that the average load of the brokers de-
creases as more resources (in the form of clusters) are added. Simultaneously, delivery delay de-
creases when going from two to four clusters, but increases beyond five clusters due to a longer 
path length. By adaptively subscribing to load information, the message overhead of the load 
balancing infrastructure is only 0.2% in the experiments on the cluster test10bed. The results also 
show that a naive load balancing solution that cannot identify subscription space and load are not 
only inefficient but can also lead to system instability. The interested reader may consult the full 
paper for more details about the algorithms and the experiments (Cheung, 2008). 

  
1.5 Fault-tolerance 
Fault-tolerance in general refers to the ability of a system to handle the failure of its components 
and maintain the desired quality of service (QoS) under such conditions. Furthermore, a  
δ-fault-tolerant system operates correctly in presence of up to δ failures. A common class of fail-
ures in a distributed system is node crashes, in which nodes stop executing instructions, no longer 
send or receive messages, and lose their internal state. Failures may be transient in which case 
nodes may recover by executing a recovery procedure. 

In order to achieve δ-fault-tolerance, PADRES nodes (brokers and clients) transparently col-
lect additional routing information as part of the normal operation of the system and use this in-
formation to react to the failure of their neighbors.  Two types of information are collected: the 
broker topology, and the subscription routes. The former allows for increased network connec-
tivity and prevents partitions forming as a result of failures, and the latter is used to decide among 
alternative routing paths and avoid interruptions in publication delivery. 

The remainder of this section presents the system-wide consistency properties that correspond 
to the routing topology and subscription routing state, and describes how this information is used 
to achieve fault-tolerant routing and recovery. 

 



1.5.1 Consistency 
To ensure correct operation of the system (in presence of up to δ failure) the topology and sub-
scription routing information must be kept consistent at all times. In our context, consistency is 
dependant on the desired degree of fault-tolerance of the system, δ, and is thus referred to as 
δ-consistency. The value of δ is chosen by an administrator based on a number of factors includ-
ing the fan-out of brokers, rate of failures, and average downtimes. To achieve δ-consistency for 
topology routing information, brokers must know about all peers within a (δ+1)-neighborhood. 
Distances are measured over the initial acyclic topology which acts as a backbone for the entire 
system. The δ-consistent topology routing information enhances the connectivity of this acyclic 
structure by enabling brokers to identify and connect to not only their neighbors, but all nodes 
within distance δ+1. 

On the other hand, δ-consistency for subscription routing information is achieved by main-
taining references to certain brokers along the subscription propagation paths. These references 
point to brokers that are up to δ+1 hops closer to the subscriber. More specifically, a broker that 
is within distance δ+1 of a subscriber stores the subscriber’s broker ID as the reference. If it is 
farther, then the reference points to another broker along the path to the subscriber. This broker is 
δ+1 hops closer to the subscriber. Figure 11 illustrates a sample network with δ-consistent sub-
scription routing information for two highlighted subscribers. 

        
(a) δ=0                                (b) δ=1 

        
(c) δ=2                                (d) δ=3 

   
Figure 11. δ-consistent subscription routing information for two subscribers S1 and S2. An arrow 

from A to B indicates that A holds a reference pointer to B. 
    



  
 
1.5.2 Fault-Tolerant Forwarding Algorithm 
When there are no failures in the system, brokers are connected to their immediate neighbors in 
the acyclic backbone topology. At the same time, they continuously monitor their communicating 
peers using a heartbeat based failure detector. It is assumed that the failure detector works per-
fectly and all broker failures are detected after some time. When a failure is detected, the 
fault-tolerant forwarding algorithm is triggered at the non-faulty neighbors. 

The main objective of fault-tolerant forwarding is to bypass failed neighboring brokers and 
re-establish the publication flows. For this purpose, having detected a failure, brokers create new 
communication links to the immediate neighbors of their failed peer, as illustrated in Figure 12. 
These new brokers, identified using the local topology routing information, may themselves con-
currently try to bypass the failed node. Endpoint brokers that establish a new connection (to by-
pass a failed node) perform an initial handshake and exchange their operational states. Addition-
ally, they exchange the sequence number of the last message tagged by the other endpoint (or 
“null” if there is no such message). This information is used to determine whether messages pre-
viously sent to the failed broker need to be retransmitted. Subsequently, nodes start to (re-)send 
outstanding messages over a new link if a matching subscriber is reachable through the link. This 
process maintains the initial arrival order of messages and uses subscription reference pointers to 
decide to which new peers to forward the messages. 

 

 
(a) Normal forwarding of messages 

 
(b) Forwarding of messages in the case of a broker failure 

 
Figure 12. Fault-tolerance forwarding bypasses faulty brokers  

(filled circles represent final destinations). 
    
 

1.5.3 Recovery Procedure 
The recovery procedure is executed by brokers that have experienced failures in the past and en-
ables them to re-enter the system and participate in message routing. This is in contrast to the 
fault-tolerance forwarding algorithm that runs on non-faulty brokers, in order to deliver messages 
in presence of failed brokers. The recovering brokers have lost their internal state due to the fail-
ure, and have further missed messages (e.g., subscriptions) that were sent during their downtime. 
Thus, the main objective of the recovery procedure is to restore this lost internal state by estab-
lishing a δ-consistent topology and subscription routing information. The recovery procedure in-
volves the following steps: (i) identify previous location in the topology, and the nearby brokers; 
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(ii) synchronize and receive routing information; (iii) participate in message forwarding; (iv) end 
recovery and notify peers. 

Recovering brokers can identify their previous location in the topology by accessing their 
local persistent storage or querying a discovery service that maintains this data. In either case, it is 
necessary that prior to failures brokers persistently store their topology routing information to 
disk, or properly update the discovery service about changes to the topology. The synchronization 
step involves connecting to the closest non-faulty brokers and requesting updated routing infor-
mation. Reference pointers in the received subscription routing information is properly manipu-
lated such that the δ-consistency requirements are met. 

The synchronization step may involve several nearby brokers and may be lengthened as 
large volumes of data are transferred or as new failures occur. During this period, new subscrip-
tion messages may be inserted into the system and the topology tree may undergo further changes. 
To enable the recovering brokers to keep up with this updated information, they participate in 
message forwarding in a similar way to fully operational peers. The only exception is that the 
synchronization points attach additional information determining the destinations of the messages. 
This is required since the routing information of a recovering broker at this stage may not be 
complete. Once all the recovery information is transferred from all synchronization points, the 
recovery is complete and the peers are appropriately notified. From this point onward, the 
δ-consistent routing properties are established and the recovered broker fully participates in regu-
lar message forwarding. More information about the fault-tolerance and recovery procedure is 
provided in (Sherafat, 2007; Sherafat, 2008).  
1.6 Tools 
PADRES includes a number of tools to help manage and administer a large publish/subscribe 
network.  This section presents two of these tools: a monitor that allows a user to visualize and 
interact with brokers in real time, and a deployment tool that simplifies the provisioning of large 
broker networks.  
 
1.6.1 Monitor 
The PADRES monitor lets a user monitor and control a broker federation.  It is implemented as a 
regular publish/subscribe client and performs all its operations using the standard pub-
lish/subscribe interface and messages.  Among other benefits, this allows the monitor to be run 
from anywhere a connection to a broker can be established, and to access any broker in the fed-
eration including those that would otherwise be hidden behind a firewall. 

Once connected to a broker, the monitor issues a subscription for broker status information 
that is periodically published by all brokers in the system. This information is used to construct a 
visual representation of brokers, overlay links, and clients. The display is updated in real time as 
the monitor continuously discovers and receives updates from brokers. 

Figure 13 shows a screenshot of the PADRES monitor connected to a federation of 100 bro-
kers. Nodes in the visualization may be rearranged by manually dragging the nodes around, or 
various built-in graphing algorithms can decide on the layout automatically. Detailed information 
of each broker, such as the routing tables, system properties, and various performance metrics can 
also be viewed. In terms of the control features, the user can pause, resume, and shutdown indi-
vidual brokers; inject any type of message (including advertisement, unadvertisement, subscrip-
tion, unsubscription, and publication messages) at any point in the network; and trace and visual-
ize the propagation paths of messages. For more information, please refer to PADRES user guide 
(Jacobsen, 2004). 
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Figure 13. PADRES monitor showing 100 brokers 

 
1.6.2 PANDA 
The PADRES Automated Node Deployer and Administrator (PANDA) simplifies the installation, 
deployment, and management of large broker networks distributed among any number of ma-
chines. In addition to starting and terminating processes, PANDA can install and uninstall the 
required Linux RPM packages, upload and remove PADRES binaries, and even retrieve broker 
log files from remote machines. As all remote operations are executed via SSH commands, 
PANDA can manage the deployment of brokers on any machine with SSH access.  In addition, 
PANDA is fully compatible with the PlanetLab wide-area research testbed (PlanetLab, 2006). 

PANDA lets a user easily describe complex broker and client networks in a flexible topology 
file. For example, the following ADD command in a topology file indicates that a broker process 
named BrokerA is to be started immediately upon deployment on machine 10.0.1.1 with a set of 
custom properties, such as a port number of 10000 and an ID of Alice.  
   
0.0 ADD BrokerA 10.0.1.1 startbroker.sh -Xms 64 -Xmx 128 -hostname 
10.0.1.1 -p 10000 -i Alice  

 



That same process can be scheduled to be terminated at a particular time, say 3500sec, with a 
REMOVE command as follows: 

   
3500 REMOVE BrokerA 10.0.1.1  

  
All IP addresses referenced in the topology file will be taken into consideration when an in-

stall or upload command is issued to install RPMs or upload tarballs. PANDA also supports a 
unique 2-phase deployment scheme for brokers. Phase 1 includes all broker processes with de-
ployment time of 0.0 where the user wishes the brokers and its overlay links to be fully up and 
running before deploying any other processes in Phase 2. Phase 2 includes all those processes 
with deployment times greater than 0. Phase 2 starts only when Phase 1 is complete as detected 
by PANDA’s built-in monitor. For more details and examples of PANDA’s topology file, please 
refer the online PADRES user guide (Jacobsen, 2004). 

The PANDA architecture, shown in Figure 14, consists of a Java program that uses helper 
shell scripts to interact with the remote nodes. The user interacts with PANDA through a text 
console. Upon loading a topology file or entering a command directly into the console, the input 
is parsed for correctness and UNIX commands are generated by the CommandGenerator. A To-
pologyValidator validates the input, checking for errors such as duplicate broker IDs. When the 
user enters the deploy command, the DeploymentCoordinator orchestrates the 2-phase deploy-
ment and executes remote UNIX command operations through the ScriptExecutor. 

 

  
Figure 14.  PANDA architecture 

   
These features of PANDA greatly simplify the management of large broker networks. They 

can also be used to fully automate any PADRES experiments including starting and stopping 
brokers and clients at certain times and collecting the experiment log files. 
 
1.7 Applications 



The simple yet powerful publish/subscribe interface supported by PADRES can be applied to a 
variety of scenarios that run the gamut from simple consumer news filtering to complex enter-
prise applications. 

What follows in this section are illustrations of how the design of sophisticated applications 
can be simplified by capitalizing on the various features of the publish/subscribe middleware out-
lined in the preceding sections. Some of these applications exploit properties of the pub-
lish/subscribe model itself such as the expressiveness of the publish/subscribe language that en-
ables fine-grained event filtering, event correlation and context-awareness, the complex interac-
tion patterns that can be realized such as many to many conversations, the natural decoupling of 
components that allows for asynchronous and anonymous communication, and the push-based 
messaging that enables applications to react to events in real-time. Certain scenarios below also 
take advantage of features of the PADRES publish/subscribe middleware including the scalability 
achieved by a distributed broker architecture, the ability to dynamically load-balance the brokers, 
and fault-tolerance capabilities that enable the brokers to automatically detect and recover from 
failures. 

To convey the breadth of scenarios to which publish/subscribe can be applied, applications 
from three domains are presented: consumer applications used by individuals for personal pro-
ductivity or entertainment purposes, enterprise applications that are critical to the operation of a 
business entity, and infrastructure services that are used to deploy, monitor, and manage hard-
ware and software infrastructures. These three domains, of course, may overlap and are not 
necessarily mutually exclusive. 

 
1.7.1 Consumer applications 
Interactions in consumer or end-user applications generally follow a client-server model in which 
a user receives service from a service provider, or a peer-to-peer (P2P) model where a group of 
users interact in an ad-hoc manner. 

The client-server interaction model is very simple to achieve in publish/subscribe systems: 
the server, such as a newscast service, simply publishes its data, and the clients subscribe to the 
subset of data they are interested in. Of course, the usability of this type of application depends on 
the expressiveness with which the clients can express their interests, making an expressive con-
tent-based language, such as that provided by PADRES, preferable over simpler pub-
lish/subscribe models. 

The PADRES content-based publish/subscribe system can also be used to construct a P2P 
information dissemination service thanks to its distributed broker overlay and its capability to 
route messages in cyclic networks (Li, 2008). The two primary concerns in P2P-type application 
are handling node churning and reducing message overhead in information dissemination. As the 
earlier sections of this chapter have shown, the PADRES distributed broker overlay and con-
tent-based routing can efficiently address these issues. 
 
Newscast Services 
Conventional Internet-based newscast services may use a topic-based publish/subscribe system 
where news items are published under certain topics (for example, ‘‘sports’’ or ‘‘local-news’’) 
and customers subscribe to one or more of these topics. When the customers want to fine-tune 
their subscriptions, the topics have to be sub-divided to match their interests. This is handled by 
creating a hierarchy of topics. For example, when a user wants to subscribe to Canadian Olympic 
events, a topic hierarchy of “sports → Olympics → Canada” is created as shown in Figure 15.a. 



 
Figure 15: Topic hierarchy and subscription covering. 

 
 

The major issue with a topic hierarchy is its limited expressiveness. Users are constrained to 
subscribe to only the topics defined by the hierarchy, but constructing a hierarchy to cover all the 
potential combinations of user interests leads to an explosion of topics and results in poor match-
ing performance and management overhead. Furthermore, when the user interests change, either 
the topic hierarchy must be restructured, or users must subscribe to broader topics than they are 
interested. The first solution is impractical, and the second solution results in redundant message 
overhead and requires additional processing by the clients to filter out publications that are not of 
interest. 

A content-based publish/subscribe system avoids these issues because client interests are ex-
pressed using fine-grained attribute-value tuples. Table 1 and Figure 15 show the difference be-
tween topic-based and content-based systems in expressing subscriber interests. Note that the 
topic-based system can match Sub 2 exactly with topic T5, but there is no topic that exactly 
matches Sub 3. Therefore, the client is forced to subscribe to the superset topic T2 which covers 
Sub 3 but also contains unrelated news items. On the other hand, as shown in the table, the results 
can be filtered more accurately in content-based system by including all the necessary attrib-
ute-value tuples in the subscription.  
  

Subscription Topic-based System
(Figure 15) 

PADRES Content-based Language 
 

Sub 1: “all Canadian sports 
news”  

T4, T5, T6  [class, eq, ‘sports’],[country, eq, 
‘Canada’]  

Sub 2: “all Canadian Olym-
pic news”  

T5 (exact match)  [class, eq, ‘sports’],[country, eq, 
‘Canada’],[event, eq, ‘Olympics’] 

Sub 3: “all 2008 Olympic 
news”  

T2 (super set)  [class, eq, ‘sports’],[event, eq, 
‘Olympics’],[year, eq, ‘2008’]  

Table 1.  Subscribing using topic-based and content-based publish/subscribe systems. 
   

The topic hierarchy also influences the distribution of the matching workload in a distributed 
system. Consider the network shown in Figure 15 where subscribers S1 and S2 connect to broker 
B and subscribe to Sub 1 and Sub 2, respectively. When the topic hierarchy is constructed as 
shown in Figure 15.a, the publisher matches Sub 1 to topics T4, T5, T6 and Sub 2 to topic T5 and 
forwards the news items on these topics to broker B which forwards them to the respective sub-
scribers. When the topic hierarchy is organized as in Figure 15.b, however, broker B need only 
subscribe to topic T1, because both Sub 1 and Sub 2 are covered by this topic. When the broker 



receives the news items on T1, it can immediately forward them to S1, and forward those news 
items that match T2 to S2. In this way, the matching workload is distributed in the system making 
the system more scalable. 

It is difficult, however, to design a topic hierarchy that effectively distributes the matching 
workload while simultaneously offering topics that closely correspond to all user interests. This 
issue does not arise in content-based systems because the language model provides a way of cov-
ering subscriptions as described in Section 1.2.1. For example, Table 1 shows that the con-
tent-based definition of Sub 1 covers that of Sub 2. Therefore, a content-based publish/subscribe 
system provides a more scalable design. 

 
Intelligent Vehicular Ad-Hoc Networks 
A more sophisticated application of the content-based publish/subscribe paradigm is an intelligent 
vehicular ad-hoc networks (InVANET). Present day smart car functions involve making decisions 
based on the data fed from different sensors embedded within a car’s infrastructure, such as 
accident prevention using a proximity radar or air-bag deployment using deceleration sensor.   

Automobiles in an InVANET collaborate with one another to construct a distributed sensor 
that captures the collective knowledge of the individual sensors in each vehicle. The information 
dissemination in InVANET follows a reactive model where a car detecting a situation triggers an 
action from another car. A content-based system like PADRES can efficiently implement this 
event-driven architecture, with each car playing the role of a publisher, subscriber, and con-
tent-based router.  In this scenario, the events of interest will include accidents, traffic jams, or 
even the events of cars leaving parking spots. 
 

 
Figure 16.  An example scenario in a InVANET system. 

   
An example scenario is illustrated in Figure 16. Car A is interested in knowing about traffic 

jams in advance so that it can take an alternate path. It subscribes to a “traffic-jam” event as: 
    

[class, eq, ‘traffic-jam’], [location, <, MY_LOC + 10], [dir, eq, ‘HW401W’]  
  

Note that the subscription includes location and directional (HW401W, i.e., Highway 401, 
West bound) constraints. The location variable MY_LOC is substituted with the current GPS co-
ordinates. The subscription is propagated in the overlay created by the smartcars. When Car B 
detects a traffic jam (perhaps using its internal sensors), it publishes a “traffic-jam” event as:  
    
[class, ‘traffic-jam’], [location, MY_LOC], [dir, ‘HW401W’]  

  
This event is reverse-propagated through the overlay until it reaches Car A.  
A similar publish/subscribe scheme can be used to find a newly available parking spot: when 

a car leaves a parking spot in a busy downtown area, it can publish the event which is propagated 
to cars whose driver is interested in finding a parking spot in the vicinity. 



An InVANET requires a publish/subscribe middleware that can be implemented over ad-hoc 
cyclic networks. It should also be noted that subscriptions and publications include location and 
directional attributes which should be exploited during event routing to reduce message overhead. 
For example, in Figure 10, the “traffic-jam” event generated by Car B need not reach Car C that is 
traveling in the opposite direction. PADRES provides the necessary infrastructure to construct an 
InVANET, and its matching engine can be extended to support directional and location operators 
in its subscription language.  
 



1.7.2 Enterprise applications 
The number of applications and users an enterprise manages and supports as well as the amount 
of data that flows between them grows larger with a growing enterprise. Therefore, enterprises 
enforce automated service management infrastructures to scale with a growing service base. This 
management infrastructure automates the detection of application states; it automates the trigger-
ing of certain activities based on the detected application states; and it orchestrates the interaction 
between different applications and users. These activities require complex event processing (CEP) 
that accepts the different application states as events and process them to detect certain situations 
and invoke relevant actions. A content-based publish/subscribe system, especially a distributed 
system like PADRES, is the ideal choice for implementing a CEP infrastructure. The applications 
and users can join the system as clients, situations can be defined by composite event subscrip-
tions, and the interactions between the applications are managed by subscribing to certain events 
(application states or situations). 

 
Sensor Networks 
Sensor networks are created by interconnecting a number of sensors monitoring different pa-
rameters at different locations. Sensor networks are commonly used in environment monitoring, 
traffic control, health care, and battlefield surveillance. Event processing is the primary operation 
in a sensor network and a content-based publish/subscribe system can simplify this operation. 
Each sensor can be considered as a publisher that outputs a constant stream of data with a fixed 
schema (advertisement). The applications that process the sensor data can subscribe to various 
events from different sensors and produce their own events. For example, a tsunami event can be 
detected using a composite subscription:      
     
([class, eq,‘sesmic’],[magnitude, >,3],[location, =,$L],[time, =,$T]) && 
([class, eq,‘wave’],[height, >,10],[location, <, $L +5],[time, <,$T + 10])  
  
It detects an event of a seismic activity of magnitude larger than 3 followed by (within 10min) a 
wave with a height of more than 10m at a location within 5km from the origin of the seismic 
event. When this condition is satisfied, a new alert event can be produced as:      

     
[class, ‘climate-alert’],[condition, ‘tsunami’],[location, $L], [time, $T]  

  
where the values for $L and $T are extracted from the publications that triggered the detection of 
the subscription given above. 

A radio frequency identification (RFID) system is a type of sensor network that has already 
been successfully used in monitoring moving objects. Tracking books in a library, inventory of 
goods in a store, and automated payments in toll highways are few of the applications of 
RFID-enabled tags. At present, RFID tags are used mostly to identify the presence (or the lack of 
presence) of an item at a certain location at a given time. If the RFID readers are networked, the 
time stamped detection events can be conveyed as publications to a content-based pub-
lish/subscribe system that will increase the functionality of the RFID-based systems. For example, 
a shoplifting event can be detected by subscripting to an appropriate composite event: detecting 
an event with a certain RFID at the exit sensor without detecting it at a sales counter. 

In a sensor network, the event schemata are mostly constant and simple, but the sensors are 
distributed and the amount and rate of data produced by them (publications) are often very large. 
This requires a distributed, fast, and scalable matching and routing infrastructure like PADRES 
(Petrovic, 2005). In addition, the publish/subscribe middleware used in sensor networks should be 
self-configuring and fault tolerant, because the sensor networks are sometimes implemented on a 
mobile network where the lifetimes and the locations of the nodes vary constantly. 



 
Business Process Management 
Business process management (BPM) is another important business application where con-
tent-based publish/subscribe systems are extremely useful. Business process management organ-
izes a set of enterprise applications and processes in order to facilitate efficient communication 
among themselves and with clients. One of the key aspects of BPM is workflow processing. 
Figure 17 shows an example workflow of an online retailer. 

A workflow describes the interactions between different enterprise applications, processes, 
and users and includes causal and temporal relationships between applications. Because it follows 
the model of an event-driven system where the completion of one or many processes activates 
another, a content-based system can be used to implement it. For example, Figure 17 shows the 
hypothetical workflow of an online sales application where the availability of an item should be 
checked and the shipping charge should be calculated before enabling a detailed item view. 
Therefore, the ‘ItemView’ module should subscribe to a composite event:  

    
([class, eq, ‘INVOKE’], [service, eq, ‘ItemView’], [id, eq, $X]) &&  
([class, eq, ‘RESULT’], [service, eq, ‘AvailCheck’], [id, eq, $X]) && 
([class, eq, ‘RESULT’], [service, eq, ‘CalcShipping’], [id, eq, $X])  

  
 Note that this subscription performs two tasks: the first part of the composite subscription 

provides the activation command to the ‘ItemView’ module, but the other two parts restrict the 
module to be activated only after the results from the relevant ‘AvailCheck’ and ‘CalcShipping’ 
services are received. These events are connected using a variable on the id attribute. 

 

  
 

Figure 17.  Example workflow of an online sales application. 
   

In a workflow, the output of a process can vary depending on the incoming event parameters. 
For example, in Figure 17, the online retailer might decide to give a post-order discount, if the 
shipment is delayed more than a specific duration. When a purchase order is placed, a shipment 
monitor is instantiated as well, which waits for the event of shipment. When the shipment event is 
received, it will check the purchase agreement and if the shipment failed to match the agreed 
shipment date, a post-order discount is sent out. This operation can be performed by issuing the 
following subscription and publication:      

     



Sub: ([class, eq, ‘INVOKE’], [service, eq, ‘MonitorShipment’], [id, eq, $X], 
[time, =, $T]) &&  

 ([class, eq, ‘RESULT’], [service, eq, ‘ItemShipped’], [id, eq, $X], 
[time, >, $T + 10])  

Pub: [class, ‘INVOKE’],[service, ‘PostOrderDiscount’],[id, ‘aaaa’]  
  

The subscription is used to detect the condition where a post-order discount is to be issued and 
the publication is used to activate the post-order delivery module. The threshold that triggers a 
post order discount is 10 days from the order date. 

A content-based publish/subscribe system not only efficiently implements a workflow, but it 
also simplifies reorganizing the workflow when required. For example, in Figure 17, the retailer 
may decide to invoke a new service to verify the age of the consumers against the approved limit 
before activating the item view. The modification, shown with the dotted lines in the figure, can 
be readily implemented by unsubscribing the previous subscription and invoking a new subscrip-
tion as follows:  

    
([class, eq, ‘INVOKE’], [service, eq, ‘ItemView’], [id, eq, $X]) &&  
([class, eq, ‘RESULT’], [service, eq, ‘AvailCheck’], [id, eq, $X]) && 
([class, eq, ‘RESULT’], [service, eq, ‘CalcShipping’], [id, eq, $X]) && 
([class, eq, ‘RESULT’], [service, eq, ‘AgeCheck’], [id, eq, $X],  
[approve, eq, ‘YES’])  

 
Business Application Monitoring 
Business application monitoring (BAM) is another aspect of BPM. It involves continuously 
monitoring the performance of applications or processes, producing reports, and triggering ac-
tions or notifications when some specific conditions are met. 

Again, BAM concerns can be easily realized with publish/subscribe middleware by adding 
components that subscribe to events generated by various distributed application monitor soft-
ware agents. Event processing can be used to detect various system conditions and take actions 
accordingly. The loose coupling properties of publish/subscribe are exploited here to allow BAM 
components to monitor applications without having to instrument the application they are moni-
toring.  Rather, they simply subscribe to events they are interested in. 
 
Enterprise Service Bus 
Service-oriented architectures (SOA) have become a common solution for the problems of enter-
prise application management. In an SOA, applications are constructed by composing a set of 
reusable services that are available through standardized interfaces. These applications are them-
selves exposed as yet another service that can in turn be composed by other applications.  An 
enterprise service bus (ESB) plays a central role in an SOA, mediating the interactions among the 
services.  A publish/subscribe middleware such as PADRES supports the core functionality re-
quired of an ESB, and is ideally suited to serve as an ESB in an SOA. 

Another important component of an SOA is a service registry where services are registered 
and discovered. In publish/subscribe terminology, the services can be presented as both publish-
ers and subscribers. The historic query capabilities of PADRES can be used to discover services 
that have registered in the past, while the usual publish/subscribe subscription mechanisms enable 
applications to continuously monitor for and be notified of new services. The actual execution of 
a workflow of composed services can then be achieved as described in the BPM discussion 
above. 
 
 



 

 
Figure 18.  Building an enterprise service bus with PADRES. 

   
Two of the key responsibilities of an ESB are service orchestration and governance. A busi-

ness orchestration defines the interaction among the services (creating workflow descriptions), 
whereas governance concerns the management of corporate policies regarding the hosted services 
and their interactions. An ideal ESB should support an event-driven distributed architecture, an 
expressive workflow description, a standard-based integration model, flexible data transformation 
capabilities, and an autonomous and federated environment. 

The PADRES middleware provides a highly distributed event-driven architecture that sup-
ports many of the required ESB characteristics. Figure 18 shows how PADRES can be used to 
implement an ESB. The distributed broker network connects applications across a large enterprise, 
even across the Internet, and the content-based publish/subscribe system provides an event-driven 
system that supports expressive workflows. Service orchestration is supported by the con-
tent-based resource discovery and event-based monitoring and the situation detection mechanism 
helps enforce governance policies. In addition, the fault tolerant and load balancing capabilities of 
PADRES provide the means to create a robust ESB. 

 
 

1.7.3 Infrastructure applications 
In an era where applications are increasingly hosted on a distributed infrastructure, composed of 
components from various partners, used by unknown and possibly hostile users, and yet demand 
reliable performance, an application developer’s concerns no longer end with the development 
and testing of the product. Effectively monitoring and managing the applications and infrastruc-
ture at run-time is necessary to provide an acceptable level of service to users. Owing to its clean 
decoupling, expressive filtering capabilities and matching predication ability (Liu, 2009), the con-
tent-based publish/subscribe paradigm is ideally suited for realizing complex real-time manage-
ment solutions (Yan, 2009). 

 
 
 



Intrusion detection 
One set of infrastructure concerns relates to monitoring a system for malicious attacks. Typically, 
administrators will specify rules or signatures of attacks they wish to monitor. An attack signature 
on a Web server may be an excessive request rate for web pages from the same IP address, 
whereas a credit card fraud may be detected if the same card is used from multiple locations 
within a short period of time. 

For example, the following composite subscription will detect any user attempting to probe a 
machine for certain open ports. 

   
([class, eq, ‘TCPOPEN’], [dest_port, =, 21], [src_ip, eq, $X],  
[dest_ip, eq, $y]) &&  
([class, eq, ‘TCPOPEN’], [dest_port, =, 22], [src_ip, eq, $X],  
[dest_ip, eq, $y]) &&  
([class, eq, ‘TCPOPEN’], [dest_port, =, 110], [src_ip, eq, $X],  
[dest_ip, eq, $y])  

  
To monitor for this signature, a client can issue the above subscription at any time while the 

system is operational. Likewise, removing the rule is a simple unsubscribe operation by the client 
and has no effect on the network. The composite subscription above performs in-network filtering 
so the monitoring client is only notified if the rule is matched, and distributed composite sub-
scription matching algorithms ensure that the rule is detected at the optimal point in the network. 
For example, if one particular machine in the network is the target of many TCP sessions, the 
composite subscription detection can automatically move closer to that machine so that events do 
not have to propagate far into the network before the pattern is matched.   

There may be a concern that it is not efficient to require network components to publish events 
for every conceivable operation such as TCP session state, or link utilization. However, the PA-
DRES system is designed so that events that are of no interest to anyone in the system are imme-
diately dropped and incur no overhead further in the network. For example, if the above subscrip-
tion is unsubscribed, then TCPOPEN publication would be dropped (assuming there are no other 
subscriptions interested in these events). 

The real power of monitoring a system using the publish/subscribe paradigm is seen when 
monitoring rules span multiple layers in a system. For example an attack signature may require 
monitoring both the network infrastructure and application behavior. For example, an attempt to 
break into a machine and use it as a spam relay may be defined by a pattern of a number of un-
successful login attempts, followed by a successful one, after which a number of emails are sent. 

   
([class, eq, ‘LOGIN’], [userid, eq, $U], [status, eq, ‘FAIL’],  
[src_ip, eq, $S]) &&  
([class, eq, ‘LOGIN’], [userid, eq, $U], [status, eq, ‘FAIL’],  
[src_ip, eq, $S]) &&  
([class, eq, ‘LOGIN’], [userid, eq, $U], [status, eq, ‘SUCCESS’],  
[src_ip, eq, $S], [dest_ip, eq, $D] ) &&  
( [class, eq, ‘TCPOPEN’], [dest_port, =, 25], [src_ip, eq, $D],  
[dest_ip, eq, $X]) &&  
([class, eq, ‘TCPOPEN’], [dest_port, =, 25], [src_ip, eq, $D],  
[dest_ip, eq, $Y])  

  
In the above subscription, the LOGIN publications are generated by the authentication server 

(at the application layer), and the network layer components issue the TCPOPEN publications, 
but the subscription nevertheless is able to retrieve and correlate them in a uniform manner. 

Another advantage of using the publish/subscribe model to perform intrusion detection is that 
the attack signatures are monitored in real-time as the system is running, instead of analyzing log 



files after the fact. This is important in situations, such as credit card fraud detection where the 
attack must be managed as soon as possible to prevent further damage. 

The ability to correlate events from different layers or applications in a diverse system is also 
useful in diagnosing the cause of a problem. For example, in an environment where a set of ser-
vices are deployed on a cluster of machines, an administrator may wish to know which services 
were invoked shortly before a machine becomes overloaded. 

   
([class, eq, ‘INVOKE’], [service, eq, $A], [time, >, $T - 10s]) &&  
([class, eq, ‘CPULOAD’], [machine_id, eq, ‘OVERLOAD’], [time, =, $T])  

  
The above subscription would return all invocations up to 10 seconds before the overload 

event, and an administrator can use this information to isolate the potential cause of the overload. 
 

Service level agreements 
System administrators need to be concerned not only with malicious attacks, but with legitimate 
usage from end users or partners that may affect their applications in unexpected or undesirable 
ways. To monitor whether their applications are providing (and receiving) the desired perform-
ance, it is common for businesses to define service level agreements (SLAs) on large-scale enter-
prise applications. An SLA defines a contract between a service provider and consumer and pre-
cisely outlines how the consumer will use the service, and states the guarantees offered by the 
provider. Often penalties of not abiding to the terms are also specified in the SLA. 

Consider an online retailer running a sales business process shown in Figure 17. Some of the 
services in this process, such as the shipping services, may be outsourced to other businesses. To 
provide an acceptable performance to their users, however, the retailer may require certain ser-
vice guarantees from the shipping services. For example, the retailer may demand that the Calcu-
late Shipping service in Figure 17 respond to requests within 0.5 seconds 99.9% of the time 
within any 24 hour window, and a failure to meet this level of service will result in a loss of pay-
ment for that window. Conversely, the SLA may also specify that the retailer will not invoke the 
Calculate Shipping service more than 100 times per minute within any one minute window. 

Monitoring of such SLAs can be implemented cleanly using a publish/subscribe model (Chau, 
2008; Muthusamy, 2008). Suppose the process in Figure 17 is executed in a distributed PADRES 
execution engine. In this case, invocations of and results from services are represented by publi-
cations. The loose coupling of the publish/subscribe paradigm allows the SLA monitoring sub-
system to subscribe to these publications without altering the process execution or even stopping 
the running process. Subscriptions to retrieve the invocation and result publications may look as 
follows. 

   
Sub1: [class, eq, ‘INVOKE’], [service, eq, ‘CalcShipping’]  
Sub2: [class, eq, ‘RESULT’], [service, eq, ‘CalcShipping’]  

  
The monitoring subsystem issuing the above subscription would have to correlate the invoca-

tion and result publications and compute the time difference between the two. However, with 
more complex correlation and aggregation capabilities, it is possible to issue a single subscription 
that calculates the time difference, and returns the result to the subscriber. For example, the fol-
lowing composite subscription will correlate invocations with their appropriate results and return 
pairs of publications to the monitoring client. This saves the monitoring client from having to 
perform the correlation and allows the correlation processing to occur in the network at the opti-
mal point. 

   
([class, eq, ‘INVOKE’], [service, eq, ‘CalcShipping’], [id, eq, $X]) && 
([class, eq, ‘RESULT’], [service, eq, ‘CalcShipping’], [id, eq, $X])  



  
In general, SLAs can be modeled as three types of components: metrics, service level objec-

tives (SLOs), and actions.5 Metrics measure some phenomenon such as the time when a product 
is delivered, or the number of times an item is purchased. Sometimes a distinction is made be-
tween atomic metrics which measure a property directly, and composite metrics that aggregate 
the measurements from other metrics. For example, the occurrence of late shipments may be 
measured by an atomic metric, and the total number of late shipments per day response computed 
by a composite metric. SLOs are a Boolean expression of some desired state. For example, a de-
sired threshold on the number of late shipments per day may be denoted as LateShipmentsPerDay 
< 10. Finally, actions are descriptions of what should occur when an SLO is violated. Examples 
of actions include sending an email to a sales manager, generating a publication (that will be 
processed by another component), and writing to a log file. 

 

 
 

Figure 19.  SLA monitoring components 
   

Each metric, SLO, and action in an SLA can be mapped to a publish/subscribe client. For ex-
ample, consider an SLA where an email should be sent to the sales manager if the average daily 
response time of the Calculate Shipping service is greater than 0.5 seconds. Figure 19 shows met-
rics, SLOs, and actions that realize this SLA. Each component in the figure is modeled as pub-
lish/subscribe client, and interactions between them are through publish/subscribe messages. 
These clients together realize the monitoring of the SLA. 

The distributed monitoring architecture coupled with a distributed publish/subscribe system 
scales well to large SLAs or those that are processing a high volume of publications. Notice that 
the clients utilize the filtering and in-network aggregation provided by the content-based pub-
lish/subscribe model, and being publish/subscribe clients, automatically benefit from the dynamic 
load-balance and fault-tolerance properties of the system. 

An example of in-network filtering is that only those events from the DailyAvgResponseTime 
client in Figure 19 that report a response time greater than 0.5 seconds are delivered to the SLO 
client. The remaining events are dropped and incur no overhead in the remainder of the network. 
The ResponseTime metric in Figure 19 issues a composite subscription for correlated response 
and invocation events of the Calculate Shipping service. This composite subscription aggregates 
these pairs of events in the network such that, for example, invocation events with no corre-
sponding response events are not propagated. Furthermore, the load balancing algorithms will 
                                                 
5These terms are borrowed from the Web Service Level Agreements (WSLA) specification.  



ensure that the placement of these clients does not result in load imbalances that may affect the 
monitoring of the SLA or the execution of the process it is monitoring. 

SLAs need not be limited to ensuring that services provided by partners perform as expected, 
but may also be used internally by an enterprise to monitor various business measures such as the 
length of time users spend browsing before purchasing an item online, the average time spent on 
a tech support call, or the number of products that are returned within a month. All these moni-
toring tasks can be efficiently performed on existing applications without modifying or restarting 
them. 

 
1.8 Related work 
While publish/subscribe was first implemented in centralized client-server systems, current re-
search focuses mainly on distributed versions. The key benefit of distributed publish/subscribe is 
the natural decoupling of publishers and subscribers. Since the publishers are unconcerned with 
the potential consumers of their data, and the subscribers are unconcerned with the locations of 
the potential producers of interesting data, the client interface of the publish/subscribe system is 
powerful yet simple and intuitive. 

Language model: There are several different classes of publish/subscribe systems. 
Topic-based publish/subscribe (Oki, 1993) has a topic associated with each publication which 
indicates the region of interest for contained data. Clients subscribing to a particular topic would 
receive all publications with the indicated topic. Topics are similar to the notion of groups used in 
the context of group communication (Powell, 1996). Content-based publish/subscribe systems 
add significant functionality by allowing subscribers to specify constraints on the data within a 
publication. In contrast to the topic-based approach, publications are classified according to their 
content. SIENA (Carzanig, 2001), REBECA (Mühl, 2002), Gryphon (Opyrchal, 2000), Le Sub-
scribe (Fabret, 2001), and ToPSS (Liu, 2002; Liu, 2004) are some well-known content-based 
publish/subscribe prototypes.  

Content-based routing: Distributed Content-based publish/subscribe systems typically utilize 
content-based routing in lieu of the standard address-based routing. Messages in content-based 
routing are routed from source to destination based entirely on the content of the messages. Since 
publishers and subscribers are decoupled, a publication is routed towards the interested clients 
without knowing specifically where those clients are and how many such clients exist. Effectively, 
the content-based address of a subscriber is the set of subscriptions it has issued. Two versions of 
content-based routing are known: simple routing, for example Gryphon (Opyrchal, 2000), and 
covering-based routing which is discussed in SIENA (Carzanig, 2001), subscription summariza-
tion (Triantafillou, 2004) and JEDI (Cugola, 2001). Merging-based routing (Mühl, 2002) is an 
advanced version of covering based routing. PADRES (Li, 2005; Li, 2008) extends 
merging-based routing with imperfect merging capabilities that can offer further performance 
benefits. 

General overlays: Most publish/subscribe systems assume an acyclic overlay network. For 
example, REBECA (Fiege, 2002) explores advanced content-based routing algorithms based on 
an acyclic broker overlay network, and JEDI (Cugola, 2001) uses a hierarchical overlay for event 
dispatching. SIENA (Carzaniga, 2001), however, proposes a routing protocol for general overlay 
networks using reverse path forwarding to detect and discard duplicate messages. In SIENA, any 
advertisement, subscription or publication message may be duplicated. As well, routing path ad-
aptations to changing network conditions and the implications for composite event detection are 
not addressed. PADRES (Li, 2008) explores the alternative paths available in a general overlay to 
provide adaptive and robust message delivery in content-based publish/subscribe systems. 

There have been attempts to build content-based publish/subscribe systems over group multi-
cast primitives such as IP multicast (Deering, 1990). To appreciate the challenge in doing so, 
consider a scenario with N subscribers. In a content-based system, each message may be deliv-
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ered to any subset of these subscribers, resulting in 2N “groups”. It is infeasible to manage such 
exponentially increasing numbers of groups, and the algorithms seek to construct a limited num-
ber of groups such that the number of groups any given message must be sent to is minimized and 
the precision of each group is maximized (i.e., minimize the number of group members that are 
not interested in events sent to that group). This is an NP-complete problem (Adler, 2001), but 
there have been attempts to develop heuristics to construct such groups (Opyrchal, 2000; Riabov, 
2002). To avoid these complexities more recent content-based routing algorithms (Carzanig, 2001; 
Cugola, 2001) have abandoned the notion of groups and rely on an overlay topology that per-
forms filtering and routing based on message content. 

There have been a number of content-based publish/subscribe systems that exploit the proper-
ties of distributed hash tables (DHT) to achieve reliability. Hermes (Pietzuch, 2002) builds an 
acyclic routing overlay over the underlying DHT topology but does not consider alternate publi-
cation routing paths as in PADRES. Other approaches (Gupta, 2004; Muthusamy, 2005; 
Aekaterinidis, 2006; Muthusamy, 2007) construct distributed indexes to perform pub-
lish/subscribe matching. PastryStrings (Aekaterinidis, 2006) is a comprehensive infrastructure for 
supporting rich queries with range and comparison predicates on both numerical and string attrib-
utes. It can be applied in a publish/subscribe environment with a broker network implemented 
using a DHT network. The distinguishing feature of PastryStrings is that it shows how to leverage 
specific DHT infrastructures to ensure logarithmic message complexity for both publication and 
subscription processing. Meghdoot (Gupta, 2004) is a content-based publish/subscribe system 
build over the CAN DHT. For an application with k attributes, Meghdoot constructs a CAN space 
of dimension 2k. Subscriptions are mapped to a point in the CAN space and stored at the respon-
sible node. Publications traverse all regions with possible matching subscriptions. Meghdoot han-
dles routing load by splitting a subscription at a peer to its neighbors. P2P-ToPSS (Muthusamy, 
2005), unlike other DHT publish/subscribe systems which focus on large-scale benefits, focuses 
on small-scale networks. It shows that in small networks (with less than 30 peers) DHTs continue 
to exhibit good storage load balance of (key,value) pairs, and lookup costs. PADRES , on the 
other hand, assumes a more traditional dedicated broker network model, one benefit of which is 
the lack of additional network and computation overhead associated with searching a distributed 
index to perform publish/subscribe matching. The model in PADRES can achieve lower delivery 
latencies when there are no failures, but still fall back on alternate path publication routing in case 
of congestion or failure. Admittedly, the DHT protocols, designed for more hostile network, tend 
to be more fault-tolerant than the algorithms in this paper which assume a more reliable, dedi-
cated broker network. 

Publish/subscribe systems have been developed for even more adverse environments such as 
mobile ad-hoc networks (MANET). These networks are inherently cyclic but the protocols (Lee, 
2000; Petrovic, 2005) require periodic refreshing of state among brokers due to the unreliability 
of nodes and links, an overhead that is not required by the work in this paper. As well, MANET 
brokers can exploit wireless broadcast channels to optimize message forwarding. For example, 
brokers in ODMRP (Lee, 2000) do not maintain forwarding tables, but only record if they lie on 
the path between sources and sinks in a given group. Brokers simply broadcast messages to their 
neighbors (discarding duplicates) until the message reaches the destinations. The protocols in 
PADRES, on the other hand, cannot rely on broadcast transmission and also explicitly attempt to 
avoid duplicate message delivery. As well, ODMRP does not support the more complex con-
tent-based semantics. 

Composite Subscriptions: A composite subscription correlates publications over time, and 
describes a complex event pattern. Supporting an expressive subscription language and deter-
mining the location of composite event detection in a distributed environment are difficult prob-
lems. CEA (Pietzuch, 2004) proposes a Core Composite Event Language to express concurrent 
event patterns. The CEA language is compiled into automata for distributed event detection sup-
porting regular expression-type patterns. CEA employs polices to ensure that mobile event detec-



tors are located at favorable locations, such as close to event sources. However, CEA’s distribu-
tion polices do not consider the alternate paths and the dynamic load characteristics of the overlay 
network. 

One of the key challenges in supporting composite subscriptions in a distributed pub-
lish/subscribe system is determining how the subscription should be decomposed and where in 
the network event collection and correlation should occur. While this problem is similar to query 
plan optimization in distributed DBMS (Özsu, 1999) and distributed stream processing (Kumar, 
2006), data in a relation or a stream have a known schema which simplifies matching and routing. 
Moreover, a database query is evaluated once against existing data, while a subscription is evalu-
ated against publications over time. This may result in different optimization strategies and cost 
models. In the IFLOW (Kumar, 2006) distributed stream processing engine, a set of operators are 
installed in the network to process streams. IFLOW nodes are organized in a cluster hierarchy, 
with nodes higher in the hierarchy assigned more responsibility, whereas in PADRES (Li, 2005), 
brokers have equal responsibility. 

Load Balancing: Although distributed content-based publish/subscribe systems have been 
widely studied, load balancing was never directly addressed. The following are various related 
works that propose load balancing techniques in other publish/subscribe approaches. 

Meghdoot (Gupta, 2004) distributes load by replicating or splitting the locally heaviest loaded 
peer in half to share the responsibility of subscription management or event propagation. Such 
partitioning and replication schemes are common load balancing techniques used in other 
DHT-based publish/subscribe systems (Aekaterinidis, 2006; Zhu, 2007). In general, their load 
sharing algorithm is only invoked upon new peers joining the system and peers are assumed to be 
homogeneous. (Chen, 2005) proposed a dynamic overlay reconstruction algorithm called Oppor-
tunistic Overlay that reduces end-to-end delivery delay and also performs load distribution on the 
CPU utilization as a secondary requirement. Load balancing is triggered only when a client finds 
another broker that is closer than its home broker. It is possible that subscriber migrations may 
overload a non-overloaded broker if the load requirements of the migrated subscription exceed 
the load-accepting broker’s processing capacity. Subscription clustering is another technique to 
achieve load balancing in content-based publish/subscribe systems (Wong, 2000; Riabov, 2002; 
Riabov, 2003; Casalicchio, 2007). Subscriptions of similar interests are clustered together at dif-
ferent servers to distribute load. However, architecturally, this technique is not applicable to fil-
ter-based but only to multicast-based publish/subscribe systems. PADRES differs from the prior 
three solutions by proposing a distributed load balancing algorithm for non-DHT filter-based 
publish/subscribe systems that accounts for heterogeneous brokers and subscribers, and distrib-
utes load evenly onto all resources in the system without requiring new client joins. As well, a 
subscriber migration protocol enforces end-user transparency and best-effort delivery to minimize 
message loss. 

Fault-tolerance: Most of the previous work in the fault-tolerant publish/subscribe literature 
take a best-effort approach and fail to provide strict publication delivery guarantees. Gryphon 
(Bhola, 2002) is one of the few systems that ensure a similar level of reliability as in PADRES. 
However, in order to achieve δ-fault-tolerance, the routing information of each Gryphon broker 
must be replicated on δ+1 other nodes. This design is prone to over provisioning of resources. On 
the other hand, if a load balancing mechanism is present to improve the node utilization, there are 
chances that failure of some nodes overwhelms their non-faulty peers (replicas). PADRES im-
proves on these shortcomings by not requiring the assignment of additional replicas. Moreover, 
the incoming traffic to non-faulty nodes in our system is independent of the number of failures. 
This implies that in presence of failures, non-faulty peers observe a much lower load increase 
which is the result of an increase on the number of outgoing messages only. Snoeren et al. (Sno-
eren, 2001) propose another approach to implement a fault-tolerant P/S system which is based on 
the construction of several disjoint paths between each pair of publishers and subscribers. Publi-
cations messages are concurrently forwarded on all disjoint paths enabling the system to tolerate 

Vinod
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multiple failures. However, this implies that even in non-faulty conditions the publication traffic 
can be several times the traffic of the system without fault-tolerance support. In many cases, this 
overhead makes this scheme impractical. On the other hand, this approach has the advantage of 
minimizing the impact of failures on publication delivery delay, as the delay is equal to the deliv-
ery delay of publications propagated on the fastest path. 

 
1.9 Conclusions 
This chapter gave an overview of the PADRES content-based publish/subscribe system. It de-
scribed the message format, subscription language, and data model used in the system. Con-
tent-based routing was discussed with particular emphasis on how routing is enabled in cyclic 
overlays. Cyclic overlays provide redundancy in routes between sources and sinks and thus pro-
duce alternative paths between them. Therefore, unlike acyclic overlays, cyclic overlays can be 
more easily exploited to design a system that can tolerate load imbalances, congestion, and broker 
failures. 

In addition to the ability to route around the affected parts of the network, PADRES also im-
plements other efficient load balancing and recovery algorithms to handle load imbalances and 
broker failures. These techniques were described in details in this chapter. 

To exemplify how content-based publish/subscribe can be used in practice, we presented a 
detailed discussion of example applications that benefit from the content-based nature of the 
paradigm. These applications can also take advantage of the scalability and robustness of PA-
DRES.  

The PADRES code base is released under an open source license 
(http://padres.msrg.utoronto.ca). The release comprises the PADRES publish/subscribe broker, a 
client library that allows third party applications to make use of PADRES, a monitoring client, a 
set of application demonstrations, and the PANDA deployment 
tool(http://research.msrg.utoronto.ca/Padres/PadresDownload). A user and developer 
guide is also available. 

The PADRES publish/subscribe broker is based on a content-based matching engine that sup-
ports the subscription language described in Section 1.2.1, including atomic subscriptions, the 
various forms of historic subscriptions, composite subscriptions with conjunctive and disjunctive 
operators, the isPresent operator, variable bindings, and event correlation with different con-
sumption policies.  The PADRES broker was based on the Jess rule engine (Friedman-Hill,2003), 
not distributed with our release. The released broker is still compatible with the Jess rule engine, 
which can be used instead of the matching engine distributed in the release. Most of the results 
reported in our publications are based on the Jess rule engine as the content-based matching and 
event correlation mechanism for PADRES. All features described in this chapter, except the load 
balancing and the fault tolerance features, are included in the PADRES open source release. 

PADRES is used in several research and development projects. In the eQoSystem project with 
IBM (Jacobsen, 2006; Muthusamy , 2007; Chau, 2008), PADRES constitutes the enterprise ser-
vice bus that enables the monitoring and enforcement of SLAs of composite applications and 
business processes in service oriented architectures. In collaborations with Bell Canada (Jacobsen, 
2007), PADRES serves to study enterprise application integration problems pertaining to the in-
tegration and execution of business processes across existing integration hubs. In collaborations 
with CA and Sun Microsystems, PADRES is used to explore the event-based management of 
business processes and business activity monitoring (Li, 2007). In collaborations with the Chinese 
Academy of Sciences, PADRES is used for service selection (Hu, 2008) and for resource and 
service discovery in computational Grids (Yan, 2009). 

 
 
 

Vinod
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