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Processing Flows of Information: From Data Stream to Complex
Event Processing

GIANPAOLO CUGOLA and ALESSANDRO MARGARA, Politecnico di Milano

A large number of distributed applications requires continuous and timely processing of information as it
flows from the periphery to the center of the system. Examples include intrusion detection systems which
analyze network traffic in real-time to identify possible attacks; environmental monitoring applications
which process raw data coming from sensor networks to identify critical situations; or applications performing
online analysis of stock prices to identify trends and forecast future values.

Traditional DBMSs, which need to store and index data before processing it, can hardly fulfill the
requirements of timeliness coming from such domains. Accordingly, during the last decade, different re-
search communities developed a number of tools, which we collectively call Information flow processing
(IFP) systems, to support these scenarios. They differ in their system architecture, data model, rule model,
and rule language. In this article, we survey these systems to help researchers, who often come from
different backgrounds, in understanding how the various approaches they adopt may complement each
other.

In particular, we propose a general, unifying model to capture the different aspects of an IFP system and
use it to provide a complete and precise classification of the systems and mechanisms proposed so far.
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1. INTRODUCTION

An increasing number of distributed applications requires processing continuously
flowing data from geographically distributed sources at unpredictable rates to obtain
timely responses to complex queries. Examples of such applications come from the
most disparate fields: from wireless sensor networks to financial tickers, from traf-
fic management to click-stream inspection. In the following, we collectively refer to
these applications as the information flow processing (IFP) domain. Likewise we call
the information flow processing (IFP) engine a tool capable of timely processing large
amounts of information as it flows from the peripheral to the center of the system.
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The concepts of timeliness and flow processing are crucial for justifying the need for
a new class of systems. Indeed, traditional DBMSs (i) require data to be (persistently)
stored and indexed before it could be processed and (ii) process data only when explicitly
asked by the users, that is, asynchronously with respect to its arrival. Both aspects
contrast with the requirements of IFP applications. As an example, consider the need
for detecting fire in a building by using temperature and smoke sensors. On the one
hand, a fire alert has to be notified as soon as the relevant data becomes available.
On the other, there is no need to store sensor readings if they are not relevant to fire
detection, while the relevant data can be discarded as soon as the fire is detected, since
all the information they carry (like the area where the fire occurred) should be part of
the fire alert if relevant for the application.

These requirements have led to the development of a number of systems specifically
designed to process information as a flow (or a set of flows) according to a set of pre-
deployed processing rules. Despite having a common goal, these systems differ in a wide
range of aspects, including architecture, data models, rule languages, and processing
mechanisms. In part, this is due to the fact that they were the result of the research
efforts of different communities, each one bringing its own view of the problem and
its background to the definition of a solution, not to mention its own vocabulary [Bass
2007]. After several years of research and development, we can say that two models
emerged and are competing today: the data stream processing model [Babcock et al.
2002] and the complex event processing model [Luckham 2001].

As suggested by its own name, the data stream processing model describes the IFP
problem as processing streams of data coming from different sources to produce new
data streams as output and views this problem as an evolution of traditional data
processing, as supported by DBMSs. Accordingly, data stream management systems
(DSMSs) have their roots in DBMSs but present substantial differences. While tradi-
tional DBMSs are designed to work on persistent data where updates are relatively
infrequent, DSMSs are specialized in dealing with transient data that is continuously
updated. Similarly, while DBMSs run queries just once to return a complete answer,
DSMSs execute standing queries which run continuously and provide updated answers
as new data arrives. Despite these differences, DSMSs resemble DBMSs, especially in
the way they process incoming data through a sequence of transformations based on
common SQL operators, like selections, aggregates, joins, and all the operators defined
in general by relational algebra.

Conversely, the complex event processing model views flowing information items as
notifications of events happening in the external world, which have to be filtered and
combined to understand what is happening in terms of higher-level events. Accordingly,
the focus of this model is on detecting occurrences of particular patterns of (low-level)
events that represent the higher-level events whose occurrence has to be notified to the
interested parties. The contributions to this model come from different communities,
including distributed information systems, business process automation, control sys-
tems, network monitoring, sensor networks, and middleware, in general. The origins
of this approach may be traced back to the publish-subscribe domain [Eugster et al.
2003]. Indeed, while traditional publish-subscribe systems consider each event sepa-
rately from the others and filter them (based on their topic or content) to decide if they
are relevant for subscribers, complex event processing (CEP) systems extend this func-
tionality by increasing the expressive power of the subscription language to consider
complex event patterns that involve the occurrence of multiple, related events.

In this article, we claim that neither of the two aforementioned models may entirely
satisfy the needs of a full-fledged IFP engine, which requires features coming from
both worlds. Accordingly, we draw a general framework to compare the results coming
from the different communities and use it to provide an extensive review of the state

ACM Computing Surveys, Vol. 44, No. 3, Article 15, Publication date: June 2012.



Processing Flows of Information: From Data Stream to Complex Event Processing 15:3

of the art in the area, with the overall goal of reducing the effort to merge the results
produced so far.

In particular, Section 2 describes the IFP domain in more detail, provides an initial
description of the different technologies that have been developed to support it, and
explains the need for combining the best of different worlds to fully support IFP ap-
plications. Section 3 describes a framework to model and analyze the different aspects
that are relevant for an IFP engine from its functional architecture, to its data and
processing models, to the language it provides to express how information has to be
processed, to its runtime architecture. We use this framework in Section 4 to describe
and compare the state of the art in the field, discussing the results of such classification
in Section 5. Finally, Section 6 reviews related work, while Section 7 provides some
conclusive remarks and a list of open issues.

2. BACKGROUND AND MOTIVATION

In this section, we characterize the application domain that we call Information Flow
Processing and motivate why we introduce a new term. We describe the different tech-
nologies that have been proposed to support such a domain and conclude by motivating
our work.

2.1. The IFP Domain

With the term information flow processing (IFP) we refer to an application domain in
which users need to collect information produced by multiple, distributed sources for
processing it in a timely way in order to extract new knowledge as soon as the relevant
information is collected.

Examples of IFP applications come from the most disparate fields. In environmental
monitoring, users need to process data coming from sensors deployed in the field to
acquire information about the observed world, detect anomalies, or predict disasters
as soon as possible [Broda et al. 2009; Event Zero 2010a]. Similarly, several financial
applications require a continuous analysis of stocks to identify trends [Demers et al.
2006]. Fraud detection requires continuous streams of credit card transactions to be
observed and inspected to prevent frauds [Schultz-Moeller et al. 2009]. To promptly
detect and possibly anticipate attacks to a corporate network, intrusion detection sys-
tems have to analyze network traffic in real-time, generating alerts when something
unexpected happens [Debar and Wespi 2001]. RFID-based inventory management per-
forms continuous analysis of RFID readings to track valid paths of shipments and to
capture irregularities [Wang and Liu 2005]. Manufacturing control systems often re-
quire anomalies to be detected and signalled by looking at the information that describe
how the system behaves [Lin and Zhou 1999; Park et al. 2002].

Common to all these examples is the need for processing information as it flows from
the periphery to the center of the system without requiring, at least in principle, the
information to be persistently stored. Once the flowing data has been processed, thereby
producing new information, it can be discarded while the newly produced information
leaves the system as output.1

The broad spectrum of applications domains that require information flow process-
ing in this sense explains why several research communities focused their attention
to the IFP domain, each bringing its own expertise and points of view, but also its
own vocabulary. The result is a typical Tower of Babel syndrome, which generates mis-
understandings among researchers that negatively impact the spirit of collaboration
required to advance the state of the art [Etzion 2007]. This explains why in this article,

1Complex applications may also need to store data, for example, for historical analysis, but in general, this
is not the goal of the IFP subsystem.
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Fig. 1. The high-level view of an IFP system.

we decided to adopt our own vocabulary, moving away from terms like “event,” “data,”
“stream,” or “cloud” to use more general (and unbiased) terms like “information” and
“flow.” In so doing, we neither have the ambition to propose a new standard terminology
nor do we want to contribute to “raising the tower.” Our only desire is to help the reader
look at the field with a mind clear from any bias toward the meaning of the various
terms used.

This goal leads us to model an IFP system, as in Figure 1. The IFP engine is a
tool that operates according to a set of processing rules which describe how incoming
flows of information have to be processed to timely produce new flows as outputs. The
entities entering the IFP engine that create the information flows are called informa-
tion sources. Examples of such information are notifications about events happening
in the observed world or, more generally, any kind of data that reflects some knowl-
edge generated by the source. Information items that are part of the same flow are
neither necessarily ordered nor of the same kind. They are information chunks with
semantics and relationships (including total or partial ordering, in some cases). The
IFP engine takes such information items as input and processes them, as soon as they
are available, according to a set of processing rules which specify how to filter, combine,
and aggregate different flows of information item by item to generate new flows, which
represent the output of the engine. We call information sinks the recipients of such out-
put, while rule managers are the entities in charge of adding or removing processing
rules. In some situations the same entity may play different roles. For example, it is not
uncommon for an information sink to submit the rules that produce the information it
needs.

While this definition is general enough to capture every IFP system, we are interested
in classifying it to encompass some key points that characterize the domain and come
directly from the requirements of the applications we just mentioned. First, it needs
to perform real-time or quasi real-time processing of incoming information to produce
new knowledge (i.e., outgoing information). Second, it needs an expressive language to
describe how incoming information has to be processed, with the ability of specifying
complex relationships among the information items that flow into the engine and are
relevant to sinks. Third, it needs scalability to effectively cope with situations in which
a very large number of geographically distributed information sources and sinks have
to cooperate.

2.2. IFP: One Name, Different Technologies

As we mentioned, IFP has attracted the attention of researchers coming from different
fields. The first contributions came from the database community in the form of active
database systems [McCarthy and Dayal 1989], which were introduced to allow actions to
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automatically execute when given conditions arise. Data stream management systems
(DSMSs) [Babcock et al. 2002] pushed this idea further, to perform query processing
in the presence of continuous data streams.

In the same years that saw the development of DSMSs, researchers with different
backgrounds identified the need for developing systems that are capable of processing
not generic data, but event notifications coming from different sources to identify
interesting situations [Luckham 2001]. These systems are usually known as complex
event processing (CEP) systems.

2.2.1. Active Database Systems. Traditional DBMSs are completely passive, as they
present data only when explicitly asked by users or applications: this form of interaction
is usually called human-active database-passive (HADP). Using this interaction model,
it is not possible to ask the system to send notifications when predefined situations are
detected. Active database systems have been developed to overcome this limitation:
they can be seen as an extension of classical DBMSs, where the reactive behavior can
be moved (totally or in part) from the application layer into the DBMS.

There are several tools classified as active database systems with different software
architectures and functionality and that are oriented toward different application do-
mains; still, it is possible to classify them on the basis of their knowledge model and
execution model [Paton and Dı́az 1999]. The former describes the kind of active rules
that can be expressed, while the latter defines the system’s runtime behavior.

The knowledge model usually considers active rules as composed of three parts.

—Event. The event part defines which sources can be considered as event genera-
tors: some systems only consider internal operators (like a tuple insertion or up-
date), while others also allow external events, like those raised by clocks or external
sensors.

—Condition. The condition part specifies when an event must be taken into account;
for example, we can be interested in some data only if it exceeds a predefined
limit.

—Action. The action part identifies the set of tasks that should be executed as a re-
sponse to an event detection: some systems only allow the modification of the internal
database, while others allow the application to be notified about the identified situ-
ation.

To make this structure explicit, active rules are usually called event condition action
(ECA) rules.

The execution model defines how rules are processed at runtime. Here, five phases
have been identified.

—Signaling. Detection of an event.
—Triggering. Association of an event with the set of rules defined for it.
—Evaluation. Evaluation of the conditional part for each triggered rule.
—Scheduling. Definition of an execution order between selected rules.
—Execution. Execution of all the actions associated to selected rules.

Active database systems are used in three contexts: as a database extension, in
closed database applications, and in open database applications. As a database ex-
tension, active rules refer only to the internal state of the database, for example, to
implement an automatic reaction to constraint violations. In closed database applica-
tions, active rules can support the semantics of the application, but external sources of
events are not allowed. Finally, in open database applications, events may come both
from inside the database and from external sources. This is the domain that is closer
to IFP.
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Fig. 2. The typical model of a DSMS.

2.2.2. Data Stream Management Systems. Even when taking into account external event
sources, active database systems (like traditional DBMS), are built around a persis-
tent storage where all the relevant data is kept and whose updates are relatively
infrequent. This approach negatively impacts their performance when the number of
rules expressed exceeds a certain threshold or when the arrival rate of events (internal
or external) is high. For most applications we classified as IFP, such limitations are
unacceptable.

To overcome them, the database community developed a new class of systems ori-
ented toward processing large streams of data in a timely way: data stream manage-
ment systems (DSMSs). DSMSs differ from conventional DBMSs in several ways.

—Streams are usually unbounded.
—No assumption can be made on data arrival order.
—Size and time constraints make it difficult to store and process data stream elements

after their arrival; one-time processing is the typical mechanism used to deal with
streams.

Users of a DSMS install standing (or continuous) queries, that is, queries that are
deployed once and continue to produce results until removed. Standing queries can
be executed periodically or continuously as new stream items arrive. They introduce
a new interaction model with respect to traditional DBMSs: users do not have to
explicitly ask for updated information; rather, the system actively notifies it according
to installed queries. This form of interaction is usually called database-active human-
passive (DAHP) [Abadi et al. 2003].

Several implementations were proposed for DSMSs. They differ in the semantics
they associate to standing queries. In particular, the answer to a query can be seen as
an append-only output stream or as an entry in a storage that is continuously modified
as new elements flow inside the processing stream. Also, an answer can be either exact,
if the system is supposed to have enough memory to store all the required elements
of input streams’ history, or approximate, if computed on a portion of the required
history [Tatbul et al. 2003; Babcock et al. 2004].

In Figure 2, we report a general model for DSMSs directly taken from [Babu and
Widom 2001]. The purpose of this model is to make several architectural choices and
their consequences explicit. A DSMS is modeled as a set of standing queries Q, one or
more input streams, and four possible outputs.

—Stream is formed by all the elements of the answer that are produced once and never
changed.

—Store is filled with parts of the answer that may be changed or removed at a certain
point in the future. Stream and store together define the current answer to queries
Q.
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Fig. 3. The high-level view of a CEP system.

—Scratch represents the working memory of the system, that is, a repository where
it is possible to store data that is not part of the answer but that may be useful for
computing the answer.

—Throw is a sort of recycle bin used to throw away unneeded tuples.

To the best of our knowledge, this model is the most complete for to defining the
behavior of DSMSs. It explicitly shows how DSMSs alone cannot entirely cover the
needs for IFP: being an extension of database systems, DSMSs focus on producing
query answers which are continuously updated to adapt to the constantly changing
contents of their input data. Detection and notification of complex patterns of elements
involving sequences and ordering relations are usually out of the scope of these systems.

2.2.3. Complex Event Processing Systems. The preceding limitation originates from the
same nature of DSMSs, which are generic systems that leave the responsibility of
associating a semantics to the data being processed to their clients. Complex event
processing (CEP) systems adopt the opposite approach. As shown in Figure 3, they
associate a precise semantics to the information items being processed: they are noti-
fications of events that happened in the external world and observed by sources. The
CEP engine is responsible for filtering and combining such notifications to understand
what is happening in terms of higher-level events (sometimes also called composite
events or situations) to be notified to sinks, which act as event consumers.

Historically, the first event processing engines [Rosenblum and Wolf 1997] focused
on filtering incoming notifications to extract only the relevant ones, thus supporting an
interaction style known as publish-subscribe, a message-oriented interaction paradigm
based on an indirect addressing style. Users express their interest in receiving some
information by subscribing to specific classes of events, while information sources pub-
lish events without directly addressing the receiving parties. These are dynamically
chosen by the publish-subscribe engine based on the received subscriptions.

Conventional publish-subscribe comes in two flavors: topic and content-based
[Eugster et al. 2003]. Topic-based systems allow sinks to subscribe only to predefined
topics. Publishers choose the topic each event belongs to before publishing. Content-
based systems allow subscribers to use complex event filters to specify the events they
want to receive based on their content. Several languages have been used to represent
event content and subscription filters, from simple attribute/value pairs [Carzaniga
and Wolf 2003] to complex XML schema [Altinel and Franklin 2000; Ashayer et al.
2002].

Whatever language is used, subscriptions may refer to single events only [Aguilera
et al. 1999] and cannot take into account the history of already received events or
relationships between events. To this end, CEP systems can be seen as an extension
to traditional publish-subscribe, which allow subscribers to express their interest in
composite events. As their name suggests, these are events whose occurrence depends
on the occurrence of other events, like the fact that a fire is detected when three
different sensors located in an area smaller than 100 m2 report a temperature greater
than 60◦C, within 10 s, one from the other.
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Fig. 4. CEP as a distributed service.

CEP systems put great emphasis on the issue that represents the main limitation
of most DSMSs: the ability to detect complex patterns of incoming items involving
sequencing and ordering relationships. Indeed, the CEP model relies on the ability to
specify composite events through event patterns that match incoming event notifica-
tions on the basis of their content and on some ordering relationships on them.

This feature also has an impact on the architecture of CEP engines. In fact, these
tools often have to interact with a large number of distributed and heterogeneous in-
formation sources and sinks which observe the external world and operate on it. This
is typical of most CEP scenarios, such as environmental monitoring, business process
automation, and control systems. This also suggests, at least in the most advanced
proposals, the adoption of a distributed architecture for the CEP engine itself, orga-
nized (see Figure 4) as a set of event brokers (or event processing agents [Etzion and
Niblett 2010]) connected in an overlay network (the event processing network), which
implements specialized routing and forwarding functions with scalability as their main
concern. For the same reason, CEP systems research focused on optimizing parame-
ters, like bandwidth utilization and end-to-end latency, which are usually ignored in
DSMSs.

CEP systems can thus be classified on the basis of the architecture of the CEP engine
(centralized, hierarchical, acyclic, peer-to-peer) [Carzaniga et al. 2001; Eugster et al.
2003], the forwarding schemes adopted by brokers [Carzaniga and Wolf 2002], and
the way processing of event patterns is distributed among brokers [Amini et al. 2006;
Pietzuch et al. 2006].

2.3. Our Motivation

At the beginning of this section, we introduced IFP as a new application domain de-
manding timely processing information flows according to their content and the rela-
tionships among its constituents. IFP engines have to filter, combine, and aggregate
a huge amount of information according to a given set of processing rules. Moreover,
they usually need to interact with a large number of heterogeneous information sources
and sinks, possibly dispersed over a wide geographical area. Users of such systems can
be high-level applications, other processing engines, or end users, possibly in mobile
scenarios. For these reasons, expressiveness, scalability, and flexibility are key require-
ments in the IFP domain.

We have seen how IFP has been addressed by different communities, leading to two
classes of systems: active databases, lately subsumed by DSMSs on one side, and CEP
engines on the other. DSMSs mainly focuses on flowing data and data transformations.
Only few approaches allow the easy capture of sequences of data involving complex
ordering relationships, not to mention taking into account the possibility of performing
filtering, correlation, and aggregation of data directly in-network, as streams flow
from sources to sinks. Finally, to the best of our knowledge, network dynamics and
heterogeneity of processing devices have never been studied in depth.

On the other hand, CEP engines—both those developed as extensions of publish-sub-
scribe middleware and those developed as totally new systems—define a quite different
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Fig. 5. The functional architecture of an IFP system.

model. They focus on processing event notifications with a special attention to their
ordering relationships to capture complex event patterns. Moreover, they target the
communication aspects involved in event processing, such as the ability to adapt to
different network topologies, as well as to various processing devices, together with
the ability to process information directly in-network, to distribute the load and reduce
communication cost.

As we claimed in Section 1, IFP should focus both on effective data processing,
including the ability to capture complex ordering relationships among data, and on
efficient event delivery, including the ability to process data in a strongly distributed
fashion. To pursue these goals, researchers must be able to understand what has
been accomplished in the two areas, and how they complement each other in order to
combine them. As we will see in Section 4, some of the most advanced proposals in
both areas go in this direction. This work is a step in the same direction, as it provides
an extensive framework to model an IFP system and uses it to classify and compare
existing systems.

3. A MODELING FRAMEWORK FOR IFP SYSTEMS

In this section, we define a framework to compare the different proposals in the area of
IFP. It includes several models that focus on the different aspects relevant for an IFP
system.

3.1. Functional Model

Starting from the high-level description of Figure 1, we define an abstract architecture
that describes the main functional components of an IFP engine. This architecture
brings two contributions: (i) it allows a precise description of the functionalities offered
by an IFP engine; (ii) it can be used to describe the differences among the existing IFP
engines, providing a versatile tool for their comparison.

As we said before, an IFP engine takes flows of information coming from different
sources as its input, processes them, and produces other flows of information directed
toward a set of sinks. Processing rules describe how to filter, combine, and aggregate
incoming information to produce outgoing information. This general behavior can be
decomposed in a set of elementary actions performed by the different components
shown in Figure 5.

Incoming information flows enter the receiver, whose task is to manage the chan-
nels connecting the sources with the IFP engine. It implements the transport protocol
adopted by the engine to move information around the network. It also acts as a de-
multiplexer, receiving incoming items from multiple sources and sending them, one
by one, to the next component in the IFP architecture. As shown in the figure, the
receiver is also connected to the clock—the element of our architecture that is in charge
of periodically creating special information items that hold the current time. Its role is
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to model those engines that allow periodic (as opposed to purely reactive) processing of
their inputs; as such, not all engines currently available implement it.

After traversing the receiver, the information items coming from the external sources
or generated by the clock enter the main processing pipe, where they are elaborated
according to the processing rules currently stored into the rules store.

From a logical point of view, we find it important to consider rules as composed
by two parts: C → A, where C is the condition part, while A is the action part. The
condition part specifies the constraints that have to be satisfied by the information
items entering the IFP engine to trigger the rule, while the action part specifies what
to do when the rule is triggered.

This distinction allows us to split information processing into two phases: a detec-
tion phase and a production phase. The former is realized by the decider, which gets
incoming information from the receiver, item by item and looks at the condition part of
rules to find those enabled. The action part of each triggered rule is then passed to the
producer for execution.

Notice that the decider may need to accumulate information items into a local storage
until the constraints of a rule are entirely satisfied. As an example, consider a rule
stating that a fire alarm has to be generated (action part) when both smoke and high
temperature are detected in the same area (condition part). When information about
smoke reaches the decider, the rule cannot yet fire, but the decider has to record
this information to trigger the rule when high temperature is detected. We model the
presence of such memory through the history component inside the decider.

The detection phase ends by passing to the producer an action A and a sequence of
information items seq for each triggered rule, that is, those items (accumulated in the
history by the decider) that actually triggered the rule. The action A describes how the
information items in seq have to be manipulated to produce the expected results of
the rule. The maximum allowed length of the sequence seq is an important aspect for
characterizing the expressiveness of the IFP engine. There are engines where seq is
composed by a single item; in others the maximum length of seq can be determined by
looking at the set of currently deployed rules (we say that seq is bounded); finally, seq
is unbounded when its maximum length depends on the information actually entering
the engine.

The knowledge base represents, from the perspective of the IFP engine, a read-only
memory that contains information used during the detection and production phases.
This component is not present in all IFP engines; usually, it is part of those systems—
developed by the database research community—which allow for accessing persistent
storage (typically in the form of database tables) during information processing.2

Finally, the forwarder is the component in charge of delivering the information items
generated by the producer to the expected sinks. Like the receiver, it implements the
protocol to transport information along the network up to the sinks.

In summary, an IFP engine operates as follows: each time a new item (including
those periodically produced by the clock) enters the engine through the receiver, a
detection-production cycle is performed. Such a cycle first (detection phase) evaluates
all the rules currently present in the rules store to find those whose condition part is
true. Together with the newly arrived information, this first phase may also use the
information present in the knowledge base. At the end of this phase, we have a set of
rules that have to be executed, each coupled with a sequence of information items: those
that triggered the rule and that were accumulated by the decider in the history. The
producer takes this information and executes each triggered rule (i.e., its action part).

2Issues about initialization and management of the Knowledge Base are outside the scope of an IFP engine,
which simply uses it as a preexisting repository of stable information.
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Fig. 6. Selection policy: an example.

In executing the rules, the producer may combine the items that triggered the rule
(as received by the decider), together with the information present in the knowledge
base, to produce new information items. Usually, these new items are sent to sinks
(through the forwarder), but in some engines, they can also be sent internally, to be
processed again (recursive processing). This allows information to be processed in steps
by creating new knowledge at each step, for example, the composite event “fire alert,”
generated when smoke and high temperature are detected, can be further processed to
notify a “chemical alert” if the area of fire (included in the “fire alert” event) is close to a
chemical deposit. Finally, some engines allow actions to change the rule set by adding
new rules or removing them.

3.2. Processing Model

Together with the last information item entering the decider, the set of deployed rules,
and the information stored in the history and in the knowledge base, three additional
concepts concur to uniquely determine the output of a single detection-production cycle:
the selection, consumption, and load-shedding policies adopted by the system.

Selection policy. In the presence of situations in which a single rule R may fire more
than once, picking different items from the history, the selection policy [Zimmer 1999]
specifies if R has to fire once or more times and which items are actually selected and
sent to the producer.

As an example, consider the situation in Figure 6, which shows the information
items (modeled as capital letters) sent by the receiver to the decider at different times,
together with the information stored by the decider into the history. Suppose that a
single rule is present in the system, whose condition part (the action part is not relevant
here) is A ∧ B, meaning that something has to be done each time both A and B are
detected, in any order. At t = 0, information A exits the receiver, starting a detection-
production cycle. At this time, the pattern A ∧ B is not detected, but the decider has
to remember that A has been received, since this can be relevant for recognizing the
pattern in the future. At t = 1, a new A exits the receiver. Again, the pattern cannot
be detected, but the decider stores the new A into the history. Things change at t = 2,
when information B exits the receiver, triggering a new detection-production cycle.
This time, not only is the condition part of the rule is satisfied, but it is satisfied by two
possible sets of items: one includes item B with the first A received, the other includes
the same B with the second A received.

Systems that adopt this multiple selection policy allow each rule to fire more than
once at each detection-production cycle. This means that in the preceding situation,
the decider would send two sequences of items to the producer—one including item
B followed by the A received at t = 0, the other including item B followed by the A
received at t = 1.
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Fig. 7. Consumption policy: an example.

Conversely, systems that adopt a single selection policy allow rules to fire at most
once at each detection-production cycle. In the same preceding situation, the decider of
such systems would choose one of the two As received, sending a single sequence to the
producer: the sequence composed of item B followed by the chosen A. It is worth noting
that the single selection policy actually represents a whole family of policies depending
on the items actually chosen among all possible ones. In our example, the decider could
select the first or the second A.

Finally, some systems offer a programmable policy, by including special language
constructs that enable users to decide, often rule by rule, if they have to fire once
or more than once at each detection-production cycle, and in the former case, which
elements have to be actually selected among the different possible combinations.

Consumption policy. Related with the selection policy is the consumption policy
[Zimmer 1999], which specifies whether or not an information item selected in a given
detection-production cycle can be considered again in future processing cycles.

As an example, consider the situation in Figure 7, where we assume again that the
only rule deployed into the system has a condition part A∧ B. At time t = 0, an instance
of information Aenters the decider; at time t = 1, the arrival of B satisfies the condition
part of the rule, so item A and item B are sent to the producer. At time t = 2, a new
instance of B enters the system. In such a situation, the consumption policy determines
if preexisting items A and B have still to be taken into consideration to decide if rule
A∧ B is satisfied. The systems that adopt the zero consumption policy do not invalidate
used information items, which can trigger the same rule more than once. Conversely,
the systems that adopt the selected consumption policy consume all the items once they
have been selected by the decider. This means that an information item can be used at
most once for each rule.

The zero consumption policy is the most widely adopted in DSMSs. In fact, DSMSs
usually introduce special language constructs (windows) to limit the portion of an input
stream from which elements can be selected (i.e., the valid portion of the history);
however, if an item remains in a valid window for different detection-production cycles,
it can trigger the same rule more than once. Conversely, CEP systems may adopt either
the zero or the selected policy, depending on the target application domain and on the
processing algorithm used.

As it happens for the selection policy, some systems offer a programmable selection
policy by allowing users to explicitly state, rule by rule, which selected items should be
consumed after selection and which have to remain valid for future use.

Load shedding. Load shedding is a technique adopted by some IFP systems to deal
with bursty inputs. It can be described as an automatic drop of information items when
the input rate becomes too high for the processing capabilities of the engine [Tatbul
et al. 2003]. In our functional model, we let the decider be responsible for load shedding,
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Fig. 8. The deployment architecture of an IFP engine.

since some systems allow users to customize its behavior (i.e., deciding when, how, and
what to shed) directly within the rules. Clearly, those systems that adopt a fixed and
predetermined load-shedding policy could, in principle, implement it into the receiver.

3.3. Deployment Model

Several IFP applications include a large number of sources and sinks—possibly dis-
persed over a wide geographical area—producing and consuming a large amount of
information that the IFP engine has to process in a timely manner. Hence, an impor-
tant aspect to consider is the deployment architecture of the engine, that is, how the
components that implement the functional architecture in Figure 5 can be distributed
over multiple nodes to achieve scalability.

We distinguish between centralized vs. distributed IFP engines, further differentiat-
ing the latter into clustered vs. networked.

With reference to Figure 8, we define an IFP engine as centralized when the actual
processing of information flows coming from sources is realized by a single node in the
network, in a pure client-server architecture. The IFP engine acts as the server, while
sources, sinks, and rule managers acts as clients.

To provide better scalability, a distributed IFP engine processes information flows
through a set of processors—each running on a different node of a computer network—
which collaborate to perform the actual processing of information. The nature of this
network of processors allows for the further classification of distributed IFP engines. In
a clustered engine, scalability is pursued by sharing the effort of processing incoming
information flows among a cluster of strongly connected machines, usually part of the
same local area network. In a clustered IFP engine, the links connecting processors
among themselves perform much better than the links connecting sources and sinks
with the cluster itself. Furthermore, the processors are in the same administrative
domain. Several advanced DSMSs are clustered.

Conversely, a networked IFP engine focuses on minimizing network usage by dis-
persing processors over a wide area network, with the goal of processing information
as close as possible to the sources. As a result, in a networked IFP engine, the links
among processors are similar to the links connecting sources and sinks to the engine
itself (usually, the closer processor in the network is chosen to act as an entry point to
the IFP engine), while processors are widely distributed and usually run in different
administrative domains. Some CEP systems adopt this architecture.

In summary, in seeking better scalability, clustered and networked engines focus
on different aspects: the former on increasing the available processing power by shar-
ing the workload among a set of well-connected machines, the latter on minimizing
bandwidth usage by processing information as close as possible to the sources.

3.4. Interaction Model

With the term interaction model, we refer to the characteristics of the interaction
among the main components that form an IFP application. With reference to Figure 1,
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we distinguish among three different submodels. The observation model refers to the
interaction between information sources and the IFP engine. The notification model
refers to the interaction between the engine and the sinks. The forwarding model de-
fines the characteristics of the interaction among processors in the case of a distributed
implementation of the engine.

We also distinguish between a push and a pull interaction style [Rosenblum and Wolf
1997; Cugola et al. 2001]. In a pull observation model, the IFP engine is the initiator of
the interaction that brings information from sources to the engine; otherwise, we have
a push observation model. Likewise, in a pull notification model, the sinks have the
responsibility of pulling information relevant for them from the engine; otherwise, we
have a push notification model. Finally, the forwarding model is pull if each processor
is reponsible for pulling information from the processor upstream in the chain from
sources to sinks; we have a push model otherwise. While the push style is the most
common in the observation model, notification model, and especially in the forwarding
model, a few systems exist which prefer a pull model or supports both. We survey them
in Section 4.

3.5. Data Model

The various IFP systems available today differ in how they represent single informa-
tion items flowing from sources to sinks and in how they organize them in flows. We
collectively refer to both issues with the term data model.

As we mentioned in Section 2, one of the aspects that distinguishes DSMSs from CEP
systems is that the former manipulate generic data items, while the latter manipulate
event notifications. We refer to this aspect as the nature of items. It represent a key
issue for an IFP system, as it impacts several other aspects, like the rule language. We
come back to this issue later.

A further distinction among IFP systems—orthogonal with respect to the nature of
the information items they process—is the way such information items are actually
represented, that is, their format. The main formats adopted by currently available
IFP systems are tuples, either typed or untyped; records, organized as sets of key-value
pairs; objects, as in object-oriented languages or databases; or XML documents.

A final aspect regarding information items is the ability of an IFP system to deal with
uncertainty—modeling and representing it explicitly when required [Liu and Jacobsen
2004; Wasserkrug et al. 2008]. In many IFP scenarios, in fact, information received
from sources has an associated degree of uncertainty. As an example, if sources were
only able to provide rounded data [Wasserkrug et al. 2008], the system could associate
such data with a level of uncertainty, instead of accepting it as a precise information.

Besides single information items, we classify IFP systems based on the nature of in-
formation flows, distinguishing between systems whose engine processes homogeneous
information flows and those that may also manage heterogeneous flows.

In the first case, all the information items in the same flow have the same format, for
examples, if the engine organizes information items as tuples, all the items belonging
to the same flow must have the same number of fields. Most DSMSs belong to this class.
They view information flows as typed data streams which they manage as transient,
unbounded database tables to be filtered and transformed while they get filled by data
flowing into the system.

In the other case, engines allow different types of information items in the same
flow; for example, one record with four fields, followed by one with seven, and so on.
Most CEP engines belong to this class. Information flows are viewed as heterogeneous
channels connecting sources with the CEP engine. Each channel may transport items
(i.e., events) of different types.
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3.6. Time Model

With the term time model, we refer to the relationship between the information items
flowing into the IFP engine and the passing of time. More precisely, we refer to the abil-
ity of the IFP system of associating some kind of happened-before relationship [Lamport
1978] to information items.

As we mentioned in Section 2, this issue is very relevant, as a whole class of IFP
systems (namely CEP engines) is characterized by the event notifications—a spe-
cial kind of information strongly related with time. Moreover, the availability of a
native concept of ordering among items has often an impact on the operators of-
fered by the rule language. As an example, without a total ordering among items,
it is not possible to define sequences and all the operators meant to operate on
sequences.

Focusing on this aspect, we distinguish four cases. First, there are systems that do
not consider this issue as prominent. Several DSMSs, in fact, do not associate any
special meaning to time. Data flows into the engine within streams, but time stamps
(when present) are used mainly to order items at the frontier of the engine (i.e., within
the receiver), and they are lost during processing. The only language construct based
on time, when present, is the windowing operator (see Section 3.8), which allows one
to select the set of items received in a given time span. After this step, the ordering is
lost, and time stamps are not available for further processing. In particular, the order-
ing (and time stamps) of the output stream are conceptually separate from the ordering
(and time stamps) of the input streams. In this case, we say that the time model is
stream-only.

At the opposite of the spectrum are those systems, like most CEP engines, which
associate each item with a times tamp that represent an absolute time, usually in-
terpreted as the time of occurrence of the related event. Hence, time stamps define a
total ordering among items. In such systems, time stamps are fully exposed to the rule
language, which usually provide advanced constructs based on them, like sequences
(see Section 3.8). Notice how such kinds of times tamps can be given by sources when
the event is observed or by the IFP engine as it receives each item. In the former case,
a buffering mechanism is required to cope with out-of-order arrivals [Babcock et al.
2002].

Another case is that of systems that associate each item with some kind of label,
which—while not representing an absolute instant in time—can define a partial or-
dering among items, usually reflecting some kind of causal relationship, that is, the
fact that the occurrence of an event was caused by the occurrence of another event.
Again, what is important for our model is the fact that such labels and the ordering
they impose are fully available to the rule language. In this case, we say that the time
model is causal.

Finally, there is the case of systems that associate items with an interval, that is,
two time stamps taken from a global time, usually representing the time when the
related event started and the time when it ended. In this case, depending on the
semantics associated with intervals, a total or a partial ordering among items can be
defined [Galton and Augusto 2002; Adaikkalavan and Chakravarthy 2006; White et al.
2007].

3.7. Rule Model

Rules are much more complex entities than data. Looking at existing systems, we can
find many different approaches to represent rules, which depend on the adopted rule
language. However, we can roughly classify them into two macro classes: transforming
rules and detecting rules.
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Transforming rules define an execution plan composed of primitive operators con-
nected to each other in a graph. Each operator takes several flows of information items
as inputs and produces new items, which can be forwarded to other operators or directly
sent out to sinks. The execution plan can be either user-defined or compiled. In the first
case, rule managers are allowed to define the exact flow of operators to be executed;
in the second case, they write their rules in a high-level language which the system
compiles into an execution plan. The latter approach is adopted by a wide number of
DSMSs which express rules using SQL-like statements.

As a final remark, we notice that transforming rules are often used with homogeneous
information flows, so that the definition of an execution plan can take advantage of the
predefined structure of input and output flows.

Detecting rules are those that present an explicit distinction between a condition and
an action part. Usually, the former is represented by a logical predicate that captures
patterns of interest in the sequence of information items, while the latter uses ad
hoc constructs to define how relevant information has to be processed and aggregated
to produce new information. Examples of detecting rules can be found in many CEP
systems, where they are adopted to specify how new events originate from the detection
of others. Other examples can be found in active databases, which often use detecting
rules to capture undesired sequences of operations within a transaction (the condition),
in order to output a roll back command (the action) as soon as the sequence is detected.

The final issue we address in our rule model is the ability to deal with uncertainty [Liu
and Jacobsen 2004; Wasserkrug et al. 2008; O’Keeffe and Bacon 2010]. In particular,
some systems allow for distinguishing between deterministic and probabilistic rules.
The former define their outputs deterministically from their inputs, while the latter
allow a degree of uncertainty (or a confidence) to be associated with the outputs. Notice
that the issue is only partially related with the ability to manage uncertain data (see
Section 3.5). Indeed, a rule could introduce a certain degree of uncertainty, even in the
presence of definite and precise inputs. As an example, one could say that there is a good
probability of fire if a temperature higher than 70oC is detected. The input information
is precise, but the rule introduces a certain degree of uncertainty of knowledge. (Other
situations could explain the raising of temperature).

3.8. Language Model

The rule model described in the previous section provides a first characterization of the
languages used to specify processing rules in currently available IFP systems. Here
we give a more precise and detailed description of such languages: in particular, we
first define the general classes into which all existing languages can be divided, and
then we provide an overview of all the operators we encountered during the analysis
of existing systems. For each operator, we specify if and how it can be defined inside
the aforementioned classes.

3.8.1. Language Type. Following the classification introduced into the rule model, the
languages used in existing IFP systems can be divided into the following two classes.

—Transforming languages define transforming rules, specifying one or more opera-
tions that process the input flows by filtering, joining, and aggregating received
information to produce one or more output flows. Transforming languages are the
most commonly used in DSMSs. They can be further divided into two classes.
—Declarative languages express processing rules in a declarative way, that is, by

specifying the expected results of the computation rather than the desired ex-
ecution flow. These languages are usually derived from relational languages, in
particular, relational algebra and SQL [Eisenberg and Melton 1999], which they
extend with additional ad hoc operators to better support flowing information.
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—Imperative languages define rules in an imperative way by letting the user specify
a plan of primitive operators which the information flows have to follow. Each
primitive operator defines a transformation over its input. Usually, systems that
adopt imperative languages offer visual tools to define rules.

—Detecting or pattern-based languages define detecting rules by separately specifying
the firing conditions and the actions to be taken when such conditions hold. Condi-
tions are usually defined as patterns that select matching portions of the input flows
using logical operators, content, and timing constraints; actions define how the se-
lected items have to be combined to produce new information. This type of languages
is common in CEP systems, which aim to detect relevant information items before
starting their processing.

It is worth mentioning that existing systems sometime allow users to express rules
using more than one paradigm. For example, many commercial systems offer both a
declarative language for rule creation and a graphical tool for connecting defined rules
in an imperative way. Moreover, some existing declarative languages embed simple
operators for pattern detection, blurring the distinction between transforming and
detecting languages.

As a representative example for declarative languages, let us consider CQL [Arasu
et al. 2006], created within the Stream project [Arasu et al. 2003] and currently adopted
by Oracle [Oracle 2010]. CQL defines three classes of operators: relation-to-relation
operators are similar to the standard SQL operators and define queries over database
tables; stream-to-relation operators are used to build database tables selecting portions
of a given information flow; while relation-to-stream operators create flows starting
from queries on fixed tables. Stream-to-stream operators are not explicitly defined, as
they can be expressed using the existing ones. Here is an example of a CQL rule.

Select IStream(*)
From F1 [Rows 5], F2 [Rows 10]
Where F1.A = F2.A

(1)

This rule isolates the last five elements of flow F1 and the last ten elements of flow F2
(using the stream-to-relation operator [Rows n]), then combines all elements having
a common attribute A (using the relation-to-relation operator Where), and produces a
new flow with the created items (using the relation-to-stream operator IStream).

Imperative languages are well represented by Aurora’s Stream Query Algebra
(SQuAl), which adopts a graphical representation called boxes and arrows [Abadi et al.
2003]. In Example (2), we show how it is possible to express a rule similar to the one
we introduced in Example (1) using Aurora’s language. The tumble window operator
selects portions of the input stream according to given constrains, while join merges
elements having the same value for attribute A.

(2)

Tumble Window

Tumble Window

Join (S1.A = S2.A)

S1

S2
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Detecting languages can be exemplified by the composite subscription language of
Padres [Li and Jacobsen 2005]. Example (3) shows a rule expressed in such a language.

A(X>0) & (B(Y=10);[timespan:5] C(Z<5))[within:15]. (3)

A, B, and C represent item types or topics, while X, Y, and Z are inner fields of items.
After the topic of an information item has been determined, filters on its content are
applied, as in content-based publish-subscribe systems. The rule of Example (3) fires
when an item of type A having an attribute X > 0 enters the systems and also an item
of type B with Y = 10 is detected, followed (in a time interval of 5–15 s) by an item of
type C with Z < 5. Like other systems conceived as an evolution of traditional publish-
subscribe middleware, Padres defines only the detection part of rules, the default and
implicit action being that of forwarding a notification of the detected pattern to proper
destinations. However, more expressive pattern languages exist which allow complex
transformations to be performed on selected data.

In the following, whenever possible, we use the three languages presented here to
build the examples we need.

3.8.2. Available Operators. We now provide a complete list of all the operators that we
found during the analysis of existing IFP systems. Some operators are typical of only
one of the classes previously defined, while others cross the boundaries of classes. In
the following, we highlight (whenever possible) the relationship between each operator
and the language types in which it may appear.

In general, there is no direct mapping between available operators and language
expressiveness: usually it is possible to express the same rule combining different sets
of operators. Whenever possible, we will show such equivalence, especially if it involves
operators provided by different classes of languages.

Single-Item Operators. A first kind of operator provided by existing IFP systems
are single-item operators, that is, those processing information items one by one. Two
classes of single-item operators exist.

—Selection operators filter items according to their content, discarding elements that
do not satisfy a given constraint. As an example, they can be used to keep only the
information items that contain temperature readings whose value is greater than
20◦C.

—Elaboration operators transform information items. As an example, they can be used
to change a temperature reading, converting from Celsius to Fahrenheit. Among
elaboration operators, it is worth mentioning those coming from relational algebra.
—Projection extracts only part of the information contained in the considered item.

As an example, it is used to process items containing data about a person in order
to extract only the name.

—Renaming changes the name of a field in languages based on records.

Single-item operators are always present; declarative languages usually inherit
selection, projection, and renaming from relational algebra, while imperative lan-
guages offer primitive operators both for selection and for some kind of elaboration.
In pattern-based languages, selection operators are used to select those items that
should be part of a complex pattern. Notably, they are the only operators available in
publish-subscribe systems for choosing items to be forwarded to sinks. When allowed,
elaborations can be expressed inside the action part of rules, where it is possible to
define how selected items have to be processed.
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Logic Operators. Logic operators are used to define rules that combine the detection
of several information items. They differ from sequences (see next) in that they are
order independent, that is, they define patterns that rely only on the detection (or
non-detection) of information items and not on some specific ordering relation holding
among them.

—A conjunction of items I1, I2, . . . In is satisfied when all the items I1, I2, . . . In have
been detected.

—A disjunction of items I1, I2, . . . In is satisfied when at least one of the information
items I1, I2, . . . In has been detected.

—A repetition of an information item I of degree 〈m, n〉 is satisfied when I is detected
at least m times and not more than n times. (It is a special form of conjunction).

—A negation of an information item I is satisfied when I is not detected.

Usually it is possible to combine such operators with each other or with other opera-
tors to form more complex patterns. For example, it is possible to specify disjunctions of
conjunctions of items or to combine logic operators and single-item operators to dictate
constraints both on the content of each element and on the relationships among them.

The use of logic operators allows for the definition of expressions whose values cannot
be verified in a finite amount of time, unless explicit bounds are defined for them. This
is the case of repetition and negation, which require elements to remain undetected in
order to be satisfied. For this reason, existing systems combine these operators with
other linguistic constructs known as windows (defined later).

Logic operators are always present in pattern-based languages, where they represent
the typical way of combining information items. Example (4) shows how a disjunction
of two conjunctions can be expressed using the language of Padres (A, B, C, and D are
simple selections).

(A & B) || (C & D) (4)

On the contrary, declarative and imperative languages do not provide logic operators
explicitly; however, they usually allow conjunctions, disjunctions, and negations to be
expressed using rules that transform input flows. Example (5) shows how a conjunction
can be expressed in CQL: the From clause specifies that we are interested in considering
data from both flows F1 and F2.

Select IStream(F1.A, F2.B)
From F1 [Rows 50], F2 [Rows 50]

(5)

Sequences. Similar to logic operators, sequences are used to capture the arrival of
a set of information items, but they take into consideration the order of arrival. More
specifically, a sequence defines an ordered set of information items I1, I2, . . . In, which
is satisfied when all the elements I1, I2, . . . In have been detected in the specified order
(see Section 3.6).

The sequence operator is present in many pattern-based languages, while trans-
forming languages usually do not provide it explicitly. Still, in such languages, it is
sometimes possible (albeit less natural) to mimic sequences, for example, when the
ordering relation is based on a time stamp field explicitly added to information items,
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as in the following example.3

Select IStream(F1.A, F2.B)
From F1 [Rows 50], F2 [Rows 50]
Where F1.time stamp < F2.time stamp

(6)

Iterations. Iterations express possibly unbounded sequences of information items
satisfying a given iterating condition. Like sequences, iterations rely on the ordering of
items. However, they do not define the set of items to be captured explicitly but, rather,
implicitly using the iterating condition.

PATTERN SEQ(Alert a, Shipment+ b[ ])
WHERE skip till any match(a, b[ ]) {
a.type = ’contaminated’ and
b[1].from = a.site and
b[i].from = b[i-1].to }
WITHIN 3 hours

(7)

Example (7) shows an iteration written in the Sase+ language [Gyllstrom et al.
2008]. The rule detects contamination in a food supply chain: it captures an alert for a
contaminated site (item a) and reports all possible series of infected shipments (items
b[i]). Iteration is expressed using the + operator (usually called Kleene plus [Agrawal
et al. 2008]), defining sequences of one or more Shipment information items. The iter-
ating condition b[i]. f rom = b[i − 1].to specifies the collocation condition between each
shipment and the preceding one. Shipment information items need not be contiguous
within the input flow; intermediate items are simply discarded (skip till any match).
The length of captured sequences is not known a priori but depends on the actual
number of shipments from site to site. To ensure the termination of pattern detection,
a time bound is expressed using the WITHIN operator (see Windows, next).

While most pattern-based languages include a sequence operator, it is less com-
mon to find iterations. In addition, like sequences, iterations are generally not pro-
vided in transforming languages. However, some work investigated the possibility of
including sequences and iterations in declarative languages (e.g., [Sadri et al. 2004]).
These efforts usually result in embedding pattern detection into traditional declarative
languages.

As a final remark, iterations are strictly related with the possibility for an IFP
system to read its own output and to use it for recursive processing. In fact, if a system
provides both a sequence operator and recursive processing, it can mimic iterations
through recursive rules.

Windows. As mentioned before, it is often necessary to define which portions of the
input flows have to be considered during the execution of operators. For this reason,
almost all the languages used in existing systems define windows. Windows cannot
be properly considered as operators; rather, they are language constructs that can be
applied to operators to limit the scope of their action.

To be more precise, we can observe that operators can be divided into two classes:
blocking operators, which need to read the whole input flows before producing results,
and non-blocking operators, which can successfully return their results as items enter
the system [Babcock et al. 2002]. An example of a blocking operator is negation, which

3CQL adopts a stream-based time model. It associates implicit time stamps to information items and use
them in time-based windows, but they cannot be explicitly addressed within the language; consequently they
are not suitable for defining sequences.
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has to process the entire flow before deciding that the searched item is not present. The
same happens to repetitions when an upper bound on the number of items to consider
is provided. On the contrary, conjunctions and disjunctions are non-blocking operators,
as they can stop parsing their inputs as soon as they find the searched items. In IFP
systems, information flows are, by nature, unbounded; consequently, it is not possible
to evaluate blocking operators as they are. In this context, windows become the key
construct to enable blocking operators by limiting their scope to (finite) portions of the
input flows. On the other hand, windows are also extensively used with non-blocking
operators as a powerful tool to impose a constraint over the set of items that they have
to consider.

Existing systems define several types of windows. First, they can be classified into
logical (or time-based) and physical (or count-based) [Golab and Özsu 2003]. In the
former case, bounds are defined as a function of time: for example, to force an operation
to be computed only on the elements that arrived during the last five minutes. In the
latter case, bounds depend on the number of items included in the window: for example,
to limit the scope of an operator to the last ten elements arrived.

An orthogonal way of classifying windows considers the way their bounds move,
resulting in the following classes [Carney et al. 2002; Golab and Özsu 2003].

—Fixed windows do not move. As an example, they could be used to process the items
received between 1/1/2010 and 31/1/2010.

—Landmark windows have a fixed lower bound, while the upper bound advances every
time a new information item enters the system. As an example, they could be used
to process the items received since 1/1/2010.

—Sliding windows are the most common type of windows. They have a fixed size, that
is, both lower and upper bounds advance when new items enter the system. As an
example, we could use a sliding window to process the last ten elements received.

—Pane and tumble windows are variants of sliding windows, in which both the lower
and the upper bounds move by k elements, as k elements enter the system. The
difference between pane and tumble windows is that the former have a size greater
than k, while the latter have a size smaller than (or equal to) k. In practice, a tum-
ble window assures that every time the window is moved, all contained elements
change; so each element of the input flow is processed at most once. The same is not
true for pane windows. As an example, consider the problem of calculating the av-
erage temperature in the last week. If we want such a measure every day at noon,
we have to use a pane window, if we want it every Sunday at noon, we have to use a
tumble window.

Example (8) shows a CQL rule that uses a count-based, sliding window over the
flow F1 to count how many among the last 50 items received has A > 0; results are
streamed using the IStream operator. Example (9) does the same but considers the
items received in the last minute.

Select IStream(Count(*))
From F1 [Rows 50]
Where F1.A > 0

(8)

Select IStream(Count(*))
From F1 [Range 1 Minute]
Where F1.A > 0

(9)

Interestingly, there exist languages that allow users to define and use their own
windows. The most notable case is ESL [Bai et al. 2006], which provides user-defined
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aggregates to allow users to freely process input flows. In so doing, users are allowed to
explicitly manage the part of the flow they want to consider, that is, the window. As an
example, consider the ESL rule in Example (10): it calculates the smallest positive value
received and delivers it as its output every time a new element arrives. The window
is accessible to the user as a relational table, called inwindow, whose inner format can
be specified during the aggregate definition; it is automatically filled by the system
when new elements arrive. The user may specify actions to be taken at different times
using three clauses: the INITIATE clause defines special actions to be executed only
when the first information item is received; the ITERATE clause is executed every time
a new element enters the system; while the EXPIRE clause is executed every time an
information item is removed from the window. In our example, the INITIATE and EXPIRE
clauses are empty, while the ITERATE clause removes every incoming element having
a negative value and immediately returns the smallest value (using the INSERT INTO
RETURN statement). It is worth noting that the aggregate defined in Example (10) can
be applied to virtually all kinds of windows, which are then modified during execution
in order to contain only positive values.

WINDOW AGGREGATE positive min(Next Real): Real {
TABLE inwindow(wnext real);
INITIALIZE : { }
ITERATE : {

DELETE FROM inwindow
WHERE wnext < 0
INSERT INTO RETURN
SELECT min(wnext)
FROM inwindow

}
EXPIRE : { }

}

(10)

Generally, windows are available in declarative and imperative languages. Con-
versely, only a few pattern-based languages provide windowing constructs. Some of
them, in fact, simply do not include blocking operators, while others include explicit
bounds as part of blocking operators to make them unblocking (we can say that such
operators “embed a window”). For example, Padres does not provide the negation, and
it does not allow repetitions to include an upper bound. Similarly, CEDR [Barga et al.
2007] can express negation through the UNLESS operator, shown in Example (11). The
pattern is satisfied if A is not followed by B within 12 hours. Notice how the operator
itself requires explicit timing constraints to become unblocking.

EVENT Test-Rule
WHEN UNLESS(A, B, 12 hours)
WHERE A.a < B.b

(11)

Flow Management Operators. Declarative and imperative languages require ad hoc
operators to merge, split, organize, and process flows of information. They include the
following.

—Join operators are used to merge two flows of information as in a traditional DBMS.
Being a blocking operator, the join is usually applied to portions of the input flows
which are processed as standard relational tables. As an example, the CQL of
Rule (12) uses the join operator to combine the last 1,000 items of flows F1 and
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F2 by merging those items that have the same value in field A.

Select IStream(F1.A, F2.B)
From F1 [Rows 1000], F2 [Rows 1000]
Where F1.A = F2.A

(12)

—Bag operators combine different flows of information, considering them as bags of
items. In particular, we have the following bag operators.
—Union merges two or more input flows of the same type, creating a new flow that

includes all the items coming from them.
—Except takes two input flows of the same type and outputs all those items that

belong to the first one but not to the second one. It is a blocking operator.
—Intersect takes two or more input flows and outputs only the items included in all

of them. It is a blocking operator.
—Remove-duplicate removes all duplicates from an input flow.
Rule (13) provides an example of using the union operator in CQL to merge together
two flows of information. Similarly, in Example (14), we show the union operator, as
provided by Aurora.

Select IStream(*)
From F1 [Rows 1000], F2 [Rows 1000]
Where F1.A = F2.A
Union
Select IStream(*)
From F3 [Rows 1000], F4 [Rows 1000]
Where F3.B = F4.B

(13)

(14)

Join Filter (A)

F1

F2

Join Filter (B)

F3

F4

Union

—Duplicate operators allow a single flow to be duplicated in order to use it as an input
for different processing chains. Example (16) shows an Aurora rule that takes a
single flow of items, processes it through the operator A, then duplicates the result
to have it processed by three operators B, C, and D, in parallel.

(15)
A

B

C

D

—Group-by operators are used to split information flows into partitions in order to apply
the same operator (usually an aggregate) to the different partitions. Example (16)
uses the group-by operator to split the last 1,000 rows of flow F1 based on the value
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of field B in order to count how may items exist for each value of B.

Select IStream(Count(*))
From F1 [Rows 1000]
Group By F1.B

(16)

—Order-by operators are used to impose an ordering to the items of an input flow. They
are blocking operators, so they are usually applied to well-defined portions of input
flows.

Parameterization. In many IFP applications, it is necessary to filter some flows
of information based on information that are part of other flows. As an example,
the fire protection system of a building could be interested in being notified when the
temperature of a room exceeds 40oC but only if some smoke has been detected in the
same room. Declarative and imperative languages address this kind of situations by
joining the two information flows, that is, the one about room temperature and that
about smoke, and imposing the room identifier to be the same. On the other hand,
pattern-based languages do not provide the join operator. They have to capture the
same situation using a rule that combines, through the conjunction operator, detection
of high temperature and detection of smoke in the same room. This latter condition
can be expressed only if the language allows filtering to be parametric.

Given the importance of this feature, we introduce it here even if it cannot be prop-
erly considered an operator by itself. More specifically, we say that a pattern-based
language provides parameterization if it allows the parameters of an operator (usually
a selection, but sometimes other operators as well) to be constrained using values taken
from other operators in the same rule.

(Smoke(Room=$X)) & (Temp(Value>40 AND Room=$X)) (17)

Example (17) shows how this rule can be expressed using the language of Padres;
the operator $ allows for parameters definition inside the filters that select single
information items.

Flow creation. Some languages define explicit operators for creating new information
flows from a set of items. In particular, flow creation operators are used in declarative
languages to address two issues.

—Some have been designed to deal indifferently with information flows and with rela-
tional tables a la DBMS. In this case, flow creation operators can be used to create
new flows from existing tables, for example, when new elements are added to the
table.

—Other languages use windows as a way of transforming (part of) an input flow into
a table, which can be further processed by using the classical relational operators.
Such languages use flow creation operators to transform tables back into flows. As
an example, CQL provides three operators called relation-to-stream that allow for
creating a new flow from a relational table T : at each evaluation cycle, the first one
(IStream) streams all new elements added to T ; the second one (DStream) streams all
the elements removed from T ; while the last one (Rstream) streams all the elements
of T at once. Consider Example (18): at each processing cycle, the rule populates
a relational table (T ) with the last ten items of flow F1, and then, it streams all
elements that are added to T at the current processing cycle (but were not part of
T in the previous cycle). In Example (19), instead, the system streams all elements
removed from table T during the current processing cycle. Finally, in Example (20),
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all items in T are put in the output stream independently from previous processing
cycles.

Select IStream(*)
From F1 [Rows 10]

(18)

Select DStream(*)
From F1 [Rows 10]

(19)

Select RStream(*)
From F1 [Rows 10]

(20)

Aggregates. Many IFP applications need to aggregate the content of multiple, in-
coming information items to produce new information, for example, by calculating the
average of some value or its maximum. We can distinguish two kinds of aggregates.

—Detection aggregates are those used during the evaluation of the condition part of
a rule. In our functional model, they are computed and used by the decider. As an
example, they can be used in detecting all items whose value exceeds the average
one (i.e., the aggregate), computed over the last ten received items.

—Production aggregates are those used to compute the values of information items in
the output flow. In our functional model, they are computed by the producer. As an
example, they can be used to output the average value among those part of the input
flow.

Almost all existing languages have predefined aggregates, which include minimum,
maximum, and average. Some pattern-based languages offer only production aggre-
gates, while others include also detection aggregates to capture patterns that involve
computations over the values stored in the history. In declarative and imperative lan-
guages, aggregates are usually combined with the use of windows to limit their scope
(indeed, aggregates are usually blocking operators, and windows allow to process them
online). Finally, some languages also offer facilities for creating user-defined aggre-
gates (UDAs). As an example of the latter, we have already shown the ESL in Rule (10),
which defines an UDA for computing the smallest positive value among the received
ones. It has been proved that adding complete support to UDAs makes a language
Turing-complete [Law et al. 2004].

4. IFP SYSTEMS: A CLASSIFICATION

In the following, we use the concepts introduced in Section 3 to present and classify
existing IFP systems. We provide a brief description of each system and summarize its
characteristics by compiling four tables.

Table I focuses on the functional and processing models of each system: it shows if a
system includes the clock (i.e., it supports periodic processing) and the knowledge base,
and if the maximum size of the sequences (seq) that the decider sends to the producer is
bounded or unbounded, given the set of deployed rules. Then, it analyzes if information
items produced by fired rules may reenter the system (recursion), and if the rule set
can be changed by fired actions at runtime. Finally, it presents the processing model of
each system by showing its selection, consumption, and load-shedding policies.

Table II focuses on the deployment and interaction models by showing the type
of deployment supported by each system and the interaction styles allowed in the
observation, notification, and forwarding models.

Table III focuses on the data, time, and rule models, presenting the nature of the
items processed by each systems (generic data or event notifications), the format of
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Table I. Functional and Processing Models

Functional Model Processing Model
Dynamic
Rule Select. Consum. Load

Name Clock K. Base Seq Recursion Change Policy Policy Shedding
HiPac Present Present Bounded Yes Yes Multiple Zero No
Ode Absent Present Unbounded Yes Yes Multiple Zero No
Samos Present Present Unbounded Yes Yes ? ? No
Snoop Present Present Unbounded Yes Yes Program. Program. No
TelegraphCQ Present Present Unbounded No No Multiple Zero Yes
NiagaraCQ Present Present Unbounded No No Multiple Selected Yes
OpenCQ Present Present Unbounded No No Multiple Selected No
Tribeca Absent Absent Unbounded No Yes Multiple Zero No
CQL / Stream Absent Present Unbounded No No Multiple Zero Yes
Aurora / Borealis Absent Present Unbounded No No Program. Zero Yes
Gigascope Absent Absent Unbounded No No Multiple Zero No
Stream Mill Absent Present Unbounded No No Program. Program. Yes
Traditional Pub-Sub Absent Absent Single No No Single Single No
Rapide Absent Present Unbounded Yes No Multiple Zero No
GEM Present Absent Bounded Yes Yes Multiple Zero No
Padres Absent Absent Unbounded No No Multiple Zero No
DistCED Absent Absent Unbounded No No Multiple Zero No
CEDR Absent Absent Unbounded Yes No Program. Program. No
Cayuga Absent Absent Unbounded Yes No Multiple Zero No
NextCEP Absent Absent Unbounded Yes No Multiple Zero No
PB-CED Absent Absent Unbounded No No Multiple Zero No
Raced Present Absent Unbounded Yes No Multiple Zero No
Amit Present Absent Unbounded Yes No Program. Program. No
Sase Absent Absent Bounded No No Multiple Zero No
Sase+ Absent Absent Unbounded No No Program. Zero No
Peex Absent Absent Unbounded Yes No Multiple Zero No
TESLA/T-Rex Present Absent Unbounded Yes No Program. Program. No
Aleri SP Present Present Unbounded No No Multiple Zero ?
Coral8 CEP Present Present Unbounded No No Program. Program. Yes
StreamBase Present Present Unbounded No No Multiple Zero ?
Oracle CEP Absent Present Unbounded No No Program. Program. ?
Esper Present Present Unbounded No No Program. Program. No
Tibco BE Absent Absent Unbounded Yes No Multiple Zero ?
IBM System S Present Present Unbounded Yes No Program. Program. Yes

data, the support for data uncertainty, and the nature of flows (homogeneous or hetero-
geneous). It also introduces how the notion of time is captured and represented by each
system, the type of rules adopted, and the possibility of defining probabilistic rules.

Finally, Table IV focuses on the language adopted by each system, by listing its type
and the set of operators available.

Given the large number of systems reviewed, we organize them in four groups: active
databases, DSMSs, CEP systems, and commercial systems (while systems belonging
to previous groups are research prototypes). The distinction is sometimes blurred, but
it helps us better organize our presentation.

Within each class we do not follow a strict chronological order: systems that share
similar characteristics are listed one after the other to better emphasize common
aspects.

4.1. Active Databases

HiPac. Hipac [Dayal et al. 1988; McCarthy and Dayal 1989] has been the first
project proposing event condition action (ECA) rules as a general formalism for active
databases. In particular, the authors introduce a model for rules in which three kinds
of primitive events are taken into account: database operations, temporal events,
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Table II. Deployment and Interaction Models

Deployment Model Interaction Model
Name Deployment Type Observation Notification Forwarding
HiPac Centralized Push Push n.a.
Ode Centralized Push Push n.a.
Samos Centralized Push Push n.a.
Snoop Centralized Push Push n.a.
TelegraphCQ Clustered Push Push Push
NiagaraCQ Centralized Push/Pull Push/Pull n.a.
OpenCQ Centralized Push/Pull Push/Pull n.a.
Tribeca Centralized Push Push n.a.
CQL / Stream Centralized Push Push n.a.
Aurora / Borealis Clustered Push Push Push
Gigascope Centralized Push Push n.a.
Stream Mill Centralized Push Push n.a.
Traditional Pub-Sub System dependent Push Push System dependent
Rapide Centralized Push Push n.a.
GEM Networked Push Push Push
Padres Networked Push Push Push
DistCED Networked Push Push Push
CEDR Centralized Push Push n.a.
Cayuga Centralized Push Push n.a.
NextCEP Clustered Push Push Push
PB-CED Centralized Push/Pull Push n.a.
Raced Networked Push Push Push/Pull
Amit Centralized Push Push n.a.
Sase Centralized Push Push n.a.
Sase+ Centralized Push Push n.a.
Peex Centralized Push Push n.a.
TESLA/T-Rex Centralized Push Push n.a.
Aleri SP Clustered Push Push/Pull Push
Coral8 CEP Clustered Push Push/Pull Push
StreamBase Clustered Push Push/Pull Push
Oracle CEP Clustered Push Push/Pull Push
Esper Clustered Push Push/Pull Push
Tibco BE Networked Push Push Push
IBM System S Clustered Push Push Push

and external notifications. Primitive events can be combined using disjunction and
sequence operators to specify composite events. Since these operators force users to
explicitly write all the events that have to be captured, we can say that given a set of
rules, the size of the sequence of events that can be selected (i.e., the size of the seq
component) is bounded.

The condition part of each rule is seen as a collection of queries that may refer
to the database state, as well as to data embedded in the considered event. We
represent the usage of the database state during the condition evaluation through
the presence of the knowledge base component. Actions may perform operations on
the database as well as execute additional commands: it is also possible to specify
activation or deactivation of rules within the action part of a rule, thus enabling
dynamic modification of the rule base. Since the event composition language of HiPac
includes a sequence operator, the system can reason about time: in particular, it uses
an absolute time with a total order between events.

A key contribution of the HiPac project is the definition of coupling modes. The cou-
pling mode between an event and a condition specifies when the condition is evaluated
with respect to the transaction in which the triggering event is signaled. The coupling
mode between a condition and an action specifies when the action is executed with
respect to the transaction in which the condition is evaluated. HiPac introduces three
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Table III. Data, Time, and Rule Models

Data Model Time Model Rule Model
Support

Nature of for Nature Probab.
Name Items Format Uncert. of Flows Time Rule Type Rules

HiPac Events
Database and
External
Events

No Heterogeneous Absolute Detecting No

Ode Events Method
Invocations No Heterogeneous Absolute Detecting No

Samos Events

Methon
Invocation
and External
Events

No Heterogeneous Absolute Detecting No

Snoop Events
Database and
External
Events

No Heterogeneous Absolute Detecting No

TelegraphCQ Data Tuples No Homogeneous Absolute Transforming No
NiagaraCQ Data XML No Homogeneous Stream-only Transforming No
OpenCQ Data Tuples No Heterogeneous Stream-only Transforming No
Tribeca Data Tuples No Homogeneous Stream-only Transforming No
CQL / Stream Data Tuples No Homogeneous Stream-only Transforming No
Aurora /
Borealis Data Tuples No Homogeneous Stream-only Transforming No

Gigascope Data Tuples No Homogeneous Causal Transforming No
Stream Mill Data Tuples No Homogeneous Stream-only Transforming No
Traditional
Pub-Sub Events System

dependent
System
dependent Heterogeneous System

dependent Detecting System
dependent

Rapide Events Records No Heterogeneous Causal Detecting No
GEM Events Records No Heterogeneous Interval Detecting No
Padres Events Records No Heterogeneous Absolute Detecting No
DistCED Events Records No Heterogeneous Interval Detecting No
CEDR Events Tuples No Homogeneous Interval Detecting No
Cayuga Events Tuples No Homogeneous Interval Detecting No
NextCEP Events Tuples No Homogeneous Interval Detecting No
PB-CED Events Tuples No Heterogeneous Interval Detecting No
Raced Events Records No Heterogeneous Absolute Detecting No
Amit Events Records No Heterogeneous Absolute Detecting No
Sase Events Records No Heterogeneous Absolute Detecting No
Sase+ Events Records No Heterogeneous Absolute Detecting No
Peex Events Records Yes Heterogeneous Absolute Detecting Yes
TESLA /
T-Rex Events Tuples No Heterogeneous Absolute Detecting No

Aleri SP Data Tuples No Homogeneous Stream-only Transforming No
Coral8 CEP Data Tuples No Homogeneous Stream-only Transforming No
StreamBase Data Tuples No Homogeneous Stream-only Transforming No
Oracle CEP Data Tuples No Homogeneous Stream-only Transforming No
Esper Data Tuples No Homogeneous Stream-only Transforming No
Tibco BE Events Records No Heterogeneous Interval Detecting No
IBM System S Data Various No Homogeneous Stream-only Transforming No

types of coupling modes: immediate, deferred (i.e., at the end of the transaction) or
separate (i.e., in a different transaction). Since HiPac captures all the set of events that
match the pattern in the event part of a rule, we can say that it uses a fixed multiple
selection policy associated with a zero consumption one.

Ode. Ode [Lieuwen et al. 1996; Gehani and Jagadish 1991] is a general-purpose,
object-oriented active database system. The database is defined, queried, and
manipulated using the O++ language, which is an extension of the C++ programming
language, adding support for persistent objects.
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Reactive rules are used to implement constraints and triggers. Constraints pro-
vide a flexible mechanism for adapting the database system to different, application-
specific, consistency models: they limit access to data by blocking forbidden opera-
tions. Conversely, triggers are associated with allowed operations and define a set of
actions to be automatically executed when specific methods are called on database
objects.

Constraints are associated with a class definition and consist of a condition and an
optional handler: all the objects of a class must satisfy its constraints. In case of viola-
tion, the handler is called: it is composed by a set of operations to bring the database
back to a consistent state. In the case it is not possible to repair the violation of a
constraint (undefined handler), Ode aborts the transaction; according to the type of
constraint (hard or soft), a constraint violation may be repaired immediately after the
violation is reported (immediate semantics) or just before the commit of the transac-
tion (deferred semantics). Consistently with the object-oriented nature of the system,
constraints conditions are checked at the boundaries of public methods calls, which
represent the only way to interact with the database.

Triggers, like integrity constraints, are used to detect user-defined conditions on the
database objects. Such conditions, however, do not represent consistency violations but
capture generic situations of interest. Trigger, like a constraint, are specified in the class
definition and consist of two parts: a condition and an action. The condition is evaluated
on each object of the class defining it. When it becomes true, the corresponding action
is executed. Unlike a constraint handler which is executed as part of the transaction
violating the constraint, a trigger action is executed as a separate transaction (separate
semantics). Actions may include dynamic activation and deactivation of rules.

Both constraints and triggers can be classified as detecting rules expressed using a
pattern-based language, where the condition part of the rule includes constraints on
inner database values, while the action part is written in C++.

Ode does not offer a complete support for periodic evaluation of rules; however, users
can force actions to be executed when an active trigger has not fired within a given
amount of time.

We can map the behavior of Ode to our functional and data model by considering
public method calls to database objects as the information items that enter the system.
Evaluation is performed by taking into account the database state (i.e., the knowledge
base in our model).

So far, we have only mentioned processing involving single information items: sup-
port for multiple-items processing has been introduced in Ode [Gehani et al. 1992],
allowing users to capture complex interactions with the database, involving multiple
methods call. In particular, Ode offers logic operators and sequences for combining
single calls: the centralized nature of the system makes it possible to define a complete
ordering relation between calls (absolute time). The language of Ode derives from reg-
ular expressions with the addition of parameterization. As a consequence, negation
(although present) can only refer to immediately subsequent events. This way, all sup-
ported operators become non-blocking. The presence of an iteration operator makes
it possible to detect sequences of events whose length is unknown a priori (i.e., seq is
unbounded). Thanks to their similarities with regular expressions, rules are translated
into finite state automata to be efficiently triggered. Gehani et al. [1992] also address
the issue of defining precise processing policies; in particular, they propose a detection
algorithm in which all valid set of events are captured (multiple selection policy), while
the possibility of consuming events is not mentioned.

Samos. Samos [Gatziu and Dittrich 1993; Gatziu et al. 1992] is another example
of a general-purpose, object-oriented active database system. Like Ode, it uses a
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detecting language derived from regular expressions (including iterations); rules can
be dynamically activated, deactivated, created, and called during processing.

The most significant difference between Samos and Ode is the possibility offered by
Samos of considering external events as part of the information flows managed by rules.
External events include all those events not directly involving the database structure or
content. Among external events, the most important are temporal events, which allow
Samos programmers to use time inside rules. As a consequence, time assumes a central
role in rule definition: first, it can be used to define periodic evaluation of rules; second,
each rule comes with a validity interval, which can be either explicitly defined using the
IN operator, or implicitly imposed by the system. The IN operator defines time-based
windows whose bounds can be either fixed time points or relative ones, depending on
previous detections. To do so, it relies on an absolute time. The IN operator is also useful
to deal with blocking operators (e.g., the negation); by providing an explicit window
construct through the IN operator, Samos offers more flexibility than Ode does.

Great attention has been paid to the specification of precise semantics for rule pro-
cessing; in particular, it is possible to specify when a condition has to be evaluated:
immediately, as an event occurs, at the end of the active transaction, or in a sepa-
rate transaction. As with HiPac, similar choices are also associated to the execution of
actions. Evaluation of rules is performed using Petri Nets.

Snoop. Snoop [Chakravarthy and Mishra 1994] is an event specification language for
active databases developed as a part of the Sentinel project [Chakravarthy et al. 1994].
Unlike Ode and Samos, it is designed to be independent from the database model, so
it can be used, for example, on relational databases, as well as on object-oriented ones.

The set of operators offered by Snoop is very similar to the ones we described for Ode
and Samos, the only remarkable difference being the absence of a negation operator.
Like Samos, Snoop considers both internal and external events as input information
items. Unlike Samos, it does not offer explicit windows constructs: instead, it embeds
windows features directly inside the operators that require them. For example, iter-
ations can only be defined within specific bounds, represented as points in time or
information items.

Snoop enables parameter definition as well as dynamic rule activation. The detection
algorithm is based on the construction and visiting of a tree.

The most interesting feature of Snoop is the possibility of specifying a context for
each rule. Contexts are used to control the semantics of processing. More specifically,
four types of contexts are allowed: recent, chronicle, continuous, and cumulative. In
the presence of multiple sets of information items firing the same rule, contexts specify
exactly which sets will be considered and consumed by the system (i.e., they specify the
selection and consumption policies). For example, the recent context only selects the
most recent information items, consuming all of them, while the cumulative context
selects all the relevant information items, resulting in a multiple policy.

Snoop, like HiPac, Ode, Samos, and many other proposed languages for active DBMSs
(e.g., [Buchmann et al. 1995; Engstrm et al. 1997; Bertino et al. 1998] considers events
as points in an time. Recently, the authors of Snoop have investigated the possibil-
ity of extending the semantics of the language to capture events that have a dura-
tion. This led to the definition of a new language, called SnoopIB [Adaikkalavan and
Chakravarthy 2006], which offers all the operators and language construct of Snoop
(including contexts) but uses interval-based time stamps for events.

4.2. Data Stream Management Systems

To better organize the presentation, we decided to start our description with all those
systems—namely TelegraphCQ, NiagaraCQ, and OpenCQ—that belong to the class
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of DSMSs but present a strong emphasis on periodic, as opposed to purely reactive,
data gathering and execution. Usually, these systems are designed for application
domains in which the timeliness requirement is less critical, for example, Internet
updates monitoring. On the contrary, all remaining systems are heavily tailored for
the processing of high rate streams.

TelegraphCQ. TelegraphCQ [Chandrasekaran et al. 2003] is a general-purpose, con-
tinuous queries system based on a declarative, SQL-based language called StreaQuel.

StreaQuel derives all relational operators from SQL, including aggregates. To deal
with unbounded flows, StreaQuel introduces the WindowIs operator, which enables the
definition of various types of windows. Multiple WindowIs, one for each input flow, can
be expressed inside a for loop, which is added at the end of each rule and defines
a time variable indicating when the rule has to be processed. This mechanism is
based on the assumption of an absolute time model. By adopting an explicit time
variable, TelegraphCQ enables users to define their own policy for moving windows.
As a consequence, the number of items selected at each processing cycle cannot be
bounded a priori, since it is not possible to determine how many elements the time
window contains.

Since the WindowIs operator can be used to capture arbitrary portions of time, Tele-
graphCQ naturally supports the analysis of historical data. In this case, disk becomes
the bottleneck resource. To keep processing of disk data up with processing of live
data, a shedding technique called OSCAR (Overload-sensitive Stream Capture and
Archive Reduction) is proposed. OSCAR organizes data on disk into multiple resolu-
tions of reduced summaries (such as samples of different sizes). Depending on how fast
the live data is arriving, the system picks the right resolution level to use in query
processing [Chandrasekaran and Franklin 2004].

TelegraphCQ has been implemented in C++ as an extension of PostgreSQL. Rules
are compiled into a query plan that is extended using adaptive modules [Avnur and
Hellerstein 2000; Raman et al. 1999; Shah et al. 2003], which dynamically decide how
to route data to operators and how to order commutative operators. Such modules
are also designed to distribute the TelegraphCQ engine over multiple machines, as
explained in Shah et al. [2004a]. The approach is that of clustered distribution, as de-
scribed in Section 3: operators are placed and, if needed, replicated in order to increase
performance by only taking into account processing constraints and not transmission
costs, which are assumed negligible.

NiagaraCQ. NiagaraCQ [Chen et al. 2000] is an IFP system for Internet databases.
The goal of the system is to provide a high-level abstraction for retrieving information
(in the form of XML datasets) from a frequently changing environment like Internet
sites. To do so, NiagaraCQ specifies transforming rules using a declarative, SQL-like
language called XML-QL [Deutsch et al. 1999]. Each rule has an associated time inter-
val that defines its period of validity. Rules can be either timer-based or change-based;
the former are evaluated periodically during their validity interval, while processing
of the latter is driven by notifications of changes received from information sources.
In both cases, the evaluation of a rule does not directly produce an output stream but
updates a table with the new results; if a rule is evaluated twice on the same data, it
does not produce further updates. We capture this behavior in our processing model by
saying that NiagaraCQ presents a selected consumption policy (information items are
used only once). Users can either ask for results on-demand or can be actively notified
(e.g., with an email) when new information is available (i.e., the notification model
allows both a push and a pull interaction). For each rule, it is possible to specify a set
of actions to be performed just after the evaluation. Since information items processed
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by NiagaraCQ come directly from Internet databases, they do not have an explicit
associated time stamp.

NiagaraCQ can be seen as a sort of active database system where timer-based rules
behave like traditional queries (the only exception being periodic evaluation), while
change-based rules implement reactive behavior. NiagaraCQ offers a unified format
for both types of rules.

The main difference between NiagaraCQ and a traditional active database is the
distribution of information sources over a possibly wide geographical area. It is worth
noting that only information sources are actually distributed, while the NiagaraCQ
engine is designed to run in a totally centralized way. To increase scalability, NiagaraCQ
uses an efficient caching algorithm which reduces access time to distributed resources
and an incremental group optimization which splits operators into groups; members of
the same group share the same query plan, thus increasing performance.

OpenCQ. Like NiagaraCQ, OpenCQ [Liu et al. 1999] is an IFP system developed to
deal with Internet-scale update monitoring. OpenCQ rules are divided into three parts:
an SQL query that defines operations on data, a trigger that specifies when the rule
has to be evaluated, and a stop condition that defines the period of validity for the rule.
OpenCQ presents the same processing and interaction models as NiagaraCQ.

OpenCQ has been implemented on top of the DIOM framework [Liu and Pu 1997],
which uses a client-server communication paradigm to collect rules and information
and to distribute results; processing of rules is therefore completely centralized. Wrap-
pers are used to perform input transformations, thus allowing heterogeneous sources to
be taken into account for information retrieval. Depending on the type of the source, in-
formation may be pushed into the system, or it may require the wrapper to periodically
ask sources for updates.

Tribeca. Tribeca [Sullivan and Heybey 1998] has been developed with a very specific
domain in mind: that of network traffic monitoring. It defines transforming rules taking
a single information flow as input and producing one or more output flows. Rules are
expressed using an imperative language that defines the sequence of operators an
information flow has to pass through.

Tribeca rules are expressed using three operators: selection (called qualification), pro-
jection, and aggregate. Multiplexing and demultiplexing operators are also available,
which allow programmers to split and merge flows. Tribeca supports both count-based
and time-based windows, which can be sliding or tumble. They are used to specify the
portions of input flows to take into account when performing aggregates. Since items do
not have an explicit time stamp, the processing is performed in arrival order. The pres-
ence of a timing window makes it impossible to know the number of information items
captured at each detection-production cycle (i.e., the seq is unbounded). Moreover, a
rule may be satisfied by more than one set of elements (multiple selection policy), while
an element may participate in more than one processing cycle, as it is never explicitly
consumed (zero consumption policy).

Each rule is translated into a direct acyclic graph to be executed; during translation,
the plan can be optimized in order to improve performance.

CQL/Stream. CQL [Arasu et al. 2006] is an expressive SQL-based declarative lan-
guage that creates transforming rules with a unified syntax for processing both infor-
mation flows and stored relations.

The goals of CQL are those of providing a clear semantics for rules while defining
a simple language to express them. To do so, CQL specifies three kinds of operators:
relation-to-relation, stream-to-relation, and relation-to-stream. Relation-to-relation
operators directly derive from SQL: they are the core of the CQL language, which
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actually defines processing and transformation. The main advantage of this approach
is that a large part of the rule definition is realized through the standard notation of
a widely used language. In order to add support for flow processing, CQL introduces
the notion of windows, and in particular sliding, pane, and tumble windows, which
are intended as a way of storing a portion of each input flow inside the relational
tables where processing takes place; for this reason CQL denotes windows as
stream-to-relation operators. Windows can be based both on time and on the number
of contained elements. The last kind of operators that CQL provides is that of
relation-to-stream operators, which define how processed tuples can become part of
a new information flow. As already mentioned in Section 3.8, three relation-to-stream
operators exist: IStream, DStream, and RStream. Notice that CQL is based on a time
model that explicitly associates a time stamp to input items, but time stamps cannot
be addressed from the language. As a consequence, since output is based on the
sequence of updates performed on a relational table, its order is separate from input
order.

Items selection is performed using traditional SQL operators and never consumed
(until they remain in the evaluation window), so we can say that CQL uses a multiple
selection policy associated with zero consumption.

CQL has been implemented as part of the Stream project [Arasu et al. 2003]. Stream
computes a query plan starting from CQL rules; then, it defines a schedule for operators
by taking into account predefined performance policies.

The Stream project has proposed two major shedding techniques to deal with re-
source overload problem on data streams: the first addresses the problem of limited
computational resources by applying load shedding on a collection of sliding window
aggregation queries [Babcock et al. 2004]; the second addresses the problem of limited
memory by discarding operator state for a collection of windowed joins [Srivastava and
Widom 2004].

Aurora/Borealis. Aurora [Abadi et al. 2003] is a general-purpose DSMS; it defines
transforming rules created with an imperative language called SQuAl. SQuAl defines
rules in a graphical way by adopting the boxes and arrows paradigm, which makes
connections between different operators explicit.

SQuAl defines two types of operators: windowed operators apply a single input (user-
defined) function to a window and then advance the window to include new elements
before repeating the processing cycle; single-tuple operators, instead, operate on a
single information item at a time; they include single-item operators like selection and
flow operators, like join, union, and group by. This allows information items to be used
more than once (multiple selection policy), while they are never consumed.

SQuAl allows users to define plans having multiple input and multiple output flows
and, interestingly, allows users to associate a QoS specification to each output. As out-
put flows may be directly connected to higher-level applications, this makes it possible
to customize system behavior according to application requirements. QoS constraints
are used by Aurora to automatically define shedding policies: for example, some appli-
cation domain may need to reduce answer precision in order to obtain faster response
times. Input and output flows do not have an associated time stamp but are processed
in their arrival order.

An interesting feature of Aurora is the possibility of including intermediate storage
points inside the rule plan: such points can be used to keep historical information and
to recover after operators failure.

Processing is performed by a scheduler which takes an optimized version of the user-
defined plan and chooses how to allocate computational resources to different operators
according to their load and to the specified QoS constraints.
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The project has been extended to investigate distributed processing both inside a sin-
gle administrative domain and over multiple domains [Cherniack et al. 2003]. In both
cases, the goal is that of efficiently distributing loads between available resources; in
these implementations, called Aurora* and Medusa, communication between proces-
sors takes place using an overlay network with dynamic bindings between operators
and flows. The two projects were recently merged, and all their feature have been
included into the Borealis stream processor [Abadi et al. 2005].

Gigascope. Gigascope [Cranor et al. 2002, 2003] is a DSMS specifically designed
for network applications, including traffic analysis, intrusion detection, performance
monitoring, etc. The main concern of Gigascope is to provide high performance for the
specific application field it has been designed for.

Gigascope defines a declarative, SQL-like language called GSQL which includes only
filters, joins, group by and aggregates. Interestingly, it uses processing techniques that
are very different from those of other data stream systems. In fact, to deal with the
blocking nature of some of its operators, it does not introduce the concept of windows.
Instead, it assumes that each information item (tuple) of a flow contains at least an
ordered attribute, that is, an attribute that monotonically increases or decreases as
items are produced by the source of the flow, for example a time stamp defined with
respect to an absolute time but also a sequence number assigned at source. Users can
specify which attributes are ordered as part of the data definition, and this information
is used during processing. For example, the join operator, by definition, must have a
constraint on an ordered attribute for each involved stream.

These mechanisms make the semantics of processing easier to understand and more
similar to that of traditional SQL queries. However, they can be applied only on a
limited set of application domains in which strong assumptions on the nature of data
and on arrival order can be done.

Gigascope translates GSQL rules into basic operators and composes them into a plan
for processing. It also uses optimization techniques to rearrange the plan according to
the nature and the cost of each operator.

Stream Mill. Stream Mill [Bai et al. 2006] is a general-purpose DSMS based on
ESL, an SQL-like language with ad hoc constructs designed to easily support flows
of information. ESL allows its users to define highly expressive transforming rules by
mixing the declarative syntax of SQL with the possibility of creating custom aggregates
in an imperative way directly within the language. To do so, the language offers the
possibility of creating and managing custom tables which can be used as variables
of a programming language during information flow processing. Processing itself is
modeled as a loop on information items which users control by associating behaviors
to the beginning of processing, to internal iterations, and to the end of processing.
Behaviors are expressed using the SQL language.

This approach is somehow similar to the one we described for CQL: flows are tem-
porarily seen as relational tables and queried with traditional SQL rules. ESL extends
this idea by allowing users to express exactly how tables have to be managed during
processing. Accordingly, the selection and consumption policies can be programmed rule
by rule. Since processing is performed on relational tables, the ordering of produced
items may be separate from the input order.

Besides this, Stream Mill keeps the traditional architecture of a database system; it
compiles rules into a query plan whose operators are then dynamically scheduled. The
implementation of Stream Mill as described in Bai et al. [2006] shows a centralized
processing, where the engine exchanges data with applications using a client-server
communication paradigm.

ACM Computing Surveys, Vol. 44, No. 3, Article 15, Publication date: June 2012.



15:36 G. Cugola and A. Margara

4.3. Complex Event Processing Systems

Traditional Content-Based Publish-Subscribe Systems. As stated in Section 2, tra-
ditional content-based publish-subscribe middleware [Eugster et al. 2003; Mühl et al.
2006] represent one of the historical basis for complex event processing systems. In the
publish-subscribe model, information items flow into the system as messages coming
from multiple publishers, while simple detecting rules define the interests of sub-
scribers. The detection part of each rule can only take into account single information
items and select them using constraints on their content; the action part simply per-
forms information delivery. These kinds of rules are usually called subscriptions. The
exact syntax used to represent messages and subscriptions varies from system to sys-
tem, but the expressive power of the system remains similar, hence we group and
describe them together.

Many publish-subscribe systems [Carzaniga et al. 2000; Strom et al. 1998; Chand
and Felber 2004; Pietzuch and Bacon 2002; Fiege et al. 2002; Balter 2004; Cugola et al.
2001; Pallickara and Fox 2003] have been designed to work in large-scale scenarios.
To maximize message throughput and to reduce the cost of transmission, as much as
possible, such systems adopt a distributed core, in which a set of brokers, connected in a
dispatching network, cooperate to realize efficient routing of messages from publishers
to subscribers.

Rapide. Rapide [Luckham 1996; Luckham and Vera 1995] is considered one of the
first steps toward the definition of a complex event processing system. It consists of
a set of languages and a simulator that allows users to define and execute models
of system architectures. Rapide is the first system that enables users to capture the
timing and causal relationships between events: in fact, the execution of a simulation
produces a causal history, where relationships between events are made explicit.

Rapide models an architecture using a set of components and the communication
between components using events. It embeds a complex event detection system, which
is used both to describe how the detection of a certain pattern of events by a component
brings to the generation of other events, and to specify properties of interest for the
overall architecture. The pattern language of Rapide includes most of the operators
presented in Section 3: in particular, it defines conjunctions, disjunctions, negations,
sequences, and iterations with timing constraints. Notice that Rapide does not assume
the existence of an absolute time (however, event can be time stamped with the values
of one or more clocks, if available): as a consequence, sequences only take into account a
causal order between events. During pattern evaluation, Rapide allows rules to access
the state of components; we capture this interaction with the presence of the knowledge
base in our functional model.

The processing model of Rapide captures all possible sets of events matching a given
pattern, which means that it applies multiple selection and zero consumption policies.
Notice that complex events can be reused in the definition of other events.

Since Rapide also uses its pattern language to define general properties of the system,
it embeds operators that are not found in other proposals, like logical implications and
equivalences between events. To capture these relations, Rapide explicitly stores the
history of all events that led to its occurrence. This is made easy by the fact that
simulations are executed in a centralized environment.

GEM. GEM [Mansouri-Samani and Sloman 1993, 1997] is a generalized monitoring
language for distributed systems. It has been designed for distributed deployment on
monitors running side-by-side to event generators. Each monitor is configured with a
script containing detecting rules that detect patterns of events occurring in the mon-
itored environment and perform actions when a detection occurs. Among the possible
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actions that a monitor can execute, the most significant is notification delivery: using
notifications, each monitor becomes itself the generator of an information flow, thus
enabling detection of events that involve multiple monitors in a distributed fashion. It
is worth noting, however, that distribution is not completely automatic but needs the
static configuration of each involved monitor. To make distributed detection possible,
the language assumes the existence of a synchronized global clock. An event-specific
delaying technique is used to deal with communication delays; this technique allows
detection to deal with out-of-order arrival of information items.

GEM supports filtering of single information items, parameterization, and compo-
sition using conjunction, disjunction, negation (between two events), and sequence.
Iterations are not supported. The time model adopted by GEM considers events as
having a duration, and allows users to explicitly refer to the starting and ending time
attributes of each event inside the rules. This allows users to define fixed and land-
mark windows for pattern evaluation. Moreover, an implicit sliding window is defined
for each rule having blocking operators; the size of the window is not programmable
by the users but depends on system constraints and load (i.e., main memory and input
rates of events). Since the definition of a composite event has to explicitly mention all
the components that need to be selected, the maximum number of events captured at
each processing cycle is determined by deployed rules (i.e., seq is bounded).

Detection is performed using a tree-based structure; the action part of a rule in-
cludes, beside notification delivery, the possibility of executing external routines and
dynamically activating or deactivating rules. The GEM monitor has been implemented
in C++ using the REGIS/DARWIN [Mansouri-Samani and Sloman 1996; Magee et al.
1994] environment that provides its communication and configuration platform.

Padres. Padres [Li and Jacobsen 2005] is an expressive, content-based, publish-sub-
scribe middleware providing a form of complex event processing. As in traditional
publish-subscribe, it offers primitives to publish messages and to subscribe to specified
information items, using detecting rules expressed in a pattern-based language. Unlike
traditional publish-subscribe, expressed rules can involve more than one information
item, allowing logic operators, sequences, and iterations. Padres uses a time model with
an absolute time, which can be addressed in rules to write complex timing constraints.
This way, it provides fixed, landmark, and sliding windows. All possible sets of events
satisfying a rule are captured; so we can say that the system adopts multiple selection
and zero consumption policies. The presence of an operator for iterations, together
with a timing window, makes it impossible to determine the maximum number of
items selected by each rule a priori (seq is unbounded).

Processing of rules, including those involving multiple information items, is per-
formed in a fully distributed way, exploiting a hierarchical overlay network. To do so,
the authors propose an algorithm to decompose rules in order to find a convenient place-
ment for each operator composing them; its goal is that of partially evaluating rules as
soon as possible during propagation of information elements from sources to recipients.
Assuming that applying an operator never increases the amount of information to be
transmitted, this approach reduces network usage.

Information processing performed inside single nodes is realized using Rete
trees [Forgy 1982]. After detection, information items are simply delivered to requiring
destinations: only juxtaposition of information inside a single message is allowed; more
complex actions, like aggregates, cannot be specified.

DistCED. DistCED [Pietzuch et al. 2003] is another expressive, content-based publi-
sh-subscribe system; it is designed as an extension of a traditional publish-subscribe
middleware, and consequently, it can be implemented (at least in principle) on top of
different existing systems.
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DistCED rules are defined using a detecting language. As with Padres, it is possible
to combine single information items using logic operators, sequences, and iterations.
DistCED also allows users to specify the time of validity for detection: this is done using
a construct that builds up a time-based sliding window. DistCED uses a time model that
takes into account the duration of events and uses two different operators to express
sequences of events that are allowed to overlap (weak sequence) and sequences of events
with no overlapping (strong sequence). The authors consider duration of events as a
simple way of modeling the timing uncertainty due to transmission; however no details
are provided about this.

Processing is performed in a distributed way: rules are compiled into finite state
automata and deployed as detectors; each detector is considered a mobile agent that
can also be split into its components to be better distributed. When a new rule is
added, the system checks whether it can be interpreted by exploiting already defined
detectors; if not, it creates new automata and pushes them inside the dispatching
network. To better adapt dispatching behavior to application requirements, DistCED
provides different distribution policies: for example, it can maximize automata reuse
or minimize the overall network usage.

CEDR. Barga et al. [2007] present the foundations of CEDR, defined as a general-
purpose event streaming system. Different contributions are introduced. First, of the
authors discuss a new temporal model for information flows based on three different
timings which specify system time, validity time, and occurrence/modification time.
This approach enables the formal specifications of various consistency models among
which applications can choose. Consistency models deal with errors in flows, such as
latency or out-of-order delivery. In CEDR, flows are considered notifications of state
updates; accordingly, the processing engine keeps a history of received information and
sends a notification when the results of a rule changes, thus updating the information
provided to connected clients. From this point of view, CEDR strongly resembles DSMSs
for Internet update monitoring, like NiagaraCQ and OpenCQ; however, we decided
to put CEDR in the class of event processing systems since it strongly emphasizes
detection of event occurrences, using a powerful language based on patterns, including
temporal operators, like sequences.

The presence of a precise temporal model enables authors to formally specify the
semantics of each operator of the language. It also greatly influences the design of
the language, which presents some interesting and singular aspects: windows are
not explicitly provided, while validity constraints are embedded inside most of the
operators provided by the system (not only the blocking ones). In the CEDR language,
instances of events play a central role: rules are not only specified in terms of an
event expression which defines how individual events have to be filtered, combined,
and transformed; they also embed explicit instance selection and consumption policies
(through a special cancel-when operator), as well as instance tranformations which
enable users to specify (i) which specific information items have to be considered during
the creation of composite events, (ii) which ones have to be consumed, and (iii) how
existing instances have to be transformed after an event detection.

Notice that the presence of a time window embedded into operators, together with
the ability to use a multiple selection policy, makes the number of items sent by the
decider to the producer unbounded a priori. Consider, for example, a simple conjunction
of items (A∧ B) in a time window W with a multiple selection policy: it is not possible
to know a priori how many couples of items A and B will be detected in W .

Cayuga. Cayuga [Brenna et al. 2007] is a general-purpose event monitoring system.
It is based on a language called CEL (Cayuga Event Language). The structure of the
language strongly resembles that of traditional declarative languages for databases:
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it is structured in a SELECT clause that filters input stream, a FROM clause that
specifies a streaming expression, and a PUBLISH clause that produces the output.
It includes typical SQL operators and constructs, like selection, projection, renaming,
union, and aggregates. Despite its structure, we can classify CEL as a detection lan-
guage: indeed, the streaming expression contained in the FROM clause enables users
to specify detection patterns including sequences (using the NEXT binary operator),
as well as iterations (using the FOLD operator). Notice that CEL does not introduce
any windowing operator. Complex rules can be defined by combining (nesting) simpler
ones. Interestingly, all events are considered as having a duration, and much attention
is paid in giving a precise semantics for operator composability so that all defined ex-
pressions are left-associated or can be broken up into a set of left-associated ones. To
do so, the semantics of all operators is formally defined using a query algebra [Demers
et al. 2006]; the authors also show how rules can be translated into non-deterministic
automata for event evaluation. Different instances of automata work in parallel for
the same rule, detecting all possible set of events satisfying the contraints in the rule.
This implicitly defines a multiple selection policy; Cayuga uses a zero consumption
policy, as events can be used many times for the detection of different complex event
occurrences. Since Cayuga is explicitly designed to work on large-scale scenarios, the
authors put much effort in defining efficient data structures: in particular, they ex-
ploit custom heap management, indexing of operator predicates, and reuse of shared
automata instances. Since detecting automata of different rules are strictly connected
with each other, Cayuga does not allow distributed processing.

NextCEP. NextCEP [Schultz-Moeller et al. 2009] is a distributed complex event pro-
cessing system. Similar to Cayuga, it uses a language that includes traditional SQL
operators, like filtering and renaming, together with pattern detection operators, in-
cluding sequences and iterations. Detection is performed by translating rules into
non-deterministic automata that strongly resemble those defined in Cayuga in struc-
ture and semantics. In NextCEP, however, detection can be performed in a distributed
way by a set of strictly connected node (clustered environment). The main focus of the
NextCEP project is on rule optimization: in particular, the authors provide a cost model
for operators that defines the output rate of each operator according to the rate of its
input data. NextCEP exploits this model for query rewriting, a process that changes
the order in which operators are evaluated without changing the results of rules. The
objective of query rewriting is that of obtaining the best possible evaluation plan, that
is, the one that minimizes the usage of CPU resources and the processing delay.

PB-CED. Akdere et al. [2008], present a system for complex event detection using
data received from distributed sources. They call this approach Plan-Based Complex
Event Detection (PB-CED). The emphasis of the work is on defining an efficient plan for
the evaluation of rules and on limiting, as much as possible, transmissions of useless
data from sources.

PB-CED uses a simple detecting language, including conjunctions, disjunctions,
negations, and sequences, but not iterations or reuse of complex events in pattern.
The language does not offer explicit windowing constraints but embeds time limits
inside operators. PB-CED offers a timing model that takes into account the duration
of events.

PB-CED compiles rules into non-deterministic automata for detection and combines
different automata to form a complex detection plan. Although PB-CED uses a cen-
tralized detection in which the plan is deployed on a single node, simple architectural
components are deployed near sources; these components just store information re-
ceived from sources (without processing them) and are directly connected with the
detecting node. Components near sources may operate both in push- and pull-based
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mode. The authors introduce a cost model for operators and use it to dynamically
generate the plan with minimum cost. Since each step in the plan involves the ac-
quisition and processing of a subset of the events, the plan is created with the basic
goal of postponing the monitoring of high-frequency events to later steps in the plan.
As such, processing the higher-frequency events conditional upon the occurrence of
lower-frequency ones eliminates the need to communicate the former (requested in
pull-based mode) in many cases. Interestingly, the plan optimization procedure can
take into account different parameters besides the cost function; for example, it can
consider local storage available at sources or the degree of timeliness required by the
application scenario.

Raced. Raced [Cugola and Margara 2009] is a distributed complex event processing
middleware. It offers a very simple detecting language which strongly resembles the
one described in Padres, including conjunctions, disjunctions, negations, parameters,
and sliding windows. It does not offer any processing capability for computing aggre-
gates. Like Padres, Raced is designed for large-scale scenarios and supports distributed
detection.

Interestingly, Raced uses a hybrid push/pull approach for the communication be-
tween the different detecting nodes. In particular, nodes are organized in a hierarchi-
cal (tree) topology; complex subscriptions are delivered from the root to the leaves and
progressively decomposed according to the information advertised at each node. Each
node combines information items coming from its children and delivers composed in-
formation to its parent. Each node continuously monitors the rate of information items
produced at each child; rare information is then asked in a push way (i.e., it is received
immediately, as it is available), while other information is asked only when needed.
Using this approach, Raced gets the benefits of distributed processing (load is split and
information is filtered near the sources), while limiting the transmission of unneeded
information from node to node.

Raced relies on a simple timing model in which all elements receive a time stamp
that represent the absolute time of occurrence. This way, complex events can be used to
form other (more complex) ones. Its processing model captures all possible occurrences
of events, using multiple selection and zero consumption policies.

Amit. Amit is an application development and runtime control tool intended to
enable fast and reliable implementation of reactive and proactive applications [Adi
and Etzion 2004]. Amit embeds a component, called situation manager, specifically
designed to process notifications received from different sources in order to detect pat-
terns of interests, called situations, and to forward them to demanding subscribers. The
situation manager is based on a strongly expressive and flexible detecting language,
which includes conjunctions, negations, parameters, sequences, and repetitions (in the
form of counting operators). Timing operators are introduced as well, enabling periodic
evaluation of rules.

Amit introduces the concept of lifespan as a valid time window for the detection of a
situation. A lifespan is defined as an interval bounded by two events called initiator and
terminator. Amit’s language enables user-defined policies for lifespans management:
these policies specify whether multiple lifespans may be open concurrently (in presence
of different valid initiators) and which lifespans are closed by a terminator (e.g., all
open ones, only the most recently opened, etc.).

At the same time, Amit introduces programmable event selection policies by applying
a quantifier to each operator. Quantifiers specify which events an operator should refer
to (e.g., the first, the last, all valid ones). Similarly, Amit allows for programmable
consumption policies by associating a consumption condition to each operator.
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It is worth mentioning that detected situations can be used as part of a rule, as
event notifications. This enables the definition of nested situations. Being focused on
the detection of patterns and not on complex processing of information, Amit does not
include aggregates.

Amit has been implemented in Java and is being used as the core technology behind
the E-business Management Service of IBM Global Services [IBM 2010]. It uses a cen-
tralized detection strategy: all events are stored at a single node, partitioned according
to the lifespans they may be valid for. When a terminator is received, Amit evaluates
whether all the conditions for the detection of a situation have been met and, if needed,
notifies subscribers.

Sase. Sase [Wu et al. 2006] is a monitoring system designed to perform complex
queries over real-time flows of RFID readings.

Sase defines detecting rules language based on patterns; each rule is composed of
three parts: event, where, and within. The event clause specifies which information
items have to be detected and which are the relations between them; relations are
expressed using logic operators and sequences. The where clause defines constraints
on the inner structure of information items included in the event clause: referring to
the list of operators of Section 3, the where clause is used to define selections for single
information items. Finally, the within clause expresses the time of validity for the rule;
this way it is possible to define time-based sliding windows. The language adopted by
Sase allows only for the detection of given patterns of information items; it does not
include any notion of aggregation.

Sase compiles rules into a query plan having a fixed structure: it is composed of six
blocks which sequentially process incoming information elements realizing a sort of
pipeline: the first two blocks detect information matching the logic pattern of the event
clause by using finite state automata. Successive blocks check selections constraints,
windows, negations, and build the desired output. Since all these operators explicitly
specify the set of events to be selected, it is not possible to capture unbounded sequences
of information items (Seq is bounded).

Sase+. Sase+ [Gyllstrom et al. 2008; Agrawal et al. 2008] is an expressive event
processing language from the authors of Sase. Sase+ extends the expressiveness of
Sase by including iterations and aggregates as possible parts of detecting patterns.

Non-deterministic automata are used for pattern detection, as well as for providing
a precise semantics of the language. An interesting aspect of Sase+ is the possibility for
users to customize selection policies using strategies. Selection strategies define which
events are valid for an automaton transition: only the next one (if satisfying the rule’s
constraints), or the next satisfying one, or all satisfying ones that satisfy. Consumption
of events, instead, is not taken into account.

An important contribution of Agrawal et al. [2008] is the formal analysis of the
expressive power of the language and of the complexity of its detecting algorithm. On
one hand, this analysis enables for a direct comparison with other languages (e.g.,
traditional regular expressions, Cayuga language). On the other hand, the analysis
applies only to a limited set of pattern-based language and cannot yet capture the
multitude of languages defined in the IFP domain.

Peex. Peex (Probabilistic Event Extractor) [Khoussainova et al. 2008] is a system
designed for extracting complex events from RFID data. Peex presents a pattern-based
rule language with four clauses: FORALL, which defines the set of readings addressed
in the rule; WHERE, which specifies pattern constraints; and CREATE EVENT and
SET, which define the type of event to be generated and set the content of its attributes,
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respectively. Patterns may include conjunctions, negations, and sequences, but not
iterations.

The main contribution of Peex is its support for data uncertainty: in particular, it
addresses data errors and ambiguity which can be frequent in the specific application
domain of RFID data. To do so, it changes the data model by assigning a probability to
all information items. In more detail, when defining rules, system administrators can
associate a confidence to the occurrence and attribute values of the defined composite
events as functions of composing ones. For example, they can state that if three sequen-
tial readings are detected in a given time window, then an event “John enters room
50” occurs with a probability of 70%, while an event “John enters room 51” occurs with
probability of 20% (probabilities need not sum to 100%). Peex enable users to reuse
event definitions in the specification of others: to compute the probability of composite
events, it fully takes into account the possible correlations between components. An-
other interesting aspect of Peex is the possibility of producing partial events, that is,
to produce an event even if some of its composing parts are missing. Obviously, the
confidence on the occurrence of a partial event is lower than if all composing events
were detected. Partial events are significant in the domain of RFID readings, since
sometimes sources may fail in detecting or transmitting an event.

From an implementation point of view, Peex uses a relation DBMSs where it stores
all information received from sources and information about confidence. Rules are then
translated into SQL queries and run periodically. For this reason, the detection time of
events may be different from real occurrence time.

TESLA/T-Rex. T-Rex [Cugola and Margara 2010a] is a general-purpose complex
event processing system designed to provide a balance between expressiveness and
efficiency. The system exposes API to publish new events, subscribe to simple as well
as complex events, and define new complex events through specification rules. Rules
are expressed using TESLA [Cugola and Margara 2010b], a detecting language based
on patterns. TESLA attempts to provide high expressiveness through a small set of
operators to keep the language simple and compact: indeed, it includes only a selection
of single events, time-bounded sequences, negations, and aggregates. Periodic rule
execution is allowed through timers. In our functional model, they are captured by the
presence of the clock. Moreover, TESLA offers completely programmable event selection
and consumption policies. The authors show how the operators provided, together with
the possibility of expressing hierarchies of events, can meet the requirements of a
number of existing application domains. It is worth mentioning that TESLA is formally
defined using a metric temporal logic: this provides a reference semantics that allows
us to check for the correctness of a given implementation.

T-Rex has been implemented in C++. It performs processing incrementally, as new
events enter the system. To do so, it adopts an algorithm based on detection automata.
Cugola and Margara [2010a] present the algorithm as well as the implementation
strategies in details. Since one of the goals of T-Rex is efficient detection, the au-
thors define custom data structure explicitly conceived to reduce memory occupation
(through data sharing) and to speed up processing through precompiled indexes. In the
current implementation, T-Rex adopts a centralized infrastructure and relies upon an
absolute time.

4.4. Commercial Systems

Aleri Streaming Platform. The Aleri Streaming Platform [Aleri 2010] is an IFP sys-
tem that offers a simple, imperative, graphical language to define processing rules by
combining a set of predefined operators. To increase a system’s expressiveness, custom
operators can be defined using a scripting language called Splash, which includes the
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capability of defining variables to store past information items so that they can be
referenced for further processing. Pattern detection operators are provided as well, in-
cluding sequences. Notice, however, that pattern matching can appear in the middle of
a complex computation and that sequences may use different attributes for ordering,
not only time stamps. As a consequence, the semantics of output ordering does not
necessarily reflect timing relationships between input items.

The platform is designed to scale by exploiting multiple cores on a single machine or
multiple machines in a clustered environment. However, no information is provided on
the protocols used to distribute operators. Interestingly, the Aleri Streaming Platform
is designed to easily work together with other business instruments: probably the
most significant example is the Aleri Live OLAP system which extends traditional
OLAP solutions [Chaudhuri and Dayal 1997] to provide near real-time updates of
information. Aleri also offers a development environment that simplifies the definition
of rules and their debugging. Additionally, Aleri provides adapters for enabling different
data formats to be translated into flows of items compatible with the Aleri Streaming
Platform, together with an API to write custom programs that may interact with the
platform using either standing or one-time queries.

Coral8 CEP Engine. The Coral8 CEP Engine [Coral8 2010a, 2010b], despite its name,
can be classified as a data stream system. Indeed, it uses a processing paradigm in
which flows of information are transformed through one or more processing steps using
a declarative, SQL-like language called CCL (Continuous Computation Language).
CCL includes all SQL statements; in addition it offers clauses for creating time-based
or count-based windows, for reading and writing data in a defined window, and for
delivering items as part of the output stream. CCL also provides simple constructs
for pattern matching, including conjunctions, disjunctions, negations, and sequences;
instead, it does not offer support for repetitions. As with Aleri, the Coral8 engine does
not rely upon the existence of an absolute time model: users may specify, stream by
stream, the processing order (e.g., increasing time stamp value if a time stamp is
provided or arrival order). The results of processing can be obtained in two ways: by
subscribing to an output flow (push), or by reading the content of a public window
(pull).

Together with its CEP Engine, Coral8 also offers a graphical environment for devel-
oping and deploying, called Coral8 Studio. This tool can be used to specify data sources
and to graphically combine different processing rules by explicitly drawing a plan in
which the output of a component becomes the input for others. Using this tool, all CCL
rules become the primitive building blocks for the definition of more complex rules,
specified using a graphical, plan-based language.

Like Aleri, the Coral8 CEP engine may execute in a centralized or clustered envi-
ronment. The support for clustered deployment is used to increase the availability of
the system, even in presence of failures. It is not clear, however, which policies are
used to distribute processing on different machines. Load shedding is implemented by
allowing administrator to specify a maximum allowed rate for each input stream.

In early 2009, Coral8 merged with Aleri. The company now plans a combined plat-
form and tool set under the name Aleri CEP.

StreamBase. Streambase [2010a] is a software platform that includes a data stream
processing system, a set of adapters for gathering information from heterogeneous
sources, and a developer tool based on Eclipse. It shares many similarities with the
Coral8 CEP Engine: in particular, it uses a declarative, SQL-like language for rule
specification, called StreamSQL [Streambase 2010b]. Beside traditional SQL operators,
StreamSQL offers customizable time-based and count-based windows. Plus, it includes
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a simple pattern-based language that captures conjunctions, disjunctions, negations,
and sequences of items.

Operators defined in StreamSQL can be combined using a graphical plan-based rule
specification language, called EventFlow. User-defined functions written in Java or C++
can be easily added as custom aggregates. Another interesting feature is the possibility
for explicitly instructing the system to permanently store a portion of processed data
for historical analysis.

StreamBase supports both centralized and clustered deployments; networked de-
ployments can be used as well, but also to provide high availability in case of failures.
Users can specify the maximum load for each used server, but the documentation does
not specify how the load is actually distributed to meet these constraints.

Oracle CEP. Oracle [2010] launched its event-driven architecture suite in 2006 and
added BEA’s WebLogic Event Server in 2008, building what is now called Oracle CEP,
a system that provides real-time information flow processing. Oracle CEP uses CQL
as its rule definition language, but (similarly to Coral8 and StreamBase) it adds a set
of relation-to-relation operators designed to provide pattern detection, including con-
junctions, disjunctions, and sequences. An interesting aspect of this pattern language
is the possibility for users to program the selection and consumption policies of rules.

As in Coral8 and StreamBase, a visual, plan-based language is also available inside
a development environment based on Eclipse. This tool enables users to connect simple
rules into a complex execution plan. Oracle CEP is integrated with existing Oracle so-
lutions, which include technology for distributed processing in clustered environment,
as well as tools for analysis of historical data.

Esper. Esper [2010] is considered the leading open-source CEP provider. Esper de-
fines a rich declarative language for rule specification, called EPL (Event Processing
Language). EPL includes all the operators of SQL, adding ad hoc construct for windows
definition and interaction and for output generation. The Esper language and process-
ing algorithm are integrated into the Java and .Net (NEsper) as libraries. Users can
install new rules from their programs and then receive output data either in a push-
based mode (using listeners) or in a pull-based one (using iterators).

EPL embeds two different ways of expressing patterns: the first one exploits so-
called EPL Patterns that are defined as nested constraints, including conjunctions,
disjunctions, negations, sequences, and iterations. The second one uses flat, regular ex-
pressions. The two syntax offer the same expressiveness. An interesting aspect of Esper
pattern is the possibility of explicitly programing event selection policies, exploiting the
every and every-distinct modifiers.

Esper supports both centralized and clustered deployments; in fact, by using the
EsperHa (Esper High Availability) mechanisms, it is also possible to take advantage
of the processing power of different, well-connected nodes to increase the system’s
availability and to share the system’s load, according to customizable QoS policies.

Tibco Business Events. Tibco Business Events [Tibco 2010] is another widespread
complex event processing system. It is mainly designed to support enterprise processes
and to integrate existing Tibco products for business process management. To do so,
Tibco Business Events exploits the pattern-based language of Rapide, which enables
the specification of complex patterns to detect occurrences of events and the definition
of actions to automatically react after detection. Interestingly, the architecture of Tibco
Business Events is capable of decentralized processing, by defining a network of event
processing agents: each agent is responsible for processing and filtering events com-
ing from its own local scope. This allows, for example, for correlating multiple RFID
readings before their value is sent to other agents.
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IBM System S. In May 2009, IBM announced a stream computing platform, called
System S [Amini et al. 2006; Wu et al. 2007; Jain et al. 2006]. The main idea of
System S is that of providing a computing infrastructure for processing large volumes
of possibly high-rate data streams to extract new information. The processing is split
into basic operators called processing elements (PEs): PEs are connected to each other
in a graph, thus forming complex computations. System S accepts rules specified using
a declarative, SQL-like, language called SPADE [Gedik et al. 2008], which embeds all
traditional SQL operators for filtering, joining, and aggregating data. Rules written in
SPADE are compiled into one or more PEs. However, different from most of the other
presented systems, System S allows users to write their own PEs using a full-featured
programming language. This way, users can write virtually every kind of function,
explicitly deciding when to read an information from an input stream, what to store,
how to combine information, and when to produce new information. This allows for the
definition of component-performing pattern detection which is not natively supported
by SPADE.

System S is designed to support large-scale scenarios by deploying the PEs in a
clustered environment in which different machines cooperate to produce the desired
results. Interestingly, System S embeds a monitoring tool that uses past information
about processing load to compute a better processing plan and to move operators from
site to site to provide desired QoS.

Other widely adopted commercial systems exist for which, unfortunately, documen-
tation or evaluation copies are not available. We mention some of them here.

IBM WebSphere Business Events. IBM acquired CEP pioneer system AptSoft in 2008
and renamed it WebSphere Business Events [IBM 2008]. Today, it is a system fully inte-
grated inside the WebSphere platform, which can be deployed on clustered environment
for faster processing. IBM WebSphere Business Events provides a graphical front-end,
which helps users writing rules in a pattern-based language. Such a language allows
for the detection of logical, causal, and temporal relationships between events, using
an approach similar to the one described for Rapide and Tibco Business Events.

Event Zero. A similar architecture, based on connected event processing agents, is
used inside Event Zero [2010b], a suite of products for capturing and processing in-
formation items as they come. A key feature of Event Zero is its ability of supporting
real-time presentations and analysis for its users.

Progress Apama Event Processing Platform. The Progress Apama Event Process-
ing Platform [Progress-Apama 2010] has been recognized as a market leader for its
solutions and for its strong market presence [Gualtieri and Rymer 2009]. It offers a
development tool for rule definition, testing, and deployment, and a high-performance
engine for detection.

5. DISCUSSION

The first consideration that emerges from the analysis and classification of existing
IFP systems done in the previous section is a distinction between systems that mainly
focus on data processing and systems that focus on event detection.4

This distinction is clearly captured in the data model (Table III) by the nature of
items processed by the different systems. Moreover, by looking at the nature of flows,
we observe that systems focusing on data processing usually manage homogeneous

4This distinction does not necessarily map to the grouping of systems we adopted in Section 4. There are
active databases which focus on event detection, while several commercial systems, which classify themselves
as CEP, actually focus more on data processing than on event notification.
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flows, while systems focusing on event detection allow different information items to
be part of the same flow.

If we look at the rule and language models (Tables III and IV), we may also notice
how the systems that focus on data processing usually adopt transforming rules—
defined through declarative or imperative languages—including powerful windowing
mechanisms, together with a join operator, to allow complex processing of incoming
information items. Conversely, systems focusing on event processing usually adopt
detecting rules, defined using pattern-based languages that provide logic, sequence,
and iteration operators as means to capture the occurrence of relevant events.

The data and rule models summarized in Table III also show that data uncertainty
and probabilistic rules have been rarely explored in existing IFP systems. Since these
aspects are critical in many IFP applications, that is, when data coming from sources
may be imprecise or even incorrect, we think that support for uncertainty deserves
more investigation. It could increase the expressiveness and flexibility, and, hence, the
diffusion of IPF systems.

Coming back to the distinction between DSP and CEP, the time model (Table III)
emphasizes the central role of time in event processing. All systems designed to detect
composite events introduce an order among information items, which can be a partial
order (causal) or a total order (using an absolute or an interval semantics). Conversely,
stream processing systems often rely on a stream-only time model: time stamps, when
present, are mainly used to partition input streams using windows and then processing
is performed using relational operators inside windows.

The importance of time in event detection becomes even more evident by looking
at Table IV. Almost all systems working with events include the sequence operator,
and some of them also provide the iteration operator. These operators are, instead
not provided by stream processing systems (at least those coming from the research
community). Table IV, in fact, shows that commercial systems adopt a peculiar ap-
proach. While they usually adopt the same stream processing paradigm as DSP re-
search prototypes, they also embed pattern-based operators, including sequence and
iteration. While, at first, this approach could appear to be the most effective way to
combine processing abstractions coming from the two worlds, a closer look at the lan-
guages proposed so far reveals many open issues. In particular, since all processing
is performed on relational tables defined through windows, it is often unclear how
the semantics of operators for pattern detection maps to the partitioning mechanisms
introduced by windows. One gets the impression that several mechanisms were put
together without investing much effort in their integration and without carefully study-
ing the best and minimal set of operators to include in the language to offer both DSP
and CEP processing support. In general, we can observe that this research area is
new, and neither academia nor industry have found how to combine the two processing
paradigms in a unifying proposal [Chakravarthy and Adaikkalavan 2008].

If we focus on the interaction style, we notice (Table II) that the push-based style is the
most used, both for observation and notification of items. Only a few research systems
adopt pull-based approaches: some of them (NiagaraCQ and OpenCQ) motivate this
choice through the specific application domain in which they work, that is, monitoring
updates of webpages where the constraint on timeliness is less strict. Among the
systems focusing on such domain, only PB-CED is able to dynamically decide the
interaction style to adopt for data gathering, according to the monitored load.

As for the notification model, different commercial systems use a hybrid push/pull
interaction style: this is mainly due to the integration with tools for the analysis
of historical data, which are usually accessed on-demand, using pull-based queries.
Finally, we observe that almost all systems that allow for distributed processing adopt
a push-based forwarding approach to send information from processor to processor.
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The only exception is represented by Raced, which switches between push and pull
dynamically for adapting the forwarding model to the actual load in order to minimize
bandwidth usage and increase throughput.

Closely related with the interaction style is the deployment model. By looking at
Table II, we notice a peculiarity that was anticipated in Section 2: the few systems that
provide a networked implementation for performing filtering, correlation, and aggre-
gation of data directly in network also focus on event detection. It is an open issue if
this situation is an outcome of the history brought to the development of IFP systems
from different communities with different priorities, or if it has to do with some techni-
cal aspect, like the difficulty of using a declarative, SQL-like language in a networked
scenario in which distributed processing and minimization of communication costs are
the main concern. Clustered deployments, instead, have been investigated both in the
DSP and CEP domains.

Along the same line, we notice (Table I) how the systems that support a networked
deployment do not provide a knowledge base and vice versa. In our functional model,
the knowledge base is an element that has the potential to increase the expressiveness
of the system but could be hard to implement in a fully networked scenario. This may
explain the absence of such a component in those systems that focus on efficient event
detection in a strongly distributed and heterogeneous network.

Another aspect related with the functional model of an IFP system has to do with
the presence or absence of the clock. Table I shows how half of the systems include
such a (logical) component and consequently allow rules to fire periodically, while
the remaining systems provide a purely reactive behavior. This feature seems to be
independent from the class of the system.

We cannot say the same if we focus on load shedding. Indeed, Table I shows that
all systems providing such a mechanism belong to the DSP world. Load shedding, in
fact, is used to provide guaranteed performance to users, and this is strictly related to
the issue of agreeing QoS levels between sources, sinks, and the IFP system. While all
CEP systems aim at maximizing performance through efficient processing algorithms
and distribution strategies, they never explicitly take into account the possibility of
negotiating specific QoS levels with their clients. It is not clear to us whether the
adoption of these two different approaches (i.e., negotiated QoS vs. fixed, usually best-
effort, QoS) really depends on the intrinsically different nature of data and event
processing, or if it is a consequence of the different attitudes and backgrounds of the
communities working on the two kinds of systems.

Another aspect differentiating CEP from DSP systems has to do with the possibility
of performing recursive processing. As shown in Table I, such a mechanism is often
provided by systems focusing on events, while it is rarely offered by systems focusing
on data transformation. This can be explained by observing how recursion is a funda-
mental mechanism for defining and managing hierarchies of events, with simple events
coming from sources used to define and detect first-level composite events, which in
turn may become part of higher-level composite events.

Another aspect that impacts the expressiveness of an IFP system is its ability to
adapt the processing model to better suit the need of its users. According to Table I,
this is a mechanism provided by a few systems, while we feel that it should be offered
by all of them. Indeed, while the multiple selection policy (with zero consumption) is
the most common, in some cases, it is not the most natural. As an example, in the fire
alarm scenario described in Section 3.1, a single selection policy would be better suited:
in presence of a smoke event followed by three high temperature events, a single fire
alarm, not multiple, should be generated.

Similarly, in Section 3.1, we observed that the maximum length of the sequence seq of
information items that exits the decider and enters the producer has an impact on the
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expressiveness of the system. Here, we notice how this feature can help us drawing a
sharp distinction between traditional publish-subscribe systems and all other systems,
which allow multiple items to be detected and combined. On the other hand, it is not
clear if there is a real difference in expressiveness between those rule languages that
result in a bound length for sequence seq and those that are unbound. As an example,
a system that allows for the combining (e.g., join) of different flows of information in
a time-based window requires a potentially infinite seq. The same is true for systems
that provide an unbounded iteration operator. Conversely, a system that would provide
count-based windows forcing us to use them each time the number of detectable items
grows, would have a bounded seq. While it seems that the first class of languages
is more expressive than the second, how to formally define, measure, and compare
the expressiveness of IFP rule languages is still an open issue which requires further
investigation.

As a final consideration, we notice (Table I) that the ability to dynamically change
the set of active rules, while available in most active databases developed years ago,
has disappeared in more recent systems (with the remarkable exception of GEM and
Tribeca). This is a functionality that could be added to existing systems to increase
their flexibility.

6. RELATED WORK

In this section, we briefly discuss the results of ongoing or past research which aims at
providing a more complete understanding of the IFP domain. In particular, we cover
four different aspects: (i) we present work that studies general mechanisms for IFP;
(ii) we review specific models used to describe various classes of systems, or to address
single issues; (iii) we provide an overview of systems presenting similarities with IFP
systems; (iv) we discuss existing attempts to create a standard for the IFP domain.

6.1. General Mechanisms for IFP

Many researchers have focused on developing general mechanisms for IFP by studying
(i) rule processing strategies, (ii) operator placement and load balancing algorithms,
(iii) communication protocols for distributed rule processing, (iv) techniques to provide
adequate levels of QoS, and (v) mechanisms for high availability and fault tolerance.

Query optimization has been widely studied by the database community [Jarke
and Koch 1984; Ioannidis 1996; Chaudhuri 1998]. Since different rules coexist in IFP
systems, and may be evaluated simultaneously when new input is available, it becomes
important to look at the set of all deployed rules to minimize the overall processing time
and resource consumption. This issue is sometimes called the multi-query optimization
problem [Sellis 1988]. Different proposals have emerged to address this problem: they
include shared plans [Chen et al. 2000], indexing [Chandrasekaran and Franklin 2002;
Madden et al. 2002; Brenna et al. 2007], and query rewriting [Schultz-Moeller et al.
2009] techniques. In the area of publish-subscribe middleware, the throughput of the
system has always been one of the main concerns: for this reason, different techniques
have been proposed to increase message filtering performance [Aguilera et al. 1999;
Carzaniga and Wolf 2003; Campailla et al. 2001].

When the processing is distributed among different nodes, besides the definition of
an optimal execution plan, a new problem emerges—the operator placement problem
that aims at finding the optimal placement of entire rules or single operators (i.e.,
rule fragments) at the different processing nodes in order to distribute load and to
provide the best possible performance according to a system-defined or user-defined
cost function. Some techniques have been proposed to address this issue [Balazinska
et al. 2004; Ahmad and Çetintemel 2004; Li and Jacobsen 2005; Abadi et al. 2005;
Kumar et al. 2005; Pietzuch et al. 2006; Zhou et al. 2006; Amini et al. 2006; Repantis
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et al. 2006; Wolf et al. 2008; Khandekar et al. 2009; Cugola and Margara 2009], each
one adopting different assumptions on the underlying environment (e.g., cluster of well-
connected nodes or large-scale scenarios with geographical distribution of processors)
and system properties (e.g., the possibility of replicating operators). Most importantly,
they consider different cost metrics; most of them consider (directly or indirectly) the
load at different nodes (thus realizing load balancing), while others take into account
network parameters (like latency and/or bandwidth). A classification of existing works
can be found in Lakshmanan et al. [2008].

In distributed scenarios, it is of primary importance to define efficient communication
strategies between the different actors (sources, processors, and sinks). While most
existing IFP systems adopt a push-based style of interaction among components, some
works have investigated different solutions. A comparison of push and pull approaches
for Web-based, real-time event notifications is presented in Bozdag et al. [2007]; some
works focused on efficient data gathering using a pull-based approach [Roitman et al.
2008] or a hybrid interaction, where the data to be received is partitioned into push
parts and pull ones according to a given cost function [Bagchi et al. 2006; Akdere et al.
2008]. A hybrid push/pull approach also has been proposed for the interaction between
different processing nodes [Cugola and Margara 2009].

Different contributions, primarily from people working on stream processing, focused
on the problem of bursty arrival of data (which may cause processors’ overload) [Tatbul
and Zdonik 2006a] and on providing required levels of QoS. Many works propose load-
shedding techniques [Tatbul et al. 2003; Babcock et al. 2004; Srivastava and Widom
2004; Chandrasekaran and Franklin 2004; Tatbul and Zdonik 2006b; Chi et al. 2005] to
deal with processors’ overload. As already mentioned in Section 4, the Aurora/Borealis
project allows users to express QoS constraints as part of a rule definition [Ahmad et al.
2005]: such constraints are used by the system to define the deployment of processing
operators and to determine the best shedding policies.

Recently, a few works coming from the event-based community have addressed the
problem of QoS. In particular, some of them have studied the quality of event delivery
with respect to different dimensions [Pandey et al. 2004; Xu et al. 2006; Roitman et al.
2010a]. Often, such dimensions are merged together to obtain a single variable; the
objective is that of properly allocating system resources in order to maximize such
a variable. Roitman et al. [2010b] study the quality of event delivery using a multi-
objective approach in which the two competing dimensions of completeness of delivery
and delay are considered together. The authors present an offline algorithm capable of
finding the set of optimal solution to the multi-objective function, as well as a greedy
approach that works online.

O’Keeffe and Bacon [2010] address the problem of defining a proper semantics for
event detection when communication and synchromization errors may occur. Their
proposal extends the rule definition language with policies so that the behavior of the
system, in the presence of errors, can be customized by the users according to their
needs. Several policies are presented, for example a No-False-Positive policy ensures
the sinks that all received events have actually occurred, while a Max-Delay policy does
not offer guarantees about the quality of results but, instead, ensures that the delay
between event detection and event delivery does not overcome a given threshold.

Finally, a few works have focused on high-availability and fault tolerance for dis-
tributed stream processing. Some of them focused on fail-stop failures of processing
nodes [Shah et al. 2004b; Hwang et al. 2005], defining different models and semantics
for high-availability according to specific application needs (e.g., the fact that results
have to be delivered to sinks at least once, at most once, or exactly once). They proposed
different algorithms based on replication. Interestingly, Balazinska et al. [2008] also
take into account network failures and partitioning, proposing a solution in which, in
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case of a communication failure, a processor does not stop but continues to produce
results based on the (incomplete) information it is still able to receive; such infor-
mation would be updated as soon as the communication could be reestablished. This
approach defines a trade-off between availability and consistency of data, which can be
configured by sinks.

6.2. Other Models

As we have seen, IFP is a large domain including many systems. Although the literature
misses a unifying model which is able to capture and classify all existing works, various
contributions are worth mentioning. First, there are the community-specific system
models which help us understand the different visions of IFP and the specific needs
of the various communities involved. Second, there are models that focus on single
aspects of IFP, like timing models, event representation models, and language related
models.

6.2.1. System Models. As described in Section 2, two main models for IFP have
emerged, one coming from the database community and one coming from the event-
processing community.

In the database community, active database systems represent the first attempt
to define rules for reacting to information in real-time as it becomes available. The
research field of active database systems is now highly consolidated, and several works
exist offering exhaustive descriptions and classifications [McCarthy and Dayal 1989;
Paton and Dı́az 1999; Widom and Ceri 1996].

To overcome the limitations of active database systems in dealing with flows of
external events, the database community gave birth to data stream managements
systems. Even if research on DSMSs is relatively young, it appears to have reached
a good degree of uniformity in its vocabulary and in its design choices. There exist a
few works that describe and classify such systems, emphasizing common features and
open issues [Babcock et al. 2002; Golab and Özsu 2003]. Probably the most complete
model to describe DSMSs comes from the authors of Stream [Babu and Widom 2001];
it greatly influenced the design of our own model for a generic IFP system. Stream is
also important for its rule definition language, CQL [Arasu et al. 2006], which captures
most of the common aspects of declarative (SQL-like) languages for DSMS, clearly
separating them through its stream-to-relation, relation-to-relation, and relation-to-
stream operators. Not surprisingly, many systems (even commercial ones [Oracle 2010;
Streambase 2010a]) directly adopt CQL or a dialect for rule definition. However, no
single standard has emerged so far for DSMSs languages and competing models have
been proposed, either adopting different declarative approaches [Law et al. 2004] or
using a graphical, imperative approach [Abadi et al. 2003; Aleri 2010].

Our model has also been developed by looking at currently available event-based
systems and, particularly, publish-subscribe middleware. An in-depth description of
such systems can be found in Eugster et al. [2003] and Mühl et al. [2006]. Recently,
several research efforts have been put in place to cope with rules involving multiple
events: general models of CEP can be found in Luckham [2001] and Etzion and Niblett
[2010] and Wright et al. [2010].

6.2.2. Models for Single Aspects of IFP. A relevant part of our classification focuses on the
data representations and rule definition languages adopted by IFP systems and on the
underlying time model assumed for processing. Some works have extensively studied
these aspects, and they deserve to be mentioned here. As an example, some papers
provide an in-depth analysis of specific aspects of languages, like blocking operators,
windows, and aggregates [Arasu et al. 2002; Law et al. 2004; Golab and Özsu 2005;
Jain et al. 2008]. Similarly, even if a precise definition of the selection and consumption
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policies that ultimately determine the exact semantics of rule definition languages is
rarely provided in existing systems, there are some papers that focus on this issue, both
in the area of active databases [Zimmer 1999] and in the area of CEP systems [Konana
et al. 2004; Adi and Etzion 2004].

In the areas of active databases and event processing systems, much has been said
about event representation: in particular, a long debate exists on timing models [Galton
and Augusto 2002; Adaikkalavan and Chakravarthy 2006], distinguishing between a
detection and an occurrence semantics for events. The former associates events with a
single time stamp, representing the time in which they were detected; it has been shown
that this model provides limited expressiveness in defining temporal constraints and
sequence operators. On the other hand, the occurrence semantics associates a duration
to events. In White et al. [2007], present a list of desired properties for time operators
(i.e., sequence and repetition); they also demonstrate that it is not possible to define a
time model based on the occurrence semantics that could satisfy all those properties
unless time is represented using time stamps of unbounded size. It has been also
demonstrated that when the occurrence semantics is used, an infinite history of events
should be used by the processing system to guarantee a set of desired properties for
the sequences operators [White et al. 2007].

Finally, as we observed in Sections 4 and 5, DSMSs, and particularly commercial
ones, have started embedding (usually simple) operators for capturing sequences into
a traditional declarative language: this topic has been extensively studied in a proposal
for adding sequences to standard SQL [Sadri et al. 2004].

All these works complement and complete our effort.

6.3. Related Systems

Besides the systems described in Section 4, other tools exist which share many simi-
larities with IFP systems.

6.3.1. Runtime Verification Tools. Runtime verification [Giannakopoulou and Havelund
2001; Havelund and Rosu 2002; Barringer et al. 2004; Baresi et al. 2007] defines
techniques to check whether the run of a system under scrutiny satisfies or violates
some given rules, which usually model correctness properties [Leucker and Schallhart
2009].

While, at first sight, runtime verification may resemble IFP, we decided not to include
the currently available runtime verification tools into our list of IFP systems for two
reasons. First, they usually do not provide general purpose operators for information
analysis and transformation; on the contrary, they are specifically designed only for
checking whether a program execution trace satisfies or violates a given specification
of the system. Second, the specific goal they focus on has often led to the design of ad
hoc processing algorithms, which cannot be easily generalized for other purposes.

In particular, as these tools are heavily inspired by model checking [Clarke and
Schlingloff 2001], rules are usually expressed in some kind of linear temporal
logic [Pnueli 1997]. These rules are translated into monitors, usually in the form of
finite state or Büchi automata, which read input events coming from the observed sys-
tem and continuously check for rule satisfaction or violation. According to the type of
monitored system, events may regard state changes, communication, or timing infor-
mation. Guarded systems may be instrumented to provide such pieces of information,
or they can be derived through external observation. It is worth noting that while the
monitored systems are often distributed, the currently available runtime verification
systems are centralized.

Focusing on the language, we may observe that temporal logics enable the creation
of rules that resemble those that can be defined using pattern-based languages, as
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described in Section 3. In particular, they allow for composition of information through
conjunctions, disjunctions, negations, and sequences of events. Additionally, much work
is based on logics that also include timing constraints [Drusinsky 2000; Maler et al.
2006]; this introduces a flexible way to manage time, which can be compared to user-
defined windows adopted by some IFP systems. Another aspect explored by some re-
searchers is the possibility of expressing parameterized rules through variables [Stolz
2007], which are usually associated with universal and existential quantifiers.

A notable difference between IFP systems and runtime verification tools is that the
former only deal with the history of past events to produce their output, while the
latter may express rules that require future information to be entirely evaluated. As
the output of runtime verification systems is a boolean expression (indicating whether
a certain property is satisfied or violated), different semantics have been proposed to
include all the cases in which past information is not sufficient to evaluate the truth of
a rule. Some work uses a three-valued logic, where the output of the verification can
be true, false, or inconclusive [Bauer et al. 2006b, 2010]. Other work considers a given
property as satisfied until it has not been violated by occurred events [Giannakopoulou
and Havelund 2001]. Another approach is that of adopting a four-valued logic, including
the presumably true and presumably false truth values [Bauer et al. 2007]. When a
violation is detected, some of the exisiting tools may also be programmed to execute a
user-defined procedure [Bauer et al. 2006a], for example, to bring back the system in a
consistent state.

6.3.2. Runtime Monitoring Tools. Similar to IFP systems, runtime monitoring tools con-
sider not only the satisfaction or violation of properties (as it happens in runtime
verification) but also the manipulation of data collected from the monitored system.
Accordingly, some monitoring tools—even when developed with the specific domain of
monitoring in mind—present design choices that can be easily adapted to the more
general domain of IFP. For this reason, we included them in the list of IFP systems
analyzed in Section 4. Others are more strongly bound to the domain for which they
are studied: we describe them here.

A lot of effort recently has been put into runtime monitoring of service oriented archi-
tectures (SOAs) and, more specifically, Web services. The focus is on the analysis of the
quality of service compositions—to detect bottlenecks and to eliminate them whenever
possible. Different rule languages have been proposed for SOA-oriented monitoring
systems. Some of them are similar to the pattern-based languages described in Sec-
tion 3 and express content and timing constraints on the events generated by services
[Barbon et al. 2006a, 2006b]. Others adopt imperative or declarative languages [Beeri
et al. 2007] to express transforming rules. Events usually involve information about
service invocations, including the content of exchanged messages. Moreover, runtime
monitoring languages often provide constructs for defining variables and to manipu-
late them, making it possible to store and aggregate information coming from multiple
invocations.

From an implementation point of view, some systems integrate monitoring rules
within the process definition language (e.g., BPEL) that describes the monitored pro-
cess, thus enabling users to express conditions that must hold at the bounds of service
invocations [Baresi and Guinea 2005a, 2005b; Baresi et al. 2008]. Other systems, in-
stead, adopt an autonomous monitor.

6.3.3. Scalable Distributed Information Management Systems. Like many IFP systems,
distributed information management systems [Van Renesse et al. 2003; Yalagandula
and Dahlin 2004] are designed to collect information coming from distributed sources
to monitor the state and the state’s changes in large-scale scenarios. Such systems
usually split the network into nonoverlapping zones, organized hierarchically. When
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information moves from layer, to layer, it is aggregated through user-defined functions,
which progressively reduces the amount of data to forward. This way, such systems
provide a detailed view of nearby information and a summary of global information.
Getting the real data may sometimes require visiting the hierarchy in multiple steps.

If compared with the IFP systems presented in Section 4, distributed information
management systems present some differences. First, they are not usually designed
to meet the requirements of applications that make strong assumption on timeliness.
This also reflects in the interaction style they offer, which is usually pull-based (or
hybrid). Second, they are generally less flexible. In fact, they usually focus on data
dissemination and not on data processing or pattern detection. Aggregation functions
are only used as summarizing mechanisms and are not considered as generic process-
ing functions [Van Renesse et al. 2003]. As a consequence they usually offer a very
simple API to applications, which simply allows for the installation of new aggregation
functions and to get or put information into the system.

6.4. IFP Standardization

Recently, much effort has been put in trying to define a common background for
IFP systems. Proposals came mainly from the event processing community where a
large discussion on the topic is undergoing, starting from the book that introduced the
term complex event processing [Luckham 2001] and continuing on websites and blogs
[Luckham 2010; Etzion 2010]. An Event Processing Technical Society [EPTS 2010] has
been founded, as well, to promote understanding and advancement in the field of event
processing and to develop standards.

All these efforts and discussions put a great emphasis on possible applications and
uses of CEP systems, as well as on the integration with existing enterprise solutions.
For these reasons, they have received a great deal of attention from the industry, which
is rapidly adopting the term complex event processing. On the other hand, this work is
still in its infancy, and no real unifying model has been proposed so far to describe and
classify complex event processing systems. Our work goes exactly in this direction.

7. CONCLUSIONS

The need for processing large flows of information in a timely manner is becoming more
and more common in several domains, from environmental monitoring to finance. This
need was answered by different communities, each bringing its own expertise and
vocabulary and each working mostly in isolation in developing a number of systems we
collectively called IFP systems. In this article, we surveyed the various IFP systems
developed so far, which include active databases, DSMSs, CEP systems, plus several
systems developed for specific domains.

Our analysis shows that the different systems fit different domains (from data pro-
cessing to event detection) and focus on different aspects (from the expressiveness of the
rule language to performance in large scale scenarios), adopting different approaches
and mechanisms.

From the discussion in Section 5, we identify several research challenges for research
in the IFP domain. First, it would be useful to be able to characterize the differences in
term of expressiveness among the different rule languages. In fact, while our analysis
allows for the drawing of a line between languages oriented toward data processing and
languages oriented toward event detection—putting in evidence the set of operators
offered by each language—it is still unclear how each operator contributes to the actual
expressiveness of the language and which is the minimal set of operators needed to
combine both full data processing and full event detection capabilities in a single
proposal.
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Related with the issue of expressiveness is the ability to support uncertainty in
data and rule processing. As we have seen, a single system supports it among those
we surveyed, but we feel this is an area that requires more investigation, since it is
something useful in several domains.

Along the same line, we noticed how the ability for a rule to programmatically
manipulate the set of deployed rules by adding or removing them is common in active
databases but is rarely offered by more recent IFP systems. Again, we think that
this is potentially very useful in several cases and should be offered to increase the
expressiveness of the system.

A final issue has to do with the topology of the system and the interaction style. In
our survey, we observed that IFP systems either focus on throughput, that is, looking
at performance of the engine with an efficient centralized or clustered implementation,
or they focus on minimizing communication costs by performing filtering, correlation,
and aggregation of data directly in network. Both aspects are relevant for a system to
maximize its throughput in a widely distributed scenario, and they are strongly related
with the forwarding model adopted (either push or pull). We started looking at these
issues in developing Raced [Cugola and Margara 2009], but more has to be done in the
future to fully support very large-scale scenarios, like analysis of environmental data,
processing of information coming from social networks, or monitoring of Web sources.

In general, we notice that although the IFP domain is now mature and many sys-
tems were developed by academia and industry, there is still space for new innovative
approaches, possibly integrating in a smart way the different ideas already present in
the various systems we surveyed.
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CARNEY, D., ÇETINTEMEL, U., CHERNIACK, M., CONVEY, C., LEE, S., SEIDMAN, G., STONEBRAKER, M., TATBUL, N., AND

ZDONIK, S. 2002. Monitoring streams: A new class of data management applications. In Proceedings of
the 28th International Conference on Very Large Databases (VLDB’02). 215–226.

CARZANIGA, A., ROSENBLUM, D., AND WOLF, A. 2001. Design and evaluation of a wide-area event notification
service. ACM Trans. Comp. Syst. 19, 3, 332–383.

CARZANIGA, A., ROSENBLUM, D. S., AND WOLF, A. L. 2000. Achieving scalability and expressiveness in an internet-
scale event notification service. In Proceedings of the 19th Annual ACM Symposium on Principles of
Distributed Computing. 219–227.

CARZANIGA, A. AND WOLF, A. L. 2002. Content-based networking: A new communication infrastructure. In
Proceedings of the Revised Papers from the NSF Workshop on Developing an Infrastructure for Mobile
and Wireless Systems (IMWS’01). Springer-Verlag, London, UK, 59–68.

CARZANIGA, A. AND WOLF, A. L. 2003. Forwarding in a content-based network. In Proceedings of the Confer-
ence on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIG-
COMM’03). ACM, New York, NY, 163–174.

CHAKRAVARTHY, S. AND ADAIKKALAVAN, R. 2008. Events and streams: Harnessing and unleashing their synergy!
In Proceedings of the 2nd International Conference on Distributed Event-Based Systems (DEBS’08).
ACM, New York, NY, 1–12.

ACM Computing Surveys, Vol. 44, No. 3, Article 15, Publication date: June 2012.



Processing Flows of Information: From Data Stream to Complex Event Processing 15:57

CHAKRAVARTHY, S., ANWAR, E., MAUGIS, L., AND MISHRA, D. 1994. Design of sentinel: An object-oriented dmbs
with event-based rules. Inform. Softw. Technol. 36, 9, 555–568.

CHAKRAVARTHY, S. AND MISHRA, D. 1994. Snoop: An expressive event specification language for active databases.
Data Knowl. Eng. 14, 1, 1–26.

CHAND, R. AND FELBER, P. 2004. Xnet: a Reliable content-based publish/subscribe system. In Proceedings of
the 23rd IEEE International Symposium on Reliable Distributed Systems. 264–273.

CHANDRASEKARAN, S., COOPER, O., DESHPANDE, A., FRANKLIN, M. J., HELLERSTEIN, J. M., HONG, W., KRISHNAMURTHY,
S., MADDEN, S. R., REISS, F., AND SHAH, M. A. 2003. Telegraphcq: Continuous dataflow processing. In
Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’03).
ACM, New York, NY, 668–668.

CHANDRASEKARAN, S. AND FRANKLIN, M. 2004. Remembrance of streams past: Overload-sensitive manage-
ment of archived streams. In Proceedings of the 13th International Conference on Very Large Databases
(VLDB’04). 348–359.

CHANDRASEKARAN, S. AND FRANKLIN, M. J. 2002. Streaming queries over streaming data. In Proceedings of the
28th International Conference on Very Large Databases (VLDB’02). 203–214.

CHAUDHURI, S. 1998. An overview of query optimization in relational systems. In Proceedings of the 17th ACM
SIGACT Symposium on Principles of Database Systems (PODS’98). ACM, New York, NY, 34–43.

CHAUDHURI, S. AND DAYAL, U. 1997. An overview of data warehousing and olap technology. SIGMOD Rec. 26, 1,
65–74.

CHEN, J., DEWITT, D. J., TIAN, F., AND WANG, Y. 2000. Niagaracq: A scalable continuous query system for
Internet databases. SIGMOD Rec. 29, 2, 379–390.

CHERNIACK, M., BALAKRISHNAN, H., BALAZINSKA, M., CARNEY, D., CETINTEMEL, U., XING, Y., AND ZDONIK, S. 2003.
Scalable distributed stream processing. In Proceedings of the 1st Biennial Conference on Innovative Data
Systems Research (CIDR’03). ACM. CA.

CHI, Y., WANG, H., AND YU, P. S. 2005. Loadstar: Load shedding in data stream mining. In Proceedings of the
31st International Conference on Very Large Databases (VLDB’05), 1302–1305.

CLARKE, E. M. AND SCHLINGLOFF, B.-H. 2001. Model checking. In Handbook of Automated Reasoning, J. A.
Robinson and A. Voronkov, Eds. The MIT Press, Cambridge, MA. 1635–1790.

CORAL8. 2010a. http://www.coral8.com/. Last accessed 11/2010.
CORAL8. 2010b. http://www.aleri.com/WebHelp/coral8 documentation.htm. Last assessed 11/2010.
CRANOR, C., GAO, Y., JOHNSON, T., SHKAPENYUK, V., AND SPATSCHECK, O. 2002. Gigascope: High performance

network monitoring with an sql interface. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’02). ACM, New York, NY, 623–623.

CRANOR, C., JOHNSON, T., SPATASCHEK, O., AND SHKAPENYUK, V. 2003. Gigascope: A stream database for network
applications. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’03). ACM, New York, NY, 647–651.

CUGOLA, G., DI NITTO, E., AND FUGGETTA, A. 2001. The Jedi event-based infrastructure and its application to
the development of the opss wfms. IEEE Trans. Softw. Eng. 27, 9, 827–850.

CUGOLA, G. AND MARGARA, A. 2009. Raced: An adaptive middleware for complex event detection. In Proceedings
of the 8th International Workshop on Adaptive and Reflective Middleware (ARM’09). ACM, New York,
NY, 1–6.

CUGOLA, G. AND MARGARA, A. 2010a. Complex event processing with t-rex. Tech. rep., Politecnico di Milano,
Milano, Italy.

CUGOLA, G. AND MARGARA, A. 2010b. Tesla: A formally defined event specification language. In Proceedings of
the 4th ACM International Conference on Distributed Event-Based Systems (DEBS’10). ACM, New York,
NY, 50–61.

DAYAL, U., BLAUSTEIN, B., BUCHMANN, A., CHAKRAVARTHY, U., HSU, M., LEDIN, R., MCCARTHY, D., ROSENTHAL, A.,
SARIN, S., CAREY, M. J., LIVNY, M., AND JAUHARI, R. 1988. The hipac project: Combining active databases
and timing constraints. SIGMOD Rec. 17, 1, 51–70.

DEBAR, H. AND WESPI, A. 2001. Aggregation and correlation of intrusion-detection alerts. In Proceedings of
the International Symposium on Recent Advances in Intrusion Detection. 85–103.

DEMERS, A., GEHRKE, J., HONG, M., RIEDEWALD, M., AND WHITE, W. 2006. Towards expressive publish/subscribe
systems. In Proceedings of the International Conference on Extending Database Technology (EDBT).
627–644.

DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D. 1999. A query language for xml. Comput.
Netw. 31, 11-16, 1155–1169.

DRUSINSKY, D. 2000. The temporal rover and the atg rover. In Proceedings of the 7th International SPIN
Workshop on SPIN Model Checking and Software Verification. Springer-Verlag, London, UK, 323–330.

ACM Computing Surveys, Vol. 44, No. 3, Article 15, Publication date: June 2012.



15:58 G. Cugola and A. Margara

EISENBERG, A. AND MELTON, J. 1999. Sql: 1999, formerly known as sql3. SIGMOD Rec. 28, 1, 131–138.
ENGSTRM, H., ENGSTRM, H., BERNDTSSON, M., BERNDTSSON, M., LINGS, B., AND LINGS, B. 1997. ACOOD essentials.

Tech. rep. Hs-IDA-TR-97-010, University of Skörde, Sweden.
EPTS. 2010. http://www.ep-ts.com/. Last accessed 11/2010.
ESPER. 2010. http://www.espertech.com/. Last accessed 11/2010.
ETZION, O. 2007. Event processing and the babylon tower. Event Processing Thinking Blog: http://

epthinking.blogspot.com/2007/09/event-processing-and-babylon-tower.html.

ETZION, O. 2010. Event processing thinking. http://epthinking.blogspot.com/. Last accessed 11/2010.
ETZION, O. AND NIBLETT, P. 2010. Event Processing in Action. Manning Publications Co., Greenwich, CT.
EUGSTER, P., FELBER, P., GUERRAOUI, R., AND KERMARREC, A.-M. 2003. The many faces of publish/subscribe. ACM

Comput. Surv. 2, 35.
EVENT ZERO. 2010a. http://www.eventzero.com/solutions/environment.aspx. Last accessed 11/2010.
EVENTZERO. 2010b. http://www.eventzero.com/. Last accessed 11/2010.
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MÜHL, G., FIEGE, L., AND PIETZUCH, P. 2006. Distributed Event-Based Systems. Springer.
O’KEEFFE, D. AND BACON, J. 2010. Reliable complex event detection for pervasive computing. In Proceedings of

the 4th ACM International Conference on Distributed Event-Based Systems (DEBS’10). ACM, New York,
NY, 73–84.

ORACLE. 2010. http://www.oracle.com/technologies/soa/complex-event-processing.html. Last accessed
11/2010.

PALLICKARA, S. AND FOX, G. 2003. Naradabrokering: A distributed middleware framework and architecture
for enabling durable peer-to-peer grids. In Proceedings of the ACM/IFIP/USENIX 2003 International
Conference on Middleware. Springer-Verlag New York, Inc., New York, NY, 41–61.

PANDEY, S., DHAMDHERE, K., AND OLSTON, C. 2004. Wic: A general-purpose algorithm for monitoring web infor-
mation sources. In Proceedings of the 13th International Conference on Very Large Databases (VLDB’04).
360–371.

PARK, J., REVELIOTIS, S. A., BODNER, D. A., AND MCGINNIS, L. F. 2002. A distributed, event-driven control
architecture for flexibly automated manufacturing systems. Int. J. Comput. Integ. Manuf. 15, 2, 109–
126.
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