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Abstract—Operating federated learning optimally over dis-

tributed cloud-edge networks is a non-trivial task, which requires
to manage data transference from user devices to edges, resource
provisioning at edges, and federated learning between edges and
the cloud. We formulate a non-linear mixed integer program,
minimizing the long-term cumulative cost of such a federated
learning system while guaranteeing the desired convergence of
the machine learning models being trained. We then design a
set of novel polynomial-time online algorithms to make adaptive
decisions by solving continuous solutions and converting them
to integers to control the system on the fly, based only on
the predicted inputs about the dynamic and uncertain cloud-
edge environments via online learning. We rigorously prove the
competitive ratio, capturing the multiplicative gap between our
approach using predicted inputs and the offline optimum using
actual inputs. Extensive evaluations with real-world training
datasets and system parameters confirm the empirical superiority
of our approach over multiple state-of-the-art algorithms.

I. INTRODUCTION

The emerging distributed cloud-edge infrastructures provide
computing resources in closer proximity to end users, and are
thus well-positioned to support federated learning. Federated
learning is a novel machine learning paradigm which trains
machine learning models through iterative local model updates
and global aggregations of model parameters [1] while keeping
users’ data local, in contrast to uploading them to a central
location like the cloud as in other traditional machine learning
approaches. By data localization, this approach protects user
privacy [2], and respects the regulatory and ownership require-
ments [3]. As artificial intelligence finds increasing adoptions
in Internet services and applications (e.g., web browsing [4]
and GPS positioning [5]), operating federated learning across
cloud-edge networks becomes essential. Fig. 1 illustrates such
a system in a multi-carrier cloud-edge environment.

It is, however, non-trivial for a service provider to optimally
operating federated learning as a service across user devices,
edges, and the cloud, since it often requires the end-to-end,
cross-layer management of many factors, such as data trans-
ference from devices to edges, provisioning of edge resources,
local updates at edges, model transference between edges and
the cloud, as well as global aggregations in the cloud. In fact,
the service provider faces multiple critical challenges:
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Fig. 1: Federated learning over cloud-edge networks
First of all, it is crucial to balance the resources used and

the quality (e.g., convergence accuracy [6, 7]) of the models
trained by federated learning. The local model updates at edges
consume computation, and the transference of model param-
eters between edges and the cloud for aggregation consumes
network bandwidth, which all contribute to the model conver-
gence. Preserving the specified convergence at the minimum
computation and communication cost is a challenging task,
since the trained models are often non-linear and how the local
computation and global aggregation impacts convergence [8]
is complicated. This challenge escalates when managing large-
scale federated learning that consumes excessive resources
across geographically distributed edges and the cloud.

Second, real-world cloud-edge platforms are intrinsically
dynamic and uncertain, and to train multiple models over time,
the system control decisions often need to be made before
knowing the dynamic inputs regarding the environments. Such
inputs include time-varying volumes of training data, fluctu-
ating available network bandwidths [9], and edge operational
cost such as energy consumption. One may utilize a certain
prediction mechanism to predict the inputs and control the
system based on such predictions; however, it is difficult to
ensure the quality of predictions and optimize the cumulative
system performance through predicted inputs, compared to
the offline optimum in hindsight (i.e., an oracle’s perspective
where all the actual inputs are known at once in advance).

Third, no matter the inputs are revealed and known in real
time or not, it remains hard to manage the resources online [10,
11]. To strategically reduce the overall resource usage [12, 13],
one may desire to switch on/off the edges dynamically. Such
dynamic edge management, however, incurs switching cost,
(e.g., time needed for edge initialization or any cost related to
system oscillation, reliability risk, and hardware wear-and-tear



[14], and determining the on/off status on the fly for long-term
optimization is uneasy: having an edge on may unnecessarily
incurs operational cost; but having it off may incur excessive
switching cost if it needs to be on in the next epoch). Such
decisions are time-coupled, and often not straightforward.

Existing research falls insufficient for addressing the afore-
mentioned challenges. Some [6, 8, 15–17] have considered
various local model optimizers and the convergence of the
global aggregated models, but they do not capture the resource
consumption of the federated learning process. Others [18–
22] optimize federated learning systems with ensured con-
vergence, but they overlook the cloud-edge environments that
have dedicated cost management complexities and consider
no predictions. A substantial body of research [23–27] studies
online cloud/edge resource provisioning, but cannot be applied
as they are not for federated learning, failing to capture the
corresponding data and resource patterns. The rest [28–34]
study predictive control in various scenarios, but do not involve
federated learning convergence over cloud-edge networks.

In this paper, we firstly model and formulate the problem of
the joint control of federated learning and edge provisioning
in distributed cloud-edge networks. Our problem is an NP-
hard, non-linear mixed integer program, minimizing the long-
term total cost, including data transference cost from devices
to edges, computation cost of local model updates at edges,
model transference cost from edges to the cloud, computation
cost of global model aggregations in the cloud, as well as edge
provisioning and switching cost. Our formulation features fed-
erated learning by leveraging the dependency of the numbers
of model updates and aggregations upon model convergence,
and allows arbitrary dynamic inputs and predictions.

Then, we propose and design a group of polynomial-time
algorithms to solve our problem in an online manner. Our
first algorithm proposed, while solving the federated learning
control decisions, keeps the existing on/off status of edges
and only changes them until a carefully-designed condition
is met as the cumulative non-switching cost exceeds a pre-
specified constant times the current switching cost. Our second
algorithm, invoked by our first algorithm, converts the frac-
tional edge status into integral on/off decisions in a randomized
manner without violating any constraints. Our third algorithm
predicts the inputs in real time and feeds them to the first two
algorithms, using our novel, rectified online learning approach
through a series of well-designed functions based only on the
existing, observable inputs and previous control decisions.

Further, we perform rigorous formal analysis for our algo-
rithms. We exhibit a parameterized competitive ratio as our
entire online approach’s worst-case performance guarantee.
Unlike the standard definitions, our version of the competitive
ratio not only compares the cost of our online approach against
the offline optimum, but also does so using the predicted inputs
for the former and the actual inputs for the latter, which makes
more sense in our scenario. We highlight that this is a non-
trivial, interesting theoretical result on its own, requiring all
our algorithms to work together and differing our work from
most existing online algorithms and competitive analysis.

TABLE I: Summary of Notations
Inputs Descriptions1

dikt Volume of data generated at device i
aijkt, âijkt Transference cost2 per unit data from device i to edge j
bjkt, b̂jkt Transference cost per unit data from edge j to the cloud
mt Size of the model trained by federated learning
pjkt Processing cost per single local update at edge j
ct Processing cost per unit data in the cloud
sjkt Unit switching cost for activating edge j
ojkt Operational cost of edge j

Decisions Descriptions
xijkt Ratio of data transferred from device i to edge j
yjkt Whether to activate edge j
ηt Local “convergence accuracy” of federated learning

1. The subscript k means “in the edge network k”; t means “in the epoch t”.
2. The mark of ̂ refers to the corresponding predicted values.

Finally, we conduct extensive evaluations using real-world
traces, including the MNIST training data [35], Google Device
Participants for federated learning [1], and the cellular [9] and
wide area network (WAN) [36] bandwidths, to train the models
of support vector machines and convolutional neural networks.
We compare the practical performance of our approach to
several alternatives combining different control and prediction
algorithms. We find that our approach performs the best in
a variety of settings, saving 37% or more cost cumulatively;
the models trained by the federated learning process under our
control have desired inference accuracy of around 0.8, aligned
with existing literatures [7, 23]; our approach scales well, and
finishes execution within only several seconds on average.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Settings and Models

We summarize the major notations used in Table I.
Cloud-Edge Networks: We consider a set of edge networks
K, each of which is owned and operated by its corresponding
carrier. We consider a service provider that deploys a set of
distributed edges Ek within the edge network k ∈ K, where an
“edge” refers to a micro data center or server cluster [37, 38],
locating in the neighborhood, regional office, or metro center.
Such edges are connected to end users via cellular or wireline
access, and to a remote cloud via wide area networks (WANs).
We then consider a service deployed over such a cloud-edge
infrastructure, which also trains machine learning models by
federated learning. We study the system over a series of epochs
T = {1, .., T}, and denote the set of user devices served by
the edge network k in the epoch t ∈ T as Ukt.

Federated Learning: The service collects users’ data at the
edges and conducts federated learning between edges and the
remote cloud. In each epoch t, the federated learning process
can be divided into a number of “training iterations”, and each
training iteration r consists of three steps: (1) every participat-
ing edge j ∈ Ek, ∀k downloads the latest aggregated model
of the previous training iteration (i.e., w(r−1)

t ), along with
the corresponding gradients downloaded from the cloud, (2)
then iteratively updates the model1 locally through an iterative

1G(r)
jkt

(ρ),Fjkt(w
(r−1)
t +ρ)−(∇Fjkt(w

(r−1)
t )−ξ1Jt(w

(r−1)
t ))>ρ+

ξ2
2
||ρ||2,

where ξ1 and ξ2 are non-negative constants, and Jt(·) is the sum of the
gradients among all activated edges, Jt(·) =

∑
k,j ∇Fjkt(·)/

∑
k,j yjkt.



gradient-based process ρ(q)jkt = ρ
(q−1)
jkt − δ∇G(r)jkt (ρ

(q−1)
jkt ) by

using a well-designed function G(r)jkt at each participating edge
upon the loss functions {Fjkt(·),∀j, k, t}, where ρ(q)jkt is the
model trained at the edge j after the q-th local update and δ
is the step size of the local update, and (3) finally uploads the
updated local model w(r−1)

t + ρ
(q)
jkt, as well as the gradients

{∇Fjkt(w(r)
t ),∀j, k} to the cloud for the global aggregation.

Here, w(r)
t refers to the aggregated model for next iteration.

We consider the convergence of the local model at each edge
and the aggregated model in the cloud. Assuming Fjkt(·) is L-
Lipschitz continuous and γ-strongly convex [39, 40], we write,
∀t, k, j, q, r, the following inequalities to capture convergence:

G(r)jkt (ρ
(q)
jkt)−G

(r)∗
jkt ≤ηt[G

(r)
jkt (ρ

(0)
jkt)−G

(r)∗
jkt ],

Ft(w(r)
t )−F∗t ≤ ε0[Ft(w(0)

t )−F∗t ],

where ηt is the “convergence accuracy” of the local model
at the edge j; ε0 is the “convergence accuracy” of the global
model in the global aggregation r; G(r)jkt (·) and Ft(·) are the
local function for updates and the global loss function for all
the data, respectively; G(r)∗jkt and F∗t are the local optimum
and the global optimum, respectively. That is, in each epoch
t, to achieve the desired ηt and ε0, we need to conduct q local
updates and r global aggregations [39, 41] which satisfy

q ≥ 2
(2−Lδ)δγ log2( 1

ηt
) , q0log2(1/ηt),

r ≥ 2L2

γ2ξ1
ln( 1

ε0
) 1

1−ηt , r0ln( 1
ε0

) 1
1−ηt ,

where ξ1 is the constant contained in G(r)jkt (·); q0 and r0 are
defined for simplicity (i.e., q0 = 2

(2−Lδ)δγ , and r0 = 2L2

γ2ξ1
).

Control Decisions: We introduce our control decisions. We
use xijkt ∈ [0, 1], ∀i ∈ Ukt, ∀j ∈ Ek, ∀k ∈ K, ∀t ∈ T
to denote the ratio of the data transferred from user device
i to edge j of network k in epoch t. We use yjkt ∈ {1, 0},
∀j ∈ Ek, ∀k ∈ K, ∀t ∈ T to denote edge provisioning (i.e.,
whether to activate edge j of network k in epoch t). We use
ηt ∈ (0, 1), ∀t ∈ T to denote the local accuracy of federated
learning in epoch t. Note that by controlling ηt, we can control
the numbers of both local updates and global aggregations.

Cost of Federated Learning: Federated learning consists
of data transference from devices to edges and model training
between edges and the cloud. Using dikt to denote the total
volume of data generated at device i of network k in epoch
t and aijkt to denote the cost of transferring a single unit of
data from device i to edge j of network k in epoch t, the cost
of data transference is then

∑
t,k,i,j xijktdiktaijkt. The cost of

model training consists of three components: transmission cost
between edges and the cloud, computation cost in the cloud,
and computation cost at edges. The transmission cost of mod-
els between edges and the cloud is r0ln(1/ε0)

1−ηt
∑
j yjktmtbjkt,

where mt is the size of the model trained by federated learning
in epoch t and bjkt is the cost of transferring a single unit of
data from edge j of network k to the cloud in epoch t. Only the
activated edges participate in the federated learning process.
The computation cost for model aggregation in the cloud is

ct
r0ln(1/ε0)

1−ηt
∑
j yjktmt, where ct is the cost of processing a

single unit of data in the cloud in epoch t. The computational
cost for model updates at edges is

∑
t,k,j zjkt, where

∀j, t : zjkt , pjkt · {
∑
i xijkt} · q0log2( 1

ηt
) ·

r0ln( 1
ε0

)

1−ηt ;

zjkt is the cost for model updates at edge j of network k in
epoch t; and, pjkt is the cost of performing a single update
to the local model at edge j of network k in epoch t. That is,
the cost of model updates equals to the cost of a single update
times the total number of model updates.

Cost of Edge Provisioning: Maintaining the running edges
incurs operational cost, (e.g., the electricity consumption, the
carbon footprint, and various license fees for hardware and/or
software). We denote by ojkt such operational cost of edge j
of network k in epoch t. Then, the operational cost of edge j
in epoch t is ojktyjkt. The operational cost is only incurred
when an edge is activated. Meanwhile, in this paper, we allow
edges to be switched on and off dynamically—toggling edges
incurs the “switching cost”, (e.g., the initialization time of
booting resources and loading profiles/configurations, and the
hardware wear-and-tear). We represent by sjkt the switching
cost regarding edge j of network k in epoch t, and define the
corresponding switching cost as sjkt[yjkt − yjkt−1]+, where
[·]+ = max{·, 0}, via linking two consecutive epoches.

B. Problem Formulations and Challenges

Control Problem P: With the above system models, we
formulate the following optimization problem to control fed-
erated learning upon the cloud-edge infrastructure:

min P =
∑
t,k

{r0ln(1/ε0)

1− ηt

∑
j

yjktmt{bjkt + ct}+
∑
j

zjkt

+
∑
j

{
∑
i

xijktdiktaijkt + sjkt[yjkt − yjkt−1]+ + ojktyjkt}
}

s.t.
∑
i∈Ukt

xijkt ≤ yjkt
∑
i∈Ukt

dikt,∀j ∈ Ek, k ∈ K, t ∈ T , (1)∑
j∈Ek

xijkt ≥ 1,∀i ∈ Ukt, k ∈ K, t ∈ T , (2)

var. xijkt ∈ [0, 1], yjkt ∈ {0, 1}, ηt ∈ (0, 1). (3)

The objective is to minimize the long-term total cost of fed-
erated learning and edge provisioning. Constraint (1) ensures
that the data generated on user devices can only be transferred
to activated edges in the same edge network. Constraint (2)
ensures that all of the data on each device are transferred.
Constraint (3) specifies the variables’ domains.

Control Problem P̂ with Predicted Inputs: We highlight
the fact that the dynamic inputs to the problem in each epoch
are often only revealed after the control decisions for the epoch
are made. That is, we have to solve the problem by using the
“predicted” inputs, rather than the “actual” inputs (and in this
paper, we will design a dedicated, learning-based algorithm
to produce such predictions). Denoting by âijkt and b̂jkt the
predicted cost for transferring a single unit of data between
device i and edge j, and the predicted cost for transferring a
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single unit of data between edge j and the cloud, respectively,
we formulate the problem P̂ with the predicted inputs:

min P̂ =
∑
t,k

{r0ln(1/ε0)

1− ηt

∑
j

yjktmt{b̂jkt + ct}+
∑
j

zjkt

+
∑
j

{
∑
i

xijktdiktâijkt + sjkt[yjkt − yjkt−1]+ + ojktyjkt}
}

s.t. Constraints (1) to (3).

Algorithmic Goal: Having two problems formulated above,
we now describe the goal of our algorithm design. Towards this
end, we firstly introduce some concise notations: I refers to
the aggregation2 of all the variables (i.e., {xt,yt, ηt,∀t}); I∗
refers to the optimal solution of P solved in an offline manner
(i.e., assuming an oracle’s perspective where all the actual
inputs are known at once in advance), and we also write P∗ =
P(I∗); and, Ī∧ refers to a feasible solution solved from P̂ in
an online manner. Our goal is to design algorithms which, in
an online manner, produce predicted inputs and also produce
a solution Ī∧, while upper-bounding the competitive ratio as
the performance metric defined as follows: r = P(Ī∧)/P∗.

Problem Challenges: It is yet non-trivial to design algo-
rithms to achieve our goal above, due to multiple challenges.

First and foremost, the solution solved from the problem
with the predicted inputs P̂ needs to have bounded perfor-
mance when evaluated in the problem with the actual inputs
P and compared to the offline optimum of the latter. This poses
harsh requirements for the design of both the online prediction
algorithm (for producing the predicted inputs) and the online
control algorithm (for making the control decisions), which
need to work together to achieve the desired guarantee.

The second challenge is the online uncertainty. Even if the
predicted inputs are produced, they are given on the fly and
the problem P̂ needs to be solved online, where the switching
cost couples the decision of the current epoch and that of the
succeeding one. That is, without knowing the decision of the
next epoch, it is hard to make a good decision for the current
epoch to minimize the switching cost; yet, the decision for the
next epoch will only be made as the next epoch arrives.

The third challenge lies in the intractability. The proposed
problems are mixed-integer programs with multiple non-linear
terms, (e.g., the transference cost between edge and cloud, and
the computation cost at edge, besides the switching cost). Even
without these non-linear terms, our problems can be proved to

2Bold symbols denote column vectors (e.g., y>t = [..., yjkt, ...]).

be NP-hard in an offline setting (as they contain the minimum
knapsack problem as a special case), not to mention that we
desire to solve them in an online manner.

III. ALGORITHM DESIGN

We design three polynomial-time online algorithms. Our Al-
gorithm 1 keeps the on/off status of the edges unchanged until
necessary, controlled by a carefully-designed switch condition,
overcoming the second challenge described above. Algorithm
1 determines the possible new status of the edges by relaxing
and solving the one-shot problem for each current epoch and
then invoking our Algorithm 2 to round the fractional decisions
into integers without violating any contraints, overcoming the
third challenge. Based on the current inputs and the current
decisions made by both Algorithms 1 and 2, our Algorithm
3 predicts the inputs for the next epoch (which will used by
Algorithms 1 and 2), via a novel online learning approach,
overcoming the first challenge. Our design is shown in Fig. 2,
where P̂t,1 and P̂t,2 will be defined next.

A. Online Control Algorithm

To facilitate the design of our online algorithms, we intro-
duce some additional notations:

Ĉt¬S ,
∑
k,j{

∑
i xijktαijkt + yjkt{ βjkt1−ηt + ojkt}+ zjkt},

CtS ,
∑
k,j sjkt[yjkt − yjkt−1]+,

where αijkt = diktâijkt and βjkt = r0ln( 1
ε0

)mt{b̂jkt + ct}.
Then, we can have two auxiliary problems3:

min P̂t,1 = Ĉt¬S(xt,yt, ηt)

s.t. CtS(yt, ȳt−1) ≤ ζ1Ĉt¬S(xt,yt, ηt), (4)
Constraints (1), (2),

var. xijkt ∈ [0, 1], ηt ∈ (0, 1), yjkt ∈ [0, 1],

where Constraint (4) enforces a specified relationship between
the switching cost and the non-switching cost; We also have

min P̂t,2 = Ĉt¬S(xt, ȳt, ηt)

s.t. Constraints (1), (2),

var. xijkt ∈ [0, 1], ηt ∈ (0, 1),

where ȳt is required as inputs for P̂t,2. And for solving P̂t,1,
the following substitution can be used:

sjkt[u− yjkt−1]+ ⇔ sjktvjkt, s.t.

{
vjkt ≥ u− yjkt−1

vjkt ≥ 0,
.

Given ȳt−1 for P̂t,1 and given ȳt, ȳt−1 for P̂t,2, solving P̂t,1
and P̂t,2 for the other real-valued variables is efficient with
the help of existing standard optimization solvers [42]. Note
that the objective function is twice differentiable.

Algorithm 1 postpones changing the current on/off status of
the edges even if the one-shot optimum indicates so, until the

3The mark of ̂ refers to predicted inputs, or problems taking predicted
inputs. The mark of ¯ refers to the outputs of our proposed online approach.
The mark of ˜ refers to the intermediate outputs that are all fractions.



Algorithm 1 Online Control Algorithm

1: Initialize t = t′ = 1; x̄1, η̄1 ← P̂t,2, given ȳ0 = ȳ1 = 0;
2: Initialize {âijk1, b̂jk1};
3: while t ≤ T do
4: if Ĉt

′

S (ȳt′ , ȳt′−1) ≤ 1
ζ2

∑t−1
v=t′ Ĉ

v
¬S(x̄v, ȳv, η̄v) then

5: Obtain ỹt from P̂t,1;
6: Invoke Algorithm 2 for rounding ỹt to obtain ȳt;
7: Given ȳt, obtain x̄t, η̄t ← P̂t,1 if feasible;

Otherwise set ȳt = ȳt−1;
8: if ȳt 6= ȳt−1 then
9: t′ = t;

10: end if
11: end if
12: if t′ < t then
13: x̄t, η̄t ← P̂t,2, given ȳt = ȳt−1;
14: end if
15: t = t+ 1;
16: Invoke Algorithm 3 for predicting {âijkt+1, b̂jkt+1};
17: end while

Algorithm 2 Randomized Pairwise Rounding Algorithm

1: for k ∈ K do
2: ψk = {j | ỹjkt ∈ (0, 1)};
3: while |ψk| ≥ 2 do
4: Select u, v ∈ ψ, where u 6= v;
5: θ1 = min{1− ỹukt, ỹvkt}, θ2 = min{ỹukt, 1− ỹvkt};
6: With the probability of θ2

θ1+θ2
,

set ỹukt = ỹukt + θ1 and ỹvkt = ỹvkt − θ1;
Otherwise, set ỹukt = ỹukt−θ2 and ỹvkt = ỹvkt+θ2;

7: ψk = ψk\{u} and ȳukt = ỹukt, if ỹukt ∈ {0, 1};
8: ψk = ψk\{v} and ȳvkt = ỹvkt, if ỹvkt ∈ {0, 1};
9: end while

10: if |ψk| = 1 then
11: ȳukt = 1, u ∈ ψk;
12: end if
13: end for

cumulative non-switching cost has significantly exceeded the
potential switching cost. Specifically, the switch condition, as
in Line 4, is controlled by the “laziness” parameter ζ2. Note
that ζ1 is in contrast used in the one-shot subproblem P̂t,1.
When the switch condition is satisfied, fractions solved from
P̂t,1 in Line 5 need to be rounded by our proposed Algorithm
2, as in Line 6. Afterwards, the rounded, integral decision ȳt
is used as part of inputs for solving P̂t,1 (if feasible) to obtain
the fractional data transference and local accuracy. Note that
applying the rounded decisions obtained from our rounding
algorithm may violate the constraints of P̂t,1. Therefore, only
when P̂t,1 is feasible under such rounded decisions, they are
actually adopted by Algorithm 1, as in Line 7 to 11; otherwise,
we continue to postpone switching edges and solve the data
transfer and the local accuracy decisions from P̂t,2 in Line 13.

Algorithm 2 converts the fractional edge control decisions
to the integers of either 0 (i.e., edge off) or 1 (i.e., edge on).
Algorithm 2 maintains the sets {ψk}, tracking the indices for

Algorithm 3 Learning-Based Prediction Algorithm

// To predict âijkt+1, let σt = aijkt, gt = diktx̄ijkt;
// To predict b̂jkt+1, let σt = bjkt, gt =

r0ln(1/ε0)mtȳjkt
1−η̄t ;

1: Initialize a proper step size λ;
2: for t = 1, 2, ..., T do
3: σt and gt are revealed; Construct ft(σ) = (σt−σ)2g2

t ;
4: σ̂t+1 = argminσ{∇ft(σ̂t)(σ − σ̂t) + ||σ−σ̂t||2

2λ };
5: end for

the edge control decisions in network k, as in Line 2. Algo-
rithm 2 iteratively chooses a pair of fractions to round at least
one of them into an integer in a randomized manner, while
ensuring that the sum of the two values stay unchanged after
rounding, and that the expectation of each randomized integer
equals its corresponding fractional value before rounding (i.e.,
Line 3 through 9). The complexity of the “while” loop reaches
O(
∑
k |Ek|2) [43]. Since the sum of all the fractions before

rounding may not be an integer, there may be one element left
in ψk after the “while” loop. If so, we have to round it to 1
(i.e., Line 10 to 12) in order not to violate any constraint.

B. Learning-Based Prediction Algorithm

Algorithm 3 is invoked at the end of each current epoch to
predict the inputs of the next epoch. Line 4 is an approximation
linking the inputs of the two consecutive epochs based on an
alternating “primal-dual” approach, where the function ft for
epoch t is to facilitate our performance analysis later.

Specifically, to measure the “distance” between the pre-
dicted value and the actual value in the epoch t+ 1, we adopt
the L2-norm (i.e., ||σt+1 − σ̂t+1||2). Then, we minimize such
norm (i.e., σ̂t+1 = argminσ ||σt+1 − σ||2g2

t+1). However, in
the online scenario, the actual inputs for the current epoch
cannot be revealed before the decisions for the current epoch
are made. Traditionally, in order to minimize the cumulative
distance between the predicted and actual values, solving
the convex problem of min

∑
t ft(σt), s.t. ht(σt) ≤ 0, is

exactly equivalent to solving the convex-concave problem of
minσtmax$t

∑
t

(
ft(σt) + $tht(σt)

)
, where ht(σt) is the

constraint respect to σt and $t is the Lagrange multiplier. To
solve it in an online manner, intuitively, the gradient incurred
from the epoch t can be used as a guidance to rectify the
predicted value for the epoch t+1. Therefore, we can alternate
between minimizing the objective with respect to the primal
variable σt+1 via a modified descent step and maximizing the
objective with respect to the Lagrange multiplier via a dual
ascent step. That is, the modified primal step is as follows:

minσt+1
∇ft(σt)(σt+1 − σt) +$t+1ht(σt+1) + ||σt+1−σt||2

2λ ,

while the Lagrange multiplier $t+1 is updated as follows:

$t+1 = [$t + λ′ht(σt)]
+,

where λ and λ′ are the parameters. Since the prediction has
no constraint with respect to σt, we can adopt the primal step
with $t = λ′ = 0,∀t. Actually, the gradient-based approach



in the primal step is the approximation of ft+1 by linking two
consecutive epochs. Thus, we predict σ̂t+1 via

argminσ{∇{||σt − σ′||2g2
t }|σ′=σ̂t · (σ − σ̂t) + ||σ−σ̂t||2

2λ },

where λ is the parameter for approximation.

IV. PERFORMANCE ANALYSIS

Our goal is to bound E[P(Ī∧)]/P∗, where P∗ = P(I∗), as
we have introduced randomized rounding into our algorithms.
In fact, we can prove the following chain of derivations:

E[P(Ī∧)]
P∗ = E[P(Ī∧)]

P̂(Ĩ∧)
· (1 + P̂(Ĩ∧)−P(Ĩ∗)+P(Ĩ∗)−P∗

P∗ ) (5)

≤ E[P̂(Ī∧)]+O{T ε1}
P̂(Ĩ∧)

· (1 +
ε2P̂(Ĩ∗∧)−P(Ĩ∗)

P∗ ) (6)

≤ ε3P̂(Ĩ∧)+O{T ε1}
P̂(Ĩ∧)

· (1 + ε2P(Ĩ∗)+O{T ε1}−P(Ĩ∗)
P∗ ) (7)

≤ (ε3 + O{T ε1}
P̂∗

)(ε2 + O{T ε1}
P∗ ) = ε2ε3 +O{T 2(ε1−1)}. (8)

In order to compare the cost of our online approach using
the predicted inputs against the offline optimum using the ac-
tual inputs, we split the competitive ratio as the product of two
parts. The first part links the cost of our online approach with
the cost using predicted inputs and the fractional decisions
(i.e., E[P(Ī∧)] and P̂(Ĩ∧)). The second part further links the
cost using predicted inputs and the fractional decisions with
the offline optimum (i.e., P̂(Ĩ∧) and P∗).

In the above, from (5) to (6), we leverage Lemmas 1 and 2,
and P(Ĩ∗) ≤ P∗. From (6) to (7), we leverage Lemmas 1 and
3. From (7) to (8), we leverage P̂(Ĩ∧) ≥ P̂∗, P̂∗ ≥ O{T},
and P∗ ≥ O{T}, where O{T} serves as the lower bound. I∗

refers to the optimal solution of P solved in an offline manner;
Ĩ∗ refers to to the optimal solution of P solved offline when
yt,∀t are in the real domain. Analogously, Ĩ∗∧ is the optimal
solution of P̂ (i.e., with the predicted inputs), solved offline in
the real domain. Ĩ∧ and Ī∧ are the solutions produced by our
proposed algorithms before and after rounding, respectively.
ε1 < 1, ε2, ε3 are constants, described as follows.

Before we present our lemmas and theorem, we make the
following assumptions to facilitate our theoretical analysis,
which are very common and easy to be satisfied:

Assumption 1: ∀t, ft(·) in Algorithm 3 has bounded gradient
(i.e., ||∇ft(·)|| ≤ F ), where F is a constant.

Assumption 2: The costs for transference aijkt and bjkt are
both bounded (i.e., aijkt ∈ [0, amax], bjkt ∈ [0, bmax]).

We now present our Lemmas 1, 2, and 3, and our Theorem
1. Lemma 1 quantifies the cumulative prediction error (i.e., the
cumulative “distance” between the predicted inputs and the
actual inputs). Then, Lemma 2 characterizes the competitive
ratio of the fractional solutions solved based on the predicted
inputs. Lemma 3 characterizes the integrality gap incurred
when rounding fractional solutions into integers, based on the
predicted inputs. Finally, Theorem 1 combines all the lemmas
and demonstrates the competitive ratio of our entire approach
composed of the three algorithms.

Lemma 1. The cumulative prediction error incurred by Algo-
rithm 3 grows only sub-linearly when the step size is chosen

TABLE II: Input Traces
Content Description

Training Dataset MNIST, 70k images for training and testing [35]
Device Number Available devices from Google [1]

Device-Edge Bandwidth Six patterns of cellular bandwidth traces [9]
Edge-Cloud Bandwidth Bandwidth of over 80 edges from 4 ISPs [36]

Electricity Price Three-day market data from EPEX SPOT [44]

TABLE III: Costs of Different Algorithms
Algorithm F TP TA TO M OP

Normalized Cost 0.719 0.667 0.704 0.209 0.218 0.174
Algorithm F-2 TP-2 TA-2 TO-2 M-2 OA

Normalized Cost 0.798 0.832 0.882 0.378 0.387 0.176
Algorithm F-3 TP-3 TA-3 TO-3 M-3 OO

Normalized Cost 0.896 0.957 1.000 0.539 0.534 0.144

as λ=O{
√
V ({σt})

T },
∑T
t=1(σt − σ̂t)gt = O( 4

√
V ({σt})T

3
4 ) =

O(T ε1), where ε1 < 1 and V ({σt}) =
∑T
t=1 ||σt+1 − σt||.

Proof. See Appendix A.

Lemma 2. Using predicted inputs, without the rounding part,
Algorithm 1 is ε2-competitive (i.e., P̂(Ĩ∧) ≤ ε2P̂(Ĩ∗∧)), where
ε2 , ε′2(1 + max{ζ1, 1/ζ2}) and ε′2 are constants.

Proof. See Appendix B.

Lemma 3. Using predicted inputs, Algorithm 1, by invoking
Algorithm 2, produces the integral solution and the fractional
solution that satisfy E[P̂(Ī∧)] ≤ ε3P̂(Ĩ∧), where ε3 = (1 +
1/ζ1) max{κ1, κ2, κ3, κ4} is a constant, and κ1 ∼ κ4 are the
corresponding constants for the four non-switching terms.

Proof. See Appendix C.

Theorem 1. The competitive ratio of our entire predictive
online approach is E[P(Ī∧)]/P(I∗) ≤ ε2ε3 +O{T 2(ε1−1)}.

Proof. See details in Appendix D. The proof is based on
joining Lemmas 1, 2, and 3. Note that 2(ε1 − 1) < 0.

V. EXPERIMENTAL STUDY

A. Data and Settings

We summarize the real-world traces used in Table II.
Federated Learning Workload and Models: We use the

MNIST [35] dataset, which contains 70k gray-scale images
of handwritten digits (60k for training and 10k for testing),
to conduct real-world federated learning. Our implementation
contains 4k lines of python codes. More specifically, we train
the least-squares Support-Vector Machine (SVM) model with
the loss of %||w||2/2 + (max{0, 1 − w>D})2/2, where D
is the feature vector and the step size % = 0.01, outputting a
binary label to imply the digit is even or odd. We also train
the Convolutional Neural Network (CNN) model [18] with 9
layers, including convolutional, max pooling, local response
normalization, fully connected, and softmax layers. We use
CNN as we are interested in knowing the performance of our
proposed algorithms for non-convex loss functions. All our
evaluation results are produced using 15 virtual machines on
4 servers equipped with Geforce RTX 2080Ti, including Dell
PowerEdge R740 and Inspur SN5160M4.

User Devices, Cloud, and Edges: The time-varying num-
bers of available user devices are from Google [1], which are



(a) Total cost per epoch (b) Impact of bandwidth (c) Impact of operational cost (d) Impact of switching cost
Fig. 3: Cost comparison for different approaches

(a) Cost components per epoch (b) Inference accuracy (c) Convergence speed (d) Execution time
Fig. 4: Further results of our proposed approach

for 3 days in 2018 with a peak number of nearly 6000 devices,
measured for every quarter (15 minutes). The dynamic WAN
bandwidth data are from Aliyun [36], which contain 87 edges
within 4 Internet Service Providers (ISPs), and the bandwidth
is measured by downloading files from the cloud. The dynamic
device-edge bandwidth data [9] include 6 patterns of cellular
bandwidth changes. The dynamic operational cost is from
EPEX SPOT [44], which contains wholesale electricity prices
from July 17 through 19, 2020. Regarding the unit switching
cost, we vary it as 0∼5, in order to demonstrate a spectrum of
evaluation results. The parameters used for the convergence of
federated learning are derived from [40] and [18]: ε0 = 10−3,
ξ1 = 0.3, ξ2 = 0.01, r0 = 15, q0 = 4 and δ = 1/6. Finally,
the parameters ζ1 = 0.5 and ζ2 = 2 are derived from [23].

Algorithms and Metrics: We experiment with different
combinations of algorithms for comparison.6 The online con-
trol algorithms we consider are as follows:
• F∗ uses a fixed set of randomly chosen edges as the active

ones in each edge network over the entire time horizon;
• T∗ uses a fixed number of edges with the least cost of

data transference and model aggregation per epoch;
• M∗ uses a fixed number of edges with the least non-

switching cost in each edge network for each epoch;
• O∗ refers to our proposed online control algorithm.

The online prediction algorithms we consider are as follows:
• ∗P refers to prediction based on inputs of previous epoch;
• ∗A refers to prediction based on the average inputs so far;
• ∗O refers to our proposed online prediction algorithm.

All these algorithms are executed and compared in the online
scenario, where they have no access to the actual inputs of each

6The mark of ∗ is a wildcard to match different online control algorithms
with different online prediction algorithms. The notation “−n” in Table III
refers to the number of edges in an edge network for those algorithms apart
from “O∗”, and the default value of n is 1.

epoch before making the control decisions for each epoch. Our
primary performance metric is the total cumulative cost for
federated learning and edge provisioning; we also investigate
the inference accuracy of the trained models, the convergence
speed of the training process, and the execution time of our
proposed algorithms. Solving P̂t,1 and P̂t,2 is conducted using
standard optimization tools (i.e., AMPL [45] and IPOPT [42]),
whose results may contain a certain amount of error for non-
convex problems. Note that, even with state-of-the-art integer
program solvers, it will take unacceptably long time to obtain
the offline optimums, so we do not consider them here.

B. Evaluation Results
Table III lists the costs of different algorithms. Our proposed

approach OO performs the best, and incurs only 14.4% total
cost compared to the maximum which is incurred by TA-3.
Since a larger number of switched-on edges results in much
more cost on the global aggregation of federated learning and
also more operational expense, the results with larger numbers
of edges (i.e., more than 3) for the algorithms except OO are
omitted. In general, OO reduces at least 37% cost compared
with other strategies for federated learning.

Fig. 3(a) plots the time-varying costs of the different algo-
rithms that have the least costs in Table III. Our OO approach
always keeps the low cost on the fly. Fig. 3(b) and Fig. 3(c)
exhibit how the edge-cloud bandwidth and the operational
cost (i.e., the electricity expense in this paper) impact the
total cost, respectively, where the horizontal axis reflects the
scale with respect to the original corresponding trace. As in
Fig. 3(b), with the growth of the edge-cloud bandwidth, the
difference incurred by the global model aggregation becomes
higher across all algorithms. OO optimizes the global model
aggregation over WAN, and elongates the reduction on the
total cost, especially when the global aggregation takes higher
proportion of the total cost. The average reduction on the



total cost is 46%, while the maximum reduction is 1.18×. In
Fig. 3(c), the average reduction on the total cost is 37.4% while
the maximum reduction is 45%. Fig. 3(d) depicts how the unit
switching cost impacts the result of our approach. When the
unit cost for switching an edge is small, our approach prefers
to frequently switch on/off edges for lower total cost; as it
grows, the frequency of switching on/off edges drops.

Fig. 4(a) illustrates the details of the time-varying costs
of the different components of our approach, as well as ηt.
With the growth of the cost in terms of the global model
aggregation, ηt becomes larger for a smaller number of global
aggregations, balancing the number of global aggregations
and that of local updates. Fig. 4(b) illustrates the cumulative
distribution of the inference accuracy of our trained models
on the testing dataset of MNIST (i.e., the 10k images). The
average inference accuracy is 0.79, which is acceptable and
aligned with existing literatures [7, 23]. Fig. 4(c) visualizes
the relationship between the model’s global accuracy and the
training parameters defined in G(r)jkt (·). The aggregated model
of SVM converges to the desired accuracy stably when the
parameters are small. Those CNN models are also converging
to the desired accuracy despite with non-convex loss functions.
Fig. 4(d) is on the execution time of our approach. It only takes
several seconds on average for our algorithm to complete in
each epoch, solving the problems with up to thousands of
devices and tens of edges in our evaluations.

VI. RELATED WORK

We summarize prior research in three categories, and high-
light their drawbacks compared to our work, respectively.

Federated Learning Optimization: Besides the works [6,
8, 15–17] that only focused on the various local optimizers
and the convergence of federated learning, Wang et al. [18]
controlled the frequency of global model aggregations under a
given resource budget. Tran et al. [19] optimized the training
time and the energy consumption for mobile devices. Yang
et al. [20] studied the scheduling of federated learning over
wireless networks. Tu et al. [21] designed the network-aware
optimization of federated learning for fog computing. Zhou
et al. [22] controlled the throughout of data training for cost-
efficient federated learning at the edge of the network.

These works have considered resource usage and optimiza-
tion of federated learning. But they largely ignore the flexi-
bility of managing distributed edges regarding the switching
cost, and the unavailability of the online dynamic inputs.

Online Edge Provisioning: Zhang et al. [23] designed
an online cost-minimizing approach for data migration. Xu
et al. [24] proposed an online service caching and offloading
schema in dense networks. Jiao et al. [25] explored related
resource provisioning at edges under multi-granularity set-
tings. Meng et al. [26] investigated online deadline-aware
task dispatching and scheduling in edge computing. Zhou
et al. [27] provisioned cloud-edge resources online for IoT.

These works focus on online service provisioning as well as
edge management, but rarely consider the data and resource
patterns and the convergence-preserving training of federated

learning; they do not often adopt prediction algorithms and use
predicted inputs to achieve overall performance guarantees.

Online Predictive Control: A substantial body of research
focused on the predictive control in various scenarios. Wang
et al [28] mapped the edge computing services onto the
underlying physical network through a reinforcement learning
approach. Tao et al [30] proposed a novel adaptive user-
managed service placement mechanism by using online learn-
ing tools. Liao et al [31] used the upper confidence bound
algorithm to dynamically select the channels for task delivery.
Zhang et al [32] investigated the task offloading and resource
allocation problems at edges via Lyapunov optimization.

These works use learning-based approaches to conduct pre-
dictive control for various scenarios and problems. However,
none of them focuses on federated learning and its conver-
gence over cloud-edge infrastructures, whose characteristics
and features make such existing research inapplicable.

VII. CONCLUSION

Managing geo-distributed cloud-edge networks to support
convergence-preserving federated learning is a challenging
problem. In this paper, we formulate this problem by consid-
ering data transference, edge management, and the federated
learning process. We build a non-linear integer program for
long-term total cost minimization, and design algorithms that
use the predicted inputs of the dynamic environments to
make control decisions, consisting of three components: a lazy
switch-control component, a randomized rounding component,
and an online-learning-based prediction component. We rigor-
ously prove the competitive ratio towards the offline optimum
that take the actual inputs. Our trace-driven simulations con-
firm the advantages of our approach over multiple alternatives.

APPENDIX

A. Proof of Lemma 1

Proof. The minimization in Algorithm 3 implies it is 1/λ-
strongly convex, denoted by Jt(·). ∀u, v, we have

Jt(v) ≥ Jt(u) +∇Jt(u)(v − u) + ||v−u||2
2 . (9)

Since σ̂t+1 is the optimum, ∇Jt(σ̂t+1)(σt− σ̂t+1) ≥ 0. By
plugging the previous inequality to Inequality (9), we have
Jt(σt) ≥ Jt(σ̂t+1) + 1

2λ ||σt − σ̂t+1||. Adding ft(σ̂t) on both
sides, expanding Jt(·) as well as using the property of a convex
function (i.e., ft(σt) ≥ ft(σ̂t) +∇ft(σ̂t)(σt − σ̂t)), we have

ft(σ̂t) +∇ft(σ̂t)(σ̂t+1 − σ̂t) + ||σ̂t+1−σ̂t||2
2λ

≤ ft(σt) + ||σt−σ̂t||2
2λ − ||σt−σ̂t+1||2

2λ . (10)

Then, we analyze the gradient term, −∇ft(σ̂t)(σ̂t+1 − σ̂t)

≤ ||∇ft(σ̂t)||
2

2u + u
2 ||σ̂t+1 − σ̂t||2 ≤ F 2

2u + u
2 ||σ̂t+1 − σ̂t||2,

where u is a positive constant. The first inequality sign holds
because of the property of norms and u2 + v2 ≥ 2uv; and
the second inequality sign holds due to the bounded gradient.
After that, we plug the previous inequality into Inequality (10):

ft(σ̂t) ≤ ft(σt) + λF 2

2 + 1
2λ (||σt − σ̂t||2 − ||σt − σ̂t+1||2),



where the inequality holds because u could be chosen (i.e.,
u = 1/λ), such that (u2 −

1
2λ ) = 0. Next, we consider

||σt − σ̂t||2 ≤2σmax||σt − σt−1||+ ||σt−1 − σ̂t||2, (11)

where the inequality sign holds because we add two comple-
mentary terms ∓||σt−1− σ̂t||2 and we apply the difference of
two squares and the triangle inequality. Then, we have∑T

t=1 ft(σ̂t) ≤
∑T
t=1 ft(σt) + λF 2T

2 + σmaxV ({σt})
λ +

σ2
max

2λ ,

where V ({σt}) =
∑
t ||σt+1−σt||. Since ft(σt) = 0, we have∑T

t=1(σt − σ̂t)2g2
t ≤ λF 2T

2 + σmaxV ({σt})
λ +

σ2
max

2λ .

Using Cauchy–Schwarz [46], λ=O{
√
V ({σt})/T}, we have∑T

t=1(σt − σ̂t)gt ≤
√

(
∑T
t=1(σt − σ̂t)2g2

t )(
∑T
t=1 1) , Φ(σ).

The regret is then bounded as O( 4
√
V ({σt})T

3
4 ). Note that

V ({σt}) is the inherent dynamics of the system.

B. Proof of Lemma 2

Proof. We prove this lemma by linking CvS(Ĩ∧) with Ĉv¬S(Ĩ∧)

first, and then linking Ĉv¬S(Ĩ∧) with its optimum under the
predicted inputs without rounding (i.e., Ĉv(Ĩ∗∧)).

For the switching cost incurred in previous epoches (i.e.,
C
t′u
S (Ĩ∧)), where t′u is the timestamp of switching edges,
∀u : 1 ≤ u ≤ u′ with maximum record u′, the non-switching
cost from the beginning of this switch to the next one (i.e.,
in [t′u, t

′
u+1 − 1]), is at least ζ2 times the switching cost.

Furthermore, the potential switching cost in [t′u′ , t] is at most
ζ1 times the non-switching costs. Thus, ∀t ≤ T , we have∑t
v=1 C

v
S(Ĩ∧) =

∑
u≤u′

∑t′u+1−1

v=t′u
CvS(Ĩ∧) +

∑t
v=t′

u′
CvS(Ĩ∧)

=
∑
u≤u′{C

t′u
S (Ĩ∧) +

∑t′u+1−1

v=t′u+1 0}+ {Ct
′
u′
S (Ĩ∧) +

∑t
t′
u′+1 0}

≤
∑
u≤u′{

1
ζ2

∑t′u+1−1

v=t′u
Ĉv¬S(Ĩ∧) + 0}+ {ζ1Ĉ

t′
u′
¬S (Ĩ∧) + 0}

≤ max{ζ1, 1/ζ2}
∑t
v=1 Ĉ

v
¬S(Ĩ∧). (12)

Since ε′2 , maxv
maxĨ Ĉ

v
¬S(Ĩ)

minĨ Ĉ
v
¬S(Ĩ)

, we have Ĉv¬S(Ĩ∧)≤ε′2Ĉ
v
¬S(Ĩ∗∧).

After that, we have the following inequality (i.e., ∀t ≤ T ):∑t
v=1 Ĉ

v
¬S(Ĩ∧) ≤ ε′2

∑t
v=1 Ĉ

v
¬S(Ĩ∗∧) ≤ ε′2

∑t
v=1 Ĉ

v(Ĩ∗∧).

Therefore, the overall cost of the online algorithm without
rounding by using predicted inputs could be bounded as

P̂(Ĩ∧) ≤ (1 + max{ζ1, 1
ζ2
})
∑T
v=1 Ĉ

v
¬S(Ĩ∧)

≤ ε′2(1 + max{ζ1, 1
ζ2
})
∑T
v=1 Ĉ

v(Ĩ∗∧) , ε2P̂(Ĩ∗∧).

C. Proof of Lemma 3

Proof. The rounding part is triggered and actually used only
when P̂t,1 is feasible. For P̂t,1 invoked in line 5 of Algorithm
1, the results are x̃ijkt, ỹijkt, η̃t. When P̂t,1 is invoked in line 7
of Algorithm 1, x̄ijkt, η̄t are the feasible results. Therefore, we
first try to link {ȳjkt} and {ỹjkt}. We use index u : 1 ≤ u ≤ u′

to record the timestamp in terms of the edge switches. Then,
we have the following relationship:∑
t,k,j ȳjkt =

∑
u≤u′{(t′u+1 − t′u)(

∑
k,j ȳjkt′u)} (13)

(13a)

≤
∑
u≤u′{(t′u+1 − t′u)(

∑
k,j ỹjkt′u +

|K|
∑
k

∑
i

∑
j x̃ijkt′u∑

k |Ukt′u |
)},

where Inequality (13a) holds due to proposed pairwise round-
ing 1 +

∑
j ỹjkt ≥

∑
j ȳjkt and Constraint (1) in P̂t,1; and

the right term is less than (1 + maxt{
∑
i dikt∑
k |Ukt|

})
∑
t,k,j ỹjkt

due to Constraint (1). Then, we consider all of the terms in
Ĉt¬S(·) by using Ī∧. For data transference, we have∑

t,k,j,i x̄ijktdiktaijkt ≤ maxt,k,j,i{diktaijkt}
∑
t,k,j,i x̄ijkt

(14a)

≤ κ′1
∑
t,k,j ȳjkt

∑
i dikt

(14b)

≤ κ1

∑
t,k,j ỹjkt, (14)

where Inequality (14a) holds due to Constraint (1) in P̂t,1
and κ′1 , maxt,k,j,i{diktaijkt}; Inequality (14b) holds due to
Inequality (13). For the global aggregation term, we have∑

t,k,j

r0ln( 1
ε0

)

1−η̃t ȳjktmt(bjkt + ct) ≤ κ2

∑
t,k,j ỹjkt,

where the Inequality holds also due to Inequality (13). At
last,

∑
t,k,j z̄jkt can be bounded by κ3

∑
t,k,j ỹjkt similarly

according to Inequality (14) and the term
∑
t,k,j ojktȳjkt is

directly bounded by κ4

∑
t,k,j ỹjkt according to Inequality

(13), too. We have
∑
t Ĉ

t(Ī∧) ≤ (1 + 1/ζ1)
∑
t Ĉ

t
¬S(Ī∧) by

using Constraint (4). Note that all of the terms in Ĉt¬S(Ī∧)
are linked with

∑
t,k,j ỹjkt. Since the term r0ln( 1

ε0
)/{1− η̃t}

is larger than 1 as well as all of the terms in the objective are
non-negative,

∑
t,k,j ỹjkt is less than P̂(Ĩ∧).

D. Proof of Theorem 1
Proof. Theorem 1 contains a product term. For the first part,
by using Lemma 1, we have P(Ī∧) ≤ P̂(Ī∧) + Φ(a) + Φ(b).
By letting Φ = Φ(a) + Φ(b) and using Lemma 3, we have

E[P(Ī∧)]

P̂(Ĩ∧)
≤ E[P̂(Ī∧)+Φ]

P̂(Ĩ∧)
≤ ε3 + E[Φ]

P̂(Ĩ∧)
≤ ε3 + Φ

P̂∗
.

Since Φ is only sub-linearly growth with T , E[Φ] = Φ and
the denominator is further scaled to its optimum, where P̂∗ =
P̂(Ĩ∗∧). Since the optimum result in the real domain is better
than that in the integer domain, we have P(Ĩ∗)−P∗ ≤ 0, and

P̂(Ĩ∧) ≤ ε2P̂(Ĩ∗∧) = ε2 min
Ĩ
{P̂(Ĩ)}

(15a)

≤ ε2 min
Ĩ
{P(Ĩ) + Φ′}

≤ ε2 minĨ

{
P(Ĩ)

}
+ ε2Φ′

(15b)
= ε2P(Ĩ∗) + ε2Φ′, (15)

where Inequality (15a) holds by similarly applying Lemma 2
twice on the predicted terms under decision Ĩ∗∧, whose upper
bound is Φ′; Inequality (15b) holds due to Ĩ∗. Then, we have

P̂(Ĩ∧)−P(Ĩ∗)
P∗ ≤ 1 + (ε2−1)P(Ĩ∗)+Φ′

P∗
(16a)

≤ ε2 + ε2Φ′

P∗ , (16)

where Inequality (16a) holds using P(Ĩ∗) − P∗ ≤ 0. The
lower bound for both P̂∗ and P∗ is T

∑
t,j min{mtct+ojkt},

considering that only one switched-on edge and one global
aggregation are involved. Thus, for the terms Φ

P̂∗
and ε2Φ′

P∗ ,
either of them is O{T ε1−1}, where ε1 − 1 < 0.
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