
Hank Childs, University of OregonNovember 20th, 2018

CIS 507:
_ _ _ _ ______ _ _____

/ / / /___ (_) __ ____ _____ ____/ / / ____/ _/_/ ____/__ __
/ / / / __ \/ / |/_/ / __ `/ __ \/ __ / / / _/_// / __/ /___/ /_
/ /_/ / / / / /> < / /_/ / / / / /_/ / / /____/_/ / /__/_ __/_ __/
____/_/ /_/_/_/|_| __,_/_/ /_/__,_/ ____/_/ ____//_/ /_/

Lecture 9:
how C++ works under the covers,

and also exceptions

Function	Pointers

Function	Pointers

• Idea:
– You	have	a	pointer	to	a	function
– This	pointer	can	change	based	on	circumstance
–When	you	call	the	function	pointer,	it	is	like	calling	
a	known	function

Function	Pointer	Example

Function	Pointers	vs Conditionals

What	are	the	pros	and	cons	of	each	approach?

Function	Pointer	Example	#2

Function	pointer Part	of	function	signature

Don’t	be	scared	of	extra	‘*’s	…	they	just	come	about	because	of	
pointers	in	the	arguments	or	return	values.

Simple-to-Exotic	Function	Pointer	
Declarations

void	(*foo)(void);
void	(*foo)(int **,	char	***);
char	**	(*foo)(int **,	void	(*)(int));

These	sometimes	come	up	on	interviews.

Callbacks

• Callbacks:	function	that	is	called	when	a	
condition	is	met
– Commonly	used	when	interfacing	between	
modules	that	were	developed	separately.

– …	libraries	use	callbacks	and	developers	who	use	
the	libraries	“register”	callbacks.

Callback	
example

Callback	
example

How	C++	does	OOP	under	the	covers

“this”:	pointer	to	current	object

• From	within	any	struct’s method,	you	can	
refer	to	the	current	object	using	“this”

How	methods	work	under	the	covers	(1/4)

How	methods	work	under	the	covers	(2/4)

Addr. Variable Value

0x8000 MIC/myI
nt

12

Addr. Variable Value

0x8000 MIC/myI
nt

12

0x8004 mic 0x8000

How	methods	work	under	the	covers	(3/4)

How	methods	work	under	the	covers	(4/4)

Addr. Variable Value

0x8000 MIC/myI
nt

12

Addr. Variable Value

0x8000 MIC/myI
nt

12

0x8004 mic 0x8000

Addr. Variable Value

0x8000 MIC/myI
nt

12

Addr. Variable Value

0x8000 MIC/myI
nt

13

0x8004 this 0x8000

The	compiler	secretly	slips	“this”	
onto	the	stack	whenever	you	make	a	

method	call.

It	also	automatically	changes	
“myInt”	to	this->myInt in	methods.

Virtual	Function	Tables

Virtual	functions

• Virtual	function:	function	defined	in	the	base	
type,	but	can	be	re-defined	in	derived	type.

• When	you	call	a	virtual	function,	you	get	the	
version	defined	by	the	derived	type

Virtual	functions:	
example

Picking	the	right	virtual	function

??????

It	seems	like	the	compiler	
should	be	able	to	figure	

this	out	...
it	knows	that	a	is	of	type	A	

and
it	knows	that	b	is	of	type	B

Picking	the	right	virtual	function

??????

So	how	to	does	the	
compiler	know?

How	does	it	get	“B”	for	
“b”	and	“A”	for	“a”?

Virtual	Function	Table
• Let	C	be	a	class	and	X	be	an	instance	of	C.
• Let	C	have	3	virtual	functions	&	4	non-virtual	
functions

• C	has	a	hidden	data	member	called	the	“virtual	
function	table”

• This	table	has	3	rows
– Each	row	has	the	correct	definition	of	the	virtual	
function	to	call	for	a	“C”.

• When	you	call	a	virtual	function,	this	table	is	
consulted	to	locate	the	correct	definition.

Showing	the	existence	of	the	virtual	
function	pointer	with	sizeof()

what	will	this	print?

empty	objects	have	size	of	1?
why?!?

Answer:	so	every	object	has	a	
unique	address.

Virtual	Function	Table

• Let	C	be	a	class	and	X	be	an	instance	of	C.
• Let	C	have	3	virtual	functions	&	4	non-virtual	
functions

• Let	D	be	a	class	that	inherits	from	C	and	Y	be	
an	instance	of	D.
– Let	D	add	a	new	virtual	function

• D’s	virtual	function	table	has	4	rows
– Each	row	has	the	correct	definition	of	the	virtual	
function	to	call	for	a	“D”.

More	notes	on	virtual	function	tables

• There	is	one	instance	of	a	virtual	function	
table	for	each	class
– Each	instance	of	a	class	shares	the	same	virtual	
function	table

• Easy	to	overwrite	(i.e.,	with	a	memory	error)
– And	then	all	your	virtual	function	calls	will	be	
corrupted

– Don’t	do	this!	;)

Virtual	function	table:	example

Virtual	function	table:	example

Questions
• What	does	the	virtual	function	table	look	like	
for	a	Shape?

• What	does	Shape’s	virtual	function	table	look	
like?
– Trick	question:	Shape	can’t	be	instantiated,	
precisely	because	you	can’t	make	a	virtual	
function	table
• abstract	type	due	to	pure	virtual	functions

Questions

• What	is	the	virtual	function	table	for	
Rectangle?

• (this	is	a	code	fragment	from	my	2C	solution)

Calling	a	virtual	function
• Let	X	be	an	instance	of	class	C.
• Assume	you	want	to	call	the	4th virtual	
function	

• Let	the	arguments	to	the	virtual	function	be	
an	integer	Y	and	a	float	Z.

• Then	call:
(X.vptr[3])(&X,	Y,	Z);

The	pointer	to	the	virtual	
function	pointer	(often	
called	a	vptr)	is	a	data	
member	of	X

The	4th virtual	function	has	index	3	(0-indexing)

Secretly	pass	“this”	as	first	argument	to	method

Inheritance	and	Virtual	Function	
Tables

A

Foo1 Location of	
Foo1

B

Foo1 Location of	
Foo1

Foo2 Location	of	
Foo2

C

Foo1 Location of	
Foo1

Foo2 Location	of	
Foo2

Foo3 Location of	
Foo3

Same	as	B’s
This	is	how	you	can	
treat	a	C	as	a	B

This	whole	scheme	gets	much	harder	with	multiple	
inheritance,	and	you	have	to	carry	around	multiple	

virtual	function	tables.

:	public	B

Virtual	Function	Table:	Summary

• Virtual	functions	require	machinery	to	ensure	the	
correct	form	of	a	virtual	function	is	called

• This	is	implemented	through	a	virtual	function	
table

• Every	instance	of	a	class	that	has	virtual	functions	
has	a	pointer	to	its	class’s	virtual	function	table

• The	virtual	function	is	called	via	following	
pointers
– Performance	issue

Now	show	Project	2D	in	C++

• Comment:
– C/C++	great	because	of	performance
– Performance	partially	comes	because	of	a	
philosophy	of	not	adding	“magic”	to	make	
programmer’s	life	easier

– C	has	very	little	pixie	dust	sprinkled	in
• Exception:	‘\0’	to	terminate	strings

– C++	has	more
• Hopefully	this	will	demystify	one	of	those	things	(virtual	
functions)

vptr.C

Exceptions

Exceptions

• C++	mechanism	for	handling	error	conditions
• Three	new	keywords	for	exceptions
– try:	code	that	you	“try”	to	execute	and	hope	there	
is	no	exception

– throw:	how	you	invoke	an	exception
– catch:	catch	an	exception	…	handle	the	exception	
and	resume	normal	execution	

Exceptions

Exceptions:	catching	multiple	types

Exceptions:	catching	multiple	types

Exceptions:	catching	multiple	types

Exceptions:	throwing/catching	
complex	types

Exceptions:	cleaning	up	before	you	
return

Exceptions:	re-throwing

Exceptions:	catch	and	re-throw	anything

Exceptions:	declaring	the	exception	
types	you	can	throw

Exceptions:	declaring	the	exception	
types	you	can	throw	...	not	all	it	is	

cracked	up	to	be

This	will	compile	…	compiler	can	only	
enforce	this	as	a	run-time	thing.

As	a	result,	this	is	mostly	unused
(I	had	to	read	up	on	it)

But:	“standard”	exceptions	have	a	
“throw”	in	their	declaration.

std::exception

• c++ provides	a	base	
type	called	
“std::exception”

• It	provides	a	method	
called	“what”

Source:	cplusplus.com

Exceptions	generator	by	C++	standard	
library

Source:	cplusplus.com

3F

Project	3F	in	a	nutshell

• Logging:
– infrastructure	for	logging
– making	your	data	flow	code	use	that	
infrastructure

• Exceptions:
– infrastructure	for	exceptions
– making	your	data	flow	code	use	that	
infrastructure

The	webpage	has	a	head	start	at	the	infrastructure	
pieces	for	you.	

Warning	about	3F

• My	driver	program	only	tests	a	few	exception	
conditions

• Your	stress	tests	later	will	test	a	lot	more.
– Be	thorough,	even	if	I’m	not	testing	it

3F:	warning

• 3F	will	almost	certainly	crash	your	code
– It	uses	your	modules	wrong!

• You	will	need	to	figure	out	why,	and	add	
exceptions
– gdb will	be	helpful

Bonus	Material

Operator	Precedence	

Source:	http://en.cppreference.com/w/c/language/operator_precedence

Unions

• Union:	special	data	type
– store	many	different	memory	types	in	one	
memory	location

When	dealing	with	this	union,	you	
can	treat	it	as	a	float,	as	an	int,	or	as	

4	characters.

This	data	structure	has	4	bytes

Unions

Why	are	unions	useful?

Unions	Example

Unions	Example

