Data-Fusion for Prefix-Level Inference: A DDoS Case Study

Chris Misa^{1.}

Department of Computer Science, University of Oregon

^{1.} Joint work with Ramakrishnan Durairajan, Arpit Gupta, Reza Rejaie, and Walter Willinger.

Let's use AI/ML to classify DDoS attack flows...

- *Why?* Recent work shows really good performance.
 - LUCID (TNSM '20) gets 99.7% accuracy on CIC '17 dataset.
- *The problem?* In reality we don't have enough resources to monitor all flows.
 - CAIDA traces have >100k (benign) flows / sec.¹
 - LUCID requires ~880 GB / sec. of state just for benign traffic.
- *The approach?* Prefix-level classification.
 - Potential 100X reduction in monitoring resources.

1. https://www.caida.org/catalog/datasets/trace_stats/ cmisa@cs.uoregon.edu

...but what about the data?

• Need a dataset that captures *(i)* prefix-level blending of attack and benign classes and *(ii)* multiple, independent attack scenarios.

Dataset	# Benign				# Attack			
	/8	/16	/24	/32	/8	/16	/24	/32
CAIDA ('07) [2]	0	0	0	0	117	4 k	$8.7 \mathrm{k}$	9 k
ISCX ('12) [15]	123	1590	2041	2129	6	6	9	14
Booters $('15)$ [13]	0	0	0	0	42	961	$3 \mathrm{k}$	4.4 k
Mirai ('16) [6]	0	0	0	0	162	$3.5 \mathrm{k}$	$9.8 \mathrm{k}$	$10 \mathrm{k}$
CIC ('17) [14]	156	922	2125	3432	1	1	1	1
CSECIC ('18) [3]	1	1	6	446	2	4	10	10
MAWILab ('19) [10]	211	30 k	$3.3 \mathrm{m}$	$5.3 \mathrm{m}$	0	0	0	0
CAIDA ('19) [1]	250	$27 \mathrm{k}$	$323 \mathrm{k}$	$1.3 \mathrm{~m}$	0	0	0	0

...but what about the data?

• Need a dataset that captures *(i)* prefix-level blending of attack and benign classes and *(ii)* multiple, independent attack scenarios.

Dataset	# Benign				# Attack				
	/8	/16	/24	/32	/8	/16	/24	/32	
CAIDA ('07) [2]	0	0	0	0	117	4 k	$8.7 \mathrm{k}$	9 k	
ISCX ('12) [15]	123	1590	2041	2129	6	6	9	14	
Booters $('15)$ [13]	0	0	0	0	42	961	$3 \mathrm{k}$	$4.4 \mathrm{k}$	
Mirai ('16) [6]	0	0	0	0	162	$3.5 \mathrm{k}$	$9.8 \mathrm{k}$	10 k	
CIC ('17) [14]	156	922	2125	3432	1	1	1	1	
CSECIC $('18)$ [3]	1	1	6	446	2	4	10	10	
MAWILab ('19) [10]	211	30 k	$3.3 \mathrm{m}$	$5.3 \mathrm{m}$	0	0	0	0	
CAIDA ('19) [1]	250	27 k	323 k	$1.3 \mathrm{~m}$	0	0	0	0	

Only one attacker!

• See ZAPDOS¹ (to appear in S&P '24) for more details.

^{1.} Pre-print available here: https://onrg.gitlab.io/pub/SnP2024_ZAPDOS_FinalWeb.pdf

(...but what about the data?)

• Need a dataset that captures *(i)* prefix-level blending of attack and benign classes and *(ii)* multiple, independent attack scenarios.

Dataset	# Benign				# Attack				
	/8	/16	/24	/32	/8	/16	/24	/32	
CAIDA ('07) [2]	0	0	0	0	117	4 k	8.7 k	9 k	
ISCX ('12) [15]	123	1590	2041	2129	6	6	9	14	
Booters $('15)$ $[13]$	0	0	0	0	42	961	$3 \mathrm{k}$	4.4 k	
Mirai ('16) [6]	0	0	0	0	162	$3.5 \mathrm{k}$	$9.8 \mathrm{k}$	10 k	
CIC ('17) [14]	156	922	2125	3432	1	1	1	1	
CSECIC ('18) [3]	1	1	6	446	2	4	10	10	
MAWILab ('19) [10]	211	30 k	$3.3 \mathrm{m}$	$5.3 \mathrm{~m}$	0	0	0	0	
CAIDA ('19) [1]	250	$27 \mathrm{k}$	$323 \mathrm{k}$	$1.3 \mathrm{~m}$	0	0	0	0	
Proposed "data-fusion" method	216	30 k	3.2 m	4.8 m	179	7 k	$45 \mathrm{k}$	$50 \mathrm{k}$	

50k attackers per scenario.

Can we do better than data-fusion?

- **Data providers** (e.g., CAIDA, CLASSNET) should consider requirements of prefix-level approaches.
 - Use prefix-preserving anonymization (cryptopan).
 - Develop combined attack + benign datasets to capture "blending".
- *Researchers* should consider improving synthetic traffic generation.
 - State-of-the-art proposals (e.g., NetShare) *do not* reproduce realistic "spatial" structure.
 - General lack of metrics for measuring prefix-level fidelity of synth. data.

If we have realistic prefix-level data, what next?

• Can prefix-level classification be applied to other security monitoring tasks?

• Can we leverage where (in IP space) attack traffic comes from to develop more informative source- or flow-level features?

• How can we quantify the risk involved in prefix-level approaches? Do they expose opportunities for adversaries to manipulate models or data?

Thanks!