Designing Traffic Monitoring Systems for Self-driving Networks

Chris Misa, PhD Candidate University of Oregon 2023-06-19

cmisa@uoregon.edu

Traffic Monitoring

• Traffic monitoring is **observing** packets in network...

• ...and **computing** metrics for a particular goal.

Traffic Monitoring

- Traffic monitoring is **observing** packets in network...
 - Single links: 400G, Switches: 2-3T.
- ...and **computing** metrics for a particular goal.
 - Details for lots of traffic entities (flows).

Traffic Monitoring +Systems

- Wide range of options for where to **compute.**
 - End-host CPU, NIC hardware, Switch hardware, etc.

Traffic Monitoring +Systems

- Wide range of options for where to **compute.**
 - End-host CPU, NIC hardware, Switch hardware, etc.

Hardware programming:

- (+) Fast per-packet processing
- (-) Limited memory
- (-) Limited operations

CPU programming:

- (+) Lots of memory
- (+) Lots of flexible ops.
- (-) Slow per-packet processing

Traffic Monitoring +Systems

- Wide range of options for where to **compute.**
 - End-host CPU, NIC hardware, Switch hardware, etc.

Hardware programming:

- (+) Fast per-packet processing
- (-) Limited memory
- (-) Limited operations

CPU programming:

- (+) Lots of memory
- (+) Lots of flexible ops.
- (-) Slow per-packet processing

...most systems are (actually) hardware + CPU hybrid.

- **R1:** Set of monitored metrics changes at runtime.
 - Monitoring is a *service* for automation.

- **R1:** Set of monitored metrics changes at runtime.
 - Monitoring is a *service* for automation.
- **R2:** Resource efficiency for wide range of metrics.
 - Including potentially non-linear feature vectors.

- **R1:** Set of monitored metrics changes at runtime.
 - Monitoring is a *service* for automation.
- R2: Resource efficiency for wide range of metrics.
 Including potentially non-linear feature vectors.
- **R3:** Remain robust in face of changing traffic.
 - Changes in traffic cannot impact accuracy of results.

- R1: Set of monitored metrics changes at runtime.
 Monitoring is a service for automation.
- **R2:** Resource efficiency for wide range of metrics.
 - Including potentially non-linear feature vectors.
- **R3:** Remain robust in face of changing traffic.
 - Changes in traffic cannot impact accuracy of results.

Currently lots of focus on R2, just starting to focus on R1 and R3.

7

Designs Proposed in Research

• Sketches for efficient approximation.

"Map-reduce" model for flexible queries.

```
ddos = PacketStream(1)
    .distinct(keys=('ipv4.dstIP', 'ipv4.srcIP'))
    .map(keys=('ipv4.dstIP',), map_values=('count',), func=('eq', 1,))
    .reduce(keys=('ipv4.dstIP',), func=('sum',))
    .filter(filter_vals=('count',), func=('geq', 45))
```

Sonata: Gupta et al., 2018.

Sketches for Efficient Approximation

Pros:

- O(1) update.
- Several metrics can be computed.
 - Heavy hitters, cardinality, entropy, etc.

- Embrace hash collisions.
- Adding hash functions *multiplies* error.

Cons:

- Typically fix flow key.
 - Hard to address **R1**.
- Error is function of (unknown) number of keys.
 - Hard to address R3.

"Map Reduce" for Flexibility

- Language-based design.
- Partitioned across processors.

Pros:

- Unified interface for hardware and software platforms.
- Recent efforts also address **R1.**

ddos = PacketStream(1)

.distinct(keys=('ipv4.dstIP', 'ipv4.srcIP'))
.map(keys=('ipv4.dstIP',), map_values=('count', ...
.reduce(keys=('ipv4.dstIP',), func=('sum',))
.filter(filter_vals=('count',), func=('geq', 45))

... report destinations that receive from more than 45 distinct sources.

Cons:

- Limited types of computations.
 - Simple "count" or "distinct" aggregations so far.
- Limited solutions for traffic dynamics (**R3**).

Some Recent Examples

- Automatic DDoS defense:¹
 - Library of sketch-based detection and mitigation.
 - Compiled into switch + CPU policy implementation.

- Automatic flow offloading:²
 - Application of burst-based monitoring.

1. Jaqen, USENIX Sec. '21.

2. Elixir, NSDI '22.

Research Challenges

- Define the role of traffic monitoring in network automation.
 - What is produced? (Do ML models run in monitor?)¹
 - How are computations specified? (Regular expressions?)²

1. FlowLens, NDSS '21. 2. NetQRE, SIGCOMM '17.

Research Challenges

- Define the role of traffic monitoring in network automation.
 - What is produced? (Do ML models run in monitor?)¹
 - How are computations specified? (Regular expressions?)²
- Address complex resource management problems.
 - All kinds of dynamics?³
 - Contention with other data-plane applications?

1. FlowLens, NDSS '21. 2. NetQRE, SIGCOMM '17. 3. DynATOS, NSDI '22.

Thanks!

(Questions and discussion later...)