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a b s t r a c t 

We have developed an efficient computational framework for simulating multiple earth- 

quake cycles with off-fault plasticity. The method is developed for the classical antiplane 

problem of a vertical strike-slip fault governed by rate-and-state friction, with inertial ef- 

fects captured through the radiation-damping approximation. Both rate-independent plas- 

ticity and viscoplasticity are considered, where stresses are constrained by a Drucker–

Prager yield condition. The off-fault volume is discretized using finite differences and tec- 

tonic loading is imposed by displacing the remote side boundaries at a constant rate. Time- 

stepping combines an adaptive Runge–Kutta method with an incremental solution process 

which makes use of an elastoplastic tangent stiffness tensor and the return-mapping al- 

gorithm. Solutions are verified by convergence tests and comparison to a finite element 

solution. We quantify how viscosity, isotropic hardening, and cohesion affect the magni- 

tude and off-fault extent of plastic strain that develops over many ruptures. If hardening is 

included, plastic strain saturates after the first event and the response during subsequent 

ruptures is effectively elastic. For viscoplasticity without hardening, however, successive 

ruptures continue to generate additional plastic strain. In all cases, coseismic slip in the 

shallow sub-surface is diminished compared to slip accumulated at depth during inter- 

seismic loading. The evolution of this slip deficit with each subsequent event, however, 

is dictated by the plasticity model. Integration of the off-fault plastic strain from the vis- 

coplastic model reveals that a significant amount of tectonic offset is accommodated by 

inelastic deformation ( ∼ 0.1 m per rupture, or ∼ 10% of the tectonic deformation budget). 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

1. Introduction 

Field observations reveal regions of highly damaged rock (containing abundant microfractures) surrounding a fault core,

which many attribute to thousands of years of seismogenic cycling during which earthquakes shatter the rocks in the vicinity

of the fault ( Ben-Zion and Sammis, 2011; Chester et al., 1993; Chester and Logan, 1986; Faulkner et al., 2010; Mitchell and

Faulkner, 2009; Shipton et al., 2005 ). Understanding how an earthquake will propagate is intimately tied to the evolution of

these damage zones. Important and unsolved problems include the relationship between the degree of off-fault yielding and
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mechanical properties of fault zone material, how damage zones evolve with increasing cumulative slip, and how damage

zones affect subsequent rupture. 

Current models for dynamic rupture have led to much insight into earthquake propagation, the generation of high-

frequency ground motion, and the influence of plasticity on rupture propagation ( Dunham et al., 2011a,b; Gabriel et al.,

2013a,b; Kaneko and Fialko, 2011; Ma and Andrews, 2010; Shi and Day, 2013; Templeton and Rice, 2008 ; Xu et al., 2012 ;

Xu et al., 2012b ). Although the inclusion of a plastic material response has been shown to reduce stress and slip velocities at

the rupture front to reasonable values, little work has been done to understand the evolution of a damage zone (and its im-

pact on rupture) over multiple event sequences. In particular, most dynamic rupture models currently make the assumption

of a uniform background stress and are limited to single-event simulations where rupture is artificially initiated via a stress

perturbation imposed on the fault. Earthquake cycle models, on the other hand, generate self-consistent initial conditions

because of their ability to handle varying time scales. Cycle models developed in the boundary integral or boundary element

context were limited to simulations in a uniform, linear elastic whole- or half-space ( Lapusta et al., 20 0 0; Tullis et al., 2012 ).

Recent developments, however, have shown how to incorporate more realistic features (material heterogeneities or inelastic

deformation, for example) into the earthquake cycle framework ( Aagaard et al., 2013; Allison and Dunham, 2017; Barbot

et al., 2012; Erickson and Dunham, 2014; Johnson and Segall, 2004; Kaneko et al., 2011; Thompson and Meade, 2016 ). 

In this work, we study the role of plasticity throughout the earthquake cycle. The computational method is developed

for the classical antiplane problem of a vertical strike-slip fault governed by rate-and-state friction. The off-fault material is

idealized as a Drucker–Prager elastic–plastic solid and stresses are constrained by a depth-dependent yield condition. Inertia

is approximated with radiation damping. Within the context of a time-stepping method, we solve the resulting equilibrium

equation (a nonlinear, elliptic partial differential equation) for the displacement increment. 

Although computational plasticity is most commonly addressed in a finite element framework, we develop a finite differ-

ence method, as the latter is easy to program, efficient, and can be applied in a straightforward manner in order to obtain a

numerical approximation to the solution ( Scalerandi et al., 1999 ). Recent work in summation-by-parts finite difference meth-

ods has furnished high-order accurate schemes that enforce boundary and interface conditions in a stable manner (through

the simultaneous-approximation-term technique) ( Kreiss and Scherer, 1974; 1977; Nordström et al., 2007; Svärd and Nord-

ström, 2014 ). These methods provide a framework for proving convergence for linear and nonlinear problems, which is

fundamental in order to obtain credible numerical approximations. In this work, an initial analysis is done of the underlying

continuum problem to show it satisfies an energy estimate (in this case, dissipation of mechanical energy in the absence

of non-trivial boundary conditions or source terms). The computational method then provides a spatial discretization that

mimics the energy estimate of the continuum problem and proves stability of the method. 

The paper is organized as follows: in Section 2 we state the continuum problem solved in this work. A rate-and-state

frictional fault is embedded in an elastoplastic solid and the equation for static equilibrium is solved within the context of a

time-stepping method that imposes remote loading and fault slip (in a manner consistent with a fault friction law), deferring

specific details to later sections. Section 3 provides details of the Drucker–Prager model for rate-independent plasticity that

defines the constitutive relation (as viscoplasticity is a straight-forward extension of the associated algorithms, detailed in

Section 7.2 ). This is described in terms of the material response at a particular point in the solid, and provides a procedure

for evolving stress and plastic strain given a history of total strain. Section 4 applies the results of Section 3 , detailing the

derivation of the incremental form of the continuum problem of Section 2 and obtaining the governing equation solved

within the time-stepping method. In Section 5, we show conditions under which the resulting boundary value problem for

the solid satisfies the Drucker stability condition. We also establish conservation of the incremental internal energy in the

absence of nontrivial boundary conditions. Section 6 details the spatial discretization, specifically a finite difference method

for variable coefficients satisfying a summation-by-parts (SBP) rule with weak enforcement of boundary conditions through

the simultaneous-approximation-term (SAT) technique. The combined method will be denoted throughout the paper as SBP-

SAT. We show that the semi-discrete problem using the SBP-SAT method mimics the energy balance of the continuum

problem. In Section 7, we describe the time stepping method for the overall problem. The solid displacement, stress, and

plastic strain are updated in response to time-dependent boundary conditions obtained by updating fault slip in a manner

consistent with the friction law. At each time step we solve numerically the incremental equilibrium equation for the solid

using an iterative Newton procedure with the return mapping algorithm to calculate stresses consistent with the constitutive

theory. The extension of the algorithms to viscoplasticity is also detailed. In Section 8 , we present convergence tests and

comparisons with numerical solutions from a finite element code to verify our finite difference method. In Section 9 we

apply our method to earthquake cycle simulations, and conclude in Section 10 with a discussion. 

2. The continuum problem 

In this work we assume two-dimensional antiplane shear deformation. The equation for static equilibrium in the medium

is given by 

∂σxy 

∂y 
+ 

∂σxz 

∂z 
= 0 , (y, z) ∈ [ −L y , L y ] × [0 , L z ] , (1)
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Fig. 1. Schematic diagram for antiplane shear deformation where u ( t, y, z ) is the out-of-plane displacement. We displace the sides y = ±L y at a constant 

rate, with free surface conditions on the top and bottom. A frictional fault at y = 0 is embedded in an elastic–plastic medium. 

 

 

 

 

 

 

 

 

 

 

 

 

where σ xy and σ xz are the relevant components of the stress tensor σ . The constitutive relation (Hooke’s law) relates stress

to elastic strain through the relations 

σxy = μ(γxy − γ p 
xy ) , (2a) 

σxz = μ(γxz − γ p 
xz ) , (2b) 

for out-of-plane displacement u ( t, y, z ), shear modulus μ, total engineering strains 

γxy = ∂ u/∂ y (3a) 

γxz = ∂ u/∂ z, (3b) 

and plastic engineering strains γ p 
xy , γ

p 
xz . Plastic deformation evolves according to a flow rule of the form 

˙ γ p 
xy = λP xy , (4a) 

˙ γ p 
xz = λP xz , (4b) 

where λ is the magnitude of the plastic strain rate (a positive, scalar function of the stress), which is nonzero only when

plastic deformation occurs. P xy , P xz are dimensionless, (generally nonlinear) functions of the stress, determine how the plastic

strain rate is partitioned between different components, and specified by the particular plasticity model ( Chen and Han,

1988; Simo and Hughes, 1998 ). More details are given in Section 3 . 

A vertical, strike slip fault governed by a rate-and-state friction law lies at the interface y = 0 ( Dieterich, 1979; Ruina,

1983 ) (see Fig. 1 ) where we impose the condition that the jump in displacement is equal to the fault slip, �u , namely 

u (t, 0 

+ , z) − u (t, 0 

−, z) = �u (t, z) . (5)

In addition, we require that the components of the traction vector on the fault be equal and opposite across the interface,

which, for antiplane motion, reduces to the second interface condition 

σxy (t, 0 

+ , z) = σxy (t, 0 

−, z) . (6) 

Slow tectonic loading is imposed by displacing the remote boundaries at a constant relative rate V p and the top and

bottom boundaries are assumed to be free surfaces. We assume the solution u is anti-symmetric across the fault interface

(i.e. u (t, y, z) = −u (t, −y, z) for 0 ≤ y ≤ L y ) so that (6) is satisfied by construction, and so we may focus on one side of the

fault, namely ( y, z ) ∈ [0, L y ] × [0, L z ] (see Erickson and Dunham, 2014 for details and a discussion on the choice of boundary

conditions). For the one-sided problem the boundary conditions are thus given by 

u (t, 0 , z) = �u/ 2 , (7a) 

u (t, L y , z) = V p t/ 2 , (7b) 

σxz (t, y, 0) = 0 , (7c) 

σxz (t, y, L z ) = 0 . (7d) 

In the rate-and-state friction framework, shear stress on the fault, denoted τ (and related to σ xy as detailed below), is

equated with frictional strength through the relation 

τ = σn f (V, ψ) , (8) 
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Fig. 2. The Drucker–Prager yield condition for yield function F . Elastic response occurs for states of stress that lie below the yield surface, while plastic 

response occurs for states on the surface. States above the yield surface are inadmissible. The slope of the line is defined by the angle of internal friction 

φ, while the y -intercept depends further on cohesion c and hardening modulus h . (For interpretation of the references to color in this figure, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 

V = � ˙ u (9)

denotes the slip velocity, ψ is an internal state variable, σ n is the effective normal stress and f is a friction coefficient that

takes the particular form 

f (V, ψ) = a sinh 

−1 
(

V 

2 V 0 

e ψ/a 
)

(10)

( Dieterich, 1979; Ruina, 1983 ). We assume the state variable ψ evolves to the aging law form of evolution, namely 

dψ 

dt 
= 

bV 0 

D c 

(
e ( f 0 −ψ) /b − V 

V 0 

)
. (11)

With the aging law, state can evolve in the absence of slip, and therefore may be more suitable for modeling the inter-

seismic period. In Eqs. (10) and (11) , a and b are dimensionless parameters quantifying the direct effect and state evolution,

respectively, f 0 is a reference friction at a reference slip velocity V 0 , and D c is the state evolution distance ( Marone, 1998 ). 

In Section 7 we describe how the slip �u is obtained in a manner consistent with the fault friction law (8) , where τ is

related to σ xy through the following. Solving the equilibrium Eq. (1) provides the quasistatic stresses σ xy , σ xz . Since disre-

garding inertia entirely is known to cause slip velocity V → ∞ in finite time (after which no solution exists), we incorporate

the radiation damping approximation to inertia ( Rice, 1993 ). Thus τ is defined to be 

τ = σxy (t, 0 , z) − ηrad V (12)

where −ηrad V is the stress due to radiation damping and ηrad = μ/ (2 c s ) is half the shear-wave impedance (not to be con-

fused with viscosity η for viscoplastic flow) for shear wave speed c s = 

√ 

μ/ρ and material density ρ . 

3. Elastoplastic constitutive theory 

In this section, we review the Drucker–Prager elastoplastic constitutive theory that is used to evolve stress and plastic

strain (in response to an imposed total strain history at a particular material point). 

3.1. Drucker–Prager plasticity 

Throughout this work we assume infinitesimal strains. Hooke’s law (introduced in (2) for the antiplane setting) can be

expressed generally by 

σ = C : (ε − ε p ) (13)

where ε and εp are the total and plastic strain tensors. The fourth order elasticity tensor C ijkl for an isotropic solid is given

by 

C i jkl = Kδi j δkl + μ
(
δik δ jl + δil δ jk − (2 / 3) δi j δkl 

)
, (14)

where K is the bulk modulus. Stresses in the medium are constrained by a Drucker–Prager yield condition, see Fig. 2 . For

rate-independent response with linear, isotropic hardening, the yield function is given by 

F (σ, γ p ) = τ̄ − (σY + hγ p ) , (15)
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where γ p is the hardening parameter (equivalent plastic strain, defined below) and h is the hardening modulus. In this

work we assume h > 0 is constant (we say the response is strain-softening if h < 0, and perfectly plastic if h = 0 ). The elastic

domain in stress space is given by E σ = { (σ, γ p ) : F (σ, γ p ) ≤ 0 } and plastic flow ensues when the yield condition 

F (σ, γ p ) = 0 (16) 

is met. The second invariant of the deviatoric stress is 

τ̄ = 

√ 

s i j s i j / 2 (17) 

for s i j = σi j − σkk δi j / 3 . The yield stress is given by 

σY = −(σkk / 3) sin φ + c cos φ, (18) 

where c is the cohesion and φ is the internal friction angle. Plastic strain evolves according to the flow rule (introduced in

Eq. (4) ) given by 

˙ ε p 
i j 

= λP i j , (19) 

where λ = 

√ 

2 ̇ e 
p 
i j ̇

 e 
p 
i j 

is the deviatoric plastic strain rate for e 
p 
i j 

= εp 
i j 

− εp 

kk 
δi j / 3 . Thus 

γ p (t) = 

∫ t 

0 

λ(s ) ds, (20) 

and P ij (specified in the next section) quantifies how plastic strain is distributed between different components of the plastic

strain rates. The constitutive theory is closed by including the Kuhn–Tucker loading/unloading (complementarity) conditions 

λ ≥ 0 , F ≤ 0 , λF = 0 , (21) 

(which ensure that plastic flow can only occur if stresses lie on the yield surface) and the consistency (persistency) condition

λ ˙ F = 0 , (22) 

so that if plastic flow occurs, the stress state must persist on the yield surface for some positive period of time. 

3.2. Elastoplastic tangent stiffness tensor 

In rate form, Hooke’s law (13) expresses stress rate in terms of total strain rate, namely 

˙ σi j = C ep 

i jkl 
˙ εkl , (23) 

where the continuum elastoplastic tangent stiffness tensor C 
ep 

i jkl 
= C 

ep 

i jkl 
(σ ) is a nonlinear function of stress. We derive this

tensor following Simo and Hughes (1998) , by first taking the time derivative of the yield function, and then using (19) and

the time derivative of (20) : 

˙ F = 

∂F 

∂σi j 

˙ σi j + 

∂F 

∂γ p 
˙ γ p = 

∂F 

∂σi j 

C i jkl ( ̇ εkl − ˙ ε p 

kl 
) + 

∂F 

∂γ p 
˙ γ p 

= 

∂F 

∂σi j 

C i jkl ˙ εkl − λ

(
∂F 

∂σi j 

C i jkl P kl −
∂F 

∂γ p 

)
. (24) 

Assuming that (
∂F 

∂σi j 

C i jkl P kl −
∂F 

∂γ p 

)
> 0 , (25) 

(in order to ensure consistency with (21) and (22) , see Simo and Hughes, 1998 for more details), we can solve ˙ F = 0 for λ,

namely 

λ = 

〈 ∂F 
∂σi j 

C i jkl ˙ εkl 〉 
∂F 

∂σmn 
C mnop P op − ∂F 

∂γ p 

, (26) 

where the brackets denote the ramp function 〈 x 〉 = 

x + | x | 
2 . Taking the time derivative of the stress and substituting in the

flow rule yields 

˙ σi j = C i jkl ( ̇ εkl − λP kl ) = C i jkl 

( 

˙ εkl −
〈 ∂F 

∂σmn 
C mnop ̇ εop 〉 

∂F 
∂σqr 

C qrst P st − ∂F 
∂γ p 

P kl 

) 

, (27) 
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which allows us to express the continuum elastoplastic tangent stiffness tensor 

C ep 

i jkl 
= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

C i jkl if λ = 0 , 

C i jkl −
C i jop P op C mnkl 

∂F 
∂σmn 

∂F 
∂σqr 

C qrst P st − ∂F 
∂γ p 

if λ > 0 . 
(28)

Note that C ep is symmetric in the same manner as the elastic tensor given in (14) (namely, that C 
ep 

i jkl 
= C 

ep 

jikl 
= C 

ep 

i jlk 
= C 

ep 

kli j 
),

if the flow rule (19) is associative (i.e. if P i j = 

∂F 
∂σi j 

). For Drucker–Prager plasticity, 

P i j = s i j / (2 ̄τ ) + (β/ 3) δi j , (29)

where β determines the degree of plastic dilatancy. Thus the flow rule is associative only if β = sin (φ) . 

Expression (28) is thus 

C ep 

i jkl 
= 

{ 

C i jkl if λ = 0 , 

C i jkl −
μ2 

τ̄2 s i j s kl + μK 
τ̄ [ sin (φ) s i j δkl + βδi j s kl ] + βK 2 sin (φ) δi j δkl 

μ+ βK sin (φ)+ h if λ > 0 

(30)

and associativity (symmetry of C 
ep 

i jkl 
) holds in the general case if β = sin φ. 

4. The governing equation in incremental form 

Because of the nonlinearity of the constitutive relation (2), a typical approach taken is to consider the rate form, given

by (23) , and posit the equilibrium Eq. (1) in terms of an infinitesimal displacement increment du ( Chen and Han, 1988;

Dunne and Petrinic, 2006; Simo and Hughes, 1998 ). In this section, we derive the incremental equilibrium equation as well

as the specific forms of the relevant elastoplastic moduli. Note that although du is an infinitesimally small increment in the

continuum setting, it is taken to be finite when the problem is discretized in time as done in Section 7 . 

In the case of antiplane strain, the only non-zero strains are γ xy , γ xz . For notational purposes, we therefore denote

the relevant components of the fourth-order tensor C as C xyxy = C 11 , C xyxz = C 12 , C xzxy = C 21 , and C xzxz = C 22 . We use similar

notation to denote relevant components of the elastoplastic tangent stiffness tensor, C ep , introduced in the previous section.

Using the rate form (23) allows us to replace (2) with an expression solely in terms of increments of stress d σ and strain

d γ , namely 

dσxy = C ep 
11 

dγxy + C ep 
12 

dγxz , (31a)

dσxz = C ep 
21 

dγxy + C ep 
22 

dγxz , (31b)

where 

d γxy = 

∂d u 

∂y 
, d γxz = 

∂d u 

∂z 
(32)

are the incremental total engineering strains and du is the (infinitesimal) displacement increment. 

Relations (31), along with the strain–displacement relations (32) are substituted into the incremental form of the equi-

librium Eq. (1) and produce the nonlinear equilibrium equation for du given by 

∂ 

∂y 

[
C ep 

11 

∂du 

∂y 
+ C ep 

12 

∂du 

∂z 

]
+ 

∂ 

∂z 

[
C ep 

21 

∂du 

∂y 
+ C ep 

22 

∂du 

∂z 

]
= 0 . (33)

Recall that the elastoplastic moduli C 
ep 
11 

, C 
ep 
12 

, C 
ep 
21 

and C 
ep 
22 

in Eq. (33) depend nonlinearly on the stress. Forming the 2 × 2

matrix 

C̄ ep (σ ) = 

[
C ep 

11 
C ep 

12 

C ep 
21 

C ep 
22 

]
(34)

(matrix C̄ is formed analogously), we derive conditions in Section 5 such that det C̄ ep > 0 , as is required for well-posedness.

Specified background stresses in the medium, denoted σ 0 
xx , σ

0 
yy , σ

0 
zz are depth variable (see Section 9 ), and the initial

background shear stresses are given by σ 0 
xy and σ 0 

xz . Note that from (30) , antiplane deformation can activate changes in

normal stresses (for example, d σxx = C 
ep 
xxxy d γxy + C 

ep 
xxxz d γxz ) unless the relevant components of the tangent stiffness tensor

are zero. This scenario can be avoided with the assumption β = 0 and σ 0 
xx = σ 0 

yy = σ 0 
zz , which we make for the rest of this

work. 

In this work, we assume isotropic elastic moduli C 11 = C 22 = μ, and C 12 = C 21 = 0 . 

For antiplane strain the specific components for the elastoplastic stiffness tensor (30) are thus 

C ep 
11 

= 

⎧ ⎨ 

⎩ 

μ if λ = 0 , 

μ − μσ 2 
xy / ̄τ

2 

1 + h/μ
if λ > 0 , 

(35)
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C ep 
22 

= 

⎨ 

⎩ 

μ if λ = 0 , 

μ − μσ 2 
xz / ̄τ

2 

1 + h/μ
if λ > 0 , 

(36) 

and 

C ep 
12 

= C ep 
21 

= 

⎧ ⎨ 

⎩ 

0 if λ = 0 , 

−μσxy σxz / ̄τ 2 

1 + h/μ
if λ > 0 . 

(37) 

Note that matrix C̄ ep is symmetric and in the antiplane setting, Drucker–Prager reduces to von-Mises plasticity.

Eq. (17) reduces to 

τ̄ = 

√ 

σ 2 
xy + σ 2 

xz (38) 

and the corresponding flow rule (19) is given by 

˙ γ p 
xy = λ

σxy 

τ̄
, ˙ γ p 

xz = λ
σxz 

τ̄
. (39) 

The yield stress (18) reduces to 

σY = −(σ 0 
kk / 3) sin φ + c cos φ. (40) 

5. Incremental energy balance 

We now switch from tensor notation used in previous sections to matrix/vector notation, in order to facilitate comparison

with the discrete formulation we derive in the next section. We also assume, for ease of the analysis in the following

sections, that the boundary conditions for the incremental problem (33) involve general boundary data dg L , dg R , dg T and dg B 
at the left, right, top and bottom boundaries (respectively) namely, 

du (t, 0 , z) = dg L (t, z) , (41a) 

du (t, L y , z) = dg R (t, z) , (41b) 

C ep 
21 

∂du 

∂y 
+ C ep 

22 

∂du 

∂z 

∣∣∣
z=0 

= dg T (t, y ) , (41c) 

C ep 
21 

∂du 

∂y 
+ C ep 

22 

∂du 

∂z 

∣∣∣
z= L z 

= dg B (t, y ) . (41d) 

Later, however, we outline how we specify incremental boundary conditions so as to impose fault slip, slow tectonic

loading and free surface conditions, as expressed in (7) . 

Assuming the solution to (33) with boundary conditions (41) is sufficiently smooth, we multiply (33) by the incremental

velocity d ̇ u and integrate by parts, yielding the following energy balance 

d 

dt 
d E = 

∫ L z 

0 

d ̇ u d σxy 

∣∣∣L y 
0 

d z + 

∫ L y 

0 

d ̇ u d σxz 

∣∣∣L z 
0 

d y, (42) 

where the incremental internal energy is defined by 

d E = 

1 

2 

∫ L y 

0 

∫ L z 

0 

d U 

T C̄ ep (σ ) d Ud yd z (43) 

for vector 

d U = 

[
∂d u/∂y 

∂d u/∂z 

]
. 

The symmetric 2 × 2 matrix C̄ ep has eigenvalues 

λ1 , λ2 = 

{
μ if λ = 0 , 
μ, h/ (1 + h/μ) if λ > 0 

(44) 

and (25) implies that 1 + h/μ > 0 . C̄ ep is therefore positive definite for rate-independent plasticity if and only if h > 0

( Horn and Johnson, 1985 ). If h < 0, det ( ̄C ep ) = λ1 λ2 ≤ 0 , which results in a loss of ellipticity of the equilibrium Eq. (33) and a

loss of solvability. This case violates Drucker’s first stability postulate (requiring d U 

T C̄ ep (σ ) d U > 0 ) and can lead to problems

including loss of uniqueness of the solution ( Bower, 2010; Drucker, 1959; Jain, 2008 ). For the case h ≤ 0, the constitutive the-

ory therefore requires modification (through the introduction of rate dependence, for example). Thus for rate-independent
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plasticity, h > 0 is required; however, viscosity in the viscoplastic model ensures a positive definite matrix, even if h = 0 (see

Section 7.2 ). 

Note that in terms of increments, the rate of change of the internal energy can be decomposed into the sum of the rate

of change of the mechanical (elastic strain) energy and the plastic dissipation (a positive quantity), namely, 

d 

dt 
d E = 

d 

d t 

∫ L y 

0 

∫ L z 

0 

1 

2 

[ d U 

e ] T C̄ d U 

e d y d z + 

∫ L y 

0 

∫ L z 

0 

[ d U 

e ] T C̄ d ˙ U 

p d y d z, (45)

where d U 

e = d U − d U 

p , is the vector of elastic strains and the plastic strain vector is 

d U 

p = 

[
d γ p 

xy 

d γ p 
xz 

]
. 

For simplicity in the analysis only (see Erickson and Dunham, 2014 for details), we may take the boundary data dg L =
d g R = d g T = d g B = 0 and show that (42) reduces to 

d 

dt 
dE = 0 , (46)

showing conservation of the incremental internal energy (or dissipation of the incremental mechanical energy) in the ab-

sence of source terms and nontrivial boundary conditions (i.e., in the absence of work done by body forces or surface

tractions). 

6. The spatial discretization 

The nonlinearities present in the governing Eq. (33) with boundary conditions (41) make analytical solutions difficult,

if not impossible to obtain, except perhaps in certain limiting cases. SBP-SAT finite difference methods are often used,

however, to obtain numerical approximations to solutions of nonlinear problems (e.g., Navier–Stokes from fluid mechan-

ics ( Nordström et al., 2007 ), although the stability analysis can be challenging and is generally approached by consideration

of the linearized or “frozen coefficient” problem. If the solution is sufficiently smooth (which is not guaranteed for our

problem), the linearized analysis is often enough to ensure convergence for the nonlinear problem ( Gustafsson, 2008 ). 

We discretize Eq. (33) using the second-order accurate, narrow-stencil, summation-by-parts (SBP) finite difference oper-

ators for second derivatives, originally defined in Mattsson and Nordström (2004) for constant coefficients, and for variable

coefficients in Mattsson (2011) . Time-dependent boundary conditions are imposed and the elastoplastic moduli C 
ep 
11 

, C 
ep 
12 

, C 
ep
21

and C 
ep 
22 

are nonlinear functions of the current stress state (or equivalently, of the displacement increment). We use a New-

ton’s method with line search to solve the nonlinear equation, detailed in Section 7.3 . At each time step, and each iteration

of Newton’s method we consider the moduli as frozen, spatially variable coefficients, and use the static counterpart of the

spatial discretization of the anisotropic acoustic wave equation in heterogeneous media ( Virta and Mattsson, 2014 ). 

We apply second-order accurate SBP operators and introduce the 2D operators by first considering one spatial dimension.

The 1D domain y ∈ [0, L ] is discretized into N y + 1 grid points y 0 , y 1 , . . . , y N y with grid spacing �y = L/N y . First derivatives

are approximated by ∂u 
∂y 

≈ Du , where u = [ u 0 , u 1 , . . . u N y ] 
T is the grid function and matrix D = H 

−1 Q is an N y + 1 × N y + 1

finite difference operator. H and Q are also N y + 1 × N y + 1 matrices and the building blocks for the SBP operators. H is a

diagonal, positive definite quadrature matrix defining a discrete norm on the space of grid functions 

|| u || 2 H = u 

T Hu , (47)

and Q is an almost skew-symmetric matrix such that Q + Q 

T = diag [ −1 , 0 , 0 , . . . , 0 , 1] . The SBP operators are derived

such that they mimic integration-by-parts and provide a discrete energy estimate (that mimics its continuum counter-

part). Namely, the relation 

∫ L 

0 
u 
∂u 

∂y 
dy = 

1 

2 

[
u 2 (L ) − u 2 (0) 

]
is obtained by integration-by-parts and is mimicked discretely by

u 

T H ( Du ) = 

1 
2 u (Q + Q 

T ) u = 

1 
2 (u 2 

N 
− u 2 

0 
) . If p ( y ) defines the variable coefficient, the narrow-stencil second derivative operator

for variable coefficients is given by 

∂ 

∂y 

(
p(y ) 

∂ 

∂y 

)
≈ D 

p 
2 

= H 

−1 (−M 

p + pBS ) , (48)

where B = diag [ −1 , . . . , 1 ] , and S approximates the first derivative operator on the boundary. Matrix M 

p = D 

T HpD + R 

p ,

where R 

p = 

(�y ) 3 

4 (D 2 ) 
T C 2 pD 2 (correcting the typographical error in Eq. (21) in Erickson and Dunham, 2014 ) is a positive

definite damping matrix and C 2 = diag [0 , 1 , 1 , . . . , 1 , 1 , 0] ( Mattsson, 2011 ). Matrix p = diag [ p(y 0 ) , p(y 1 ) , . . . p (y N y )] is

a N y + 1 × N y + 1 coefficient matrix (all coefficient matrices are denoted similarly, with bold notation). 

In 2D, we discretize the domain [0, L y ] × [0, L z ] with an N y + 1 × N z + 1 -point grid, defined by 

y i = i �y, i = 0 , 1 , . . . , N y , �y = L y /N y , (49a)

z = i �z, i = 0 , 1 , . . . , N z , �z = L z /N z , (49b)
i 
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where �y and �z are the grid spacings in each direction. Thus u i, j ≈ u ( y j , z i ). Letting N = (N y + 1)(N z + 1) , the N × 1 grid

vector u in 2D is given by 

u = [ u 

T 
0 , u 

T 
1 , . . . u 

T 
N y 

] (50) 

where 

u i = [ u 0 ,i , u 1 ,i , . . . u N z ,i ] , for i = 0 , . . . N y . (51)

The 2D variable coefficient p ( y, z ) defined on [0, L y ] × [0, L z ] is transformed to the N × N diagonal matrix p =
diag [ p 

T 
0 
, p 

T 
1 
, . . . , p 

T 
N y 

] using analogous notation. To form the SBP finite difference operators in 2D we make use of the Kro-

necker product. Recall that if matrix A is size p × q and B is r × s then the Kronecker product of the two is of size pr × qs

and given by 

A � B = 

⎡ 

⎣ 

a 0 , 0 B · · · a 0 ,N B 

. . . 
. . . 

a N, 0 B · · · a N,N B 

⎤ 

⎦ . (52) 

In addition, the following identities hold: 

(A � B )(C � D ) = ( AC ) � ( BD ) , (53a) 

(A � B ) −1 = (A 

−1 
� B 

−1 ) if A and B are invertible , (53b) 

(A � B ) T = A 

T 
� B 

T . (53c) 

We can thus extend any 1D operator P to 2D (in the y and z direction, respectively) by 

P y = (P � I ) , (54a) 

P z = (I � P ) . (54b) 

The first and second derivative operators in 2D are thus 

∂ 

∂y 
≈ D y , (55a) 

∂ 

∂z 
≈ D z , (55b) 

∂ 

∂y 

(
p(y, z) 

∂ 

∂y 

)
≈ D 

p 
2 y 

= H 

−1 
y 

[
−D 

T 
y pH y D y − R 

p 
y + pB y S y 

]
, (55c) 

∂ 

∂z 

(
p(y, z) 

∂ 

∂z 

)
≈ D 

p 
2 z 

= H 

−1 
z 

[
−D 

T 
z pH z D z − R 

p 
z + pB z S z 

]
, (55d) 

where R 

p 
y , R 

p 
z are positive definite damping matrices in 2D (see Erickson and Dunham, 2014 for details). The equilibrium

Eq. (33) , along with boundary conditions (41) , is thus discretized by 

D 

C ep 
11 

2 y 
du + D y C 

ep 
12 

D z du + D z C 

ep 
21 

D y du + D 

C ep 
22 

2 z 
du + P L + P R + P T + P B = 0 , (56)

where du is the incremental displacement grid vector, and the SAT penalty vectors are given by 

P L = H 

−1 
y (αL + βH 

−1 
z (−C 

ep 
11 

S y − C 

ep 
12 

D z ) 
T ) H z E 0 ( du L − dg L ) (57a) 

P R = H 

−1 
y (αR + βH 

−1 
z (C 

ep 
11 

S y + C 

ep 
12 

D z ) 
T ) H z E N ( du R − dg R ) (57b) 

P T = −H 

−1 
z (I y � E 0 )( 

[
−C 

ep 
22 

S z du − C 

ep 
21 

D y du 

]
T 

− dg T ) (57c) 

P B = −H 

−1 
z (I y � E N )( 

[
C 

ep 
22 

S z du + C 

ep 
21 

D y du 

]
B 

− dg B ) . (57d) 

Recall that the coefficient matrices in (56) depend nonlinearly on the stress σ . The notation du L is the restriction of

the grid vector du to the left boundary and du R , du T , du B , are the restrictions to the right, top and bottom boundaries

(respectively). Vector dg L is the boundary data dg L evaluated at the grid and dg R , dg T , dg B are defined analogously. Matrices

E 0 and E N map the restricted vectors to full-length ( N × 1 length) vectors (see Erickson and Dunham, 2014 for details).

Virta and Mattsson (2014) derive conditions on the penalty parameter β and penalty matrices α , and α such that a
L R 
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semi-discrete energy estimate can be obtained. Following their analysis, the semi-discrete incremental internal energy dE (a

slightly modified analog of (43) ) is defined 

dE = 

1 

2 

dU 

T 
(H y � H z ) ̄C 

ep dU + 

1 

2 

du 

T 
(R 

C ep 
11 

y � H z ) du + 

1 

2 

du 

T 
(H y � R 

C ep 
22 

z ) du + U 1 + U 2 . (58)

In (58) , vector dU = [ D y du D z du ] T , the positive-definiteness of the 2 N × 2 N , block diagonal matrix 

C̄ 

ep = 

[
C 

ep 
11 

C 

ep 
12 

C 

ep 
21 

C 

ep 
22 

]
(59)

follows from that of C̄ ep , and U 1 , U 2 are positive quantities, see Appendix A . Assuming zero-boundary data, as in the con-

tinuum problem, the semi-discrete equations are shown to satisfy the energy estimate 

d 

dt 
dE ≤ 0 , (60)

which ensures stability of the method, see Appendix A for more details. Note that for our application problems in

Section 9 we desire better resolution near the fault and free surface, and therefore consider a non-uniform grid spacing.

In Appendix A we detail the stability analysis for a grid with non-uniform spacing; the uniform grid spacing assumed in

this section (to maintain flow of the discussion) is a special case. 

7. Time stepping 

In this section, we explain the time stepping method for the overall problem. This is done by first updating slip and

the state variable along the frictional fault. The update to slip, along with the remaining boundary conditions, generates an

increment of load. Updates to the displacement, stresses and plastic strains (that occur in the volume in response to the

load) are then computed. 

We introduce a time discretization so that notationally, superscripts on a particular field imply we are considering a

finite increment over a discrete time step. We assume the system is equilibrated at time t n with stresses consistent with

the constitutive theory of Section 3 . Slip and state variable along the fault are updated via a Runge–Kutta method with

adaptive time stepping (see Section 7.4 for details). These updates provide the incremental boundary data dg 
n +1 
L along the

fault, which, together with dg 
n +1 
R , dg 

n +1 
T , dg 

n +1 
B , correspond to an increment of load applied over the time step dt = t n +1 − t n

that drives the system to a new state. In what follows, we describe the latter part update, namely, how the displacement

increment and the associated stresses and plastic strains are updated in response to the load in a manner that accounts for

plastic response. 

Let the discrete equilibrium Eqs. (56) and (57) be denoted E ( d σ) = b where vector b stores the incremental boundary

data. At t n +1 we wish to obtain both stress and displacement increments that satisfy 

E ( d σn +1 
) = b 

n +1 (61)

and are consistent with the constitutive theory of Section 3 , where d σn +1 
is related to the displacement increment du 

n +1

through a discrete form of constitutive relation (31) (which we define shortly) and the discretized strain–displacement rela-

tions (32) . 

To obtain the displacement, stresses and strains at time t n +1 we first apply a backward-Euler discretization to the flow

rule (19) and equivalent plastic strain 

γ p,n +1 
xy = γ p,n 

xy + d λn +1 σ
n +1 
xy 

τ̄n +1 
(62a)

γ p,n +1 
xz = γ p,n 

xz + d λn +1 σn +1 
xz 

τ̄n +1 
, (62b)

γ p,n +1 = γ p,n + d λn +1 
, (62c)

where d λn +1 = λn +1 dt . A direct linearization of this discretization implies an associated discrete, incremental form of the

constitutive relation given by 

d σn +1 
i j = C ep 

i jkl 
(σn +1 ) dεn +1 

kl (63)

where C ep is the consistent tangent stiffness tensor (and a function of the stress at the end of the time step), derived in the

next section. The fully discrete equilibrium equation can thus be expressed 

E ( C ep (σn +1 ) du 

n +1 
) = b 

n +1 , (64)

and is a nonlinear function of du 

n +1 
. 

To solve (64) we proceed via a Newton-type method which utilizes the partial derivative 

∂ E 
∂ du 

n +1 
= 

∂ E 
∂d σn +1 

i j 

C ep 

i jkl 
(σn +1 ) 

∂d εn +1 
kl 

∂ du 

n +1 
(65)
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and incorporates the consistent tangent stiffness tensor. We set iteration index k = 0 and compute an initial, elastic guess

du 

n +1 , (k ) 
to the displacement increment, obtained by assuming C ep = C and solving (64) . Consistent stresses σn +1 , (k ) asso-

ciated with du 

n +1 , (k ) 
are obtained from the return mapping algorithm which is based on the backward Euler discretization

(62) , and detailed in the next section. Deferring specific details until Section 7.4 , if the new, consistent stress state satisfies

equilibrium, then the final fields are those at iteration k , and the process is considered done. 

If equilibrium is not satisfied, however, the displacement increment du 

n +1 , (k ) 
must be adjusted (and thus adjustments

to the stress and plastic strains must be made). The displacement increment is updated by solving (64) via an iterative

Newton-type method that solves the linearized equilibrium problem 

E ( C ep (σn +1 , (k ) ) du 

n +1 , (k +1) 
) = b 

n +1 . (66) 

and the return mapping algorithm provides associated consistent stresses σn + 1 , (k + 1) ( Simo and Hughes, 1998;

de Souza Neto et al., 2008 ). This iterative procedure continues until equilibrium has been satisfied with an appropriate

convergence criterion met (see Section 7.3 ). The displacement u 

n +1 = u 

n + du 

n +1 
can then be formed from the converged

value of the finite increment du 

n +1 
. 

7.1. The return mapping algorithm 

Within the Newton iteration described in the previous section, the finite displacement increment du 

n +1 , (k ) 
is obtained

and stresses consistent with the plastic constitutive theory must be updated ( Simo and Hughes, 1998 ). In this section, we

describe how to obtain σn +1 , (k ) . First, the strains associated with du 

n +1 , (k ) 
are computed 

γn +1 , (k ) 
xy = γn 

xy + d γn +1 , (k ) 
xy , (67a) 

γn +1 , (k ) 
xz = γn 

xz + d γn +1 , (k ) 
xz , (67b) 

and allow us to compute the elastic trial state (denoted with asterisk ∗) 

γ∗,p,n +1 , (k ) = γ p,n , (68a) 

σ∗,n +1 , (k ) 
xz = μ(γn +1 , (k ) 

xz − γ p,n 
xz ) = σn 

xz + μd γn +1 , (k ) 
xz , (68b) 

σ∗,n +1 , (k ) 
xy = μ(γn +1 , (k ) 

xy − γ p,n 
xy ) = σn 

xy + μd γn +1 , (k ) 
xy , (68c) 

assuming no additional plastic strain has accrued over the time step. 

The final stress state at time t n +1 must satisfy F ≤ 0, where the yield function is defined in (15) for yield stress (40) .

If the elastic trial stresses satisfy F ≤ 0, then they are accepted as the final stresses. If the trial stresses lie outside the

yield surface ( F > 0), however, they are be “mapped back” onto the yield surface by adjusting the plastic strains so that

F (σn +1 , (k ) , γ p,n +1 , (k ) ) = 0 is satisfied ( Simo and Hughes, 1998 ). 

Substituting Eqs. (62a) , (62b) into ( 68b) , (68c) yields 

σ∗,n +1 
xy = σn +1 

xy (1 + μd λn +1 
/ ̄τn +1 ) (69a) 

σ∗,n +1 
xz = σn +1 

xz (1 + μd λn +1 
/ ̄τn +1 ) . (69b) 

From (69) we calculate 

τ̄∗,n +1 = 

√ 

(σ∗,n +1 
xy ) 2 + (σ∗,n +1 

xz ) 2 

= τ̄n +1 + μd λn +1 
. (70) 

Re-arranging (70) , noting that F (σn +1 , γ p,n +1 ) = 0 , and substituting in (62c) yields the plastic consistency condition 

d λn +1 = F (σ∗,n +1 , γ∗,p,n +1 ) / (h + μ) , (71) 

where γ∗,p,n +1 is given by (68c) . Finally, solving (69) for σn +1 
xy and σn +1 

xz yields 

σn +1 , (k ) 
xy = 

σ∗,n +1 , (k ) 
xy 

1 + μd λn +1 , (k ) 
/ ̄τn +1 

= 

σ∗,n +1 , (k ) 
xy ( ̄τ∗,n +1 , (k ) − μd λn +1 , (k ) 

) 

τ̄∗,n +1 , (k ) 
(72a) 

σn +1 , (k ) 
xz = 

σ∗,n +1 , (k ) 
xz 

1 + μd λn +1 , (k ) 
/ ̄τn +1 , (k ) 

= 

σ∗,n +1 , (k ) 
xz ( ̄τ∗,n +1 , (k ) − μd λn +1 

, (k )) 

τ̄∗,n +1 , (k ) 
, (72b) 

which expresses the final stress state entirely in terms of the computed elastic trial stresses. 
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The consistent elastoplastic tangent stiffness tensor C ep 

i jkl 
in (64) is obtained by a linearization of the return-mapping

algorithm. We derive these consistent moduli in Appendix B , with specific components (ommitting superscripts n + 1 ) given

by (bold face notation is not used as these moduli are derived independently of a spatial discretization) 

C ep 
11 

= 

⎧ ⎨ 

⎩ 

μ if λ = 0 , 

μ − μσ 2 
xy / ̄τ

2 

1 + h/μ
− dλμ2 

τ̄

[
1 −

(
σxy 

τ̄

)2 
]

if λ > 0 , 
(73)

C ep 
22 

= 

⎧ ⎨ 

⎩ 

μ if λ = 0 , 

μ − μσ 2 
xz / ̄τ

2 

1 + h/μ
− dλμ2 

τ̄

[
1 −

(
σxz 

τ̄

)2 
]

if λ > 0 , 
(74)

and 

C ep 
12 

= C ep 
21 

= 

⎧ ⎨ 

⎩ 

0 if λ = 0 , 

−μσxy σxz / ̄τ 2 

1 + h/μ
− dλμ2 

τ̄

[ 
1 − σxy σxz 

τ̄ 2 

] 
if λ > 0 , 

(75)

which agree with the continuum moduli in the limit that d λ→ 0. 

It has been shown for many problems that using the consistent tangent moduli (73) –(75) with discretization (64) (to

compute numerical solutions to (33) ) then the quadratic convergence rate typical of Newton-type iterative methods is

achieved. This rate of convergence is often lost, however, if the continuum tangent moduli (35) –(37) are used instead

( Simo and Taylor, 1985 ). In our application problems we thus use the consistent elastoplastic moduli and leave the compar-

ison of Newton convergence results to future work. 

7.2. Extension to viscoplasticity 

Classical Perzyna viscoplasticity ( Perzyna, 1966; 1971 ) is obtained from rate-independent plasticity by replacing the yield

condition (16) with F (σ, γ p ) = ηλ, where η > 0 is the viscosity. A viscoplastic response alters the return mapping algorithm

in the previous section through the following: if the computed elastic trial stresses are such that F (σ∗,n +1 , γ∗,p,n +1 ) > 0 ,

then Eqs. (70) and (71) are replaced with 

τ̄∗,n +1 = τ̄n +1 + μ
F n +1 

η
dt (76)

and 

d λn +1 = F (σ∗,n +1 , γ∗,p,n +1 ) / (η/dt + h + μ) . (77)

The consistent elastoplastic tangent moduli (73) –(75) can also be derived from linearizing the return-mapping algorithm

(see Appendix B ), yielding 

C ep 
11 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

μ if λ = 0 , 

μ − μσ 2 
xy / ̄τ

2 

η/μ

dt 
+ 1 + h/μ

− dλμ2 

τ̄

[
1 −

(
σxy 

τ̄

)2 
]

if λ > 0 , (78)

C ep 
22 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

μ if λ = 0 , 

μ − μσ 2 
xz / ̄τ

2 

η/μ

dt 
+ 1 + h/μ

− dλμ2 

τ̄

[
1 −

(
σxz 

τ̄

)2 
]

if λ > 0 , (79)

and 

C ep 
12 

= C ep 
21 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 if λ = 0 , 

− μσxy σxz / ̄τ 2 

η/μ

dt 
+ 1 + h/μ

− dλμ2 

τ̄

[ 
1 − σxy σxz 

τ̄ 2 

] 
if λ > 0 . (80)

Note that for a fixed η, if dt → 0, the consistent elastoplastic moduli (78) –(80) approach the elastic moduli. Furthermore,

for η > 0, we can take h = 0 and still guarantee that C̄ ep is positive definite. 



62 B.A. Erickson et al. / Journal of the Mechanics and Physics of Solids 109 (2017) 50–77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.3. Newton iteration with return-mapping 

We let k = 0 , du 

n +1 , (k ) 
be the initial (elastic) guess for the displacement increment du 

n +1 
, and iterate as follows. 

Step 1: Compute the strain increments 

d γn +1 , (k ) 
xy = D y du 

n +1 , (k ) 
, (81a) 

d γn +1 , (k ) 
xz = D z du 

n +1 , (k ) 
. (81b) 

Step 2: Compute the elastic trial state and use the return mapping algorithm to obtain the consistent stresses

σn +1 , (k ) 
xy , σn +1 , (k ) 

xz and plastic strain γ p,n +1 , (k ) . 

Step 3: Check if equilibrium is sufficiently satisfied. That is, check if a stopping criterion is met, for exam-

ple, || E ( C ep (σn +1 , (k ) ) du 

n +1 , (k ) ) − b 

n +1 || < tol), where tol is a specified tolerance. If so, set u 

n +1 = u 

n + du 

n +1 , (k ) 
, the

remaining fields are those at iteration ( k ), and the Newton iteration is complete. Otherwise set k = k + 1 , solve

E ( C ep (σn +1 , (k ) ) du 

n +1 , (k +1) ) = b 

n +1 for du 

n +1 , (k +1) 
and return to step 1, iterating until the Newton method converges and

equilibrium is met. 

7.4. Time stepping method 

In this section we provide details of time stepping for the overall problem, which includes details of the update to slip

and the state variable along the fault, and provides an initial guess for the off-fault fields. As stated in Section 2 , rate-

and-state friction, as used in our algorithm, provides the set of differential Eqs. (9) –(11) that are used to evolve the fault

boundary displacement (i.e., fault slip). We modify the method from Erickson and Dunham (2014) in order to incorporate

off-fault plasticity. Bold-face type is again used to denote spatially discrete quantities. We assume the body is equilibrated

(with consistent stresses) at time t n and that V 

n and ψ 

n are known. The following time-stepping method is illustrated in the

context of a forward Euler step, but we use Matlab’s adaptive, fourth order Runge–Kutta method with a relative tolerance

of 10 −7 . 

Step 1. Update slip and state on the fault by explicitly integrating 

	u 

n +1 = 	u 

n + dtV 

n (82a) 

ψ 

n +1 = ψ 

n + dtG (V 

n , ψ 

n ) . (82b) 

Step 2. Set the boundary data in (41) : 

dg 

n +1 
L = dtV 

n / 2 , 

dg 

n +1 
R = dtV p / 2 , 

dg 

n +1 
T = dg 

n +1 
B = 0 , 

form b 

n +1 and solve for an elastic increment du 

n +1 , (0) 
; i.e., take C ep = C and solve the discrete Eq. (64) . 

Step 3. Correct the initial elastic guess du 

n +1 , (0) 
by iterating following the Newton procedure in Section 7.3 until conver-

gence is reached, thus obtaining u 

n +1 , σn +1 
xy , σn +1 

xz , γ p,n +1 
xy , γ p,n +1 

xz , γ p,n +1 . 

Step 4. Compute the shear stress τn +1 
qs = σn +1 

xy | y =0 on the fault. 

Step 5. Equate shear stress with frictional strength τn +1 
qs − ηrad V 

n +1 = σn f (V 

n +1 , ψ 

n +1 ) and solve for the updated slip

velocity V 

n +1 (solved using a local, safe-guarded Newton method) and return to step 1. 

8. Convergence tests and comparison with finite element solution 

We conduct two studies to verify our numerical method. The first study is a convergence test of our spatial discretization

and time-stepping for an elastic problem; the second study is a comparison test with a finite element solution for the same

plasticity model. 

For the first study we proceed with the method of manufactured solutions and show that our numerical solution is

converging to the exact solution at the correct rate ( Roache, 1998 ). The nonlinearity introduced by plasticity makes this

procedure difficult, thus we solve the anisotropic elastic version by assuming that the elastoplastic moduli do not vary

with stress or time, but rather in space only. We want to check that our incremental procedure will provide a numerical

approximation to the exact solution to the non-incremental equilibrium equation 

∂ 

∂y 

[
C ep 

11 
(y, z) 

∂u 

∂y 
+ C ep 

12 
(y, z) 

∂u 

∂z 

]
+ 

∂ 

∂z 

[
C ep 

21 
(y, z) 

∂u 

∂y 
+ C ep 

22 
(y, z) 

∂u 

∂z 

]
= 0 , (83) 

where the moduli in (83) are known functions of space. Let the exact displacement (denoted with a hat) to (83) be that

given in Erickson and Dunham (2014) , namely 

ˆ u (t, y, z) = 

δ

2 

K(t)�(y, z) + 

V p t 

2 

[ 1 − �(y, z) ] + 

τ∞ 

μ
y, (84) 
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which provides the exact (elastic) stresses (also denoted with hats) 

ˆ σxy = C ep 
11 

(y, z) ∂ ̂  u /∂y + C ep 
12 

(y, z) ∂ ̂  u /∂z (85a)

ˆ σxz = C ep 
21 

(y, z) ∂ ̂  u /∂y + C ep 
22 

(y, z) ∂ ̂  u /∂z. (85b)

Appropriate source terms are added to (83) so that ˆ u is indeed the solution. In the construction of the exact solution

(84) , K ( t ) controls the time-dependency of the solution, δ is the total slip that occurs during the event, τ∞ is a parameter

that defines the remote stress, and � describes the spatial dependency of the solution. The specific forms are given by 

δ = V p ̄t + V min ̄t , (86a)

K(t) = 

1 

π

[
tan 

−1 ( 
t − t̄ 

t w 

) + 

π

2 

]
+ 

V min 

δ
, (86b)

�(y, z) = 

H(H + y ) 

(H + y ) 2 + z 2 
, (86c)

where t̄ denotes the event time, t w 

denotes the time scale over which the event occurs, V min defines a minimum slip velocity

throughout the simulation, and H defines a locking depth. For the elastic moduli, we assume the following forms 

C ep 
11 

= μ − μc 1 (y, z) 2 / | c| 2 
1 + h/μ

, (87a)

C ep 
22 

= μ − μc 2 (y, z) 2 / | c| 2 
1 + h/μ

, (87b)

C ep 
12 

= C ep 
21 

= −μc 1 (y, z) c 2 (y, z) / | c| 2 
1 + h/μ

, (87c)

where 

c 1 (y, z) = 

H 

2 
1 

H 

2 
1 

+ z 2 
L 2 1 

L 2 
1 

+ y 2 
, (88a)

c 2 (y, z) = 

H 

2 
2 

H 

2 
2 

+ z 2 
L 2 2 

L 2 
2 

+ y 2 
(88b)

and | c| 2 = c 2 1 + c 2 2 . Thus the moduli form a symmetric, positive definite matrix C̄ ep if h > 0. The exact slip along the fault is

� ˆ u (t, z) = 2 ̂

 u (t, 0 , z) = δK(t)�(0 , z) + V p t[1 − �(0 , z)] , (89)

with slip velocity 

ˆ V (t, z) = 

∂u 

∗

∂t 
| y =0 + − ∂u 

∗

∂t 
| y =0 − = δK 

′ (t)�(y, z) + V p [ 1 − �(0 , z) ] . (90)

Lastly, since ˆ τ (t, z) = ˆ σxy (t, 0 , z) , we can solve (8) for the exact state variable 

ˆ ψ = a ln 

[
2 V 0 

ˆ V 

sinh 

(
ˆ τ − ηrad ̂

 V 

σn a 

)]
(91)

which implies that a source term must also be added to state evolution 

˙ ψ = G (V, ψ) + s (t, z) (92)

where 

s = 

˙ ˆ ψ − G ( ̂  V , ˆ ψ ) . (93)

All parameter values used in the convergence tests are given in Table 1 . At the end of the simulation ( t f = 70 years),

we compute the relative error between the exact and the numerical approximation in both the discrete H -norm and the

energy-norm, defined by 

Error H (h ) = || u − ˆ u || H / || ̂  u || H (94a)

Error E (h ) = || u − ˆ u || E / || ̂  u || E (94b)

where 

|| u || 2 H = 

M ∑ 

i =1 

|| du i || 2 H (95a)
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Table 1 

Parameters used in the manufactured solution convergence tests. 

Parameter Definition Value 

L z Fault length 24 km 

L y Off-fault domain length 24 km 

� Z z -length scale for coordinate transform 5 km 

� Y y -length scale for coordinate transform 5 km 

H Locking depth 14 km 

L 1 y -Length scale for c 1 5 km 

H 1 z -Length scale for c 1 6 km 

L 2 y -Length scale for c 2 4 km 

H 2 z -Length scale for c 2 5 km 

ρ Density 2670 kg/m 

3 

μ Shear modulus 30 GPa 

h Hardening modulus 30 GPa 

σ n Normal stress on fault 50 MPa 

τ∞ Remote shear stress 40 MPa 

t f Final simulation time 70 years 

t̄ Event nucleation time 35 years 

t w Timescale for event duration 10 s 

a Rate-and-state parameter 0.015 

b Rate-and-state parameter 0.02 

D c Critical slip distance 0.4 m 

V p Plate rate 10 −9 m/s 

V 0 Reference velocity 10 −6 m/s 

f 0 Reference friction coefficient 0.6 

Table 2 

Relative error in the discrete H - and energy-norms with 

N = N y = N z . The rate of convergence approaches 2, as ex- 

pected for a method with second-order accuracy. 

N Error H ( h ) Rate Error E ( h ) Rate 

2 4 1 . 030 × 10 −3 – 1 . 236 × 10 −3 –

2 5 2 . 867 × 10 −4 1.845 3 . 514 × 10 −4 1.814 

2 6 7 . 433 × 10 −5 1.947 9 . 242 × 10 −5 1.927 

2 7 1 . 883 × 10 −5 1.981 2 . 360 × 10 −5 1.970 

2 8 4 . 741 × 10 −6 1.990 5 . 967 × 10 −6 1.984 

 

 

 

 

 

 

 

 

 

 

 

 

|| u || 2 E = 

M ∑ 

i =1 

dE i (95b) 

where || du || 2 H = ( du ) T (H y � H z )( du ) , M is the number of adaptive, Runge–Kutta time steps and dE is the incremental in-

ternal energy defined by (58) . Table 2 shows that we are achieving second-order convergence, as expected. 

Because this first verification study confirmed convergence for an anisotropic elastic problem, the purpose of the next

study is to validate our results with plasticity. For the second validation study, we compare results of the solution to

a boundary value problem subject to Drucker–Prager plasticity. Results from our finite difference code are compared to

those from a finite element solution using the OpenSees Software Framework ( Mazzoni et al., 2009 ) and available at

http://opensees.berkeley.edu . 

We want to confirm that our incremental approach using Eq. (33) (in the context of the time stepping method outlined

in the previous section) solves the non-incremental form of the governing Eq. (1) , on the domain ( y, z ) ∈ [0, L ] × [0, L ] with

boundary conditions given by 

u (0 , z) = 0 (96a) 

u (L, z) = g(z) (96b) 

σxz (y, 0) = 0 (96c) 

σxz (y, L ) = 0 . (96d) 

Boundary data g ( z ) and all parameter values are listed in Table 3 . Stresses are subject to the Drucker–Prager yield con-

dition (15) with constant yield stress σ Y . We assume an equal grid spacing � = �y = �z of both 1 km ( N y = N z = 24 ) and

200 m ( N y = N z = 120 ). Fig. 3 shows solutions from the finite difference solution to the plastic boundary value problem with

� = 200 m, along with the elastic counterpart of the same boundary value problem, in order to illustrate the differences

between the two material models. Fig. 3 (a)–(c) shows the displacement and two relevant stress components of the plastic

http://opensees.berkeley.edu


B.A. Erickson et al. / Journal of the Mechanics and Physics of Solids 109 (2017) 50–77 65 

Table 3 

Parameters used in antiplane plastic case for comparision of FDM 

and FEM. 

Parameter Definition Value 

L z Fault length 24 km 

L y Off-fault domain length 24 km 

μ Shear modulus 32.038 GPa 

ρ Material density 2670 kg/m 

3 

g ( z ) Right boundary condition − cos (πz/ 12) + 1 (m) 

σ Y Yield stress 4 MPa 

φ Angle of internal friction 0 

h Hardening modulus 32.038 GPa 

Fig. 3. Contours of solution to (1) with boundary conditions (96) for elastic (solid lines) and plastic (dashed lines) material response. (a) and (b) displace- 

ment and (c)–(f) stress components. Plastic effects are seen most prominently in the stress contours which are reduced due to the yield condition. 

 

 

 

 

 

 

 

solution (in dashed lines) and the elastic solution (solid lines) at different z -values. Fig. 3 (d)–(f) are the equivalent fields at

various y -values. Although plasticity mildly affects the displacement field, the stresses are significantly reduced in amplitude,

particularly near y = 24 km. Fig. 4 compares contours from the finite difference and finite element solution with � = 1 km.

The finite difference solution is plotted in solid colors, while the finite element solution is plotted with black circles. The

displacement fields in Fig. 4 (a) and (b) are quite similar, but error is visible in the computed stresses, particularly in Fig. 4 (d)

near y = 24 km. This error is visibly decreased when mesh refining, as shown in Fig. 5 . Absolute and relative errors between

the computed fields using the two methods are denoted by err a u = || u 

F D − u 

F E || 2 and err r u = || u 

F D − u 

F E || 2 / || u 

F E || 2 , respec-
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Fig. 4. Contours of solution to (1) with boundary conditions (96) for plastic material response using the finite difference method (solid lines) and the finite 

element solution (black dots). (a) and (b) displacement and (c)–(f) stress components, with N y = N z = 24 points. 

Table 4 

Absolute and relative error between our finite difference solution and that obtained from the finite 

element code in the discrete L 2 -norm for N y = N z = 24 , 120 . 

N err a u err r u err a σxy 
err r σxy 

err a σxx 
err r σxz 

24 1.06 × 10 0 3.27 ×10 −2 1.72 × 10 0 3 . 72 × 10 −2 4 . 76 × 10 −2 3 . 22 × 10 −2 

120 9 . 87 × 10 −2 3 . 04 × 10 −3 1 . 92 × 10 −1 4 . 14 × 10 −3 3 . 81 × 10 −3 2 . 70 × 10 −4 

 

 

 

 

 

 

 

 

tively, and errors for other fields are defined analogously. Results shown in Table 4 suggest the two methods produce similar

results. 

9. Application 

We are interested in how changes in viscosity, isotropic hardening and cohesion affect features of the earthquake cy-

cle. We find that all three parameters influence the magnitude and off-fault extent of plastic strain, and that in all cases,

plasticity affects the amount of slip on the fault in the shallow sub-surface during each rupture. We use the combined

spatial discretization and time-stepping method detailed in previous sections to simulate multiple earthquake cycles with

off-fault plasticity. The fault is governed by rate-and-state friction with depth-variable parameters a and b (see Fig. 6 (a)).

Where a − b < 0 defines the velocity-weakening (seismogenic) zone, below which the fault creeps interseismically. As an

initial study, we assume that the effective normal stresses in the medium are given by σ 0 
xx = σ 0 

yy = σ 0 
zz = −(ρ − ρw 

) gz + P atm 

where ρw 

is the density of water, g is the acceleration due to gravity and atmospheric pressure P atm 

is set to 0.1 MPa. The
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Fig. 5. Contours of solution to (1) with boundary conditions (96) for plastic material response using the finite difference method (solid lines) and the finite 

element solution (black dots). (a) and (b) displacement and (c)–(f) stress components, with N y = N z = 120 points. 

Fig. 6. (a) Frictional parameters a − b vary with depth. (b) Normal stress σ n on fault vs. normal stresses in medium. 
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Table 5 

Parameters used in application simulations. 

Parameter Definition Value 

L z Fault length 24 km 

L y Off-fault domain length 24 km 

μ Shear modulus 36 GPa 

ρ Density 2800 kg/m 

3 

c s Shear wave speed 3.586 km/s 

ρw Density of water 10 0 0 kg/m 

3 

σ n Normal stress on fault Depth-variable 

τ∞ Remote shear stress 10 −7 MPa 

a Rate-and-state parameter Depth-variable 

b Rate-and-state parameter Depth-variable 

D c Critical slip distance 8 mm 

V p Plate rate 10 −9 m/s 

V 0 Reference velocity 10 −6 m/s 

f 0 Reference friction coefficient 0.6 

c Cohesion Variable 

h Hardening modulus Variable 

φ Internal friction angle arctan (0 . 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yield stress (15) is thus linearly increasing with depth, see Fig. 6 (b). We assume the pore-pressure in the fault is higher than

in the surrounding rock so that although the effective stresses off the fault are depth-variable, effective normal stress on the

fault is constant below some depth, see Fig. 6 (b) ( Rice, 1992 ). Fixing the internal friction parameter φ sets the slope of the

yield stress and the yield stress at Earth’s surface can be increased or decreased by changing the value of the cohesion c ,

which we assume is constant with depth. We vary cohesion between 40 and 50 MPa, which are reasonable depth-averaged

values of those derived from Hoek–Brown parameters for many rock strength models ( Roten et al., 2016 ). The parameters

we use in our simulations are given in Table 5 . 

To determine grid spacing for our application simulations, Ranjith (2008) found that for antiplane sliding between two

anisotropic elastic materials, instability occurs for wave numbers below the critical wave number 

k cr = 

2(b − a ) σn 

D c μ∗ , (97) 

where 

μ∗ = 

√ 

det ( ̄C ep ) . (98) 

Thus the length scale 

h 

∗ = 

2 π

k cr 
= 

πD c μ∗

(b − a ) σn 
(99) 

must be resolved by the grid to ensure accuracy of the solution. 

As in Erickson and Dunham (2014) , we also need to resolve the region of rapid strength degradation immediately behind

the tip of a propagating rupture, which is typically much smaller than h ∗, and involves the rate-and-state parameters a and

b in a different manner. By analogy to the corresponding elastic problem ( Ampuero and Rubin, 2008 ), we anticipate that

this length scale will be approximately 

L b = 

μ∗D c 

b σn 
. (100) 

For all of our simulations, events nucleate near the transition zone from velocity weakening to velocity strengthening (at

a depth of approximately 10 km) and we chose values for parameters η and h primarily for computational (grid resolution)

purposes. Since we use a variable grid spacing, we resolve h ∗ and L b in our simulations with at least 60 and 5 grid points

(respectively) near the free surface, with fewer (down to 12 and 1 grid point, respectively) at the nucleation depth, which

we note seems less than desirable. To test that this grid spacing is adequate, however, we double the number of grid points

for one scenario and the results appear qualitatively similar, see Appendix C . For the viscoplastic simulations we resolve the

viscous relaxation time scale η/ μ with at least 5 time steps. 

For some parameter regimes, plastic yielding during the interseismic period is possible. For example, a decrease in cohe-

sion c decreases the size of the elastic domain, so that plastic yielding can occur at lower stress states, see Fig. 2 . Although

in reality plastic yielding may occur during all phases of the earthquake cycle, we chose to explore scenarios where plas-

tic response is limited to the coseismic phase. This choice was made because viscoplasticity introduces the time scale η/ h

which must be resolved by the time-stepping method. For small values of η/ h , the effective response during rupture is plas-

tic. Unfortunately, small η/ h cannot be resolved during the interseismic phase without taking unreasonably small time steps,

thus we considered large values of c such that plastic response occurs only at those stress levels attained during rupture.

The study of plastic yielding during all phases of the earthquake cycle are deferred to future work. 



B.A. Erickson et al. / Journal of the Mechanics and Physics of Solids 109 (2017) 50–77 69 

Fig. 7. Snapshots of cumulative slip profiles plotted at 5-a intervals during interseismic period when max( V ) ≤ 1 mm/s and dashed red profiles plotted 

at 1 s intervals during quasi-dynamic rupture for (a) elastic reference case, (b) η = 0 GPa s, h = 20 GPa, c = 50 MPa, and (c) η = 36 GPa s, h = 0 GPa, 

c = 50 MPa. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Snapshots of cumulative slip profiles plotted at 5-a intervals during interseismic period when max( V ) ≤ 1 mm/s and dashed red profiles plotted at 

1 s intervals during quasi-dynamic rupture for (a) η = 28 GPa s, h = 0 GPa, c = 50 MPa, (b) η = 36 GPa s, h = 20 GPa, c = 50 MPa, and (c) η = 36 GPa s, 

h = 20 GPa, c = 40 MPa. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

Figs. 7 and 8 show cumulative slip profiles plotted at 5-a intervals during the interseismic period, which we define

to be when max( V ) ≤ 1 mm/s, and in dashed red contours every 1 s during quasi-dynamic rupture. Fig. 7 (a) is the elastic

reference case used in Erickson and Dunham (2014) , where periodic cycles emerge. Slip below the velocity-weakening region

creeps interseismically and approximately 3 m of slip occurs at the surface during each event. Note that during each event,

the upper section of the fault catches up with slip at depth, characteristic of an elastic material response. For the plastic

simulations, in all cases we found that after the first rupture, slip in the shallow surface is less than the slip at depth. The

evolution of this slip deficit with each subsequent event is dictated by the plasticity model, however. 
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Fig. 9. Off-fault equivalent plastic strain for η = 0 GPa s, h = 20 GPa, c = 50 MPa after the first, second, eight and eighteenth rupture events. The magnitude 

and off-fault extent ( ∼ 100 m during first rupture only) of plastic strain effectively saturates after the first event. 

Fig. 10. Off-fault equivalent plastic strain for η = 36 GPa s, h = 0 GPa, c = 50 MPa after the first, second, eight and eighteenth rupture events. The magni- 

tude and off-fault extent (additional ∼ 100 m per rupture) of plastic strain increases at an approximately constant rate with each rupture during the first 

18 events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 (b) shows results from considering rate-independent plasticity with hardening parameter h = 20 GPa and cohesion

c = 50 MPa. Plastic response occurs during the first event when the rupture reaches approximately 3 km depth, but has only

a slight influence on slip above this depth. During the first rupture, a small slip deficit emerges above ∼ 1 km depth. Because

hardening causes the yield surface to expand, the response during subsequent events is effectively elastic and the slip deficit

remains largely unchanged. Fig. 7 (c) shows results from a viscoplastic simulation (without hardening) with η = 36 GPa s and

c = 50 MPa. The slip deficit in the upper 3 km increases with subsequent ruptures, and after the tenth event, the slip deficit

at the surface is approximately 2 m. 

To assess the sensitivity to viscosity, we decrease η from 36 to 28 GPa s, seen in Fig. 8 (a). The slip deficit in the upper

3 km also increases with subsequent rupture, and after the 10th event the slip deficit at the surface is approximately 3 m,

suggesting that the slip deficit will increase at a faster rate for lower values of η for the viscoplastic model without harden-

ing. Fig. 8 (b) shows results from combined viscoplastic and hardening effects. For η = 36 GPa s, h = 20 GPa and c = 50 MPa,

the slip deficit increases with each rupture, but at a decreasing rate, and reaches a limiting value of ∼ 1 m. 

Decreasing the cohesion to 40 MPa, as shown in Fig. 8 (c), generates a larger slip deficit (approximately 3.5 m at the

surface after the 10th event) than the analogous simulation in Fig. 8 (b), although with hardening present this deficit also

saturates after several ruptures. 

For the values we considered, cohesion determines the depth at which plastic response occurs during rupture (confined

to about 1–2 km below Earth’s surface). Fig. 9 illustrates the evolution in off-fault equivalent plastic strain for the rate-

independent simulation from Fig. 7 (a), during the first, second, eighth and eighteenth events. The first event generates

plastic strain at depths above ∼ 1 km and off the fault to about 200 m at the surface. The maximum value at the fault

surface is approximately 0.7 millistrain and little increase in either extent or magnitude occurs after the first event. Fig. 10

is the analogous figure for the viscoplastic model without hardening from Fig. 7 (b). The first event generates a maximum
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Fig. 11. Off-fault equivalent plastic strain for η = 36 GPa s, h = 20 GPa, c = 50 MPa after the first, second, eight and eighteenth rupture events. The mag- 

nitude and off-fault extent ( ∼ 100 m during first rupture only) of plastic strain increases at an approximately decreasing rate with each rupture. After 18 

events, the extent has saturated at < 1 km at the surface. 

Fig. 12. Off-fault equivalent plastic strain for η = 36 GPa s, h = 20 GPa, c = 40 MPa after the first, second, eight and eighteenth rupture events. The 

magnitude and off-fault extent ( ∼ 1 km during first rupture only) of plastic strain increases at an approximately decreasing rate with each rupture. After 

18 events, the extent has begun to saturate near 2 km. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

value of 0.06 millistrain at the fault surface, extending out to approximately 300 m and to a depth of ∼ 1 km. During all

subsequent events the maximum value of plastic strain increases. 

Adding hardening to the viscoplastic model decreases the magnitude and extent of additional plastic strain with each

rupture, see Fig. 11 , so that by the eighteenth rupture, the distribution remains relatively unchanged by subsequent events.

Fig. 12 illustrates the effect of a decrease in cohesion (from 50 to 40 MPa) which effectively lowers the yield stress so that

plastic straining occurs at lower depths compared to previous simulations. Compared to the results shown in Fig. 11 , a

decrease in cohesion increases the depth of plastic strain from 1 to 2 km during the first event. In addition, a decrease in

cohesion generates more plastic strain and with greater extent. By the eighteenth event, plastic strain extends beyond 2 km

at the surface. 

The amount of tectonic offset accommodated by plastic strain, u p ( t, z ), can be computed by integrating the off-fault

plastic strain, namely 

u 

p (t, z) = 2 

∫ L y 

0 

γ p 
xy (t, y, z) dy. (101)

At the surface z = 0 , the time history of u p is plotted in Fig. 13 and illustrates how much tectonic offset is accommodated

by inelastic deformation for different plasticity models. In particular, when rate-independent plasticity with hardening is

used (cyan), the amount of offset due to inelastic deformation is about 0.2 m after the first event and increases almost

negligibly after the first event. If a viscoplastic relaxation is added (green), however, the amount of offset is lower during

the first event, but increases with each rupture, reaching approximately 0.2 m after ∼ 10 events. An increasing amount

of offset accommodated by inelastic deformation occurs with each rupture for the viscoplastic models without hardening
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Fig. 13. Time history of integrated plastic strain at the surface showing amount of tectonic offset accommodated by inelastic deformation. (For interpreta- 

tion of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(black, blue, red), with lower values of viscosity generating greater amounts of inelastic deformation. For η = 20 GPa s, for

example, approximately 2 m of tectonic off-set is accommodated by inelastic strain after ∼ 10 events. The rate-independent

simulation with hardening present (cyan) reveals that an upper limit to the amount of inelastic deformation exists, by virtue

of the fact that hardening causes in expansion of the yield surface, as illustrated in Fig. 2 . The viscoplastic simulations with

hardening (green and purple) show that inelastic yielding continues to occur (with greater overall amounts for lower values

in cohesion), but at a decreasing rate, i.e for decreasing du p / dt . Only the viscoplastic simulations without hardening (black,

blue, red) reveal that inelastic yielding continues to occur with an increasing amount of plastic strain accruing with each

event ( du p / dt ≥ 0). 

10. Discussion 

We have developed a finite difference method to account for off-fault plastic response over many quasi-dynamic rup-

tures. The computational framework can model both rate-independent plasticity and viscoplasticity, although we found that

isotropic hardening is necessary in the rate-independent model for solveability of the underlying equations. We considered

a Drucker–Prager model (which reduces to von-Mises plasticity in the antiplane scenario we considered) with a depth-

dependent yield stress. Numerical results were verified through convergence tests and comparisons with the solution from

a finite element software package. Future work includes a deeper exploration of parameter space. For example, the inclu-

sion of a depth dependency of the internal friction angle and cohesion (like those derived in Roten et al., 2016 ) will be

considered. The effects of hardening and viscosity will further be explored, as our choices for these parameters were chosen

primarily for efficiency of computation. 

For the parameter study in this work, we found that viscosity, hardening, and cohesion all influence the extent and mag-

nitude of off-fault plastic strain and all scenarios give rise to a shallow slip deficit. The inclusion of hardening in all models

sets an upper limit on the slip deficit, which is reached at a faster rate for lower values of viscosity. The viscoplastic models

with no hardening, however, give rise to the largest slip deficits which increase continuously with subsequent rupture. Our

results suggest that cumulative inelastic deformation over the course of many events can account for a significant amount

of tectonic offset. We found that per rupture, ∼ 0.1 m of integrated plastic strain accrues, corresponding to ∼ 10% of the

tectonic deformation budget. Results from our model compare well to the observations of Meade et al. (2013) who estimate

that 6% ± 9% of deformation occurs off of several major strike-slip faults. 
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Appendix A. The coordinate transform and penalty parameters 

As stated in Section 6 , we desire finer grid resolution in the domain near the fault and close to the free surface z = 0 .

Using coordinate transforms, we map the ( y, z ) grid in [0, L y ] × [0, L z ] with unequally spaced nodes, to a computational
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domain ( ξ 1 , ξ 2 ) ∈ [0, 1] × [0, 1] with equal grid spacings ( N ξ1 
+ 1 and N ξ2 

+ 1 grid points in each direction, with �ξ1 =
1 /N ξ1 

, �ξ2 = 1 /N ξ2 
) . We let N = (N ξ1 

+ 1)(N ξ2 
+ 1) . The mapping is given by 

y = � Y tan ( tan 

−1 (L y /� Y ) ξ1 ) (A.1a)

z = � Z tan ( tan 

−1 (L z /� Z ) ξ2 ) . (A.1b)

Parameters � Y , � Z > 0 control the strength to which nodes are clustered near the fault and surface (respectively). The

mapping (A.1) is invertible, with 

∂y 
∂ξ1 

, ∂z 
∂ξ2 

> 0 . The Jacobian J of the transformation is 

J = 

⎡ 

⎢ ⎣ 

∂y 

∂ξ1 

0 

0 

∂z 

∂ξ2 

⎤ 

⎥ ⎦ 

(A.2)

with determinant | J | = 

∂y 
∂ξ1 

�
∂z 
∂ξ2 

where ∂y 
∂ξ1 

denotes the diagonal coefficient matrix, and 

∂y 
∂ξ1 

−1 
is its inverse (reciprocals

along the diagonal). Using the notation introduced in Section 6 , the SBP-SAT discretization of (33) on the computational

domain is given by 

0 = D 

a 11 

2 ξ1 
du + D ξ1 

a 12 D ξ2 
du + D ξ2 

a 21 D y du + D 

a 22 

2 ξ2 
du + 

˜ P L + 

˜ P R + 

˜ P T + 

˜ P B , (A.3)

where the SAT penalty vectors enforcing boundary conditions (41) are 

˜ P L = H 

−1 
ξ1 

(αL + βH 

−1 
ξ2 

(−a 11 S ξ1 
− a 12 D ξ2 

) T ) H ξ2 
E 0 ( du L − dg L ) (A.4a)

˜ P R = H 

−1 
ξ1 

(αR + βH 

−1 
ξ2 

(a 11 S ξ1 
+ a 12 D ξ2 

) T ) H ξ2 
E N ( du R − dg R ) (A.4b)

˜ P T = −H 

−1 
ξ2 

(I ξ1 
� E 0 ) 

([
−a 22 S ξ2 

du − a 21 D ξ1 
du 

]
T 

− ˜ dg T 

)
(A.4c)

˜ P B = −H 

−1 
ξ2 

(I ξ1 
� E N ) 

([
a 22 S ξ2 

du + a 21 D ξ1 
du 

]
B 

− ˜ dg B 

)
(A.4d)

where the modified boundary data are 

˜ dg T = 

∂y 

∂ξ1 

dg T (A.5a)

˜ dg B = 

∂y 

∂ξ1 

dg B . (A.5b)

The modified diagonal coefficient matrices in (A.4) are 

a 11 = C 

ep 
11 

(
∂y 

∂ξ1 

−1 

�
∂z 

∂ξ2 

)
(A.6a)

a 12 = C 

ep 
12 

(A.6b)

a 21 = C 

ep 
21 

(A.6c)

a 22 = C 

ep 
22 

(
∂y 

∂ξ1 

�
∂z 

∂ξ2 

−1 
)

(A.6d)

correspond to the moduli 

a 11 = C ep 
11 

∂ξ1 

∂y 
(A.7a)

a 12 = C ep 
12 

(A.7b)

a 21 = C ep 
21 

(A.7c)

a 22 = C ep 
22 

∂ξ2 

∂z 
(A.7d)

of the transformed (continuous) problem, and we use the notation a 11 i, j 
= a 11 (y j , z i ) as in Section 6 . 

Letting 

Ā = 

[
a 11 a 12 

a 21 a 22 

]
, (A.8)
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symmetry of Ā follows that of the 2 × 2 matrix C̄ ep given by (34) . That Ā is positive-definite also follows from C̄ ep : Express

Ā via the Schur decomposition Ā = X 

T SX , where 

S = 

[
a 11 0 

0 a 22 − a 21 a 
−1 
11 

a 12 

]
(A.9) 

and 

X = 

[
I a −1 

11 
a 12 

0 I 

]
. (A.10) 

Since S is a diagonal matrix, its eigenvalues lie along the diagonal. Positive-definiteness of C̄ ep guarantees that each ele-

ment along the diagonal of C 

ep 
11 

is positive and the transformation (A.1) maintains that the diagonal matrix a 11 has positive

elements. The diagonal matrix a 22 − a 21 a 
−1 
11 

a 12 = ( ∂y 
∂ξ1 

�
∂z 
∂ξ2 

−1 
)[ C 

ep 
11 

] −1 (C 

ep 
11 

C 

ep 
22 

− C 

ep 
12 

C 

ep 
21 

) has positive elements by construc-

tion of the mapping and positive-definiteness of C̄ ep . Thus positive-definiteness of Ā follows from that of S by the Sylvester

Law of Inertia ( Golub and Van Loan, 2013 ). 

Applying the energy method to (A.3) and a proper choice of penalty parameters (given shortly) yields d 
dt 

dE ≤ 0 , where

dE = 

1 

2 

dU 

T 
(H ξ1 

� H ξ2 
) ̄A dU + 

1 

2 

du 

T 
(R 

a 11 

ξ1 
� H ξ2 

) du + 

1 

2 

du 

T 
(H ξ1 

� R 

a 22 

ξ2 
) du + U 1 + U 2 , (A.11)

where dU = [ D ξ1 
du D ξ2 

du ] T . U 1 and U 2 are non-negative quantities that that arise from the weak enforcement of Dirichlet

conditions, detailed shortly. 

Note that uniform grid spacing, as considered in Section 6 , is the special case � Y , � Z → ∞ and the transformation merely

scales the overall size of the domain. In the case of uniform grid spacing, Ā = C̄ 

ep . The stability results of Section 6 are thus

a special case of the results here. 

The penalty parameters in (A.4) are derived in Virta and Mattsson (2014) and given here. The N × N diagonal coefficient

matrix a 11 has j, k th entry a 11 j,k 
. Virta and Mattsson (2014) find that penalty parameter β = −1 , and penalty (diagonal) ma-

trices αL , αR have components obtained by first defining diagonal matrices b 1 L , b 1 R , b 2 L and b 2 R which have components 

b 1 L j, j 
= βp (�ξ1 ) λL j / (a 11 j, 1 ) 

2 (A.12a) 

b 1 R j, j 
= βp (�ξ1 ) λR j / (a 11 j,N ξ1 

) 2 (A.12b) 

b 2 L j, j 
= δp (�ξ1 ) λ j, 1 / (a 22 j, 1 ) 

2 (A.12c) 

b 2 R j, j 
= δp (�ξ1 ) λ j,N ξ1 

/ (a 22 j,N ξ1 

) 2 (A.12d) 

along the diagonal, where βp = 36 / 99 and δp = 1 / 2 (for the second order operators we consider), 

λL j = min (λ j, 0 , λ j, 1 ) , j = 0 , . . . , N ξ2 
(A.13a) 

λR j = min (λ j,N ξ1 
−1 , λ j,N ξ1 

) , j = 0 , . . . , N ξ2 
, (A.13b) 

and 

λ j,k = 

1 

2 

(
a 11 j,k + a 22 j,k −

√ 

(a 11 j,k − a 22 j,k ) 
2 + 4(a 12 j,k ) 

2 

)
. (A.14a) 

The positive quantities given in the incremental internal energy are 

U 1 = U 

T 
L H 3 T L U L (A.15a) 

U 2 = U 

T 
R H 3 T R U R (A.15b) 

for vectors 

U L = [ du L 
T 

(B 

a 11 S ξ1 
du ) T L (a 12 D ξ1 

du ) T L ] 
T , (A.16a) 

U R = [ du R 
T 

(B 

a 11 S ξ1 
du ) T R (a 12 D ξ1 

du ) T R ] 
T , (A.16b) 

H 3 = diag ([ H ξ1 
� H ξ2 

, H ξ1 
� H ξ2 

, H ξ1 
� H ξ2 

]) . (A.16c) 

Matrix B 

a 11 is a coefficient matrix for a 11 formed in a special way (see Virta and Mattsson, 2014 for details). Matrices 

T L = 

[ −αL −1 −1 

−1 b 1 R 0 

−1 0 b 2 R 

] 

(A.17a) 



B.A. Erickson et al. / Journal of the Mechanics and Physics of Solids 109 (2017) 50–77 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 

T R = 

[ −αR −1 −1 

−1 b 1 L 0 

−1 0 b 2 L 

] 

(A.18a)

are shown to be positive semi-definite if 

αL j, j 
≤ − 1 

b 1 R j, j 

− 1 

b 2 R j, j 

, j = 0 , . . . , N ξ2 
(A.19a)

αR j, j 
≤ − 1 

b 1 R j, j 

− 1 

b 2 R j, j 

, j = 0 , . . . , N ξ2 
(A.19b)

( Virta and Mattsson, 2014 ). 

Appendix B. The consistent tangent moduli 

The consistent tangent moduli for both rate-independent and viscoplasticity are derived here simultaneously. Applying a

backward-Euler discretization to the flow rule (19) , we have 

σ n +1 
i j 

= C i jkl (ε
n +1 
kl 

− ε p,n +1 

kl 
) = C i jkl (ε

n +1 
kl 

− ε p,n 

kl 
− dλn +1 

s n +1 
kl 

2 ̄τ n +1 
) . (B.1)

The consistent elastoplastic tangent stiffness tensor C ep,n +1 

i jkl 
= 

∂σ n +1 
i j 

∂εn +1 
kl 

can be computed by first defining a few terms. Fol-

lowing Simo and Hughes (1998) , let n i j = s i j / 2 ̄τ . Then 

∂n i j 

∂s kl 

= 

1 

τ̄

[ 
1 

2 

I i jkl − n i j n kl 

] 
, (B.2)

where the fourth order, symmetric identity tensor 

I i jkl = 

1 

2 

[
δik δ jl + δil δ jk 

]
. (B.3)

It is a quick exercise to show that 

n 

∗,n +1 
i j 

= n 

n +1 
i j 

, (B.4)

and therefore we have 

∂ ̄τ ∗,n +1 

∂εn +1 
kl 

= 

1 

τ̄ ∗,n +1 
σ ∗,n +1 

kl 
μ = 2 μn 

∗,n +1 
kl 

= 2 μn 

n +1 
kl 

. (B.5)

Next, recall the plastic consistency condition (71) , which can be expressed 

τ̄ ∗,n +1 − σY − hγ n 
p = (η/dt + μ + h ) dλn +1 (B.6)

where the rate-independent case is obtained by taking η = 0 . Taking the partial derivative of (B.6) yields 

∂ ̄τ ∗,n +1 

∂εn +1 
kl 

= (η/dt + μ + h ) 
∂dλn +1 

∂εn +1 
kl 

. (B.7)

Re-arranging (B.7) and substituting in (B.5) yields 

∂�λn +1 

∂εn +1 
kl 

= 

2 μ

η/dt + μ + h 

n 

n +1 
kl 

. (B.8)

Also note that we have, 

C i jmn 

∂s mn 

∂εkl 

= 2 μ
∂s i j 

∂εkl 

. (B.9)

Therefore 

∂n 

n +1 
i j 

∂εn +1 
kl 

= 

∂n 

∗,n +1 
i j 

∂εn +1 
kl 

= 

∂n 

∗,n +1 
i j 

∂σ ∗,n +1 
mn 

∂σ ∗,n +1 
mn 

∂εn +1 
kl 

= 

∂n 

∗,n +1 
i j 

∂σ ∗,n +1 
mn 

C mnkl = 2 μ
∂n 

∗,n +1 
i j 

∂σ ∗,n +1 
kl 

= 2 μ
∂n 

n +1 
i j 

∂s n +1 
kl 

. (B.10)
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When plastic straining is occurring (i.e. when λ> 0), we can compute the consistent elastoplastic tangent stiffness tensor

by taking the partial derivative of Eq. (B.1) 

C ep,n +1 

i jkl 
= 

∂σ n +1 
i j 

∂εn +1 
i j 

= C i jkl −
∂dλn +1 

∂εn +1 
kl 

μn 

n +1 
i j 

− dλn +1 μ
∂n 

n +1 
i j 

∂εn +1 
kl 

(B.11) 

= C i jkl −
2 μ

η/dt + μ + h 

n 

n +1 
kl 

2 μn 

n +1 
i j 

− dλn +1 2 μ

( 

2 μ
∂n 

n +1 
i j 

∂s n +1 
kl 

) 

(B.12) 

= C i jkl −
4 μ2 

η/dt + μ + h 

n 

n +1 
kl 

n 

n +1 
i j 

− dλn +1 4 μ2 1 

τ̄ n +1 

[ 
1 

2 

I i jkl − n 

n +1 
i j 

n 

n +1 
kl 

] 
. (B.13) 

and the specific case for antiplane motion given in (73) –(75) for rate-independent plasticity, and (78) –(80) for viscoplasticity

follow, using the notation C ep 
11 

= C ep 
xyxy , C 

ep 
22 

= C ep 
xzxz , C 

ep 
12 

= C ep 
xyxz , C 

ep 
21 

= C ep 
xzxy . 

Appendix C. Mesh refinement 

We double the number of grid points used in the simulation shown in Fig. 7 (c) with η = 36 , h = 0 and c = 50 MPa, see

Fig. C.14 . Although a bit more slip occurs with each rupture when mesh refining (note last event for each simulation, for

example), the results appear qualitatively similar. 

Fig. C.14. Snapshots of cumulative slip profiles plotted at 5-a intervals during interseismic period when max( V ) ≤ 1 mm/s and dashed red profiles plotted

at 1 s intervals during quasi-dynamic rupture for η = 36 GPa s, h = 0 GPa, c = 50 MPa for (a) the coarse grid simulation from Fig. 7 (c) (plotted again for

ease of comparison) and (b) results when using twice the number of grid points. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.) 
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