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Abstract We present an efficient numerical method for earthquake cycle simulations that employs a
finite difference discretization of the off-fault material to accommodate spatially variable elastic properties.
The method is developed for the two-dimensional antiplane shear problem of a vertical strike-slip fault with
rate-and-state friction. We compare earthquake cycles in a homogeneous half-space with those in which the
upper portion of the fault cuts through a sedimentary basin. In both cases, we assume velocity-weakening
behavior over the full seismogenic depth, even in the basin, to isolate the influence of elastic heterogeneity.
In a homogeneous half-space, events rupturing the full seismogenic depth occur periodically. Event
sequences are more complex in basin models, with one or several subbasin events confined to the lower
section of the fault followed by a much larger, surface-rupturing event that breaks through the basin. This
phenomenology emerges only for sufficiently compliant and deep basins. Predicted surface velocities
are essentially identical before subbasin events and surface-rupturing events, suggesting that geodetic
observations would not be useful in predicting the rupture mode. The alternating sequence of subbasin
and surface-rupturing events would complicate interpretation of paleoseismic data. Our results also offer
one potential explanation for the shallow slip deficit observed in many recent earthquakes, namely, that
these events, which lack appreciable surface slip, are simply one style of rupture. Subsequent events on
these faults might be larger, with slip extending all the way to the surface. The 1940Mw 7.0 and 1979Mw 6.5
Imperial Valley events might be considered as examples of these two rupture styles.

1. Introduction

Many faults cut through sedimentary basins, and it is desirable to characterize how the compliant materials
characteristic of these basins affect earthquake occurrence. The Salton Trough in Southern California, for
example, is an ∼5 km deep sedimentary basin that surrounds sections of many active faults that are part
of the greater southern San Andreas fault system. Recent studies investigating possible disagreements
between geologic and geodetic estimates of long-term slip rates on these faults have explored the impor-
tance of the heterogeneous material structure [Fay and Humphreys, 2005; Fialko, 2006; Lindsey and Fialko,
2013]. Additionally, while spatial variations in fault frictional properties are well known to control the
pattern of coseismic slip and interseismic creep [Tse and Rice, 1986; Lapusta et al., 2000; Lapusta and Rice,
2003; Noda and Lapusta, 2013], the same might also be true for off-fault material properties. Transitions in
elastic properties along a fault would introduce heterogeneity in stress from creep or coseismic slip, even
for uniform fault slip. These stress heterogeneities would then affect subsequent ruptures. Of course, there
are often correlations between frictional properties and lithology. For example, sediments often exhibit
velocity-strengthening frictional behavior [Marone and Scholz, 1988; Scholz, 1998, 2002; Marone, 1998;
Verberne et al., 2010], particularly at low confining stresses and when shear is distributed. On the other
hand, stick-slip has been experimentally observed for sandstones [Engelder et al., 1975] and dolomites
[Weeks and Tullis, 1985]. Recent work by Kohli and Zoback [2013] on a wide range of shales shows both
velocity-weakening and velocity-strengthening behaviors, with the latter arising only for sufficiently high
clay content.

There are many documented examples of coseismic slip in large earthquakes failing to penetrate through
sedimentary layers to reach Earth’s surface, leading to what is known as the shallow slip deficit [Fialko et al.,
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2005]. Several examples, as discussed by Kaneko and Fialko [2011], include the 1992 Landers, 1999 Hector
Mine, 2003 Bam, 2010 Haiti, and 2010 Sierra El Mayor-Cucupah earthquakes, and there are many others. In
some cases, the upper portion of the fault slips aseismically [Bilham, 1989;Wei et al., 2013], consistent with
velocity-strengthening response of sediments. However, other faults do not exhibit shallow aseismic creep,
or at least not enough to balance the long-term motion, and some alternative explanation must be sought
for how deformation is ultimately accommodated near the surface. One possibility is distributed inelastic
strains within the shallow crust, but recent modeling efforts by Kaneko and Fialko [2011] have suggested
that inelastic off-fault strains are unlikely to be large enough to explain the observed shallow slip deficit.

In the latter part of this work, we offer another possible explanation based on earthquake cycle simulations
in a heterogeneous elastic medium. We suggest that there may exist distinct modes of rupture, with some
events nucleated at depth arresting upon entering sediments, and others continuing to the surface in much
larger events that relieve the shallow slip deficit. The 1979Mw 6.5 Imperial Valley event provides an example
of the former, with slip largely confined beneath a 4 km thick sedimentary cover [Hartzell and Heaton, 1983;
Archuleta, 1984]. In contrast, the 1940Mw 7.0 Imperial Valley earthquake, which ruptured, in part, the same
section of the Imperial Fault as the 1979 event, featured several meters of surface slip over much of its extent
[Sharp et al., 1982; Sieh, 1996; Rockwell and Klinger, 2013].

Regardless of the particular fault behavior, it is clearly essential to develop numerical methods for earth-
quake cycles that rigorously account for all of these different types of heterogeneities. Modeling the full
cycle, however, presents great computational challenges due to the wide range of relevant scales in both
space and time. It is currently necessary to artificially enhance frictional properties (specifically, the state
evolution distance) to render nucleation lengths numerically resolvable on large-scale faults [Rice, 1993].
Even with this approximation, there remains the need to resolve both slow loading during the interseis-
mic period of hundreds of years, during which the deep portions of faults creep at several to tens of
millimeters per year, and rapid coseismic sliding, lasting tens of seconds, at several meters per second.
Adaptive time-stepping algorithms are therefore necessary. It is also possible to gain efficiency by neglect-
ing inertial effects during the interseismic period and solving the equilibrium equations in place of the full
momentum balance.

Lapusta et al. [2000] highlight some of the methods for handling varying time scales in earthquake cycle
simulations. These include the methods of Okubo [1989] and Shibazaki and Matsu’ura [1996], which involve
switching from static elasticity into the dynamic regime once an event nucleates. Lapusta et al. [2000]
present a boundary integral equation method that handles cycle models within a unified computational
framework that avoids abrupt transitions between static and dynamic elasticities. Related efforts, like those
presented in Tullis et al. [2012, and references therein] (such as the earthquake simulators of Rundle [1988],
Ward [1996], Pollitz [2012], and Dieterich and Richards-Dinger [2010]), have focused on approximate meth-
ods for modeling seismicity patterns on complex fault networks. All of these methods are based on the
boundary element method. Like the boundary integral equation method, current boundary element codes
are restricted to faults in uniform, linear elastic whole- and half-spaces. A notable exception in this line
of work is the spectral element method of Kaneko et al. [2011], which is capable of incorporating variable
material properties.

In this work, we present an efficient finite-difference method for earthquake cycles in an elastic medium
having arbitrary variations in material properties. The method is developed specifically for the classic
two-dimensional antiplane shear problem of a vertical strike-slip fault in a linear elastic half-space. The fault
is governed by a rate-and-state friction law with depth-dependent parameters. Our particular interest is
the influence of a compliant sedimentary basin on earthquake sequences. Our intent in this initial study
is to isolate the influence of elastic heterogeneity, so we neglect possible correlations between lithology
and frictional properties (which might suggest using velocity-strengthening properties within the basin).
The system is loaded at the remote boundaries to capture the effect of slow tectonic forcing. To facilitate
efficient solution, we employ the radiation-damping approximation [Rice, 1993], rather than rigorously
including inertial dynamics.

The equations of linear elasticity are discretized using second-order accurate summation by parts (SBP)
finite differences for variable coefficient problems [Mattsson and Nordström, 2004; Mattsson et al., 2008,
2009; Mattsson, 2011], with weak enforcement of boundary conditions through the simultaneous-
approximation-term (SAT) technique. Finite difference operators satisfying an SBP rule are obtained by
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Figure 1. One-dimensional problem domain. Fault lies at interface y = 0 with split nodes on either side. Symmetries of
the problem allow us to restrict attention to one side of the domain, y ∈ [0, L], which is discretized with a uniform grid
spacing h = L∕N at N + 1 points.

applying central difference operators in the interior of the computational domain, with a transition to
one-sided approximations toward the boundary. Rather than strong enforcement of boundary conditions
(also known as injection), where the grid data are overwritten with the boundary data, the SAT method
weakly enforces boundary conditions through penalty terms added to the spatially discretized system of
equations. The combined SBP-SAT approach permits us to prove both accuracy and stability of the overall
method. The SBP-SAT spatial discretization is obtained by analyzing the full elastodynamic problem prior
to neglecting the inertial term, a technique frequently done when solving steady state problems in com-
putational fluid dynamics [Nordström et al., 2007; Eriksson and Nordström, 2009; Hicken and Zingg, 2011].
Provided that the underlying mathematical problem is well posed, in the sense that a unique solution exists
depending continuously on the data of the problem (initial/boundary conditions and any source terms),
accuracy and stability guarantee that our numerical solution converges toward the true solution under
mesh refinement [Gustafsson et al., 1995].

The paper is organized as follows: The numerical method is developed in sections 2–7, and verification
tests are presented in section 8. In section 9 we apply the method to study earthquake cycles in sedi-
mentary basins, with concluding discussion of the overall project in section 10. Readers interested in only
the basin cycle simulations can proceed directly to section 9. The method development and verification
in sections 2–8 is broken down in the following manner. We start with a 1-D version of our 2-D model in
order to introduce the governing equations and boundary conditions (section 2) and numerical method
(section 3) in a simplified setting. The 2-D problem is presented in section 4, and its numerical discretization
is given in section 5. Section 6 presents the fault friction law. Section 7 describes our adaptive time-stepping
method. We then develop an analytical solution to the governing equations and use that as the basis for
convergence tests in section 8.

2. Governing Equations (1-D)

In this section we consider a 1-D analog of our full 2-D model which will introduce the governing equations,
geometry, and boundary conditions. It also provides a simplified setting in which to show how the semidis-
crete problem captures several features of its continuous counterpart. The elastic wave equation with
spatially variable material properties is

!∂
2u
∂t2

= ∂
∂y

(
" ∂u∂y

)
, y ∈ [−L, L], t ≥ 0, (1)

where u( y, t) is the displacement and the shear wave speed cs =
√
"∕! depends on the material density

! = !( y) and shear modulus " = "( y). Denoting the time derivative of a field u by u̇ (although in some cases
we will use d/dt for notational ease), the initial conditions in displacement and velocity are given by

u( y, 0) = u0( y), y ∈ [−L, L] (2)

u̇( y, 0) = v0( y), y ∈ [−L, L], (3)

respectively.

Suppose that y = 0 is an interface at the center of the domain [−L, L] (Figure 1) and that the system is loaded
at the remote boundaries y = −L, y = L by displacement (Dirichlet) boundary conditions: u(−L, t) = g−Lr (t)
and u(L, t) = gLr (t). We assume that the material properties ! and " are symmetric about the interface y = 0
and that −g−Lr (t) = gLr (t) (which we denote by gr(t)). Furthermore, there are two interface conditions that
must be satisfied. The first is a jump condition in displacement u(0+, t) − u(0−, t) = Δu(t) (where Δu can be
thought of as slip across a fault interface) and the second is that the traction components of stress be con-
tinuous across the interface. Denoting stress by $( y, t) = "( y) ∂u∂y ( y, t) the second interface condition means
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that $(0+, t) = $(0−, t). With these assumptions and interface conditions, the field u( y, t) is antisymmetric
about the interface y = 0; thus, for computational purposes, we can then restrict attention to the right half
of the domain. One may then impose a boundary condition at y = 0, either on traction $(0, t) or on dis-
placement (u(0, t) = Δu∕2) with the understanding that the field u( y, t) in the left half of the domain is the
antisymmetric equivalent such that both interface conditions are satisfied. We will assume the left boundary
condition at y = 0 is a traction (Neumann) boundary condition defined by data gl(t), in order to show how
different types of boundary conditions are treated. Thus, we consider the following boundary conditions:

$(0, t) = gl(t) (4)

u(L, t) = gr(t). (5)

In formulating an initial boundary value problem like (1)–(5), we would like to ensure that it has a unique
solution and that in the case of homogeneous boundary conditions and no body forces, the total energy
of the system is conserved. These requirements are central to the concept of well posedness. Assuming a
unique solution to (1)–(5) exists, energy conservation can be shown through the so-called energy method
[Gustafsson et al., 1995]. An energy estimate can be understood as showing the balance of total mechan-
ical energy in the elastic body by work done (or energy dissipated) at the system’s boundaries (or energy
conservation, in the absence of nonzero boundary data or source terms). Multiplying equation (1) by u̇ and
integrating by parts reveals the energy balance:

d
dt

(
1
2
||√!u̇||2 + 1

2
||√" ∂u∂y ||

2
)

= $u̇|L0 = $(L)ġr − gl(t)u̇(0) (6)

= 0 (7)

where the left-hand side of equation (6) defines the total mechanical energy E = 1
2
||√!u̇||2 + 1

2
||√" ∂u

∂y ||2

as the sum of the kinetic and strain energy, and ||v||2 = (v, v) = ∫
L

0
v2dy describes a norm on the space of

square-integrable functions L2. Equation (6) demonstrates that the rate of change in E is determined by the
work rate per unit surface area (the product of shear stress and particle velocity) at the system’s boundaries.
Energy conservation, as given by equation (7), results from our assumption of homogeneous boundary data
(gl = gr = 0). This assumption is made for the energy method analysis only, as the results extend to general,
inhomogeneous boundary data (see Appendix A for more details).

3. Semidiscrete Equations (1-D)

Spatially variable material properties often make analytical solutions to equations (1)–(5) difficult to obtain,
and one looks for numerical solutions. A semidiscretization (i.e., spatial discretization) of (1)–(5) for y ∈
[−L, L] is done with split nodes at the interface y = 0. Symmetries of the problem (described in section 2)
allow us to consider one side of the domain, discretizing at N + 1 uniformly spaced grid points (including
the boundary points, see Figure 1) with grid spacing h = L∕N. We use the second-order-accurate, narrow
stencil second-derivative SBP operators for problems with variable coefficients [Mattsson and Nordström,
2004;Mattsson, 2011] and weak enforcement of boundary conditions to obtain the semidiscretization:

!!tt = ""
2! + #l + #r (8)

where

#l = %0$−1%0
[
("BSu)0 − gl

]
(9)

#r = %1"N$−1%N
[
uN − gr

]
+ &$−1("BS)T%N

[
uN − gr

]
(10)

and ! now refers to the vector of grid data (or grid function)

! = !(t) = [u0(t), u1(t), ... , uN(t)]T . (11)
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The subscript notation uj = uj(t) ≈ u( yj, t) for j = 0, 1, ... N defines the numerical approximation to the
solution at grid point yj = jh. Initial condition (2) is imposed by setting

!(0) = u0( yj), j = 0, 1, ... N, (12)

and initial condition (3) can be imposed in the time integration method in a stable way [e.g., Strikwerda,
2004, p. 197]. All matrix operators defined in this section are square matrices of size (N+1)×(N+1). Diagonal
matrices are denoted by ! and " and given by ! = diag(!0, !1, ..., !N−1, !N), " = diag("0,"1, ...,"N−1,"N),
where !j = !( yj) and "j = "( yj).

The first term on the right of equation (8) defines the differentiation matrix arising from a second-order
accurate, narrow stencil, difference approximation:

""
2 = $−1(−&" + "BS) ≈ ∂

∂y

[
" ∂
∂y

]
, (13)

which, in the interior of the domain, contains the standard centered difference approximation to second
spatial derivatives with variable coefficients [Zikanov, 2011]

∂
∂y

[
" ∂u∂y

]

i
≈

(
1
2
"i−1 +

1
2
"i

)
ui−1 −

(
1
2
"i−1 + "i +

1
2
"i+1

)
ui +

(
1
2
"i +

1
2
"i+1

)
ui+1

h2
. (14)

In addition,$ = hdiag
(

1
2
, 1, 1, ..., 1, 1, 1

2

)
is a diagonal matrix defining a discrete inner product

(!, ')H = !T$', (15)

and the associated discrete H norm (a discrete approximation to the '2 norm)

||!||2H = !T$!. (16)

Matrix ( = diag(−1, 0, ..., 0, 1), and ) is 1∕h times the identity matrix, but with the first and last rows mod-
ified to include a second-order accurate finite difference approximation to the first spatial derivative on
the boundary:

) = 1
h

⎡
⎢
⎢
⎢
⎢
⎢⎣

− 3
2
2 − 1

2
1

⋱
1

1
2

−2 3
2

⎤
⎥
⎥
⎥
⎥
⎥⎦

.

The interior stencil of&" at row i is

mi,i−1 = −1
2
"i−1 −

1
2
"i (17)

mi,i =
1
2
"i−1 + "i +

1
2
"i+1 (18)

mi,i+1 = −1
2
"i −

1
2
"i+1 (19)

for i = 3, ...N − 3. The left and right boundary closures of&" are derived so that ""
2 transitions to one-sided

differences at the boundaries in a particular way that ensures provable stability. These details can be found
inMattsson [2011]. Note that since the grid vector ! includes the boundary nodes u0 and uN,$−1(−&" +
BS)! approximates second spatial derivatives at the boundaries as well.

The SAT penalty vectors #l and #r on the right of equation (8) (and defined by (9) and (10)) impose the two
boundary conditions (4)–(5) weakly. (BSu)0 computes a finite difference approximation to the first derivative
of the solution at the boundary y = 0; thus, ("BSu)0 approximates the stress at y = 0. The vectors

%0 = [1, 0, ... , 0, 0]T , %N = [0, 0, ... , 0, 1]T
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are standard basis vectors in RN+1, and %0, %1, and & are scalars known as penalty parameters. The term
multiplying %0 enforces the stress boundary condition weakly. The two terms multiplying %1 and & are
required for the weak enforcement of the displacement boundary condition [Mattsson et al., 2009]. The
term multiplying %1 penalizes the grid point on the boundary, whereas the term multiplying & enforces the
displacement boundary condition weakly at all the grid points making up the boundary derivative.

Given a finite difference approximation to first spatial derivatives " ≈ ∂∕∂y, it is possible to apply this oper-
ator twice to obtain an approximation to the second spatial derivative. However, it was shown inMattsson
and Nordström [2004] that this procedure increases the internal width of the scheme and the internal error
and cannot capture the πmode (highest wave number mode that exists on the grid) that is often associated
with spurious oscillations in the numerical solution. The operator&" is a narrow stencil operator which is
related to the first derivative operator " through the following relation:

&" = "T$"" + *" (20)

where

*" = h7

4
"T

2+2""2 (21)

is a positive semidefinite remainder term which introduces a small numerical energy dissipation term into
the semidiscrete energy estimate. This term, which vanishes with mesh refinement, is a useful mechanism
for damping spurious oscillations [Mattsson, 2011]. The remaining operators defined in this section are given
in Appendix B. With equation (20) in mind, we define a second discrete norm we refer to as the discrete
energy norm:

||!||2E =
1
2
!Tt $!!t +

1
2
!T&"! (22)

where the discrete total mechanical energy , ≡ ||!||2E is the sum of the discrete kinetic and strain energy.

Given a discretization to a well-posed problem, we need to ensure that the numerical solution converges
to the solution of the continuous problem under mesh refinement. This is guaranteed if the discretization
is consistent (order of accuracy greater than zero) and stable [Gustafsson et al., 1995]. By construction, dis-
cretization (8) is second-order accurate and therefore consistent. Establishing stability of a discretization can
be thought of as the discrete analog to well posedness and guarantees that solutions remain bounded as
h → 0. One method for proving stability is by obtaining a semidiscrete analog to the energy balance (6). By
multiplying (8) by !Tt $ and adding the transpose, we obtain the rate of change of the discrete energy

d
dt

(1
2
!Tt $!!t +

1
2
!T&"!

)
= (!t)0"0(BSu)0 + (!t)N"N(BSu)N+

+ BT l + BT r (23)

where

BTl = %0(!t)0
[
"0(BSu)0 − gl

]
(24)

BTr = "N%1(!t)N
[
uN − gr

]
+ &("BSut)N

[
uN − gr

]
. (25)

Equation (23) is the discrete analog of the continuous energy balance (6). The left-hand side of (23) repre-
sents the rate of change of the discrete total mechanical energy , as defined by the discrete energy norm
in equation (22). The terms inside the time derivative on the left-hand side are the discrete analogs of the
kinetic and strain energy. The first two terms on the right of equation (23) mimic corresponding terms on
the right-hand side of equation (6) after integrating by parts (hence the name summation by parts). The
boundary terms BT refer to the contributions from the SAT vectors #l , #r enforcing the boundary conditions
weakly. A semidiscretization is said to be strictly stable if the semidiscrete problem dissipates energy at least
as fast as its continuous counterpart [Gustafsson et al., 1995; Nordström, 2006]. We show in Appendix B that
the right-hand side of (23) is ≤ 0 (meaning energy is either conserved or dissipated) if the penalty parame-
ters satisfy %0 = −1, & = 1, and %1 ≤ −13∕h. These conditions show that (8) defines a second-order accurate,
strictly stable discretization to the initial boundary value problem (1)–(5). Thus, numerical solutions will
converge to the solution of the continuous problem under mesh refinement.
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Figure 2. Schematic diagram of our 2-D model, showing cross section of a vertical strike-slip fault embedded in a hetero-
geneous half-space, subject to antiplane shear deformation. The 1-D fault at y = 0 is governed by rate-and-state friction
with depth-variable parameters. The elasticity equations are discretized using finite differences. Traction-free boundary
conditions are applied at Earth’s surface and at depth, and the system is loaded remotely with a displacement boundary
condition corresponding to far-field plate motion.

4. Governing Equations (2-D)

The analysis in sections 2 and 3 provides us with the tools to derive the discretization for the problem in
2-D, which will serve as the framework for our simulations. We consider antiplane shear deformation where
the only nonzero component of displacement is in the x direction (in and out of the plane, see Figure 2).
Substituting Hooke’s law into momentum balance yields the elastic wave equation in 2-D:

!∂
2u
∂t2 = ∂

∂y

(
" ∂u∂y

)
+ ∂

∂z

(
" ∂u∂z

)
, ( y, z) ∈ [−Ly, Ly] × [0, Lz]. (26)

As described for the 1-D problem in section 2, symmetries of the material properties, boundary condi-
tions, and interface conditions across the fault y = 0 allow us to consider only one side of the domain,
Ω = [0, Ly] × [0, Lz]. We enforce a displacement (Dirichlet) boundary condition on the fault, and we show in
section 7 how to determine that displacement in a manner that is consistent with the rate-and-state friction
law. Earth’s free surface at z = 0 is governed by a traction-free (Neumann) boundary condition. Because our
method involves a volume discretization, we must also specify artificial boundary conditions at the remain-
ing two boundaries (the remote lateral boundary and the boundary at depth). We choose to load the system
at the remote boundary y = Ly by imposing a displacement boundary condition given by the far-field plate
rate of Vp ≈ 35 mm/a. We take the boundary at depth to be traction-free, as is frequently done in similar
problems [Fay and Humphreys, 2005]. This approximation has minimal influence on the solution, provided
that the computational domain is truncated at some depth far greater than the seismogenic depth H. This is
because at those depths, if creep along the planar fault approaches a constant rate independent of depth,
then displacement also becomes independent of depth such that ∂u∕∂z and the associated shear stress
component exerting tractions on the lower boundary are approximately zero.

We can write the boundary data generically as gf , gr , gs, and gd for the fault, remote, surface, and depth
boundaries, respectively (see Figure 2),

u(0, z, t) = gf (z, t) (27)

u(Ly, z, t) = gr(z, t) (28)

"( y, 0)∂u∂z
||||z=0

= gs( y, t) (29)

"( y, Lz)
∂u
∂z

||||z=Lz
= gd( y, t), (30)

although keeping in mind that for our simulations, the free surface conditions imply that gs( y, t) =
gd( y, t) = 0, and at the remote boundary gr(z, t) = Vpt∕2.

As done for the 1-D problem in section 2, we now show the continuous problem (26)–(30) plus appro-
priate initial conditions leads to a well-posed mathematical problem. This can be done by establishing
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energy conservation in the absence of nonzero boundary data or source terms, recognizing that the results
extend to general, nonzero boundary data (see also Appendix A for more details). Multiplying (26) by ut and
integrating over the domain yields

d
dt

[1
2
||√!ut||2 + 1

2

(||√"uy||2 + ||√"uz||2
)]

= Br + Bf + Bs + Bd (31)

where the left-hand side of (31) corresponds to the rate of change of total mechanical energy E and

Br = ∫
Lz

0
"uyutdz (32)

Bf = −∫
Lz

0
"uyutdz (33)

Bs = −∫
Ly

0
"uzutdy (34)

Bd = ∫
Ly

0
"uzutdy (35)

correspond to the rate at which work is done on the elastic body by boundary tractions. For homoge-
neous boundary conditions, gr = gf = gs = gd = 0, the boundary terms Br, Bf , Bs, and Bd vanish and energy
is conserved.

5. Semidiscrete Equations (2-D)

For the 2-D discretization of (26)–(30), we will often utilize the Kronecker product:

-⊗ ( ∶=
⎡
⎢
⎢⎣

a0,0B · · · a0,NB
⋮ ⋮

aN,0B · · · aN,NB

⎤
⎥
⎥⎦
.

We discretize the domain [0, Ly] × [0, Lz]with an (Ny + 1) × (Nz + 1)-point grid, defined by

yi = ihy, i = 0, 1, ...,Ny , hy = Ly∕Ny (36)

zi = ihz, i = 0, 1, ...,Nz, hz = Lz∕Nz (37)

where hz and hy are the grid spacings in each direction. Thus,

ui,j ≈ u( yi, zj)

is the discrete approximation to the solution at grid point ( yi, zj). We now define the grid vector ! as a vector
of vectors. We first define the discrete solution vector

!i = [ui,0, ui,1, ... , ui,Nz−1, ui,Nz
]T for i = 0, ..., Ny

so that

! = [!T0 , !
T
1 , ... , !

T
Ny
]T .

To distinguish whether a 2-D operator . is operating in the y or z direction, we use the notations .y and .z ,
respectively. A semidiscretization of (26) using the SBP-SAT technique described in section 3 is

!!tt = ""
2y! + ""

2z! + #f + #r + #s + #d (38)

where

""
2y = ($−1

y ⊗ /z)
[
−("y ⊗ /z)T"($y ⊗ /z)("y ⊗ /z) − *"

y + "((y)y ⊗ /z)
]

(39)
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""
2z = (/y ⊗$−1

z )
[
−(/y ⊗ "z)T"(/y ⊗$z)(/y ⊗ "z) − *"

z + "(/y ⊗ (z)z)
]

(40)

*"
y =

h7y
4

(
"T

2y ⊗ /z
) (

+⊗ /z
)
"
(
"2y ⊗ /z

)
(41)

*"
z =

h7z
4

(
/y ⊗ "T

2z

) (
/y ⊗ +

)
"
(
/y ⊗ "2z

)
(42)

where all matrix operators are of size (Ny + 1)(Nz + 1)× (Ny + 1)(Nz + 1). / is the identity matrix, and matrices
$, ", (, ), *, and + are given in section 3 and Appendix B. Matrices "2y and "2z approximate ∂2∕∂y2 and
∂2∕∂z2, respectively. Boundary conditions are enforced weakly in (38) through the SAT vectors:

#f = %f"($−1
y ⊗ /z),̃f

(
!f − 0f

)
+ &($−1

y ⊗ /z)["((y)y ⊗ /z)]T ,̃f

(
!f − 0f

)
(43)

#r = %r"($−1
y ⊗ /z),̃r

(
!r − 0r

)
+ &($−1

y ⊗ /z)["((y)y ⊗ /z)]T ,̃r

(
!r − 0r

)
(44)

#s = %s(/y ⊗$−1
z ),̃s

(
["(/y ⊗ (z)z)!]s + 0s

)
(45)

#d = %d(/y ⊗$−1
z ),̃d

(
["(/y ⊗ (z)z)!]d − 0d

)
(46)

where %f , %r, %s, %d , and & are the penalty parameters. The operators

,̃f = %y0 ⊗ /z, ,̃r = %yN ⊗ /z, (47)

,̃s = /y ⊗ %z0, ,̃d = /y ⊗ %zN (48)

map the boundary grid points to full length vectors. Defined in section 3 are the 1-D vectors,
%z0, %zN, %

y
0, and %yN, of size Nz + 1 and Ny + 1, denoted by the superscript. In the 2-D case here, " is a diagonal

matrix formed by

"i = ["i,0 "i,1 ... "i,Nz−1 "i,Nz
]T for i = 0, ..., Ny

where

"i,j = "( yi, zj)

thus

" = diag("T
0 ,"

T
1 , ...,"

T
Ny−1

,"T
Ny
).

The matrix ! is formed similarly. Matrices$y and$z together form the discrete H norm (approximating the
L2 norm) in 2-D:

||!||2H = !T ($y ⊗$z)! (49)

and the discrete energy norm in 2-D

||!||2E =
1
2
!Tt ($y ⊗$z)!!t +

1
2
!T (&"

y +&"
z )! (50)

where

&"
y = ("y ⊗ /z)T"

(
$y ⊗$z

)
("y ⊗ /z) + (/y ⊗$z)*"

y , (51)

&"
z = (/y ⊗ "z)T"

(
$y ⊗$z

)
(/y ⊗ "z) + ($y ⊗ /z)*"

z , (52)

and the discrete total mechanical energy , = ||!||2E is the sum of the discrete kinetic and strain energy.
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To obtain a semidiscrete energy estimate, we again assume homogeneous boundary conditions (as in
section 3, see also Appendix A), multiply equation (38) by !Tt ($y ⊗$z) and add the transpose

d
dt

(1
2
!Tt ($y ⊗$z)!!t + +1

2
!T (&"

y +&"
z )!

)
= (!t)Tf ["((y)y ⊗$z)!]f + (!t)Tr ["((y)y ⊗$z)!]r+

+ (!t)Ts ["($y ⊗ (z)z)!]s + (!t)Td["($y ⊗ (z)z)!]d+
+ BTf + BTr + BTs + BTd (53)

where

BTf = %f (!t)Tf "f$z

(
!f − 0f

)
+ &(!t)T ["(y)y ⊗$z)]T Ẽf

(
!f − 0f

)
, (54)

BTr = %r(!t)Tr "r$z

(
!r − 0r

)
+ &(!t)T ["((y)y ⊗$z)]T Ẽr

(
!r − 0r

)
, (55)

BTs = %s(!t)Ts
(
["

(
$y ⊗ (z)z

)
!]s + 0s

]
, (56)

BTd = %d(!t)Td
(
["

(
$y ⊗ (z)z

)
!]d − 0d

)
. (57)

Equation (53) represents the discrete analog of equation (31), where the left-hand side is the time derivative
of the total mechanical energy. The first four terms on the right mimic the terms on the right of the continu-
ous energy estimate (31) after integrating by parts. The remaining boundary terms BT , defined in equations
(54)–(57), are the contributions from the SAT penalty vectors #f ,r,s,d obtained from enforcing the boundary
conditions weakly. We prove in Appendix B that that energy is conserved or dissipated under the conditions
%s = %d = −1, & = 1, and %f , %r ≤ −13∕hy . Thus, (38) defines a second-order accurate, strictly stable dis-
cretization to the initial boundary value problem (26)–(30). These properties ensure that numerical solutions
obtained by the discretization will converge to the true solution under mesh refinement.

6. Frictional Framework

Because our eventual goal in this work is to study how sedimentary basins affect general characteristics of
the earthquake cycle, rather than resolving details of wave propagation during dynamic rupture, we adopt
a quasi-dynamic modeling framework in which inertial effects are approximated with a radiation-damping
term when balancing frictional resistance with shear tractions exerted by the elastic medium on the fault
[Rice, 1993]. This means that we only need to solve the equations of static equilibrium in the medium.

Spatial discretizations obtained by studying the dynamic counterpart have been used to solve steady state
problems in fluid dynamics [Nordström et al., 2007; Eriksson and Nordström, 2009; Hicken and Zingg, 2011]. In
a similar manner, we drop inertial terms from the elastic wave equation (26) to obtain

0 = ∂
∂y

(
" ∂u∂y

)
+ ∂

∂z

(
" ∂u∂z

)
, ( y, z) ∈ [0, Ly] × [0, Lz]. (58)

The corresponding discretization of (58) is given by the right-hand side of (38):

0 = ""
2y! + ""

2z! + #f + #r + #s + #d (59)

where the SAT vectors #f ,r,s,d remain identical to those given in equations (43)–(46). The fault (y = 0, see
Figure 2) is governed by rate-and-state friction [Dieterich, 1979a; Ruina, 1983; Marone, 1998]. The shear

stress, * = " ∂u
∂y

||||y=0
, is set equal to fault strength:

* = F(V,+) (60)

where fault strength F is normal stress $n times the friction coefficient f . In the rate-and-state framework,
the fault strength is a function of slip velocity

V(z, t) = ∂u
∂t

||||y=0+
− ∂u

∂t
||||y=0−

= 2∂u∂t
||||y=0+

(61)
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and a state variable + in the following form:

F(V,+) = a$n sinh
−1

(
V
2V0

e
+
a

)
(62)

where + undergoes its own time evolution

d+
dt

= G(V,+). (63)

While there are other forms for state variable evolution, we have chosen to use the aging law [Marone, 1998]

G(V,+) =
bV0
Dc

(
e

f0−+
b − V

V0

)
, (64)

where state can evolve in the absence of slip and may therefore be more appropriate for models account-
ing for the period of interseismic loading. Here f0 is a reference friction coefficient for steady sliding at slip
velocity V0, a and b are dimensionless parameters characterizing the direct and state evolution effects,
respectively, and Dc is the state evolution distance.

The analysis for stability of steady frictional sliding described by equations (60) and (62) has been done by
Ruina [1983], Rice and Ruina [1983], Gu et al. [1984], Ranjith and Rice [1998], and Rice et al. [2001]. In the case
of antiplane perturbations from steady sliding between identical solids, instability occurs for wave numbers
below a critical wave number kcr, which in the quasi-static limit is

kcr =
2(b − a)$n

"Dc
. (65)

This analysis has important consequences on the numerical discretization because it defines a
critical wavelength:

h∗ = 2π
kcr

=
π"Dc

$n(b − a) , (66)

which must be well resolved by the grid to ensure accuracy of the numerical solution [Rice, 1993]. Note that
other authors [Rice, 1993; Lapusta et al., 2000; Kaneko et al., 2011] employ a slightly different dimensionless
prefactor when defining h∗, based on the particular numerical discretization technique.

It is essential to resolve not only the nucleation zone but also the region of rapid strength degradation
immediately behind the tip of a propagating rupture. The latter is typically much smaller than h∗ and
involves the rate-and-state parameters a and b in a different manner. Ampuero and Rubin [2008] show that
under many conditions, this characteristic length scale for the aging law can be expressed as

Lb = "Dc∕($nb). (67)

We later ensure that both h∗ and Lb are adequately resolved in our simulations.

7. Time-SteppingMethod

To evolve the system in time we solve the static elasticity equation (58) (with discretization (59)) with
time-dependent boundary conditions defined in section 4. The boundary condition at the fault is given
by imposing the slip obtained by enforcing friction, as detailed below. The system is loaded at the remote
boundary y = Ly with a displacement boundary condition at rate Vp∕2, with Vp on the order of 35 mm/a.
Thus, the boundary conditions are given by

gf (z, t) = Δu(z, t)∕2 (68)

gs( y, t) = 0, (69)

gd( y, t) = 0, (70)

gr(z, t) = Vpt∕2. (71)
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The radiation damping approximation of inertial effects allows us to express shear stress on the fault as

* = *qs − ,V (72)

in which *qs = " ∂u
∂y

||||y=0
is the shear stress obtained from solving the quasi-static equations and , = "∕(2cs) is

half the shear-wave impedance. Equating * with the fault strength yields the condition

*qs − ,V = F(V,+). (73)

In the following time-stepping algorithm, the fields refer to their discrete counterparts. The algorithm is
written generally in forward Euler form in equations (77)–(78), but we use MATLAB’s explicit, fourth-order
Runge–Kutta solver ode45 that provides error estimation and thus adaptive selection of time steps. Taking
slip Δun and state +n as known at time tn, the time-stepping algorithm is as follows:

1. Use Δun to set the displacement boundary condition at the fault:

gf (z, tn) = Δun∕2 (74)

and, along with the remaining boundary conditions set by (68)–(71), solve the linear system (59) to obtain
the displacement field u( y, z, tn).

2. Compute the shear stress component at the fault:

*nqs = " ∂u∂y
n||||y=0

. (75)

3. Equate the shear stress at fault with the fault strength:

*nqs − ,Vn = F(Vn,+n) (76)

and solve for slip velocity Vn (a nonlinear equation solved through a safe-guarded Newton method).
4. Update state + and slip Δu on the fault by explicitly integrating with the now known slip velocity:

Δun+1 = Δun + ΔtVn, (77)

+n+1 = +n + ΔtG(Vn,+n) (78)

and return to step 1.

The time scale governing state evolution in equation (78) is ∼Dc∕V . Because slip velocity V is close to zero
during the interseismic period, time steps can be large until an event begins to nucleate at which point the
time step decreases appropriately in order to fully resolve quasi-dynamic rupture.

8. Two-Dimensional Convergence Tests

We next verify the accuracy and stability of our numerical method through rigorous convergence tests.
While the governing equations are nonlinear, we can still construct an exact solution that permits us to
quantify error as a function of grid spacing. The specific procedure we employ is known as the method of
manufactured solutions [Roache, 1998]. We first write down some arbitrary displacement field u∗( y, z, t).
By itself, this will not necessarily satisfy the governing equations and boundary conditions. However, any
differences that arise in the equations are then added as boundary data and source terms. Thus, we manu-
facture a solution which satisfies the (58) with a source term (which can be physically interpreted as a body
force) then use the known manufactured solution to set the boundary data at each time step. As outlined in
the time-stepping algorithm in section 7, the boundary data at the fault are updated at each time step by
computing the slip velocity obtained by equating shear stress with fault strength. The state variable is also
updated at each time step, so we must add another source term to the state evolution equation.

The manufactured solution u∗ is constructed to mimic the behavior we expect to see in nature, where the
fault creeps steadily at depth at approximately Vp and the fault near the surface slipping almost entirely
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Figure 3. Material properties for our 2-D problems. The sedimentary basin of width W and depth D is idealized as a
semiellipse. The shear modulus increases smoothly from a small value within the basin, "in, to a reference value "out
outside the basin, over a short distance at the basin edges. H is the seismogenic depth.

during brief episodic rupture events. Letting - denote the amount of slip in each rupture, we manufacture
the solution

u∗( y, z, t) = -
2
K(t).( y, z) +

Vp
2
t
[
1 − .( y, z)

]
+ *∞

"(Ly, z)
y, ( y, z) ∈ [0, Ly] × [0, Lz], t ≥ 0 (79)

where fields marked with an ∗ refer to the exact solution. The spatial dependence is defined by the
dimensionless function

.( y, z) = H(H + y)
(H + y)2 + z2

, (80)

in which H plays the role of the locking (or seismogenic) depth and 0 ≤ .(0, z) ≤ 1. As we expect the
majority of slip to occur near Earth’s surface z = 0, .( y, z) is constructed so that at the fault y = 0 it takes the
form of a normalized Lorentzian distribution:

.(0, z) = H2

H2 + z2
. (81)

The time dependence K(t) for the manufactured solution is chosen so that the system undergoes an inter-
seismic period of slow loading at the plate rate Vp before transitioning into a short coseismic period in which
rupture occurs with slip velocity increasing over many orders of magnitude. For the particular form of K(t)
we take

K(t) = 1
/

[
tan−1

(
t − t̄
tw

)
+ /

2

]
+

Vmin

-
t, ≥ 0 (82)

where parameter tw defines an event duration, t̄ defines when the event occurs, and Vmin defines a minimum
slip velocity. If Ly is taken sufficiently large, *∞ defines the remote stress.

We choose a semiellipse to idealize the geometry of the sedimentary basin, so that the shear modulus varies
smoothly within the domain:

"( y, z) =
"out − "in

2

[
tanh

(
r − r̄
rw

)
+ 1

]
+ "in, ( y, z) ∈ [−Ly, Ly] × [0, Lz], (83)

where r = y2 + c2z2, for parameter c, the ratio between major and minor axes of the ellipse (Figure 3). For
basin of widthW and depth D, c = (W∕2)∕D. The shear modulus "( y, z) assumes a low, constant value of
"in inside the sedimentary basin defined by an ellipse. At r = r̄, " increases smoothly with increasing r over a
short width defined by rw to a new value "out outside of the basin where the material is stiffer.

One can check that u∗( y, z, t) in (79) solves equation (58) with a source term in the domain. The initial
conditions and boundary data are also defined by u∗( y, z, t). The slip along the fault is given by

Δu∗(z, t) = 2u∗(0, z) = -K(t).(0, z) + Vpt [1 − .(0, z)] (84)

and the shear stress from quasi-static equilibrium at the fault is given by

*∗qs(z, t) = "(0, z)∂u
∗

∂y
||||y=0

= "(0, z)
[
-
2
K(t)∂.∂y (0, z) −

Vp
2
t
∂.
∂y (0, z) +

*∞
"(Ly, z)

]
. (85)
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Table 1. Model Parameters Used
for the Manufactured Solutiona

Parameter Value

Ly 40 km
Lz 40 km
H 8 km
W 24 km
D 6 km
r̄ (W∕2)2 km
rw 20 km
"in 18 GPa
"out 24 GPa
!in 2600 kg/m3

!out 3000 kg/m3

$n 50 MPa
a 0.015
b 0.02
Dc 0.2 m
Vp 10−9 m/s
V0 10−6 m/s
f0 0.6
Vmin 10−12 m/s
tw 10 s
t̄ 35 a
tf 70 a
*∞ 31.73 MPa

aWe take as the remote stress

*∞ = $na sinh−1(
Vp
2V0

e+p∕a),
where +p = f0 − b ln(Vp∕V0) cor-
responds to steady state value
at sliding velocity equal to the
plate rate Vp .

The slip velocity is

V∗(z, t) = 2∂u
∗

∂t |y=0 = -K ′(t).(0, z) + Vp [1 − .(0, z)] . (86)

The conditions

-
2
F′(t) ≥ 0,

"out

H

Vp
2
tf ≤ *∞, (87)

where tf is the final time of simulation ensure that *∗ and V∗ share the
same sign (and are both positive), which is a necessary condition for
well posedness of this problem [Kozdon et al., 2011].

We expect that slip near the surface catches up with slip at depth,
which is approximately achieved by setting - = Vpt̄∕2 − Vmin t̄. Insert-
ing *∗ and V∗ into equation (73) allows us to solve for +∗. Thus, the
manufactured solution requires adding a source term to the state
evolution law:

d+
dt

= G(V,+) + s(z, t) (88)

where the source term s(z, t) is solved for by substituting into
equation (88) the exact solutions +∗(z, t) and V∗(z, t).

The parameters used for this solution and associated convergence
tests are given in Table 1. Note that we assume depth independent
values of the frictional parameters a and b, which differs from our
application problem in section 8. Properties of the solution are shown
in Figures 4 and 5.

In discretizing the computational domain we take Ly = Lz and
N ∶= Nz = Ny . As described in section 6, our grid spacing hmust be

small enough to resolve the process zone Lb = min("Dc)∕($nb) where the minimum is taken over the fault.
For the parameters we have chosen for the manufactured solution, Lb ≈ 3.6 km, and all convergence test
simulations resolve Lb with a minimum of five grid points. We time step using MATLAB’s ode45 solver with a
relative tolerance of 10−9.

Table 2 lists the relative error between the exact solution and numerical approximation in both the discrete
H norm defined by (49) and a modified discrete energy norm at the end of the simulation t = tf . The relative
error in the discrete H norm is given by

ErrorH(h) =
||!∗ − !||H
||!∗||H

(89)
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Figure 4. Slip profiles of the manufactured solution plotted every 5 a (solid) during the interseismic period (V ≤ 1 mm/s)
and every 5 s (dashed) during the quasidynamic period. During the interseismic period, the fault remains relatively
locked near the surface while creeping at depth. Once the event nucleates, slip near the surface catches up with slip
at depth.
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Figure 5. (a) Surface slip velocity over entire simulation period of 70 years, where values range over 10 orders of
magnitude. (b) Zoom of surface slip velocity in the 20 min interval surrounding the quasi-dynamic rupture event.

where !∗ is the exact solution evaluated at the spatial grid used to obtain the discrete approximation !.
We also compute the error made using the energy norm (50) but modified for the quasi-static problem by
neglecting kinetic energy. Thus, the energy norm is

||!||2E =
1
2
!T (&"

y +&"
z )! (90)

with associated relative error given by

ErrorE(h) =
||!∗ − !||E
||!∗||E

. (91)

Figure 6 shows that in both the discrete H and the energy norm, we achieve second-order convergence,
as expected. For any fixed grid spacing h, the error at time t for a finite time simulation 0 ≤ t ≤ T will be
bounded by an O(h2) constant [Gustafsson et al., 1995]. There remains the question of whether error will
continue to increase over multiple earthquakes. In the next section we simulate earthquakes sequences, in
which the solution always enters a limit cycle composed of periodic sequences of earthquakes. We specu-
late that for an exact time-stepping method, the spatial error associated with the semidiscrete equations
also enters a related limit cycle, rather than continuing to grow during each cycle. That being said, errors
from time integration might ultimately begin to accumulate over multiple cycles, causing the overall error
to grow in time. However, the simulations presented in this work require only ∼10 events to spin up to
the limit cycle, and after this spin-up period the numerical solutions show negligible changes between
subsequent cycles.

9. Earthquake Cycles in Basins

Having verified in the previous section that our numerical method furnishes a solution which converges to
the true solution under mesh refinement, we apply the method to study how sedimentary basins influence
the earthquake cycle. Frictional properties are depth dependent (Table 3 and Figure 7). The fault transi-
tions from velocity-weakening to velocity-strengthening over a finite distance, beginning at seismogenic
depth H = 12 km. Our specific focus is on the role of elastic heterogeneity, and we therefore use the same
velocity-weakening properties within the basin as below it, rather than making the section of the fault
within the basin velocity-strengthening. In the same spirit, we use a constant normal stress of $n = 50 MPa
at all depths. Future work should explore more realistic depth variations of frictional properties and normal
stress and determine their contribution to complexity in earthquake sequences, but such an effort is beyond

Table 2. Relative Error in the Discrete H and Energy Normsa

N ErrorH (h) Rate ErrorẼ (h) Rate

26 1.847 × 10−5 – 4.697 × 10−4 –
27 5.602 × 10−6 1.721 1.161 × 10−4 2.016
28 1.336 × 10−6 2.068 2.886 × 10−5 2.008
29 3.471 × 10−7 1.945 7.191 × 10−6 2.005
210 8.436 × 10−8 2.039 1.794 × 10−6 2.003

aThe rate of convergence approaches 2, as expected for a
method with second-order accuracy.

the scope of this initial work.

To constrain the shear modulus " within and
outside the basin, we queried the Southern
California Earthquake Center (SCEC)
Community Velocity Model (CVM-H v. 11.9.1,
see http://scec.usc.edu/scecpedia/CVM-H,
Tape et al. [2009]) at depth at various regions
in Southern California. Average values of " in
the upper ∼5 km in basin regions along the
San Andreas Fault are roughly between 10
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Figure 6. Relative error in the discrete H and energy norms as a function of grid spacing h. The slope of the line reflects
the second-order accuracy of the method.

and 20 GPa (and even lower near Earth’s surface) and increase with depth before leveling off to 35–40 GPa
around 5–10 km depth (Figure 8a). As also seen in the same figure, outside of basin regions " assumes
average values closer to 31–35 GPa in the upper ∼5 km, with a representative value of 34 GPa (Figure 8b).

We conduct a parameter study by varying basin depth D and basin shear modulus "in with all other param-
eters held fixed. The two basin depths D considered are 4 and 8 km, corresponding to 1/3 and 2/3 times
the seismogenic depth H, respectively. The shear modulus outside the basin is fixed at "out = 36 GPa, and
"in assumes values of either 8 or 16 GPa. All simulations are done with state evolution distance Dc= 8 mm,
which is artificially enhanced by several orders of magnitude from laboratory values. The process zone
length scale Lb is resolved with approximately five grid points for all simulations. While it is desirable to
use smaller values of Dc to have smaller nucleation zones, it is beyond our current computational capabil-
ities. We also verify in Appendix C that our artificial truncation of the computational domain has minimal
influence on the results.

The initial conditions, corresponding to steady creep at Vp along the entire fault, are

V(z, 0) = Vp, (92)

Δu(z, 0) = 0, (93)

Table 3. Parameters Used in the
Earthquake Cycle Simulationsa

Parameter Value

Ly 24 km
Lz 24 km
W 24 km
D variable
H 12 km
r̄ (W∕2)2 km
rw 1 + (W∕2)∕D km
"in variable
"out 36 GPa
!in variable
!out 2800 kg/m3

$n 50 MPa
a 0.015
b depth variable
Dc 8 mm
Vp 10−9 m/s
V0 10−6 m/s
f0 0.6
*∞ 24.82 MPa

aWe take as the remote stress
*∞ = $na sinh−1(

Vp
2V0

ef0∕a).

*(z, 0) = *∞, (94)

+(z, 0) = a ln
[
2V0
Vp

sinh
( *∞ − ,Vp

$na

)]
, (95)

where the parameters for these simulations are given in Table 3. How-
ever, after a few cycles, the system evolves into event sequences that
appear to be independent of these initial conditions. The boundary
data are

gf (z, t) =
1
2
Δu(z, t), (96)

gs( y, t) = gd( y, t) = 0, (97)

gr(z, t) =
*∞Ly
"(Ly, z)

+
Vp
2
t. (98)

Our primary results are presented in two comparative figures (Figures 9
and 10), which show snapshots of cumulative slip for various parameter
values. Slip is plotted with a solid line every 5 a during the interseismic
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Figure 7. Depth dependence of frictional parameters a and a − b. Events nucleate in the seismogenic region above the
seismogenic depth H = 12 km (for these simulations), where a−b < 0 so that the fault is velocity weakening. It transitions
to velocity strengthening at depth where a − b > 0.

period, which we define as max(V)≤ 1 mm/s and plotted with a dashed line every 1 s during a
quasi-dynamic event in which max(V) > 1 mm/s, where the max is taken over the entire fault.

In the first simulation (Figure 9), we set "in = 8 GPa and !in = 2000 kg/m3 and vary basin depth D. (Note that
the density ! enters only through the radiation-damping term in the calculation of slip velocity at the fault
from equation (73) and is not present in the equilibrium equation (58).) Figure 9a is the reference case for no
basin. Interseismic creep extends up to about 8–9 km from the surface. Events nucleate periodically in the
seismogenic zone at a depth of about 10 km, accumulating approximately 2–3 m of slip during each event.
Figure 9b shows the results for a 4 km deep basin (D = H∕3), with all other parameters unchanged. Events
nucleate in the seismogenic region at about the same depth. Two types of rupture occur in succession,

Figure 8. Profiles of shear modulus " from the SCEC CVM-H at locations both (a) within and (b) outside sedimentary
basins in the Los Angeles and Salton Sea areas. (c) Locations shown, figure courtesy of C. Tape.
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Figure 9. Snapshots of cumulative slip profiles for Dc = 8 mm and "in = 8 GPa. Solid blue profiles plotted at 5-a intervals
during interseismic period when max(V) ≤ 1 mm/s, dashed red profiles plotted at 1 s intervals during quasi-dynamic
rupture. (a) No basin. (b) Four kilometer deep basin (D = H∕3). (c) Eight kilometer deep basin (D = 2H∕3).

subbasin and surface-rupturing events. Subbasin ruptures produce several meters of slip, principally at
depths greater than about 3 km. In these events, the sedimentary basin prevents rupture penetration to
the surface, as evident from the sharp contours in the slip profiles near the lower edge of the basin. As dis-
cussed later in more detail, the subbasin event leaves a stress concentration at the bottom of the basin.
With the help of this stress concentration, the next event penetrates through the basin to the surface in a
surface-rupturing event. The stress concentration at the basin bottom is relieved, and the next event is again
a subbasin one. This alternating sequence of subbasin and surface-rupturing events occurs periodically.

Increasing the basin depth to 8 km, (D = 2H∕3, Figure 9c), the number of subbasin events preceding a
surface-rupturing event increases from one to three. The first and third subbasin events barely penetrate
past the basin depth, whereas the second subbasin event is able to penetrate farther although it is still
unable to reach the surface. The subbasin events are smaller in extent and only introduce about 1–2 m of
slip at depths near the edge of the basin.

We attribute the occurrence of different sized events to the elastic heterogeneity of our model. It is impor-
tant to point out that variability in event size, in particular the emergence of small events, also occurs for
faults in uniform half-spaces as the nucleation length h∗ is decreased for fixed fault dimension [Lapusta
and Rice, 2003]. A potential concern here is that the reduced shear modulus within the basin is decreasing
h∗ (see equation (66)), thereby permitting small earthquakes. However, at least for the shallow basin case
(Figure 9b), nucleation occurs well outside the basin and it is thus unlikely that the basin directly influences
the nucleation and early growth of the rupture. That case provides clear evidence that elastic heterogeneity
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Figure 10. Snapshots of cumulative slip profiles for Dc = 8 mm and "in = 16 GPa. Solid blue profiles plotted at 5-a inter-
vals during interseismic period when max(V) ≤ 1 mm/s, dashed red profiles plotted at 1 s intervals during quasi-dynamic
rupture. (a) No basin. (b) Four kilometer deep basin (D = H∕3). (c) Eight kilometer deep basin (D = 2H∕3).

can, by itself, introduce complexity in earthquake sequences. The same is not true for the deeper basin case
(Figure 9c), where accelerating creep in the nucleation zone extends into the lower part of the basin.

In Figure 10 we study the influence of basin sediment stiffness by setting "in = 16 GPa and !in = 2560 kg/m3.
Figure 10a is the reference case for no basin. While this case is identical to that shown in Figure 9a, we
include it for ease of comparison. In contrast to the more compliant basin case shown in Figure 9b, the 4 km
deep basin (Figure 10b) now has only minimal influence on the earthquake cycle, and all events break
through to the surface. Subbasin events only emerge with a deeper basin in this case (Figure 10c).

We thus conclude from our limited parameter space study that subbasin events only emerge for suf-
ficiently compliant and/or deep basins. A natural extension of this work would be to map out event
sequence styles in the two-dimensional parameter space of basin size and rigidity contrast relative to the
surrounding material.

Subbasin ruptures relieve some of the stress accumulated during interseismic loading, thus delaying the
occurrence of surface-rupturing events. Recurrence intervals of surface-rupturing events, which are the only
ones accessible through surface paleoseismic trenching studies, are therefore longer. To better understand
the timing of surface-rupturing events, we plot surface slip velocity as a function of time for our simula-
tions in Figure 11. For the simulations in Figure 9 with "in = 8 GPa, the recurrence intervals are approximately
90, 150, and 220 years for D = 0, 4, and 8 km, respectively, as seen in Figure 11a. In this case the presence of a
basin gives rise to subbasin events, which delay the occurrence of the surface-rupturing events. Figure 11b
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Figure 11. Surface slip velocity history, illustrating influence of basins on recurrence intervals of surface-rupturing
events. Shown are results for three basin depths D (0, 4 km, and 8 km) for (a) "in = 8 GPa and (b) "in = 16 GPa.

Figure 12. Comparison of shear stress (a) before, (b–i) during, and (j) after a subbasin event (red) and a surface-rupturing
event (blue). The surface-rupturing event penetrates through the basin with the assistance of the residual stress
concentration left by the subbasin rupture. Shown for D = 4 km (D = H∕3), "in = 8 MPa (same as Figure 9b).
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shows the surface slip velocity for "in = 16 GPa, and the recurrence interval is about 90, 90, and 120 years
for D = 0, 4, and 8 km, respectively. The lack of difference between the D = 0 and 4 km cases is explained by
the absence of subbasin events for the stiff, shallow basin case. For these parameter choices the recurrence
interval of surface-rupturing events increases with increasing basin depth. Further parameter space studies
are warranted to quantify the dependence of recurrence interval on basin properties, but they are beyond
the scope of this work.

To further understand the emergence of subbasin ruptures, we examine in more detail the simulation
shown in Figure 9b. In Figure 12 we compare the shear stress * along the fault before and during subbasin
and surface-rupturing events. The primary difference in prestress conditions is the stress concentration in
the basin (at a few kilometers depth) that is left when a subbasin event fails to reach the surface. This feature
is only present before a surface-rupturing event, as shown in Figure 12a (20 years before the events begin).
Otherwise, the stress fields are nearly identical. Both have an additional stress concentration around 9 km
depth due to interseismic creep extending slightly past the transition zone into the velocity-weakening
zone. Another stress concentration, which can be seen in Figure 12b at around 8 km depth, emerges after a
failed attempt to rupture.

Nucleation of both the subbasin and surface-rupturing events appears to be identical. Both begin around
10 km depth in a nucleation zone having width approximately equal to h∗ (about 3 km in this case). The
initial instability develops into a bilaterally expanding rupture (Figures 12c–12f ). However, as shown in
Figures 12g–12i, when the subbasin rupture reaches the sedimentary basin, the rupture slows down and
arrests before reaching the surface. In contrast, the surface-rupturing event reaches the residual stress
concentration left by the previous subbasin event and propagates all the way through the basin to the sur-
face. Figure 12j shows the shear stress profiles 20 years after each event type, illustrating the residual stress
concentration left by the subbasin rupture.

10. Summary andDiscussion

We have developed an efficient numerical method for simulating earthquake sequences with a
finite-difference discretization of the equations governing the off-fault material. While most current
methods for earthquake cycles are based on a boundary integral or boundary element framework and are
therefore limited to homogeneous elastic half-spaces, our method naturally handles heterogeneous mate-
rial properties. The method can also be extended to incorporate off-fault inelastic response, as discussed
by Erickson and Dunham [2012]. The volume discretization is obtained using finite difference operators
satisfying a summation-by-parts (SBP) rule. The fault is governed by rate-and-state friction, and the system
is loaded through a remote displacement boundary condition. Boundary conditions are enforced weakly
at the edges of the computational domain through the simultaneous-approximation-term (SAT) method.
The SBP-SAT framework leads to a semidiscretization of the dynamic problem which is provably strictly
stable. We then disregard inertia in the momentum balance and instead employ the radiation-damping
approximation. A natural next step would be to rigorously include inertial dynamics during the coseismic
phase. Our time-stepping algorithm efficiently integrates the system through the interseismic period and
quasi-dynamic rupture events. Although the equations are nonlinear and material properties are spatially
variable, we manufactured an exact solution which we use to verify that our numerical method converges
to the exact solution at the expected rate.

We then used our numerical method to study how the earthquake cycle is affected by the presence of
a compliant sedimentary basin with elastic properties similar to those found in Southern California. The
basin is represented by a semiellipse of reduced shear modulus. By varying basin depth and stiffness, we
find that deep, compliant basins give rise to sequences of alternating subbasin and surface-rupturing
events. The subbasin events are predominantly confined to depths at or below the basin depth (although
some penetrate partially into the basin) and are much smaller than the surface-rupturing events. They do,
however, delay the occurrence of the surface-rupturing events, which are consequently larger than in sim-
ulations lacking subbasin events. It is possible that a similar phenomenology of alternating subsurface
and surface-rupturing events might occur in subduction zones, with most megathrust events stopping
at the downdip limit of the accretionary prism and only a few breaking through to the trench like in the
2011 Tohoku-oki event. Additional investigations in an actual subduction zone geometry, and with realistic
depth-dependent stresses and frictional properties, are needed.
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Figure 13. (a) Map of the Imperial Valley fault, from Rockwell and Klinger [2013]. (b) Slip distribution (m) for the 1979
event, as inferred by Archuleta [1984], from Mai [2014]. (c) Surface slip distribution in the 1940 event, from Rockwell and
Klinger [2013].
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Examination of surface velocity profiles during the interseismic periods before subbasin and surface-
rupturing events (not shown) reveals nearly identical motions. Thus, geodetic measurements could not be
used to predict rupture mode. This echoes the conclusions of Lapusta and Rice [2003] that the nucleation
process of both small and large events is essentially the same. The ultimate extent of rupture is controlled
instead by the stress conditions encountered by the growing rupture, which are set here by the past history
of rupture as influenced by elastic heterogeneity.

It should be noted that Lapusta and Rice [2003] have shown that nonsurface rupturing events emerge
in a homogeneous earthquake cycle model with sufficiently small nucleation size h∗. Since h∗ is directly
proportional to the shear modulus ", the compliant basin materials reduce h∗ near the surface, and one
might worry that the smaller, subbasin events in our simulations arise simply from the reduced h∗. However,
nucleation in our shallow (D = 4 km) simulations occurs well below the lower edge of the basin and in a
manner that is effectively identical to nucleation in a homogeneous medium. The confinement of slip in
subbasin events is thus caused by elastic heterogeneity. Simulations employing a smaller h∗ than we have
been able to use here will undoubtedly reveal even more complex earthquake sequences and a wider range
of event sizes, but we suspect that the emergence of subbasin events due to elastic heterogeneity is a robust
feature of this system in certain parts of parameter space.

The subbasin events seen in our simulations with a 4 km deep, compliant basin (Figure 9b) have slip distri-
butions that are similar to several recent strike-slip events in having a shallow slip deficit. In our simulations,
that deficit is ultimately relieved during a much larger event with extensive slip near and at the surface,
rather than by shallow creep. The two most recent large events on the Imperial Fault (Figure 13a) offer
a unique example of these two rupture styles. In the 1979 Mw 6.5 Imperial Valley earthquake, most slip
occurred beneath a sedimentary layer approximately 4 km thick, reaching a maximum of 1.5–2 m at nearly
10 km depth [Hartzell and Heaton, 1983; Archuleta, 1984] (Figure 13b). This is quite different than the 1940
Mw 7.0 Imperial Valley event, which featured extensive surface slip [Sharp et al., 1982]. The northern half of
the 1940 rupture took place on the same section of fault as the 1979 event but with much more slip. In fact,
a recent study by Rockwell and Klinger [2013] suggests an average of 5.5 m slip at the surface over the central
section of the 1940 rupture near the U.S.-Mexico border, near the hypocenter of the 1979 event (Figure 13c).
The patterns and amounts of slip in these earthquakes are somewhat similar to those shown in Figure 9b.
We do point out that the Imperial Fault does creep near the surface [Lyons et al., 2002], suggesting that the
behavior observed in our simulations persists when the shallow fault surface is velocity strengthening.

If the behavior seen in our simulations is common in nature, then there are important implications for seis-
mic hazard. Many faults overlain with sediments have minimal surface expression and, particularly in poorly
studied regions of the world, can go unrecognized. The 2003 Mw 6.5 Bam, Iran, earthquake is one such
example [Talebian et al., 2004; Fialko et al., 2005]. Yet as devastating as it was, there exists the possibility that
subsequent events might be substantially larger. Further study is warranted to explore a wider range of fric-
tional properties and more realistic depth dependence of normal stress, as well as the inelastic response of
sediments [Kaneko and Fialko, 2011]. Nonetheless, our initial study offers one explanation for the shallow
slip deficit that may help explain the behavior of faults that extend into sedimentary layers or basins but lack
appreciable shallow aseismic creep.

Appendix A: Extension of the Homogeneous Boundary Data Assumption

For linear partial differential equations, the definition of well posedness means that the problem exhibits a
unique solution depending continuously on the input (initial and boundary conditions, or possible source
terms) of the problem. This last requirement means that small perturbations in the input data lead to small
perturbations in the solution. This property is ensured if one can obtain an estimate for the solution u( y, t)
of equation (1) of the following form:

||u(⋅, t)|| ≤ 1e2 t||u0(⋅)|| (A1)

for a suitable norm ||⋅|| and constants 1, 2 which are independent of the initial data (2)–(3) [Gustafsson et al.,
1995]. In the energy method, estimate (A1) follows from integration of (6)–(7), with 1 = 1 and 2 = 0 with the
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suitable norm being the total mechanical energy of the system. In the discrete energy method, the discrete
analog of estimate (A1) is

||!||h ≤ 1de2dt||!0||h (A2)

for a suitable discrete norm || ⋅ ||h, grid function ! and constants 1d, 2d independent of !0 (and constants
1d, 2d are, in general, different than 1, 2 obtained for the continuous problem). The definition of strict
stability means that the growth rates in the energy estimates satisfy 2d ≤ 2 + O(h).

Estimate (A1) is expressed for a problem with homogeneous boundary data (gl = gr = 0) and no source
terms; however, a similar estimate can be expressed in terms of all the (possibly inhomogeneous) data
of the problem. In this work, we obtain estimates for the case of homogeneous boundary data and no
source terms. This is for simplicity in the analysis only. One can always transform a problem like (1)–(5) with
inhomogeneous boundary data to one with zero boundary data plus a source term. Duhamel’s principle
guarantees that if one can show the problem with no source function is well posed, then the problem with
a source function will be well posed as well [Gustafsson et al., 1995]. Thus, in our analysis in this work we
always assume boundary data to be zero, for simplicity, with the understanding that the results extend to
the problem with general boundary data.

Appendix B: Derivation of Penalty Parameters Through the Discrete
EnergyMethod

The remaining operators defined in section 3 are

" = 1
h

⎡
⎢
⎢
⎢
⎢
⎢⎣

−1 1
− 1

2
0 1

2
⋱
− 1

2
0 1
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⎥
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Taking %0 = −1 and & = 1 in the 1-D semidiscrete energy estimate, equation (23) simplifies to

d
dt

(1
2
!Tt $!!t +

1
2
!T&"!

)
= !Tt [%1,N" + ,N"BS + (,N"BS)T ]! (B1)

where we have taken gl = gr = 0 (done for analysis only, see Appendix A), and ,N = %N%TN and ,0 = %0%T0 .
Thus, for a semidiscrete energy estimate, the matrix

- ∶= %1,N" + ,N"BS + (,N"BS)T (B2)

must negative semidefinite in order for the energy to decay at least as fast as its continuous counterpart.
Following the analysis of Dorostkar [2012], we rewrite - as

- = -̃ + -̃T =
(%1
2
,N" + ,N"BS

)
+
(%1
2
,N" + ,N"BS

)T
(B3)

and consider the conditions under which -̃ is negative semidefinite (which depends on the operator )). For
our case (second-order accuracy on the boundary),

-̃ = −1
h
,N"1h (B4)
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where
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Stability follows if 1h is positive semidefinite. Applying the Gershgorin circle theorem, 1h is symmetric,
positive semidefinite for %1≤ - 13

h
which completes the 1-D analysis for stability of the semidiscretization (8).

Note that this technique for deriving constraints on %1 is extendible to higher-order accurate SBP operators;
however, one may find tighter bounds through the methods described in Mattsson et al. [2009]. It is also
worthy to note that stability of these methods is gained by a particular type of transition to one-sided
differences at the boundaries which can, in theory, reduce the order of accuracy of the method. We have
used a second-order method at the interior and at the boundary, thus yielding a globally second-order
accurate method. If one uses higher-order accurate methods, however, one generally obtains a method
that is in fact higher than the lowest order obtained at the boundary (see Svärd and Nordström [2007, and
references therein]).

For the 2-D analysis we also assume homogeneous boundary data 0f = 0r = 0s = 0d = 0, as done in
section 2 (also see Appendix A). Taking %s = −1, %d = −1, and & = 1 simplifies (53) to

d
dt
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2
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2
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where ,0 = %y0%y
T
0 , ,̃0 = ,0 ⊗ /z , and ,N = %yN%y

T
N, ,̃N = ,N ⊗ /z .

Now consider the matrix

(̃ = ,̃0"
[(%∗

2
/y + (y)y

)
⊗$z

]
(B8)

= − 1
hy

[,̃0"(1h ⊗$z)] (B9)

where %∗ = %f = %r and 1h is the symmetric matrix defined in the 1-D analysis above for h = hy . As in
section 3, our discretization is strictly stable if the semidiscrete problem dissipates energy at least as fast as
its continuous counterpart. From the 1-D analysis, we know the conditions for which 1h is positive semidef-
inite. Since the matrix $z is symmetric positive definite, (̃ will be negative semidefinite under the same
condition derived in the 1-D analysis, namely, %∗ ≤ − 13

hy
, and we have our energy estimate as described

in section 3.

Appendix C: Truncating the Computational Domain

The computational domain must be artificially truncated in the +y and +z directions. We confirm here that
our choice of domain size (Ly = Lz = 24 km) does not influence our results. We do this by doubling the
size of the computational domain to Ly = Lz = 48 km, keeping all other parameters unchanged from those
in Figure 9b, other than that we take Dc = 16 mm. We considered a larger value of Dc for computational
ease as it furnishes a larger h∗ which can thus be resolved with a coarser grid. Figure C1 compares these two
simulations, zoomed in to the upper 24 km of the fault.
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Figure C1. Snapshots of cumulative slip profiles for a 4 km deep basin (D = H∕3) with Dc = 16 mm, "in = 8 GPa, and the
size of computational domain doubled. Ly = Lz = 48 km. Solid blue profiles plotted at 5-a intervals during interseismic
period when max(V) ≤ 1 mm/s, dashed red profiles plotted at 1 s intervals during quasi-dynamic rupture.
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