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Abstract5

We present a numerical method for the simulation of earthquake cycles on a 1D fault6

interface embedded in a 2D homogeneous, anisotropic elastic solid. The fault is governed by7

an experimentally motivated friction law known as rate-and-state friction which furnishes a set8

of ordinary differential equations which couple the interface to the surrounding volume. Time9

enters the problem through the evolution of the ODEs along the fault and provide boundary10

conditions for the volume, which is governed by quasi-static elasticity. We develop a time-11

stepping method which accounts for the interface/volume coupling, and requires solving an12

elliptic PDE for the volume response at each time step. The 2D volume is discretized with13

a second order accurate finite difference method satisfying the summation-by-parts property,14

with boundary and fault interface conditions enforced weakly. This framework leads to a15

provably stable semi-discretization. To mimic slow tectonic loading, the remote side-boundaries16

are displaced at a slow rate, which eventually leads to earthquake nucleation at the fault.17

Time stepping is based on an adaptive, fourth order Runge-Kutta method and captures the18

highly varying time-scales present. The method is verified with convergence tests for both the19

orthotropic and fully anisotropic cases. An initial parameter study reveals regions of parameter20

space where the systems experiences a bifurcation from period one to period two behavior.21

Additionally, we find that anisotropy influences the recurrence interval between earthquakes,22

as well as the emergence of aseismic transients and the nucleation zone size and depth of23

earthquakes.24
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1 Introduction25

Modeling the full earthquake cycle poses numerous computational challenges. Interseismic26

periods between fault rupture last hundreds of years, punctuated by earthquakes that evolve27

on a time scale of seconds. The spatial scales that must be considered also encompass many28

orders of magnitude. Fault length is measured in kilometers while the process zone, an area29

directly behind the tip of a propagating rupture, must be resolved on the order of millimeters30

when using laboratory measured parameters (Noda, Dunham, et al., 2009). Additionally, faults31

in nature have nonplanar geometries, and the physical makeup of the materials that surround32

earthquake faults is complex and varying. Material anisotropy is present in the Earth’s crust,33

the upper mantle, the transition zone, the D" layer, and the inner core (Long and Becker, 2010)34

and seismic anisotropy can be observed through shear wave splitting, that is, when a shear35

wave splits into two components with different propagation speeds. This splitting has been36

observed in most igneous, metamorphic, and sedimentary rocks in the Earth’s crust (Crampin37

and Lovell, 1991), and is used to measure anisotropy along fault rupture zones (Cochran et al.,38

2003). While seismic anisotropy is present in the real world, many cycle models make the39

simplifying assumption of isotropic material properties (Lapusta, Rice, et al., 2000; Erickson40

and Dunham, 2014; Allison and Dunham, 2018).41

Methods currently used for simulating earthquake cycles can generally be broken into two42

broad categories: spectral boundary integral techniques, and numerical discretizations of off-43

fault volumes like finite difference and finite element methods. Hajarolasvadi and Elbanna44

(2017) detail the benefits and drawbacks of spectral boundary integral methods, namely, that45

they are computationally efficient (as they reduce 2D problems to 1D and 3D problems to 2D46

(Geubelle and Rice, 1995; Cochard and Madariaga, 1994)) and require no artificial truncation47

of the computational domain. However, these methods are currently limited to the simplifying48

assumption that the Earth’s material properties are homogeneous, isotropic and linear elastic.49

This motivates the use of volume-based numerical methods, such as finite element and finite50

difference methods which can account for material anisotropy, heterogeneity, and off-fault plas-51

ticity (Kaneko et al., 2008; Erickson and Dunham, 2014; Erickson, Dunham, and Khosravifar,52

2017; Allison and Dunham, 2018).53

In this work, where our focus is on anisotropic material properties, we elect to use a finite54

difference formulation satisfying a summation-by-parts (SBP) rule, with weak enforcement55

of boundary conditions through the simultaneous-approximation-term (SAT), which have the56

desirable property that the discretization is provably energy stable. This computational frame-57

work is an extension of that of Erickson and Dunham (2014) to incorporate material anisotropy.58

Our main focus is a parameter exploration of the homogeneous, anisotropic problem. The paper59

is organized as follows: In section 2 we define the governing equation and constitutive relations60

for an anisotropic elastic material. In section 3 we provide details of the spatial discretization61

and derive conditions that render the semi-discrete equations stable. In section 4 we provide62

details of the frictional fault that forms one boundary of the domain and describe the adaptive63

Runge-Kutta based time-stepping method. Section 5 is a linear stability analysis of frictional64

sliding for the anisotropic problem that extends the analysis done in Ranjith and Gao (2007).65

To verify our computational strategy, we perform convergence tests in section 6 and confirm66

that our numerical solution is converging at the expected rate. Results from our parameter67

varying study are detailed in section 7.68

2 Governing Equations69

We consider a vertical, strike-slip fault embedded in a 2D volume given by (y, z) ∈ (−Ly, Ly)×70

(0, Lz). We assume that the only non-zero component of displacement, denoted as u, occurs in71
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the x-direction and that motion is invariant in this direction, so that u = u(t, y, z). The fault,72

at y = 0, serves as a frictional interface embedded in an anisotropic, homogeneous material.73

Across the fault interface the components of traction are taken to be equal in magnitude but74

opposite in sign and the displacement u is allowed to have a jump. The jumps in displacement75

are governed by a friction law which couples the volume solution to a set of local auxiliary state76

variables governed by an ODE; the details of the frictional framework are given in Section 4.77

Since the domain is symmetric about the fault and the material properties are homogeneous,78

the solution across the fault will be anti-symmetric. Exploiting this symmetry allows us to79

consider the one sided domain (y, z) ∈ Ω = (0, Ly) × (0, Lz). In this setting, the anisotropic80

elastic wave equation is81

ρ
∂2u

∂t2
=

∂

∂y

[
µ1
∂u

∂y
+ µ2

∂u

∂z

]
+

∂

∂z

[
µ2
∂u

∂y
+ µ3

∂u

∂z

]
, (y, z) ∈ Ω, (1)

where ρ is the material density and µ1, µ2 and µ3; we assume that the elastic moduli satisfy82

µ1 > 0, µ3 > 0, and µ1µ3 > µ2
2. Using Hooke’s law, the relevant components of traction that83

will be needed later are:84

σxy(t, y, z) = µ1
∂u

∂y
+ µ2

∂u

∂z
(2a)

σxz(t, y, z) = µ2
∂u

∂y
+ µ3

∂u

∂z
. (2b)

We impose the following boundary conditions on ∂Ω:85

u(t, 0, z) = gL(t, z), (3a)
u(t, Ly, z) = gR(t, z), (3b)
σxz(t, y, 0) = 0, (3c)
σxz(t, y, Lz) = 0. (3d)

Condition (3c) corresponds to the Earth’s free surface and condition (3d) the assumption that86

the material below depth Lz exerts no traction on the overlying material. The displacement87

boundary condition data gL(t, z) is determined by the friction law and gR(t, z) imposes the88

remote tectonic loading; see Section 4. In order to derive parameters in the discretization, in89

Equation (1) we have retained the inertial term ∂2u/∂t2. Later, in order to make the problem90

more computationally tractable, this inertial term will be replaced with the radiation damping91

approximation (Rice, 1993) which will result in a modifications to boundary condition (3a).92

Energy-boundedness of the Solution: To ensure that the initial boundary value prob-93

lem (1)-(3) is well-posed we use the energy method. We assume homogeneous boundary con-94

ditions, with the understanding that the analysis for zero boundary data can be extended95

to non-homogeneous boundary conditions via Duhamel’s principal. Letting || · || denote the96

L2 norm, multiplying (1) by ∂u

∂t
, integrating over Ω and applying Green’s theorem on the97

right-hand side yields:98

1

2

∂

∂t

∥∥∥∥ρ∂u∂t
∥∥∥∥2 = Br +Bs +Bd +Bf − 1

2

∂

∂t

LyLz¨

0 0

[
∂u

∂y

∂u

∂z

] [
µ1 µ2

µ2 µ3

]∂u∂y∂u
∂z

 dz dy, (4)
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where the boundary terms are given by99

Br =

Lzˆ

0

(
µ1
∂u

∂t

∂u

∂y
+ µ2

∂u

∂t

∂u

∂y

) ∣∣∣
y=Ly

dz =

Lzˆ

0

(
∂u

∂t
σxy(t, y, z)

) ∣∣∣
y=Ly

dz, (5a)

Bf = −
Lzˆ

0

(
µ1
∂u

∂t

∂u

∂y
+ µ2

∂u

∂t

∂u

∂y

) ∣∣∣
y=0

dz =

Lzˆ

0

(
∂u

∂t
σxy(t, y, z)

) ∣∣∣
y=0

dz, (5b)

Bd =

Lyˆ

0

µ2
∂u

∂t

∂u

∂z
+

Lyˆ

0

µ3
∂u

∂t

∂u

∂z

∣∣∣
z=Lz

dy =

Lzˆ

0

(
∂u

∂t
σxz(t, y, z)

) ∣∣∣
z=Lz

dy, (5c)

Bs = −
Lyˆ

0

µ2
∂u

∂t

∂u

∂z
+

Lyˆ

0

µ3
∂u

∂t

∂u

∂z

∣∣∣
z=0

dy =

Lzˆ

0

(
∂u

∂t
σxy(t, y, z)

) ∣∣∣
z=0

dy. (5d)

Letting U = [u1 u2]
T allows us to define the norm100

‖U‖2Mµ
=

LzLy¨

0 0

UTMµU dy dz, Mµ =

[
µ1 µ2

µ2 µ3

]
. (6)

Here, Mµ is symmetric positive-definite due to the restrictions on the shear moduli given after101

Equation (1). The energy method is now complete, since we can write (4) as102

1

2

∂

∂t

∥∥∥∥√ρ∂u∂t
∥∥∥∥2 +

∥∥∥∥∥
[
∂u

∂y

∂u

∂z

]T∥∥∥∥∥
2

Mµ

 = Br +Bs +Bd +Bf , (7)

where the terms on the left of (7) correspond to the rate of change of kinetic and strain energy,103

respectively, and the terms on the right represent rate of work done on the elastic body by104

tractions on the boundaries. For zero boundary data, Br, Bs, Bd, and Bf vanish, and energy105

is conserved.106

3 Spatial Discretization107

Our aim is to discretize (1) and (3) in a provably stable and accurate way, with a semi-discrete108

estimate that mimics (7). To do this we will use finite difference approximations satisfying a109

summation-by-parts (SBP) rule with boundary and interface conditions enforced weakly using110

the simultaneous approximation term (SAT) method (Kreiss and Scherer, 1974; Kreiss and111

Scherer, 1977; Strand, 1994; Mattsson and Nordström, 2004). We begin by describing the 1D112

SBP operators and then move on to the Kronecker product construction of the 2D operators.113

We conclude the section by describing the full 2D discretization of (1) and (3) and then stating114

a previously derived stability result.115

Consider the 1D domain Ωy = [0, Ly] discretized into an evenly spaced grid of Ny+1 points.116

We let the grid points be yj = j hy for j = 0, 1, . . . , Ny with spacing hy = Ly/Ny. We let117

grid function pT = [p0, . . . , pNy ] be the interpolation of function p with pj = p(yj). The first118

derivative of p is approximated as:119

∂p

∂y
≈ D1p = H−1Qp. (8)
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Here the finite difference matrix D1 is of size (Ny + 1)× (Ny + 1). The matrix H is diagonal120

and positive and can be thought of as a numerical quadrature rule (Hicken and Zingg, 2013),121

namely122

ˆ Ly

0

pq dy ≈ pTHq. (9)

The matrix Q is an almost skew symmetric matrix with the property that123

Q+QT = B = diag[−1, 0, 0 . . . , 0, 1]. (10)

Operators with this structure are called SBP due to the identity124

qTHD1p = qTQp = qT
(
B−QT

)
p = qNypNy − q0p0 − qTDT

1 Hp, (11)

which discretely mimics integration by parts,125

ˆ Ly

0

q
∂p

∂y
dy = q (Ly) p (Ly)− q (0) p (0)−

ˆ Ly

0

∂q

∂y
p dy. (12)

One approach to defining a second derivative operator is to apply D1 twice:126

∂2p

∂y2
≈ D1D1p. (13)

One downside of this is that it increases the bandwidth of the operator. Thus we instead prefer127

to use the compact SBP second derivative operators of Mattsson and Nordström (2004):128

∂2p

∂y2
≈ D2p = H−1 (−M+BS)p. (14)

The matrix M is symmetric positive definite, and can be thought of as approximating the inner129

product of derivatives:130

ˆ Ly

0

∂p

∂y

∂q

∂y
dy ≈ pTMq. (15)

Matrix B is as defined above and S is an approximation of the first derivative; note that in131

general S 6= D1. We assume that H in Equations (8) and (14) are the same, namely the132

operators are compatible. Operator D2 is called SBP since133

pTHD2q = pNy (S)Ny
− p0 (S)0 − pTMq, (16)

discretely mimics the continuous identity134

ˆ Ly

0

p
∂2q

∂y2
dy = p (Ly)

∂q

∂y

∣∣∣∣
y=Ly

− p (0)
∂q

∂y

∣∣∣∣
y=0

−
ˆ Ly

0

∂p

∂y

∂q

∂y
dy. (17)

In this work we will exclusively consider the second order accurate SBP operators, which135

are central difference operators in the interior and one-sided at the boundary. Note that the136

operators are second order accurate in the interior but only first order accurate at the boundary;137
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however the global accuracy of these operator is 2 (Gustafsson, 1975; Strand, 1994; Mattsson138

and Nordström, 2004). The operators we use are:139

D1 =
1

hy



−1 1
− 1

2
0 1

2

− 1
2

0 1
2

. . . . . . . . .
− 1

2
0 1

2

−1 1


, D2 =

1

h2
y



1 −2 1
1 −2 1

1 −2 1

. . . . . . . . .
1 −2 1
1 −2 1


, (18)

where the SBP factors of the operators are140

H = diag
[
1

2
, 1, 1 . . . , 1,

1

2

]
, Q =


− 1

2
1
2

− 1
2

0 1
2

. . . . . . . . .
− 1

2
0 1

2

− 1
2

1
2

 , (19)

S =


− 3

2
2 − 1

2

1

. . .
1

1
2
− 2 3

2

 , M =


1 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 . (20)

The 1D operators can be extended to multiple dimensions via the Kronecker product. The141

Kronecker product of matrices A and C is defined as142

A⊗C =

a0,0C . . . a0,mC
...

. . .
...

am,0C . . . am,nC


where A is of size m× n, C is of size l × k, and A⊗C is of size ml × nk. We define the grid143

function of p as144

p̄ = [pT
0 ,p

T
1 , ...p

T
Ny

]T (21)

with pi = [pi,0, pi,1, ... pi,Nz ]
T for i = 0, ...Ny and pi,j ≈ p(yi, zj). The derivative approxima-145

tions are then:146

∂p

∂y
≈
(
D

(y)
1 ⊗ I(z)

)
p̄ = D̄

(y)
1 p̄,

∂p

∂z
≈
(
I(y) ⊗D

(z)
1

)
p̄ = D̄

(z)
1 p̄, (22a)

∂2p

∂y2
≈
(
D

(y)
2 ⊗ I(z)

)
p̄ = D̄

(y)
2 p̄,

∂2p

∂z2
≈
(
I(y) ⊗D

(z)
2

)
p̄ = D̄

(z)
2 p̄. (22b)

Here I(y) and I(z) are identity matrices of size (Ny + 1) × (Ny + 1) and (Nz + 1) × (Nz + 1);147

the superscripts (y) and (z) in the derivative matrix indicate whether the operator is for the y148

or z dimensions, respectively.149

With the above notation in place, we can now define the semidiscrete version of (1) and (3)150

as (Virta and Mattsson, 2014)151

ρ
d2ū

dt2
= µ1D̄

(y)
2 ū+ µ2D̄

(y)
1 D̄

(z)
1 ū+ µ2D̄

(z)
1 D̄

(y)
1 ū+ µ3D̄

(z)
2 ū+ p̄L + p̄R + p̄B + p̄T . (23)
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Here, the vectors p̄L, p̄R, p̄B , and p̄T are penalty vectors that enforce the boundary and152

interface conditions. These vectors are defined as153 (
H(y) ⊗H(z)

)
p̄L =

(
α
(
I(y) ⊗H(z)

)
−
(
µ1S̄

(y) + µ2D̄
(z)
)T (

I(y) ⊗H(z)
))

ĒL (ū− ḡL) ,

(24a)(
H(y) ⊗H(z)

)
p̄R =

(
α
(
I(y) ⊗H(z)

)
+
(
µ1S̄

(y) + µ2D̄
(z)
)T (

I(y) ⊗H(z)
))

ĒR (ū− ḡR) ,

(24b)(
H(y) ⊗H(z)

)
p̄B =

(
H(y) ⊗ I(z)

)
ĒB

(
µ2D̄

(y) + µ3S̄
(z)
)
ū, (24c)(

H(y) ⊗H(z)
)
p̄T = −

(
H(y) ⊗ I(z)

)
ĒT

(
µ2D̄

(y) + µ3S̄
(z)
)
ū. (24d)

Here the vectors ḡL and ḡR are the grid functions which are zero everywhere except for along154

the left and right boundaries where they take the values of gL and gR, respectively (see (3)).155

The matrices ĒL, ĒR, ĒB , and ĒT zero out all values in a vector except those along the left,156

right, bottom, and top boundaries, respectively, and are defined as157

ĒL = diag(1, 0, . . . , 0)⊗ I(z), ĒR = diag(0, . . . , 0, 1)⊗ I(z), (25a)

ĒB = I(y) ⊗ diag(0, . . . , 0, 1), ĒT = I(y) ⊗ diag(1, 0, . . . , 0). (25b)

The 2D boundary derivative matrices are158

S̄(y) = S(y) ⊗ I(z), S̄(z) = S(z) ⊗ I(z). (26a)

Penalty terms p̄B and p̄T enforce the free surface boundary conditions whereas p̄L and p̄R159

enforce the Dirchlet boundary and fault interface conditions (hence the need to subtract off160

data from the solution vector). The scalar parameter α in p̄L and p̄R needs to be sufficiently161

large (in magnitude) so that the discretization is energy stable. For the second order accurate162

operators used here, the results of Virta and Mattsson (2014) (reduced to the case of constant163

coefficients) show that α must satisfy164

α ≤ −99

36

µ2
1

λhy
− 2µ2

3

λhy
, λ = 1

2
(µ1 + µ3)−

√
(µ1 − µ3)2 + 4µ2

2. (27)

With zero boundary data, gL = gR = 0, Virta and Mattsson (2014) derive an energy estimate165

for the numerical solution to the semi-discrete equations, showing the scheme is energy stable.166

4 Frictional Framework167

The displacements and tractions on the two sides of a fault interface, located at y = 0 in168

our model, are related to one another via a nonlinear friction law that enforces continuity of169

traction while allowing for a jump in displacement. We define the slip velocity, or the time170

derivative of the jump in displacement across the fault by171

V (z, t) =
∂∆u(z, t)

∂t
, (28a)

∆u(z, t) = lim
ε→0+

(u(ε, z, t)− u(−ε, z, t)) , (28b)
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and the shear stress on the fault by172

τ = σxy(0, z, t) =

(
µ1
∂u

∂y
+ µ2

∂u

∂z

) ∣∣∣
y=0

, (29)

i.e., the component of traction in the x-direction, on the y ≤ 0 side of the interface, that comes173

from the y ≥ 0 side. Rate-and-state friction relates the shear stress τ on the fault to a nonlinear174

function of the slip velocity V and a state variable Ψ which obeys a local ordinary differential175

equation that tracks the history of sliding (Dieterich, 1979; Marone, 1998):176

τ = F (V,Ψ), (30a)
dΨ

dt
= G(V,Ψ). (30b)

These relationships along with continuity of traction, i.e., ∆σxy = 0 across the fault, fully177

specify the problem. The specific forms of F and G we use are:178

F (V,Ψ) = aσn sinh−1

(
V

2V0
e

Ψ
a

)
, (31a)

G(V,Ψ) =
bV0

Dc

(
e

f0−Ψ
b − V

V0

)
, (31b)

where f0 is a reference friction coefficient for steady sliding at slip velocity V0, a and b are179

dimensionless parameters characterizing the direct and state evolution effects, respectively, σn180

is the effective normal stress on the fault, and Dc is the state evolution distance.181

An important feature of the friction law is that even though the governing equations are182

linear in the volume, friction law (31a) is nonlinear. This nonlinearity poses no computational183

challenge if explicit time integration is used for semi-discretization (23), as the friction law184

only enters on the right-hand side of the equation; see for instance Kozdon et al. (2012).185

The problem with using explicit time integration for earthquake cycle simulations is that the186

CFL restriction will lead to a very small time step (on the order of milliseconds with realistic187

material parameters) which would make long time simulations (hundreds of years) impractical.188

One approach would be to use implicit time stepping when the slip velocity V along the whole189

fault is low to thus “step over” the extremly low frequency waves. The problem with this190

approach is that the friction law (31a) then leads to a large nonlinear system of equations191

that must be solved. Thus here, following Erickson and Dunham (2014), we set the inertial192

term d2ū/dt2 in the semi-discretization (23) to zero. With this semi-discretization (23) then193

becomes a linear system of the form:194

Āū = b̄(∆u, t). (32)

Here Ā is a matrix of size Np × Np and b̄(∆u, t) is a vector of size Np where in both cases195

Np = (Ny + 1)(Nz + 1) is the total number of grid points. The vector b̄(∆u, t) incorporates196

the boundary conditions, which due to the friction law and outer boundary depend on both t197

and ∆u. Note that in semi-discretization (23), symmetry implies that gL = ∆u/2, namely the198

jump in displacement on the fault is accommodated equally on both sides.199

By zeroing out the inertial terms we are then saying that changes in displacement on200

the fault (and outer boundary) instantaneously modify displacements in the interior. This201

assumption is valid when the magnitude of the slip velocity is low, |V | � 1, but for higher sliding202

velocities waves must be approximated in some way for the problem to remain relevant and203

well-posed. Here we use the radiation damping approximation (Rice, 1993). In this approach204

waves that result from slip on the fault are assumed to emit shear waves that propagate normal205

to the fault. The effect of this is that shear stress on the fault is decreased by a factor of ηV206

8



where η =
√
µ1ρ/2 is half the shear-wave impedance. With this, the friction law is modified207

to:208

τqs − ηV = F (V,Ψ), (33)

where τqs is the “quasi-static” shear stress (computed via (29)), based on the solving (23)209

without inertial terms.210

In this formulation, time enters the equation through the state evolution equation (30b)211

and when ∆u is updated using (28a). Given a value of ∆u and Ψ all that remains to be212

determined is V (since G can be evaluated once V and Ψ are known). To determine V the213

following approach is used at a time t given ∆u and Ψ (here we use vector notation to denote214

that these quantities are grid function along the fault).215

1. The linear system (32) is solved for ū216

2. The displacement vector ū is then used to compute τ as217

τ qs =
(
[1 0 . . . 0]⊗ I(z)

)(
µ1S̄

(y)ū+ µ2D̄
(z)
)

(34)

3. At each grid point along the fault the nonlinear system218

[τqs]i − ηVi = F (Vi,Ψi) , (35)

is solved for Vi. Here Vi, [τqs]i, and Ψi are the values of these variables at each of the219

grids points with i = 0, 1, . . . , Nz.220

The ODEs are then integrated in time using an adaptive time step Runge-Kutta method.221

5 Determination of Maximum Stable Grid Spacing:222

Linear Stability Analysis of Frictional Sliding223

One of the important considerations in fracture modeling, such as earthquake cycle simulations,224

is the determination of the maximum stable grid spacing required (along the fault) so that225

numerical errors do not trigger unstable slip. That is, a well-posed fracture mechanics problem226

will have some critical wavelength h∗ such that perturbations which have wavelengths h∗ will227

decay in time whereas perturbations with wavelength greater than h∗ will grow (leading to228

unstable sliding). The implication for grid spacing in a finite difference method is that h∗ must229

be resolved with at least a few grid points so that the smallest wavelength discrete solutions230

decay; there is an additional length-scale, known as cohesive, or process zone size, that must231

also be resolved and this is discussed at the end of this section.232

In order to determine h∗ we extend the linear stability analysis of Ranjith and Gao (2007)233

to the anisotropic case. We consider antiplane sliding of two identical anisotropic elastic half-234

spaces separated by a frictional fault at y = 0.235

We Laplace transform the equilibrium version of Equation (1) in time to obtain236

0 = µ1
∂2û

∂y2
+ 2µ2

∂2û

∂y∂z
+ µ3

∂2û

∂z2
. (36)

Letting the solution to Equation (36) be of the form237

û(y, z, p) = Û(y, k, p)eikz, (37)
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where p is the Laplace transformed variable, we then get238

0 = µ1
∂2Û
∂y2

+ 2ikµ2
∂Û
∂y

+ (ik)2µ3Û . (38)

Solutions of the ordinary differential equation (38) are of the form239

Û(y, k, p) =

{
Û (+)(k, p)eα

(+)y, y > 0,

Û (−)(k, p)eα
(−)y, y < 0.

(39)

Here we have used the superscript (+) to denote the positive side of the fault (y > 0), and (−)240

to denote the side y < 0. The characteristic roots α(±) are found by substituting in solution241

(39) into ordinary differential equation (38) and solving the resulting quadratic equation:242

α(±) =
−ikµ2 ∓

√
k2(µ∗)2

µ1
, µ∗ =

√
det

[
µ1 µ2

µ2 µ3

]
; (40)

here we have chosen the root on each side of the fault so that α(±)y has a negative real part243

and the thus the solution decays as |y| → ∞. Putting this all together then yields244

û(y, z, p) =

{
Û (+)(k, p)eα

(+)y+ikz, y > 0,

Û (+)(k, p)eα
(−)y+ikz, y < 0,

(41)

or upon transforming back from Laplace space245

u(y, z, t) =

{
U (+)(k, t)eα

(+)y+ikz, y > 0,

U (+)(k, t)eα
(−)y+ikz, y < 0.

(42)

The Laplace transform of traction on the two sides of the fault at y = 0 is246

σ̂(±)
xz = T̂ (±)eikz, T̂ (±) =

(
µ1α

(±) + ikµ2

)
ˆU (±)(k, t). (43)

Continuity of traction implies that T̂ (+) = T̂ (−), which after some simplification gives247

− |k|µ∗Û (+)(k, p) = |k|µ∗Û (−)(k, p). (44)

The jump in displacement across the fault is248

û(0+, z, p)− û(0−, z, p) = D̂(k, p)eikz, D̂(k, p) = Û (+)(k, p)− Û (−)(k, p). (45)

Using D̂ along with continuity of traction allows us then to relate slip to traction:249

T̂ (k, p) =
T̂ (+)(k, p) + T̂ (−)(k, p)

2
= −|k|

2
µ∗D̂(k, p). (46)

Laplace transforming of the time derivative of the linearized rate-and-state friction law is250

(Ranjith and Gao, 2007)251 (
p+

V0

Dc

)
T̂ =

σn

V0

(
ap− (b− a)

V0

Dc

)
pD̂. (47)

Substitution of (46) into (47) yields the quadratic252

σn

V0
ap2 + p

(
|k|
2
µ∗ − (b− a)σn

Dc

)
+
V0

Dc

|k|
2
µ∗ = 0. (48)

10



The system will undergo Hopf bifurcation when roots p cross the imaginary axis, which will253

occur when |k| is less than the critical wave number kcr:254

|kcr| =
2(b− a)σn

Dcµ∗ . (49)

In terms of wavelength, this corresponds to the critical wavelength255

h∗ =
2π

|kcr|
=

πµ∗Dc

(b− a)σn
. (50)

This then implies that we want our grid spacing to be smaller than h∗ so that numerical noise256

does not trigger ruptures.257

As noted above, Ampuero and Rubin (2008) derive an even smaller length scale called the258

cohesive zone, which, for the anisotropic problem we interpret to be259

Lb =
µ∗Dc

σnb
. (51)

The cohesive zone length Lb corresponds to the spatial length scale over which the shear stress260

drops from its peak to residual values at the propagating rupture front; numerical studies261

of quasidynamic earthquake cycle simulations in isotropic materials observe that Lb must be262

resolved with at least one grid point (Ampuero and Rubin, 2008). In our simulations we263

resolve Lb with at least 5 grid points. To ensure that this grid spacing is sufficient, we doubled264

the number of grid points so that Lb and h∗ were resolved with over 10 and 120 grid points265

respectively. Comparison to simulations with doubled resolution indicates that resolving Lb266

with over 5 grid points is adequate; see Appendix A.267

6 Convergence Tests268

We verify our numerical method via the method of manufactured solutions (Roache, 1998). In269

this approach source terms are added to (1) and (3) so that a known function can be used as270

an analytic solution. Namely, we let the exact displacement û be given as:271

û(t, y, z) =
δ

2
K(t)φ(y, z) +

Vpt

2
(1− φ(y, z)) +

τ∞

µ1
y, (52)

where K(t) and φ(y, z) are functions which will determine the temporal and spatial dependence272

of the solution. These functions will be chosen so that the solution exhbitis both an interseismic273

(slow) and coseismic (fast) phase. Namely, there will be an initial interseismic phase, followed274

by a single coseismic phase, and another interseismic phase; this allows us to verify the ability275

of our time stepping method to integrate accurately through these different phases. Parameters276

Vp and τ∞ are the plate rate and magnitude of remote stress and are taken to be constant;277

see Table 1. The parameter δ is the total slip during the coseismic phase, and we take it to be278

equal to δ = (Vp+Vmin)te, where te is the time of the coseismic event and Vmin is the minimum279

slip velocity; see Table 1.280

The spatial dependency of the manufactured solution is given by281

φ(y, z) =
H(H + y)

(H + y)2 + z2
, (53)

where H is a locking depth given in Table 1. When evaluated along the fault (at y = 0)282

φ takes the form of a normalized Lorentzian distribution. The temporal dependency of the283

manufactured solution is284

K(t) =
1

π

[
arctan

(
t− te
tw

)
+
π

2

]
+
Vmin

δ
t, (54)
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and is designed to test the adaptive time-stepping of the numerical scheme. The system is285

first loaded at the plate rate of Vp, this corresponds to the interseismic period. When the286

system reaches event time te, slip velocity increases over many orders of magnitude, simulating287

a rupture event with duration tw. Velocity then returns to its minimum rate, Vmin, for the rest288

of the simulation.289

The exact solution sets the initial data for differential equations (28a) and (30b) and allows290

us to solve for the exact shear stress τ̂qs via (29) and the exact slip velocity V̂ via (28). Plugging291

these into (33) allows us to solve for ψ̂, namely292

ψ̂ = a ln

[
2V0

V̂
sinh

(
τ̂qs − ηV̂

σna

)]
. (55)

The boundary data gL(t, z) is obtained via integration of the ODEs, as detailed in section 4.293

Note that as done in Erickson and Dunham (2014), we must add a source term to (30b), i.e.294

to update state evolution we now numerically integrate295

∂ψ

∂t
= G(V, ψ) +

∂ψ̂

∂t
−G(V̂ , ψ̂). (56)

The manufactured solution we have chosen does not satisfy the traction free boundary296

condition, and thus we instead enforce the top and bottom stress boundary conditions:297

σxz(t, y, 0) =

[
µ2
∂û

∂y
+ µ3

∂û

∂z

] ∣∣∣∣
z=0

, σxz(t, y, Lz) =

[
µ2
∂û

∂y
+ µ3

∂û

∂z

] ∣∣∣∣
z=Lz

. (57a)

Similarly, the remote boundary data is defined by the manufactured solution,298

gR(t, z) = û(t, Ly, z). (58)

Because our main focus is to explore the effects of anistotropy within a homogeneous299

medium, we run convergence tests for both the orthotropic (µ2 = 0) and fully anisotropic300

(µ2 6= 0) cases with constant coefficients, and verify that the numerical solution converges to301

the exact solution at the expected rate for a a second-order accurate method. At the end of302

each simulation, we compute the relative error in the discrete H-norm, given by303

ErrorH(h) =
‖û− u‖H
‖û‖H

. (59)

All the parameter values used in the convergence test simulations are located in Table 1. Table304

2 and Table 3 show the successive relative errors and convergence rates under mesh refinement305

for the orthotropic and fully anisotropic cases respectively.306
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Table 1: Parameters used in manufactured solution convergence tests.

Parameter Definition Value
Ly Fault domain length 72 km
Lz Off-fault domain length 72 km
H Locking Depth 12 km
µ1 Material stiffness parameter 36 GPa
µ2 Material stiffness parameter variable GPa
µ3 Material stiffness parameter variable GPa
ρ Density 2800 kg/m3

σn Normal stress in fault 50 MPa
τ∞ Remote shear stress 31.73 MPa
tf Final simulation time 70 years
te Event nucleation time 35 years
tw Timescale for event duration 10 s
a Rate-and-state parameter 0.015
b Rate-and-state parameter 0.02
Dc critical slip distance 0.2 m
Vp Plate rate 10−9 m/s
Vmin Minimum slip velocity 10−12 m/s
V0 Reference velocity 10−6 m/s
f0 Reference friction coefficient 0.6

Table 2: Relative error for the orthotropic case (µ3 = 24 GPa, µ2 = 0 GPa), computed in the
discrete H norm with N = Ny = Nz. The rate of convergence approaches 2 under mesh refinement.

N Error(h) Rate
24 + 1 2.2541× 10−2 –
25 + 1 6.0595× 10−3 1.89527880
26 + 1 1.5770× 10−3 1.94205097
27 + 1 4.0235× 10−4 1.97063645
28 + 1 1.0072× 10−4 1.99809893

Table 3: Relative error for the fully anisotropic case (µ2 = 18 GPa, µ3 = 36 GPa), computed in the
discrete H norm with N = Ny = Nz. The rate of convergence approaches 2 under mesh refinement.

N Error(h) Rate
24 + 1 3.3244× 10−2 –
25 + 1 8.9966× 10−3 1.88564247
26 + 1 2.3099× 10−3 1.96151856
27 + 1 5.82× 10−4 1.98782444

13



-0.01 -0.005 0 0.005 0.01 0.015 0.02

a and b

20

15

10

5

0

D
ep

th
 (

k
m

)

a-b

a

Figure 1: Depth variation of frictional parameters a and b shown down to a depth of 24 km. Below
this depth the parameters remain constant, namely a− b = a = 0.015.

7 Results of Parameter-varying Study307

Here we use the numerical scheme detailed in Section 3 and Section 4 to study earthquake308

cycles in anisotropic media. We begin by considering an orthotropic media (µ2 = 0) and309

conduct a parameter study by varying µ1 and µ3 (holding all other parameters fixed). Rate-310

and-state friction parameters a and b vary with depth, as illustrated in Figure 1. Negative311

values of a − b correspond to the velocity-weakening (seismogenic) zone where earthquakes312

occur. At depths for which a− b is positive, below ∼12 km depth, the fault undergoes steady-313

state sliding. We find that anisotropy influences the periodicity of a simulation, the length of314

the interseismic period, and that many of the simulations host aseismic transient events. In315

section Section 7.3 we investigate the relationship between these transients, nucleation zone,316

and interseismic creep. Due to the large scope of the parameter study, and the complexity317

of the results, we begin by studying the orthotropic problem and examine some illustrative318

examples. With the groundwork in place to better understand the entire set of results, we319

discuss all of our findings in Section 7.4. The entire parameter study is summarized in Table 5.320

In Section 7.5 we present preliminary results from the study of the fully anisotropic problem,321

and section Section 7.6 illustrates the effects of anisotropy on surface velocity profiles.322

Even though inertial effects are not considered in our simulations, it is useful to consider323

the waves speeds for an anisotropic medium in order to connect the model parameters with324

observations. Since the material stiffness matrix Mµ is symmetric, positive definite, it can be325

diagonalized as326

Mµ =

[
µ1 µ2

µ2 µ3

]
= V

[
λ1 0
0 λ2

]
VT , (60)

where V has the orthogonal eigenvectors of Mµ as its columns and λ1, λ2 > 0. This means327
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Table 4: Parameters used parameter varying study.

Parameter Definition Value
Ly Fault domain length 72 km
Lz Off-fault domain length 72 or 120 km (see Appendix B)
µ1 Material stiffness parameter variable GPa
µ2 Material stiffness parameter variable GPa
µ3 Material stiffness parameter variable GPa
ρ Density 2800 kg/m3

σn Normal stress in fault 50 MPa
τ∞ Remote shear stress 31.73 MPa
a Rate-and-state parameter 0.015
b Rate-and-state parameter depth variable
Dc critical slip distance 8 mm
Vp Plate rate 10−9 m/s
V0 Reference velocity 10−6 m/s
f0 Reference friction coefficient 0.6

that the orthogonally split shear waves have fast and slow wave speeds328

cfast =

√
max{λ1, λ2}

ρ
, (61a)

cslow =

√
min{λ1, λ2}

ρ
. (61b)

The fast wave travels in the direction of the eigenvector associated with the maximum eigenvalue329

and the slow wave travels in the direction of the eigenvector associated with the minimum330

eigenvalue.331

Anisotropy measurements from shear wave splitting techniques used following the M7.1332

Hector Mine earthquake (which occurred along a strike-slip fault) find anisotropy confined to333

the upper 2-3 km depth of the fault, with average fast directions oriented between fault parallel334

(within the horizontal plane) and parallel to the direction of regional maximum compressive335

stress (Cochran et al., 2003). Fast direction oriented with the fault-perpendicular direction,336

however, have also been observed (Stuart et al., 2002). Cochran et al. (2003) compute an337

apparent crack density ε = vsδt/L, where vs is the fast shear wave velocity, and δt/L is a path-338

normalized delay time between arrivals of the fast and slow shear waves, and report values339

of ε to be approximately 5%, and generally less than 10%, regardless of region. Thus the340

relationship between wave speeds is341

cslow(1 + ε) = cfast, (62)

which translates to a relationship between shear moduli given by342

max{λ1, λ2}/min{λ1, λ2} = (1 + ε)2. (63)

A maximum value of ε of 10% corresponds to an approximate 20% difference in shear moduli.343

We consider parameter values both within and outside this range in order to explore the full344

range of possible effects of anisotropy on the earthquake cycle.345
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(a) (b)

(c) (d)

Figure 2: Cumulative slip plotted in blue every 5-a during the interseismic periods, and in red every
second during quasi-dynamic rupture for (a) an HTI simulation with µ1 = 34 GPa, µ3 = 16.95 GPa,
(b) a VTI simulation with µ1 = 16.95 GPa, µ3 = 34 GPa, (c) an isotropic reference with µ∗ = 24
GPa, and (d) an isotropic reference case with µ1 = µ3 = 34 GPa.

7.1 Orthotropic anisotropy346

For orthotropic anisotropy (µ2 = 0), two orthogonally split shear waves travel in either the347

fault-perpendicular (y-) or fault-parallel (z-) directions. If µ1 > µ3, the material is called348

horizontal transversely isotropic (HTI) and the fast wave travels in the fault perpendicular349

direction. When µ1 < µ3 the material is called vertical transversely isotropic (VTI) and the350

fast wave travels in the fault parallel direction.351

For the orthotropic problem we first examined the effects of anisotropy by holding µ1352

constant and decreasing µ3 (or vice-versa). This corresponds to increasing the degree of HTI353

or VTI anisotropy. For a related isotropic problem, we consider several cases. One possibility354

is to choose the isotropic shear modulus, µ, to be either µ1 or µ3. An alternative isotropic355

reference case would be for a given to choose µ = µ∗ =
√
µ1µ3. In the text that follows, each356

of these choice will be used as relevant to the discussion.357

7.2 Simulation results358

We first illustrate our findings in Figure 2, where we show results for both an HTI and VTI359

simulation with µ∗ = 24 GPa, along with two isotropic reference cases. In these snapshots, slip360

is plotted over a sequence of earthquakes spanning about 1500 years, where contours in blue361

represent the interseimic period, when the maximum slip rate (taken over the fault) is less than362

1 mm/s. Slip is plotted in red contours every second during a quasi-dynamic event, when the363
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Figure 3: Cumulative slip plotted in blue every 5-a during the interseismic periods, and in red every
second during quasi-dynamic rupture for (a) an HTI simulation with µ1 = 24 GPa, µ3 = 13.5 GPa,
(b) a second HTI simulation with µ1 = 36 GPa, µ3 = 9 GPa, (c) a VTI simulation with µ1 = 13.5
GPa, µ3 = 24 GPa and (d) an isotropic reference case with µ1 = µ3 = 18 GPa.
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maximum slip rate is greater than 1 mm/s. Figure 2(a) is the HTI simulation, with µ1 = 34364

GPa and µ3 = 16.95 GPa. Figure 2(b) shows the VTI simulation, where µ1 = 16.95 GPa and365

µ3 = 34 GPa. Figure 2(c) corresponds to an isotropic reference case, where µ1 = µ3 = 24 GPa366

(to ensure that µ∗ = 24 GPa as in each of the anisotropic simulations). Figure 2(d) is the367

isotropic reference case for which µ1 = µ3 = 34 GPa. Comparing the snapshots of cumulative368

slip for the first three simulations, we see that they appear qualitatively similar. After a spin-369

up period, periodic events nucleate at a depth of approximately 10 km, and accumulate ∼3.5370

m of slip at Earth’s surface. Comparing these to Figure 2(d), where events nucleate further371

updip, and accumulate only ∼3 m slip with each event, we note that a decrease in either372

µ1 or µ3 (or both) increases the recurrence interval and thus the amount of slip during each373

earthquake. These results suggest that µ∗, rather than absolute values of µ1 and µ3 determine374

model outcomes, including recurrence interval and nucleation depth.375

Since results remain similar for all cases with µ∗ = 24 GPa, we hypothesize that µ∗ pre-376

dominantly determines emergent behavior. To explore this, Figure 3 presents several cases377

with µ∗ = 18 GPa and differing combinations of µ1 and µ3. Here we have an alternating378

sequence of large and small events nucleate at a depth of ∼12 km, a result seen by Lapusta379

and Rice (2003) for a decrease in h∗ (obtained by reducing the value of Dc rather than in380

shear modulus). This behavior persists with stronger HTI anisotropy as seen in Figure 3(a),381

with µ1 = 36 GPa and µ3 = 9 GPa. Interestingly, however, with the anisotropy reversed, the382

VTI simulation with µ1 = 13.5 GPa and µ3 = 24 GPa exhibits a more complex sequence of383

large, small, and medium sized events, as seen in Figure 3(d). This VTI simulation compares384

most closely with the isotropic reference case corresponding to µ∗ = 18 GPa, as seen in Figure385

3(c). Comparing all results shown in Figure 3 we observe that similar µ∗ values can generate386

quite different behaviors. We refer to these different types of behaviors as period two (in which387

large and small events emerge) and period three (where small, large, and medium sized events388

emerge).389

7.3 Aseismic Transients390

In this parameter study we find that many simulations host transient events, where small391

increases in maximum slip rate emerge between large events. Aseismic transients are observed392

in other numerical simulations of earthquake sequences and are of interest to the broader393

community because they might indicate an impending large event (Lapusta and Liu, 2009;394

Noda, Nakatani, et al., 2013; Noda and Hori, 2014).395

In a study of transient events that emerge in earthquake cycle simulations within an isotropic396

medium, Noda and Hori (2014) find that A/B is a significant parameter that controls inter-397

seismic behavior within a seismogenic patch, where A = aσn is the direct effect and B = bσn is398

the evolution effect in the rate-and-state friction law. They deduce that for A/B ≥ 0.6, aseis-399

mic transients events emerge when creep penetrates sufficiently far enough into the velocity-400

weakening zone to violate linear stability, a length scale given by h∗, but before the creeping re-401

gion can accommodate dynamic rupture, a length scale referred to as the nucleation size, which402

scales directly with the shear modulus µ. If we interpret this length scale for our anisotropic403

problems to scale with µ∗ we can contextualize our results in terms of these findings.404

In our simulations the rate-and-state parameters a and b and the normal stress σn are fixed405

for all simulations. Thus A and B are fixed, with A/B = 0.75 within the seismogenic zone.406

We define an aseismic transient as an event where the maximum slip velocity (taken over the407

whole fault) climbs above a threshold of 10−9m/s but remains below the threshold of 1 mm/s408

(which we define to be the threshold for coseismic speeds). In Figure 4(a) we plot the time409

series of maximum slip velocity for the simulations from Figure 2. The first three simulations410

from Figure 2 share the same µ∗ value and have close to identical recurrence intervals of411
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Figure 4: (a) Maximum slip velocity time series and (b) fault shear stress plotted against depth for
simulations from Figure 2 with µ∗ = 24 GPa.

about 110 years, but have some subtle differences. We observe that the HTI case (yellow)412

and the isotropic reference case (blue) both host aseismic transients, where small increases in413

maximum slip velocity occur approximately 20 years before each large event. The VTI case414

with the same µ∗ value (red), however, does not host transients. In Figure 4(b) we plot the415

nucleation zones for the simulations in Figure 2, where fault shear stress is plotted as function of416

depth at the moment when rupture accelerates to coseismic speeds. The nucleation zone width417

we approximate numerically by computing the distance between the stress peaks surrounding418

the accelerating slip patch as in Rubin and Ampuero (2005). Smaller peaks further up-dip419

correspond to where interseismic creep has penetrated into the velocity weakening zone. The420

first three simulations from Figure 2 all have the same µ∗, and thus the same values of h∗
421

and nucleation size. And yet aseismic transients exist for only two of the simulations. For422

these simulations we observe that interseismic creep penetrates further up-dip for larger ratios423

R = µ1/µ3, before nucleation takes place, and numerical measurements show quite similar424

nucleation lengths of ∼2 km; see Figure 4(b). The isotropic reference case in purple (with a425

larger µ∗) nucleates higher up-dip and has a nucleation length of ∼3 km.426

Figure 5 shows the time series of maximum slip velocity, and the nucleation zones for all427

four simulations from Figure 3. In Figure 5(a), we observe that all four simulations host428

aseismic transients. The HTI simulations (blue and red) each host an aseismic transient before429

a large event, while the isotropic reference case with the same µ∗ (yellow) and the VTI case430

(purple) host transients before medium events. Examining the recurrence of events we see431

that for the HTI simulations, the interval before a large event is ∼161 years, and ∼65 years432

before a small event. The isotropic reference and VTI simulations, on the other hand, show433

some differences. The interval before a small event in the period three cycle, is ∼84 years434

for both simulations. However, the interval before medium and large events differs for these435

two simulations: ∼106 and ∼178 years, respectively, for the isotropic reference but only ∼96436

and ∼184 years (respectively) for the VTI case. We note that since the isotropic reference case437

hosts larger aseismic transients than the VTI, the difference in recurrence times between events438

may be due to this feature. Figure 5(b) shows fault shear stress plotted against fault depth at439

the moment that maximum velocity reaches the threshold for coseismic slip. Residual stress440

from small sub-surface events lingers at ∼5 km depth for all simulations. In addition, between441

∼5 and ∼6 km depth we see a spike in shear stress leftover from the aseismic transient - we442

refer to in the figure as a failed rupture, or rupture that failed to reach coseismic speeds.443
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Figure 5: (a) Maximum slip velocity time series and (b) fault shear stress plotted against depth for
simulations from Figure 3 with µ∗ = 18 GPa.

Just as in Figure 4(b), larger ratios R = µ1/µ3 correspond to interseismic creep penetration444

further up-dip. Nucleation zone length and location is quite similar for all events, with length445

of ∼1.4 km, and location between ∼10 and ∼12 km depth. In this parameter regime, therefore,446

the emergence of aseismic transients cannot be attributed solely to A, B and µ∗. The ratio R447

seems to determine how far creep penetrates up-dip before nucleation takes. The results we’ve448

presented thus far begin to reveal a more complex relationship between R, the nucleation zone,449

the presence of transients, and interseismic creep penetration. However, it is challenging to450

isolate the influence of any one of these factors.451

7.4 Periodicity in parameter space452

To better understand what determines period one, two or three behaviors, like those evidenced453

in Figures 2-3, we conducted a broad sweep of parameter values and list the results in Table454

5. Descending the rows of Table 5 correspond to an increase in µ1, while moving left to right455

corresponds to increasing values of µ3. The value in the interior of each cell is the corresponding456

value of µ∗. The colors of each cell correspond to the period of the simulation. Yellow indicates457

that the simulation has period one, red indicates period two, and blue indicates period three.458

Simulations with the same µ∗ value, for which differences in period occur when µ1 and µ3459

are varied, are circled to highlight these differences. For example simulations with (µ1, µ3) =460

(30, 15) (row 12, column 4) and (15, 30) (row 4, column 12) share a µ∗ value of 21.21 but are461

period three and period one respectively. Similarly, µ∗ = 18 for simulations (µ1, µ3) = (24, 13.5)462

and (18, 18), but (µ1, µ3) = (24, 13.5) is period two while (µ1, µ3) = (18, 18) is period three.463

Bold cell value denote that the simulation hosts aseismic transients. White cells are simulations464

that are outside of the scope of this parameter study.465

Table 5 reveals a bifurcation from period one to period two behavior by decreasing µ∗,466

with a complex boundary between regimes where period 3 behavior emerges. The circles reveal467

that simulations with the same µ∗ can have quite different behaviors and periodicity, and the468

transition from italicized to bold fonts reveal that for most parameter values, a decrease in µ∗
469

corresponds to a transition from period one, to period one with aseismic transients, to period470

three with no aseismic transients, to period three with aseismic transients, to period two.471

To ascertain more about the relationship between the ratio R = µ1/µ3, nucleation zone,472

and aseismic transients, we examine column 10 of Table 5, that is the column where µ3 = 24.473
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Figure 6: Maximum slip velocity and fault shear stress profiles shown for a representative sample of
the simulations in Table 5 where µ1 is allowed to vary and µ3 is held constant at 24 GPa.

Note that to explore the role of R without having to vary both µ1 and µ3 at once (which further474

complicates analysis), it is necessary to instead vary µ∗. In Figure 6 we present the maximum475

slip velocity time series, and nucleation zones for a representative subset of the period one476

simulations from column 10, with a range of ratios of µ1/µ3. Based on the results presented477

thus far, we expect µ1 to dictate how far up-dip interseismic creep is able to penetrate. As such,478

we would expect the extent of creep to be farthest up-dip for the highest ratio of R (shown in479

teal for R = 1.25) and lowest for the smallest ratio (shown in blue for R = 0.75). However,480

this is not entirely the case. Although the R = 0.75 case has the smallest nucleation zone481

and the smallest µ1, interseismic creep is able to penetrate further up than the cases shown in482

red and yellow. Moreover, creep penetrates about as far up-dip for with larger µ1/µ3 ratios,483

namely, the red and yellow curves corresponding o R = 1 and R =≈ 0.87, respectively. We484

attribute this to the influence of the interseismic transients present in both the R = 1 (yellow)485

and R = 0.75 (blue) simulations, (as evidenced in Figure 6(a)). These results suggest that486

while R seems to govern nucleation zone size, and largely dictates how far up-dip interseismic487

creep can penetrate, the presence and magnitude of aseismic transients also plays a role.488

To further explore aseismic transients events in other parts of parameter space, we looked489

more closely at some results from Table 5. In Figure 7 we present plots of slip profiles for490

four simulations where µ1 or µ3 is set to 20.78 GPa and the other parameter takes on the491

values 11.972 GPa or 13.5 GPa. Figures 7(a) and 7(b) show a VTI and an HTI simulation492

corresponding to µ∗ = 15.77 GPa. For these parameter values, the same µ∗ can generate quite493

different results. Both simulations generate sequences of large and small events, but the large494

events in the VTI simulation have a longer recurrence interval, with more slip occurring with495

each event. Figures 7(c) and 7(d), however, show a VTI and an HTI simulation both with496

µ∗ = 16.75 GPa, where qualitatively similar sequences of events are generated. Figures 7(a)497

and 7(d) can be used to observe the effect of increasing µ1, while keeping µ3 fixed, while Figures498

7(b) and 7(c) can be used to observe the effect of fixing µ1 and varying µ3.499

In Figure 8 the maximum slip velocity time series of all four simulations from Figure 7 is500

plotted over a period of 350 years. We see that all but one of the simulations hosts aseismic501

transients. The VTI simulation (in red) with µ1 = 20.78 GPa, µ3 = 11.97 GPa doesn’t host502

aseismic transients, while its HTI counterpart (shown in yellow) does. We examine the role503

of shear stress in more detail in Figure 8(b), where the nucleation zones are shown for all504

four simulations. Higher ratios of µ1/µ3 again correspond to further penetration up-dip of505
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Table 5: µ1 values are located in the first column, while µ3 values are in the first row. The interior
cells contain the µ∗ value that corresponds to each µ1, µ3 pair. Color indicates the period of a
simulation, yellow is period one, red is period two, and blue is period three. Bold font denotes a
simulation that hosts aseismic transients. Circled cells are simulations for which a period change
occurs for parameter-differences in simulations with the same µ∗ value.

µ1

µ3
9 11.972 13.5 15 16.95 18 19.39 20.78 22 24 27 30 36

9 9.00 10.38 11.02 11.62 12.35 12.73 13.21 13.68 14.07 14.70 15.59 16.43 18.00

11.972 10.38 11.97 12.71 13.40 14.25 14.68 15.24 15.77 16.23 16.95 17.98 18.95 20.76

13.5 11.02 12.71 13.50 14.23 15.13 15.59 16.18 16.75 17.23 18.00 19.09 20.12 22.05

15 11.62 13.40 14.23 15.00 15.95 16.43 17.05 17.66 18.17 18.97 20.12 21.21 23.24

16.95 12.35 14.25 15.13 15.95 16.95 17.47 18.13 18.77 19.31 20.17 21.39 22.55 24.70

18 12.73 14.68 15.59 16.43 17.47 18.00 18.68 19.34 19.90 20.78 22.05 23.24 25.46

19.39 13.21 15.24 16.18 17.05 18.13 18.68 19.39 20.07 20.65 21.57 22.88 24.12 26.42

20.78 13.68 15.77 16.75 17.66 18.77 19.34 20.07 20.78 21.38 22.33 23.69 24.97 27.35

22 14.07 16.23 17.23 18.17 19.31 19.90 20.65 21.38 22.00 22.98 24.37 25.69 28.14

24 14.70 16.95 18.00 18.97 20.17 20.78 21.57 22.33 22.98 24.00 25.46 26.83 29.39

27 15.59 17.98 19.09 20.12 21.39 22.05 22.88 23.69 24.37 25.46 27.00 28.46 31.18

30 16.43 18.95 20.12 21.21 22.55 23.24 24.12 24.97 25.69 26.83 28.46 30.00 32.86

36 18.00 20.76 22.05 23.24 24.70 25.46 26.42 27.35 28.14 29.39 31.18 32.86 36.00
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(a) (b)

(c) (d)

Figure 7: Cumulative slip plotted in blue every 5-a during the interseismic periods, and in red every
second during quasi-dynamic rupture for (a) a VTI simulation with µ1 = 11.97 GPa, µ3 = 20.78 GPa,
(b) an HTI simulation with µ1 = 20.78 GPa, µ3 = 11.97 GPa, (c) an HTI simulation with µ1 = 20.78
GPa, µ3 = 13.5 GPa and (d) a VTI simulation with µ1 = 13.5 GPa and µ3 = 20.78 GPa.

(a) (b)

Figure 8: (a) Maximum slip velocity and (b) fault shear stress plotted against depth shows nucleation
zones for simulations from Figure 7.

23



the interseismic creeping region, but does not correspond to whether or not transient events506

emerge, complicating the explanation given for transient presence and magnitude for the results507

in Figure 7.508

7.5 Full Anisotropy509

As a final study, we report on some results when considering full anisotropy, i.e. where µ2 6= 0.510

Figure 9 shows results for both µ∗ = 24 GPa and 18 GPa, which can be compared to the511

orthotropic results with similar µ∗ in Figures 2 and 3. We found that these simulations required512

quite long spin-up periods, thus we plot cumulative slip profiles here relative to a background513

slip profile, so that figures may be more easily visualized. That is, we plot slip profiles relative514

to the total slip accumulated during the spin-up period.515

Figure 9(a) shows results for (µ1, µ2, µ3) = (18.39, 7, 34) GPa, corresponding to a fast wave516

direction of about 20 degrees from fault parallel (within the vertical plane) which we will refer517

to as "near-VTI". Figure 9(b) is the reverse of this orientation (34, 7, 18.39) with a fast518

wave speed 20 degrees from fault perpendicular, which we will refer to as "near-HTI". Both519

cases provide additional evidence that model behaviors with µ∗ = 24 GPa are qualitatively520

similar, despite differences in µ1, µ2 and µ3. However, this result does not persist for other521

values of µ∗. Figure 9(c) shows results for a near-VTI simulation with µ∗ = 18 GPa, with522

(µ1, µ2, µ3) = (14.56, 5, 24), and a fast-wave direction again about 20 degrees from fault-parallel.523

Results are qualitatively similar to the VTI simulation shown in Figure 3(d), where small,524

medium, and large events emerge. Figure 9(d) shows results for an orientation reverse with525

(µ1, µ2, µ3) = (24, 5, 14.56), with results more similar to the HTI simulation shown in Figure526

3(b) where only large and small events emerge.527

In Figure 10 we examine the maximum slip velocity time series and nucleation zone profiles528

for simulations in Figure 9. The near-HTI simulations (red and purple curves) as well as the529

one with near-VTI (yellow) all host transients, whereas the near-VTI simulation in blue does530

not. The near-VTI simulation in yellow hosts three transients: one in the recurrence interval531

leading up to a small event and two more in the recurrence interval preceding a large event. In532

the latter interval a smaller transient occurs ∼38 years before a large event, and then another533

much larger in magnitude transient occurs ∼8 years before a large event. In figure 10(b) we see534

that the large transient corresponds to a failed event that was able to partially propagate up535

and down the fault, destabilizing the patch of the fault between ∼3.3 and 7.3 km depth, but536

was unable to nucleate to coeseismic speeds. We suspect the large event corresponding to the537

near-VTI simulation (in yellow) successfully nucleates further up-dip than the large event in538

the near-HTI simulation (in purple, a simulation with the same µ∗) as a result of the residual539

stress from the large aseismic transient ∼8 years prior. These results complicate our findings540

in the orthotropic parameter study, where we observed that transients appear to allow creep541

to penetrate further up-dip. For this fully anisotropic parameter regime, it appears as though542

transients allow nucleation to occur in the presence of less up-dip creep. These seemingly543

conflicting results may be reconciled if we allow for the possibility that the timing within the544

interseismic period of an aseismic transient also plays a role. As such, the temporal location of545

aseismic transients should be investigated further in future work.546

7.6 Surface Velocity Profiles547

In this section we report on surface velocity profiles which could be linked to observables548

measured at Earth’s surface across a fault. Figure 11 shows plots of surface velocity as a549

function of off-fault distance (y) for the results shown so far. Panels (a)-(c) correspond to550

orthotropic scenarios and (d) (and corresponding zoom in (e)) shows surface velocities for the551
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(a) (b)

(c) (d)

Figure 9: Cumulative slip plotted in blue every 5-a during the interseismic periods, and in red every
second during quasi-dynamic rupture for fully anisotropic simulations. In (a) and (b) µ∗ = 24, while
in (c) and (d) µ∗ = 18 GPa. All simulations are plotted relative to a background slip profile.

fully anisotropic scenarios. Dashed and solid contours correspond respectively to 25% and 95%552

through the recurrence interval preceding a large event for each simulation. Figure 11(a) shows553

the three similar sequences corresponding to the same µ∗ value (blue, red, yellow). In both time554

instances, the recurrence interval we observe an increase in strain (∂u/∂y) corresponding to a555

decrease in µ1, which is to be expected if shear stress is to remain constant. Strain increases556

with decreasing µ1 also for the cases shown in (b)-(c). For the fully anisotropic simulations557

(d) and zoom (e), this feature persists when comparing those simulations with equivalent µ∗.558

We include the zoom (e) to illustrate the full anisotropy can allow for small amounts of surface559

creep during the interseismic period, due to the fact that the ∂u/∂z component of strain is560

non-negligible and contributes to the fault shear stress.561

8 Discussion and Future Work562

We have extended the computational framework developed in Erickson and Dunham (2014) and563

adapted it to study earthquake cycles in anisotropic media. The off-fault volume is discretized564

with finite difference operators satisfying a summation-by-parts rule, with weak enforcement of565

boundary conditions, which leads to a provably stable formulation. Rate-and-state friction is566

enforced along the fault, and sequences of earthquakes are generated by displacing the remote567

boundary at a slow plate rate. We tested our numerical scheme by applying it to a suitable568

manufactured solution and ensuring it achieved the expected order of convergence.569
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(a) (b)

Figure 10: (a) Maximum slip velocity and (b) fault shear stress plotted against depth shows nucleation
zones for simulations from Figure 9 with full anisotropy.

We note that in developing the method for the 2D antiplane problem, we have inherently570

limited the possible directions for wave-propagation. In fully anisotropic simulations, like the571

ones in Section 7.5, waves propagate at oblique angles to the fault which cannot be reliably572

observed in practice. However, real-world observations of fault parallel fast waves, like those573

in the VTI simulations above, have been made (Stuart et al., 2002).574

In the parameter studies in this work, we found that anisotropy influences the recurrence575

interval, periodicity, emergence of transients, nucleation zone size and depth, and extent of576

interseimic creep penetration. We found that choices for µ1/µ3 can cause simulations with the577

same µ∗ value to exhibit quite different behavior, and uncovered a complex boundary between578

the period one and period two solutions that naturally arise as one decreases h∗. We found579

that this boundary often exhibits period three behavior and gives rise to simulations that host580

aseismic transients. We additionally found that in period two and three solutions, residual581

stresses from subsurface events appear, and for some simulations failed rupture often occurs582

near these residual stresses ahead of a coseismic event.583

Our results suggest the size and location of the nucleation zone for a simulation, is influenced584

not just by the ratio µ1/µ3, but also by the presence and magnitude of aseismic transients. This585

suggest that both play a role in how far updip interseismic creep may penetrate. However, the586

emergence of more complicated aseismic transients in the fully ansiotropic simulations leaves587

questions to be explored about the relevance of the temporal location of these transients. Ad-588

ditionally, relationships and interactions between the residual stresses from sub-surface events,589

failed ruptures near these, and aseismic transients, should be explored with furthur studies.590
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(a) (b)

(c) (d)

(e)

Figure 11: Surface velocity profiles plotted before a large event, after each simulation is out of its
spin-up cycle, with dashed lines 25% of the way into the recurrence interval, and solid lines 95% of
the way into the recurrence interval. (a)-(c) correspond to the orthotropic simulations from Figures
2-7, while (d) and corresponding zoom (e) correspond to the fully anisotropic simulations shown in
Figure 9.
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(a) (b)

Figure 12: Cumulative slip plotted in blue every 5-a during the interseismic periods, and in red
every second during quasi-dynamic rupture for two, period three, isotropic simulations, where all
parameters are held constant. In figure (a) the number of grid points is set to 1, 165 to ensure that
cohesive zone Lb is resolved with over 5 grid points, while in figure (b) the grid points are more than
doubled to 2, 500 and Lb is resolved with over 10 grid points.

A Appendix: Resolution of the Cohesive Zone596

We show our simulations are well-resolved for a period three isotropic problem with µ = 18597

GPa . Figure 12 shows cumulative slip profiles, where Lb is resolved with over 5 grid points598

on the left and over 10 on the right. We see differences only during the spin-up cycle of each599

simulation, after which both settle into period three behavior that is qualitatively similar.600

B Appendix: Choice of Computational Domain601

Truncating the off-fault computational domain, Ly, at 72 km causes large events in some of602

the multi-period simulations in our parameter study to nucleate at an artificially high depth603

of around 5 km. We suspect that this is due to the influence of finite distance to the remote604

boundary where loading is enforced. We doubled the domain size for one such simulation, a605

period two simulation with µ1 = 36 GPa, and µ3 = 9 GPa. Increasing the computational606

domain size leads to large events that nucleate farther down-dip, closer to 12 km depth. In607

Figure 13 we compare the cumulative slip plots with a domain size of Ly = 72 km on the left,608

and Ly = 144 km on the right. It is worth noting that this edge effect, when it occurs, appears609

in HTI orthotropic simulations where µ1 > µ3, but not in the VTI counterpart (with the same610

µ∗) for which the values of µ1 and µ3 are reversed.611
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(a) (b)

Figure 13: Cumulative slip plotted in blue every 5-a during the interseismic periods, and in red every
second during quasi-dynamic rupture for two orthotropic simulations with µ1 = 36 and µ2 = 9. In
figure (a) Ly = 72 km. In figure (b) Ly = 144 km, i.e. the off-fault computational domain is doubled.
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