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2 Brittany A. Erickson et al.

1 Introduction25

Variable-coefficient problems arise in a wide variety of applications including geo-26

physics (material heterogeneities in the solid Earth, spatially varying fluid proper-27

ties in volcanic conduits), aeroacoustics (Euler equations), electromagnetics (Max-28

well’s equations with heterogeneous permeabilty and permittivity), and problems29

with complex geometries in which coordinate transformations are used [2,8,14,10].30

Coefficients can be pre-defined explicitly, or obtained through other means (such31

as the numerical solution of a steady-state equation) and can be non-smooth at32

known (or unknown) locations.33

Exact solutions to the governing equations are often quite difficult to obtain in34

most applications, thus numerical solutions are sought in order to study the tem-35

poral evolution of the phenomena under consideration. Care should be taken, how-36

ever, so that the discretization predicts an accurate approximation to the growth37

or decay that is physically present. In order to assess whether this is done, ana-38

lytical solutions for canonical problems are an asset.39

In this work we provide analytic solutions to the scalar and vector advection40

equation with variable wave speeds, which allow us to study the performance of a41

class of high-order-accurate finite difference methods satisfying a summation-by-42

parts (SBP) property [11,12,23]. SBP methods together with a weak enforcement43

of boundary conditions through the simultaneous-approximation-term (SAT) tech-44

nique provide a framework for provably stable numerical discretizations for prob-45

lems with sufficient smoothness properties and exist for a large class of operators46

including finite difference, finite volume and finite element methods, see [3,24,47

21] and references therein. We apply an SBP-SAT discretization to the governing48

equations using a skew-symmetric splitting, which mixes conservative and non-49

conservative forms, and for smooth problems has the desirable property that the50

semi-discrete energy rate mimics that of the continuous problem [15,4,19]. The51

technique of skew-symmetric splitting is widely used when solving a variety of52

challenging physical problems that involve variable coefficients, nonlinearities and53

shocks, including the nonlinear Burgers’ equation and the shallow water equations54

[5,22,6,20].55

When coefficients are non-smooth at known locations, they are often treated56

as interfaces, and numerical solutions are obtained within the sub-domains where57

the coefficients are smooth. See, for example, [14], for an overview of finite-volume58

methods applied to these types of problems. However, in practice these locations59

are not always known and it is unclear how these discretization methods perform60

when applied without some special procedure (such as an interface treatment)61

to problems with non-smooth wave speeds. In this paper we will experimentally62

investigate how accuracy and stability are affected when naively applying these63

operators to problems with discontinuous wave speeds, using new exact analytical64

solutions.65

The paper is organized as follows: in section 2 we derive the exact solution to66

the scalar advection equation with variable wave speed and introduce the skew-67

symmetric SBP-SAT framework for computing numerical approximations. Piece-68

wise linear wave speeds (which are non-smooth in some cases) are considered69

and convergence rates with and without the incorporation of an interface are re-70

ported. In section 3 we derive exact solutions to the vector advection equation, as71

well as derive the spectrum of the associated differential operator. The SBP-SAT72
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framework for the vector problem is detailed, convergence rates are reported, and73

comparisons made between continuous and discrete spectra. We summarize our74

findings and discuss future studies in section 4.75

2 The scalar equation76

We begin by considering the scalar advection equation in non-conservative form77

on the domain x ∈ [0, 1], namely78

ut + a(x)ux = 0 (1a)79

u(t, 0) = h(t) (1b)80

u(0, x) = f(x). (1c)81
82

In this work we seek continuous solutions to (1), assuming the wave speed a(x) > 083

is potentially non-smooth, with an integrable reciprocal, i.e. that84

Ia(x) =

ˆ x

0

1/a(y)dy (2)85

exists. If a(x) is differentiable on (0, 1) (which is not true for all the cases we86

consider), we can apply the splitting87

a(x)ux =
1

2
[(au)x + a(x)ux]− 1

2
axu (3)88

and an energy estimate for (1) can be obtained by multiplying by u and integrating89

over the domain. Taking h(t) = 0, this leads to90

d||u||22
dt

= −a(1)u(t, 1)2 +

ˆ 1

0

axu
2dx. (4)91

If ax ∈ L∞(0, 1), we have the final estimate [19]92

||u(t, ·)||22 ≤ e||ax||∞t
[
||f ||22 −

ˆ t

0

a(1)e−||ax||∞τu2(τ, 1)dτ

]
. (5)93

Alternatively (for example, if a(x) is not differentiable), we can define the weighted94

norm95

||u||2a−1 =

ˆ 1

0

1

a(x)
u2(t, x)dx (6)96

if a(x) ≥ κ > 0 (i.e. a(x) is bounded away from 0 by a constant κ, which is true97

for all the cases we consider), which leads to the energy estimate98

||u(t, ·)||2a−1 = ||f ||2a−1 −
ˆ t

0

u2(τ, 1)dτ. (7)99

Energy estimates are useful for determining both location and number of boundary100

conditions needed to bound the solution, as well as provide a means for proving101

uniqueness of solutions to linear problems and insights into reasons for error-102

growth and error-boundedness, see [17,9,18]. In the section that follows we show103

existence (by construction) of a continuous solution to (1), and uniqueness and104

stability to perturbations in data follow from (5) or (7).105
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2.1 Analytic, closed-form solution via the Laplace method106

To solve (1) analytically, we start by denoting the Laplace transform of a locally107

integrable function h(t) by108

L[h] =

ˆ ∞
0

h(t)e−st dt, s ∈ C. (8)109

Laplace transforming (1) in time and solving the resulting ordinary differential110

equation yields the solution in Laplace space given by111

û(s, x) = ĥ(s)e−sIa(x) +

ˆ x

0

f(ξ)

a(ξ)
e−s(Ia(x)−Ia(ξ))dξ, (9)112

where we use a hat to denote the Laplace transformed function. We denote the113

last term on the right of (9) by114

F (s, x) =

ˆ x

0

f(ξ)

a(ξ)
e−s(Ia(x)−Ia(ξ))dξ. (10)115

Next we apply integration by substitution by letting116

τ = Ia(x)− Ia(ξ), (11)117

so that integration in (10) is with respect to τ rather than ξ. This allows us to118

re-write (10) as119

F (s, x) =

ˆ Ia(x)

0

f(ξ)e−sτdτ (12)120

=

ˆ ∞
0

f(ξ)H(ξ)e−sτdτ, (13)121

122

where H is the Heaviside function and we understand that ξ = ξ(τ, x).123

This procedure allows us to recognize that F (s, x) = L[f(ξ)H(ξ)] where ξ is124

the characteristic variable defined implicitly through (11). Note that (11) should125

be interpreted as the time required to transport information a distance x − ξ at126

speed a(x). Inverting (9) thus provides the solution in the time domain127

u(t, x) = h(t− Ia(x))H(t− Ia(x)) + f(ξ(t, x))H(ξ(t, x)). (14)128

Note that (14) provides the solution in closed form if Ia(x) is invertible, in which129

case we can use (11) to solve for ξ(t, x), namely130

ξ(t, x) = I−1
a (Ia(x)− t). (15)131

In the case of constant coefficients, we recover the well-known characteristic vari-132

able ξ(t, x) = x− at.133



Accuracy of FD Methods with Non-smooth Wave Speeds 5

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0

1

2

(a)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1

1.5

2

(b)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1

1.5

2

(c)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1

1.2

1.4

(d)

Fig. 1: Time snapshots of the exact solution (smooth curves) and numerical
solution (dotted curves) for a piecewise linear wave speed corresponding to (a)
a(x) constant (case 1) (b) a(x) ∈ C∞ (case 2) (c) a(x) ∈ C0\C1 (case 3) and
(d) a(x) /∈ C0 (case 4).

2.1.1 An example134

The exact solution (14) requires the calculation of the characteristic variable ξ, as135

well as Ia(x). As an illustration, consider a wave speed given by136

a(x) =

{
1 + εx if 0 ≤ x < 1/2

1 + ε/2 if 1/2 ≤ x ≤ 1
, (16)137

which is piecewise linear, non-smooth (at x = 1/2), and where ε is a small, positive138

number. Then139

Ia(x) =

{
1
ε ln(1 + εx) if 0 ≤ x < 1/2
1
ε ln(1 + ε/2) + 1/(1 + ε/2)(x− 1/2) if 1/2 ≤ x ≤ 1

, (17)140

and using (11) to solve for ξ yields141

ξ(t, x) =


(1+εx)e−tε−1

ε if 0 ≤ x < 1/2

d(t, x)H (1/2− d(t, x)) +

(x− ct)H (x− ct− 1/2) if 1/2 ≤ x ≤ 1

, (18)142

where d(t, x) = 1
ε

[
ce(ε/c)(x−1/2)−εt − 1

]
, and c = 1 + ε/2. Thus the exact solution143

(14) is known in closed form.144
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2.2 Discretization and stability145

To compute numerical solutions to (1), we consider finite difference methods sat-146

isfying a summation-by-parts (SBP) rule, with weak enforcement of boundary147

conditions through the simultaneous-approximation-term (SAT), which provide a148

provably stable, high-order accurate semi-discretization [11,12,23,1,3,24]. These149

operators represent centered differences in the interior of the domain, with a tran-150

sition to one-sided differences near the domain boundaries. We apply the diagonal151

norm SBP-SAT operators from [23] that have been derived with a formal order152

of accuracy given by p = 2, 3, 4 and 5. These operators have an interior order153

of accuracy given by 2p − 2 and boundary accuracy of p − 1. The operators are154

denoted by matrix D which approximates ∂/∂x.155

We let u = u(t) denote the grid vector approximating the function u(t, x), i.e.156

ui ≈ u(t, xi), where xi = ih, i = 0, ...N is a discretization of the unit interval into157

N+1 equidistantly-spaced grid points with grid spacing h = 1/N . Now D = H−1Q158

where H is a diagonal, positive definite matrix defining the discrete inner product159

and norm, given by160

(u,v)H = uTHv, ||u||2H = uTHu. (19)161

The matrix Q is almost skew-symmetric, i.e. Q + QT = diag[−1, ... 0, 0, 0, ...1].162

This construction allows the integration-by-parts rule163

ˆ 1

0

u
dv

dx
dx = u(1)v(1)− u(0)v(0)−

ˆ 1

0

du

dx
vdx (20)164

to be mimicked discretely, namely165

uTHDv = uNvN − u0v0 − (Du)THv. (21)166

To explore convergence rates of high-order accurate SBP-SAT methods we apply167

the skew-symmetric discretization from [19] to equation (1), which will allow us168

to obtain a semi-discrete energy estimate mimicking (4). Note that we apply this169

method without any special procedure applied near points where wave speed a(x)170

might be non-smooth. The discretization is given by171

ut +
1

2
[AD + DA] u− 1

2
UDa = σH−1(u0 − h(t))e0, (22a)172

u(0) = f , (22b)173
174

where e0 = [1, 0, 0, ..., 0]T and f is the vector of initial data evaluated on the175

grid. The right side of (22a) represents the SAT term that enforces boundary176

condition (1b) weakly using the penalty parameter σ. Matrix A has the values of177

a(x) injected onto its diagonal, vector a has values of a(x) evaluated at the grid,178

and matrix U = diag[u0, u1, ...uN ] so that UDa ≈ axu. Multiplying (22a) by179

uTH (and taking h(t) = 0) and adding its transpose yields180

d||u||2H
dt

= (a0 + 2σ)u20 − aNu2N + (u,UDa)H, (23)181

182

which mimics (4) (exactly if σ = −a0/2) and requires σ ≤ −a0/2 for stability.183

With grid refinement, (22) yields a semi-discrete energy rate (23) which converges184

to (4) for smooth coefficients.185
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Fig. 2: Time snapshots of absolute error, plotted in dashed lines, between the
exact and numerical solutions for a piecewise linear wave speed corresponding
to (a) a(x) constant (case 1) (b) a(x) ∈ C∞ (case 2) (c) a(x) ∈ C0\C1 (case
3) and (d) a(x) /∈ C0 (case 4).

2.3 Convergence rates186

We investigate the convergence rate of the scheme (22) using the analytic solution.187

Throughout this work we apply Matlab’s ode45, a fourth order accurate, adaptive188

Runge-Kutta time stepping scheme with error control. We set absolute and rela-189

tive tolerances to 10−12 to minimize temporal error accumulation. Letting ε be a190

positive parameter, we consider four cases for a linearly varying wave speed a(x),191

namely a(x) = 1, a(x) = 1 + εx,192

a(x) =

{
1 if 0 ≤ x < 1/2

1− ε/2 + εx if 1/2 ≤ x ≤ 1,
(24)193

a(x) =

{
1 if 0 ≤ x < 1/2

1 + ε/2 if 1/2 ≤ x ≤ 1,
(25)194

195

and refer to each, respectively, as case 1-4. Case 1 corresponds to constant a(x)196

and allows us to illustrate known results, while case 2 corresponds to a(x) ∈ C∞.197

Case 3 represents a(x) ∈ C0\C1, and case 4 represents wave speeds with a jump198

discontinuity, i.e. a(x) /∈ C0. The exact solutions for all four cases are detailed in199

appendix A.200

In Figure 1 we take ε = 0.8 and plot the wave speed a(x) for all four cases, as201

well as the exact and numerical solution at various snapshots in time using SBP202

operators with p = 3 and N = 27 + 1 grid points. For this illustration, we have set203

the initial data to be a Gaussian, namely f(x) = e−(x−0.25)2/.001, and boundary204

data h(t) = 0. Figure 1(a) illustrates the standard results for constant wave speed205

(case 1), showing information propagating to the right at a constant speed, with206
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initial data plotted in blue dots, and at later times in green and black dots. Figure207

1(b) corresponds to a(x) ∈ C∞ (case 2), where information travels at a faster208

rate (and is consequently spread out - as evidenced by the increasing width of the209

initial Gaussian) compared to the constant wave speed counterpart from Figure210

1(a). Figure 1(c) corresponds to piecewise linear wave speeds a(x) ∈ C0\C1 (case211

3) which is not smooth at x = 1/2. Once the information crosses this point it is212

propagated at an increasingly faster speed. Figure 1(d) corresponds to wave speeds213

with a jump discontinuity (case 4, with a(x) /∈ C0) and information travels at a214

constant, faster speed once information crosses x = 1/2.215

In Figure 2 we plot the absolute error in space216

e(t, xi) = |u(t, xi)− ui(t)| (26)217

at the same snapshots in time as in Figure 1. Figure 2(a) reveals error growing218

in magnitude as the wave propagates at a constant speed. Figures 2(b) and 2(c)219

show similar features to that of Figure 2(a), but due to increasing wave speeds,220

information has reached the right boundary by t = 1/2. For a(x) /∈ C0 (case 4),221

Figure 2(d) reveals error propagating backwards once information crosses x = 1/2.222

This result is not unexpected as the use of centered difference approximations can223

propagate error in both directions.224

We denote the total error in the discrete H-norm at time t by225

E(t) = ||u(t, ·)− u(t)||H, (27)226

where u(t, ·) is the exact solution evaluated on the grid. In Figure 3 we show con-227

vergence results, where the total error is computed at t = 1/2, for SBP operators228

with p = 2, 3, 4, 5. Figure 3(a) corresponds to constant wave speeds (case 1) and229

we observe convergence rates that are slightly higher than those theoretically pre-230

dicted. Figure 3(b) corresponds to a(x) ∈ C∞ (case 2) and reveals convergence at231

the theoretical rates. Wave speeds corresponding to a(x) ∈ C0\C1 (case 3), show232

convergence rates drop to second order for all p, as seen in Figure 3(c). We also233

observe in Figure 3(c) that for small N the total error is reduced with increasing234

p but that for large N the total error is only reduced when going from p = 2 to235

p = 3 (and not reduced further for higher order methods). Wave speeds with a236

jump discontinuity (case 4) show convergence rates drop to 1 for all p considered237

(consistent with theoretical estimates from [7, page 194]) as evidenced by Figure238

3(d), and for large N the total error is not reduced at all with higher order meth-239

ods.240

We are also interested in how the total error evolves over longer time periods,241

thus we plot E(t) up to t = 3 in Figure 4 with N = 27 +1 grid points. Because the242

initial Gaussian pulse exits the domain by t = 1, we modify the boundary data to243

send in periodic pulses, namely, we set the boundary data to be244

h(t) =
5∑
j=0

e−(t−0.25(2j+1)2/0.001. (28)245

Figures 4(a)-4(c) show results from cases 1-3 and we see that increasing the order246

of accuracy decreases the maximum error levels (also evident in the convergence247

plots in Figures 3(a)-3(c)), and that error remains bounded for all time. Figure 4(d)248

corresponds to a(x) /∈ C0 (case 4). Although the error remains bounded in time,249
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Fig. 3: Convergence rates for SBP operators with global order of accuracy
p = 2, 3, 4, 5 for a piecewise linear wave speed corresponding to (a) a(x) constant
(case 1) (b) a(x) ∈ C∞ (case 2) (c) a(x) ∈ C0\C1 (case 3) and (d) a(x) /∈ C0

(case 4). Total error computed at t = 1/2. (a) and (b) give expected rates,
while (c) reveals second order convergence for all p, and (d) reveals a drop to
first order convergence for all p.

maximum levels decrease when going from p = 2 to p = 3, but do not decrease250

further with even higher-order accurate methods. And as evidenced in Figure251

3(d), with larger N we would not expect any decrease in maximum error level for252

increasing p. We found that although convergence rates drop to 2 for a piecewise253

linear wave speed a(x) ∈ C0\C1, error decreases with increasing p (at least on254

coarse grids) and error decreases on fine grids when increasing p from 2 to 3. For a255

piecewise constant wave speed with a jump discontinuity, there is some gain when256

increasing p from 2 to 3 on coarse grids, but no decrease in error on fine grids. In257

all cases we considered, we found that high order methods are still accurate even258

for wave speeds that contain discontinuities, and do no worse than the low-order259

methods. However, high-order methods come at a greater computational cost due260

to the wider stencil present and smaller time-step requirements.261
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Fig. 4: Total error as a function of time, computed in the discrete H-norm with
N = 27 + 1 gridpoints, for a piecewise linear wave speed corresponding to (a)
a(x) constant (case 1) (b) a(x) ∈ C∞ (case 2) (c) a(x) ∈ C0\C1 (case 3) and
(d) a(x) /∈ C0 (case 4). Error remains bounded in time for all cases.

2.3.1 Introducing an interface262

Theoretical convergence rates can be restored in the previous cases if an interface263

is placed at the location where the wave speed is non-smooth. However, keep in264

mind that in many practical applications this location is not known.265

The wave speeds we consider in this section are non-smooth at x = 1/2. Placing266

an interface here renders equation (1) a coupled set of equations (one on each side267

of the interface). On the left side of x = 1/2 we have268

uLt + aL(x)uLx = 0, x ∈ (0, 1/2), (29a)269

uL(t, 0) = h(t), (29b)270

uL(0, x) = fL(x), x ∈ (0, 1/2) (29c)271
272

and on the right side we have273

uRt + aR(x)uRx = 0, x ∈ (1/2, 1) (30a)274

uR(t, 1/2) = uL(t, 1/2) (30b)275

uR(0, x) = fR(x), x ∈ (1/2, 1). (30c)276
277
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Note that (30b) couples (29) and (30), enforcing continuity of the solution across278

the interface. Wave speeds aL(x) and aR(x) are defined and smooth everywhere279

on x ∈ [0, 1/2] and x ∈ [1/2, 1], respectively. For example, case 3 now refers the280

two wave speeds281

aL(x) = 1 (31)282

aR(x) = 1 + εx. (32)283
284

Applying the energy method to (29-30) (with h(t) = 0) as done in section 2, yields285

the estimate286

d
(
||uL||22 + ||uR||22

)
dt

=
[
aR(1/2)− aL(1/2)

]
uL(t, 1/2)2+287

− aR(1)uR(t, 1)2 +

ˆ 1/2

0

aLx (uL)2dx+

ˆ 1

1/2

aRx (uR)2dx.

(33)

288

289

Note that the first term on the right of (33) vanishes for a continuous wave speed,290

corresponds to energy dissipation if aR(1/2) < aL(1/2) and to growth if aR(1/2) >291

aL(1/2).292

To solve (29)-(30) numerically, we discretize each side of the domain with293

N/2 + 1 grid points, namely294

xLi = ih, xRi = 1/2 + ih, i = 0, ..., N/2 h = 1/N. (34)295

Using the skew-symmetric discretization as before, the semi-discrete equations are296

given by the (coupled) initial value problem297

uLt +
1

2

[
ALD + DAL

]
uL − 1

2
ULDaL = σ1H

−1(uL0 − h(t))e0298

+ σ2H
−1(uLN − uR0 )eN , (35a)299

uRt +
1

2

[
ARD + DAR

]
uR − 1

2
URDaR = σ3H

−1(uR0 − uLN )e0, (35b)300

uL(0) = fL, (35c)301

uR(0) = fR, (35d)302
303

where vectors fL and fR are f(x) evaluated at the left and right grids, respectively.304

The energy method applied to (35) (taking h(t) = 0) yields305

d
(
||uL||2H + ||uR||2H

)
dt

=(uL,ULDaL)H + (uR,URDaR)H + (aL0 + 2σ1)(uL0 )2306

− aRN (uRN )2 + (aR0 − aLN )(uLN )2 + yTMy (36)307
308

where matrix M =
[
−a0R + 2σ2 −σ2 − σ3 − σ2 − σ3 2σ3 + aR0

]
and vector y =309

[uLN uR0 ]T . We take σ1 = −aL0 /2 so that the continuous energy estimate (33)310

is mimicked exactly, with some added dissipation if M is negative semi-definite.311

This is true with the choice σ2 = 0, σ3 = −aR0 , corresponding to fully up-winding312

at the interface. See [13] for a discussion of other choices of penalty parameters.313

With the interface present, Figure 5 shows that the theoretical convergence rates314

are recovered, and Figure 6 shows that the total error in the H-norm is reduced315

in all cases when using higher order methods.316
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Fig. 5: Convergence rates after introducing an interface, for SBP operators
with global order of accuracy p = 2, 3, 4, 5, for a piecewise linear wave speed
corresponding to (a) a(x) constant (case 1) (b) a(x) ∈ C∞ (case 2) (c) a(x) ∈
C0\C1 (case 3) and (d) a(x) /∈ C0 (case 4). Total error computed at t = 1/2.
By introducing an interface the theoretical convergence rates are obtained in
all cases.

3 The vector equation317

Next, we consider the linear system of equations in non-conservative form318

ut + a(x)ux = 0, (37a)319

vt − b(x)vx = 0, (37b)320
321

where a(x), b(x) > 0, x ∈ (0, 1) and t ≥ 0. For simplicity in the analysis, we322

assume non-zero initial data for u, and zero initial data for v (non-zero initial data323

for v can be included but increases the complexity of the constructed analytical324

solution). Thus we take325

u(0, x) = f(x), (38a)326

v(0, x) = 0, (38b)327
328

and boundary conditions given by329

u(t, 0) = αv(t, 0), (39a)330

v(t, 1) = βu(t, 1), (39b)331
332
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Fig. 6: Total error as a function of time after introducing an interface, for
N = 27 + 2 total grid points, computed in the discrete H-norm for a piecewise
linear wave speed corresponding to (a) a(x) constant (case 1) (b) a(x) ∈ C∞
(case 2) (c) a(x) ∈ C0\C1 (case 3) and (d) a(x) /∈ C0 (case 4). Error remains
bounded in time, with maximum levels reduced with higher order methods in
all cases.

where α =
√
b(0)/a(0) and β =

√
a(1)/b(1) are chosen so that the boundary terms333

in the continuous energy estimate cancel exactly.334

Multiplication of (37) by u, v (respectively), and integrating over the domain335

yields the energy estimate (if ax, bx ∈ L∞(0, 1))336

d

dt

(
||u||22 + ||v||22

)
=

ˆ 1

0

(axu
2 − bxv2)dx. (40)337

Alternatively, as done in the scalar case, we can compute the energy estimate using338

a weighted norm, which yields339

d

dt

(
||u||2a−1 + ||v||2b−1

)
= (α2 − 1)v2(t, 0) + (β2 − 1)u2(t, 1) (41)340

Note that (40) illustrates that for constant wave speeds, the energy is conserved.341

The relation (41) illustrates how energy growth/decay is dictated by the bound-342

ary conditions: α, β > 1 dictates energy growth, while for α, β < 1 there is en-343

ergy decay. As we will see from the spectrum (computed in the next section),344

growth/decay of solutions is more specifically dictated by the sign of ln(αβ).345
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3.1 The continuous spectrum346

To compute the continuous spectrum for (37)-(39) we set initial data for u and347

v to zero (i.e. we also take f(x) = 0 in (38)), and we define Ia(x), Ib(x) by (2).348

Laplace transforming (37)-(38) in time yields the system of differential equations349

sû+ a(x)ûx = 0, (42a)350

sv̂ − b(x)v̂x = 0, (42b)351
352

which corresponds to353

s

[
û
v̂

]
−D

[
û
v̂

]
= 0, D =

[
−a(x)∂/∂x 0

0 b(x)∂/∂x

]
. (43)354

Thus s corresponds to the eigenvalues of the differential operator D.355

The solution to (42) are the functions356

û(s, x) = C1(s)e−sIa(x), (44a)357

v̂(s, x) = C2(s)e+sIb(x), (44b)358
359

where e−sIa(x) and e+sIb(x) are the eigenfunctions of D. To solve for the unknown360

constants in (44) we insert boundary conditions (39), yielding the linear system361

A(s)c(s) = 0, where matrix362

A(s) =

[
1 −α

βe−sIa(1) −e+sIb(1)
]
, (45)363

and vector c(s) = [C1(s) C2(s)]T . Non-trivial solutions for C1(s), C2(s) will exist364

when det A(s) = 0. This occurs for discrete eigenvalues sn given by365

sn =
2πni+ ln(αβ)

Ia(1) + Ib(1)
, forn ∈ Z. (46)366

These eigenvalues form the spectrum of operator D, and lie on a vertical line in367

the complex plane, corresponding to ηc = Re(sn) = ln(αβ)/ [Ia(1) + Ib(1)]. Since368

Ia(1), Ib(1) > 0, the sign of ηc is determined by the sign of ln(αβ).369

3.2 Construction of the analytic solution370

For general initial data f(x), solutions to (37)-(38) in Laplace space take the form371

372

û(s, x) = C1(s)e−sIa(x) + F (s, x), (47a)373

v̂(s, x) = C2(s)e+sIb(x), (47b)374
375

376 where F (s, x) is defined by (10). Applying the boundary conditions (39) allows us377

to solve for the coefficients378
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C1(s) = R(s)

ˆ 1

0

f(w)

a(w)
esIa(w) dw, (48)

C2(s) = C1(s)/α, (49)

where379

R(s) =
αβe−sIa(1)

esIb(1) − αβe−sIa(1)
. (50)380

Now R(s) can be expressed as the geometric series381

R(s) =
∞∑
n=0

[
αβe−s(Ia(1)+Ib(1))

]n+1
=
∞∑
n=1

(αβ)ne−stn (51)382

383

where384

tn = n(Ia(1) + Ib(1)), (52)385

which converges for386

Re(s) >
ln(αβ)

Ia(1) + Ib(1)
. (53)387

Note that (53) corresponds to the half-plane to the right of the line of eigenvalues388

sn given by (46). Relation (52) corresponds to the time it takes information to389

travel across the domain and back at speeds a(x), b(x) (respectively) n times.390

Substituting (51-52) into (47) we re-write the solution as391

û(s, x) =
∞∑
n=1

(αβ)n
ˆ 1

0

f(ωn)

a(ωn)
e−s(Ia(x)−Ia(ωn)+tn)dωn + F (s, x), (54a)392

v̂(s, x) =
1

α

∞∑
n=1

(αβ)n
ˆ 1

0

f(γn)

a(γn)
e−s(−Ib(x)−Ia(γn)+tn)dγn. (54b)393

394
395

Inverse Laplace transforming (54) (applying the same substitution techniques used396

in section 2) yields the solution in the time domain397

u(t, x) = f(ξ)H(ξ) +
∞∑
n=1

(αβ)nf(ωn)H(ωn)H[t− (tn + Ia(x)− Ia(1))], (55a)398

v(t, x) =
1

α

∞∑
n=1

(αβ)nf(γn)H(γn)H[t− (tn − Ib(x)− Ia(1))], (55b)399

400

where ξ, ωn, γn are characteristic variables defined implicitly through the relations401

402

Ia(ξ) = Ia(x)− t, (56a)403

Ia(ωn) = Ia(x) + tn − t, (56b)404

Ia(γn) = −Ib(x) + tn − t. (56c)405
406

Note that (55) provides the solution in closed form and further illustrates that407

solutions decay if αβ < 1 (corresponding to ηc < 0), grow if αβ > 1 (corresponding408

to ηc > 0) and neither grow nor decay if αβ = 1 (corresponding to ηc = 0).409

In practice, to evaluate the exact solution (55) up to a specified time T , we410

use (52) to find the smallest k ∈ N such that both T − (tk + Ia(x)− Ia(1)) < 0411

and T − (tk − Ib(x)− Ia(1)) < 0 holds for all x ∈ [0, 1], then truncate the series412

in (55) at n = k.413



16 Brittany A. Erickson et al.

0 0.5 1
0

0.5

1

1.5

2

0 0.5 1
0

0.5

1

1.5

2

0 0.5 1
0.5

1

1.5

0 0.5 1
0.5

1

1.5

(b)

(c)

(a)

(d)

Fig. 7: Four cases of piecewise linear wave speeds, where a(x), b(x) are (a)
constant, (b) ∈ C∞ (c) ∈ C0\C1 and (d) /∈ C0.

3.2.1 An example414

To illustrate how to construct the analytic solution, we consider wave speeds that415

vary as416

a(x) =

{
1− εx if 0 ≤ x < 1/2

1− ε/2 if 1/2 ≤ x ≤ 1
(57)417

b(x) =

{
1 + εx if 0 ≤ x < 1/2

1 + ε/2 if 1/2 ≤ x ≤ 1
, (58)418

419

which are piecewise linear, non-smooth (at x = 1/2), and where ε is a small, posi-420

tive number. Solving (56) for ξ, ωn and γn (which requires Ia, Ib to be invertible)421
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Fig. 8: Time snapshots of the numerical solutions u and v (plotted in blue
circles and red dots, respectively) for wave speeds (a) a(x), b(x) constant (b)
a(x), b(x) ∈ C∞ (c) a(x), b(x) ∈ C0\C1, and (d) a(x), b(x) /∈ C0.

yields422

ξ(t, x) =


−(1/ε)(1− εx)eεt−1 if 0 ≤ x < 1/2

−d1(t, x)H (1/2 + d1(t, x)) +

(x− t/c1)H (x− t/c1 − 1/2) if 1/2 ≤ x ≤ 1

, (59)423

ωn(t, x) = ξ(t− tn, x), (60)424

γn(t, x) =


1
ε (1 + εx+ eε(tn−t))/(1 + εx) if 0 ≤ x < 1/2

d2(t, x)H (1/2− d2(t, x)) +

d3(t, x)H (d3(t, x)− 1/2) if 1/2 ≤ x ≤ 1

, (61)425

426

where427

d1(t, x) =
1

ε

[
c1e
−ε(x−1/2)/c1+εt − 1

]
, (62)428

d2(t, x) =
1

ε

[
cec(x−1/2)−ε(tn−t) − 1

]
, (63)429

d3(t, x) =(x− (tn − t)/c), (64)430
431
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c1 = 1 − ε/2 and c = 1 + ε/2 (as in section 2). These characteristic variables,432

along with Ia(x), Ib(x) (which are easily computable), allow us to form the exact433

solution (55).434

3.3 The numerical approximation for the system435

We again discretize the domain using N + 1 gridpoints, and apply the skew-436

symmetric SBP-SAT discretization of [19] to (37-39) given by437

ut +
1

2
[AD + DA] u− 1

2
UDa = σLH−1(u0 − αv0)e0, (65a)438

vt −
1

2
[BD + DB] v +

1

2
VDb = σRH−1(vN − βuN )eN , (65b)439

440

where eN = [0, 0, ..., 0, 1]T , σL, σR are penalty parameters, and all other terms441

are defined in section 2. The discrete energy method applied to (65) yields442

d
(
||u||2H + ||v||2H

)
dt

= (u,UDa)H − (v,VDb)H + yT0 M0y0 + yTNMNyN (66)443

444

where vectors yT0 = [u0 v0], yTN = [uN vN ] and matrices445

M0 =

[
a0 + 2σL −ασL
−ασL −b0

]
, MN =

[
−aN −βσR
−βσR bN + 2σR

]
.446

The semi-discrete estimate (66) mimics the continuous (40), with some additional447

damping by choosing penalty parameters σL = −a0, σR = −bN which render M0448

and MN negative semi-definite.449

As in section 2, we consider four cases of piecewise linear wave speeds a(x), b(x)450

with different smoothness conditions. Constant wave speeds will always correspond451

to eigenvalues with ηc = 0, while non-constant coefficients can generate eigenvalues452

sn with real part ηc in either the left or right half planes, or on the imaginary axis.453

3.4 Convergence rates454

To verify convergence of the method, we consider wave speeds illustrated in Figure455

7, the latter three corresponding to ηc < 0. These are given by case 1, with a(x) =456

b(x) = 1, case 2 with a(x), b(x) ∈ C∞, defined by a(x) = 1 − εx, b(x) = 1 + εx.457

Case 3 corresponds to a(x), b(x) ∈ C0\C1, namely458

a(x) =

{
1− εx if 0 ≤ x < 1/2

1− ε/2 if 1/2 ≤ x ≤ 1,
(67)459

b(x) =

{
1 + εx if 0 ≤ x < 1/2

1 + ε/2 if 1/2 ≤ x ≤ 1,
, (68)460

461
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Fig. 9: Convergence rates for SBP operators with order of accuracy p = 2, 3, 4, 5
for four cases of piecewise linear wave speeds a(x), b(x) that are (a) constant
(case 1) (b) ∈ C∞ (case 2) (c) ∈ C0\C1 (case 3) and (d) /∈ C0 (case 4). Total
error computed at t = 2. (a) and (b) reveal convergence at the expected rates,
while rates drop to second order for (c) and first order for (d).

and case 4, corresponding to a(x), b(x) /∈ C0, namely462

a(x) =

{
1 if 0 ≤ x < 1/2

1− ε/2 if 1/2 ≤ x ≤ 1,
(69)463

b(x) =

{
1 if 0 ≤ x < 1/2

1 + ε/2 if 1/2 ≤ x ≤ 1
. (70)464

465

The exact solutions for all four cases are detailed in appendix A.466

We take ε = 0.8, and initialize the problem by

f(x) = 1/2e−(x−0.25)/0.001 + e−(x−0.75)/0.001 (71)

g(x) = 0, (72)

i.e. f(x) is the sum of two Gaussians of different heights (to facilitate their tracking467

in time). In Figure 8 we plot the numerical solutions at constant time increments,468

with approximations to u shown in blue circles and to v shown in red dots. Figure469

8(a) is a proof of concept result for constant wave speeds. The two initial pulses470
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that form u (in blue circles) propagate to the right at which point v (in red dots)471

reflects off the right boundary and propagates to the left. There is no dissipation472

of energy since ηc = 0. In contrast, Figure 8(b) illustrates how u (in blue circles)473

initially propagates to the right more slowly (and the initial pulses narrow) than474

in the case of constant coefficients, because a(x) is a decreasing function. v (in red475

dots) reflects off the right boundary with a decreased amplitude (because β < 0),476

and the reflected red pulse is wider because b(x) > a(x). Figures 8(c)-8(d) also477

reveal reflections off the right boundary with decreased amplitude (again because478

β < 0), and the pulse narrows or widens depending on the value of the wave speed479

carrying it. These latter three cases correspond to energy dissipation, as ηc < 0,480

which we will illustrate in more detail in the next section.481

We again compute the error in the discrete H-norm, this time at t = 2. Results482

are given in Figure 9 for the four cases of wave speeds. Constant wave speeds483

(case 1) and smoothly linearly varying wave speeds (case 2) yield the standard484

convergence results. As in the scalar case, wave speeds with a(x), b(x) ∈ C0\C1
485

(case 3) and a(x), b(x) /∈ C0 (case 4) reveal convergence rates reduced to 2 and 1,486

respectively.487

Figure 9 also reveals that for smooth coefficients (cases 1 and 2), the error is488

reduced when increasing p. However, for large N and wave speeds a(x), b(x) ∈489

C0\C1 (case 3), the error is reduced when increasing p from 2 to 3 to 4, but490

there is no decrease with p = 5. With a(x), b(x) /∈ C0 (case 4), there is some491

gain in increasing p from 2 to 3, but not to 4 or 5. In summary, as found in the492

scalar case the higher order methods are still accurate when wave speeds contain493

discontinuities and do no worse than the lower order methods except that higher-494

order methods come at a greater computational cost due to the wider stencil495

present and smaller time step requirements.496

Theoretical convergence rates can be reinstated as in the scalar case if interfaces497

are placed where the wave speeds are not smooth (i.e. at x = 1/2). The details for498

incorporating an interface are given in Appendix B.499

3.5 Comparing continuous and discrete spectra500

Next we compute the discrete spectrum for the semi-discrete equations with and501

without an interface. For the equations without an interface, for example, we re-502

write (65) as503

Yt −DhY = 0, (73)504

where YT = [uT vT ] and505

Dh =

[
Ma 0
0 Mb

]
+

[
H−1 0

0 H−1

]
S,506

for507

Ma = −1

2
[AD + DA] +

1

2
diag(Da), (74)508

Mb =
1

2
[BD + DB]− 1

2
diag(Db), (75)509

510

and penalty matrix S (of size 2N×2N), a matrix of all zeros except with σL in the511

(1, 1) position, −ασL in the (1, N) position, −βσR in the (2N,N) position, and σR512
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in the (2N, 2N) position. The eigenvalues of Dh thus constitute the spectrum of513

the discrete operator. The discrete spectrum for the semi-discrete equations with514

an interface, given in (97), can be computed similarly.515

We are interested in how well the discrete spectrum approximates that of516

the continuous operator, when ηc lies in different regions of the complex plane.517

Specifically, we want to explore in which cases dissipative strict stability is obtained.518

A strictly stable method is one for which the growth/decay rate of the discrete519

scheme converges to the growth/decay rate of the continuous problem [16]. This520

is important for long-time calculations so that high frequency errors do not grow521

and destroy the accuracy, see [16] for more details. We say it is of dissipative type522

if the eigenvalues of discrete operator converge to the continuous ones from the left523

hand side. Convergence from the left is important since our discretization should524

not allow for growth at a rate faster than that predicted by the physical problem.525

We consider four cases of linearly-varying wave speeds corresponding to either526

ηc = 0, ηc < 0, or ηc > 0. As an initial study we consider constant wave speeds527

a(x) = b(x) = 1 (corresponding to ηc = 0) and refer to this as case 1 throughout528

this section. In Figure 10(a) we plot the continuous spectrum sn in blue stars,529

along with the discrete spectra for p = 3 and different numbers of grid points530

N . Increasing N shows convergence to the continuous spectrum from the left, an531

indication of dissipative strict stability.532

Next, we consider linearly varying wave speeds with ηc = 0, with case 2 refer-533

ring to a(x) = b(x) = 1− εx, case 3 referring to534

a(x) = b(x) =

{
1− εx if 0 ≤ x < 1/2

1− ε/2 if 1/2 ≤ x ≤ 1
, (76)535

and case 4 referring to536

a(x) = b(x) =

{
1 if 0 ≤ x < 1/2

1− ε/2 if 1/2 ≤ x ≤ 1
. (77)537

We again plot the continuous and discrete spectra for increasing N and ε = 0.8,538

shown in Figures 10(b) - 10(d). This time, wave speeds a(x), b(x) ∈ C∞ (case 2)539

and with a discontinuous derivative (case 3) reveal convergence from the left. A540

discontinuous wave speed (case 4) results in discrete eigenvalues that have posi-541

tive real parts, indicating that dissipative strict stability is not obtained. Because542

ηc = 0, this in fact corresponds to an instability. Note that energy estimate (40)543

does not apply for discontinuous coefficients, thus there is no (or a very weak) the-544

oretical bound and instabilities cannot be ruled out. The eigenvalues that lie to the545

right of the imaginary axis in Figure 10(d) correspond to unstable modes that are546

associated with poorly resolved eigenfunctions. While not explored in the present547

study, a sufficient amount of artificial dissipation could be added to the scheme to548

push these unstable modes to the left half-plane and stabilize the scheme.549

Next we consider the non-constant, linearly varying wave speeds with ηc < 0,550

defined in section 3.4 (cases 2-4), again with ε = 0.8. Figure 11 shows continuous551

and discrete spectra for wave speeds a(x), b(x) ∈ C∞ (case 2) and convergence552

from the left is observed. Figures 11(b) and 11(c) show similar plots for a(x), b(x) ∈553

C0\C1 (case 3) and a(x), b(x) /∈ C0 (case 4), respectively. The discrete spectrum554

for both of these cases lies in the left half plane (an indication of stability), however,555
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Fig. 10: Continuous spectrum (plotted in blue stars) for linearly varying wave
speeds corresponding to ηc = 0. Discrete spectra also shown, for increasing N ,
for a(x), b(x) (a) constant (case 1), (b) ∈ C∞ (case 2), (c) ∈ C0\C1 (case 3)
and (d) /∈ C0 (case 4).

some are to the right of the continuous, indicating that dissipative strict stability556

is no longer obtained.557

As a final study, we consider linearly varying wave speeds with ηc > 0, with558

case 2 now referring to a(x) = 1 + εx, b(x) = 1− εx, case 3 referring to559

a(x) =

{
1 + εx if 0 ≤ x < 1/2

1 + ε/2 if 1/2 ≤ x ≤ 1
, (78a)560

b(x) =

{
1− εx if 0 ≤ x < 1/2

1− ε/2 if 1/2 ≤ x ≤ 1
, (78b)561

562
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Fig. 11: Continuous spectrum (plotted in blue stars) for linearly varying wave
speeds corresponding to ηc < 0. Discrete spectra also shown, for increasing N ,
for a(x), b(x) (a) ∈ C∞ (case 2), (b) ∈ C0\C1 (case 3) and (c) /∈ C0 (case 4).

and case 4 referring to563

a(x) =

{
1 if 0 ≤ x < 1/2

1 + ε/2 if 1/2 ≤ x ≤ 1
, (79a)564

b(x) =

{
1 if 0 ≤ x < 1/2

1− ε/2 if 1/2 ≤ x ≤ 1
. (79b)565

566

In Figure 12 we plot the continuous and discrete spectra for these cases, again with567

ε = 0.8. Figures 12(a)-12(b) reveal discrete spectra converging to the continuous568

from the left for a wave speed in C∞ (case 2) and for a wave speed in C0\C1.569

Figure 12(c), however, reveals that for wave speeds with a jump discontinuity570

(case 4) there exist discrete eigenvalues with real parts that lie to the right of the571

continuous.572

In Figure 13 we plot the continuous and discrete spectra after introducing573

an interface at x = 1/2, for the cases where dissipative strict stability was not574

obtained. For ηc = 0 and ηc > 0 corresponding to a wave speed with a jump575

discontinuity, Figures 13(a) and 13(d) illustrate that dissipative strict stability576

can be recovered by including an interface. For ηc < 0, however, some of the577

discrete eigenvalues still lie to the right of the continuous spectrum, as observed578

in Figures 13(b)-13(c). A similar result has been found for the scalar case, where579

dissipative strict stability is not obtained for discontinuous wave speeds even when580

including an interface, see [13].581

3.6 Energy growth and decay582

In this section we study growth rates of the exact and numerical solutions in the583

time domain and compare them with theoretical prediction from the continuous584



24 Brittany A. Erickson et al.

spectrum. Note that in this section we consider discretizations that do not include585

an interface where wave speeds are non-smooth. We compute the time series of586

the energy (the squared H-norm of the numerical solution), namely,587

E(t) = ||u||2H + ||v||2H, (80)588

with initial conditions given by (71). In Figures 14 - 16 we plot the energy E(t)589

for the exact (in solid blue) and the numerical solution (in red), with N = 29 + 1590

grid points, and interior order of accuracy p = 3. We also plot (in dashed green)591

the right hand side of the semi-discrete energy estimate (66), letting592

r(t) = (u,UDa)H − (v,VDb)H + yT0 M0y0 + yTNMNyN (81)593

denote the energy decay rate, i.e. Ė = r(t). We consider the four cases of wave594

speeds given in the previous section, corresponding to ηc = 0, ηc < 0 and ηc > 0.595

In all figures we also plot (in black circles) a theoretical measure of growth given596

by ||f ||2e2ηct (i.e. the exponential growth/decay of the squared-norm of the initial597

data as predicted by the continuous spectrum).598

Figure 14(a) shows the time series for the constant coefficient case, where599

ηc = 0, for 0 ≤ t ≤ 10. The energy E(t) corresponding to the exact solution600

neither grows nor decays, as predicted by the spectrum as well as the energy601

estimate (40). That the energy corresponding to the numerical solution does not602

grow is evidence of stability of the numerical discretization as illustrated by the603

corresponding discrete spectrum in Figure 10(a). Figures 14(b)-14(d) show the604

temporal evolution for the three cases of non-constant wave speeds corresponding605

to ηc = 0. There is no exponential growth or decay, simply oscillatory motion606

predicted by purely imaginary eigenvalues. Note that the energy decay rate r(t)607

(in dashed green) is non-zero, as would be expected by non-constant a(x), b(x),608

and corresponds to the time derivative of E(t).609

Figure 15 shows the temporal evolution for the three cases of non-constant610

wave speeds corresponding to ηc < 0 and those corresponding to ηc > 0, and we611

see a good match between the decay/growth of the exact and numerical energies as612

compared to theoretical rate, at least on the time interval 0 ≤ t ≤ 10. The lack of613

dissipative strict stability is primarily an issue for long-time simulations for which614

small differences in exact and numerical growth rates can destroy the accuracy615

of the approximation, see [16]. For ηc = 0, a loss of dissipative strict stability616

implies, even more importantly, a loss of numerical stability. The spectra plotted617

in Figure 10(d), for example, shows this loss of stability for a discontinuous wave618

speed corresponding to ηc = 0 where discrete eigenvalues cross the imaginary axis.619

The long-time series (0 ≤ t ≤ 3000) for this case is plotted in Figure 16, where620

exponential growth of the energy of the numerical solution is clearly observed.621

4 Conclusions622

We have investigated high-order-accurate, skew-symmetric SBP-SAT methods for623

hyperbolic problems with non-smooth variable coefficients. These skew-symmetric624

methods are based on a splitting that assumes that the variable coefficients are625

differentiable everywhere. However, when the coefficients are piecewise continuous626
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and discontinuous, the splitting is no longer justified. In this case, it is not un-627

derstood what the consequences are in terms of accuracy and stability. To begin628

addressing this question, we have derived analytic solutions to the scalar and vector629

advection equation with spatially-variable wave speeds and used these to compute630

convergence rates of numerical solutions when considering piecewise linear wave631

speeds that are non-smooth in some cases. Smooth wave speeds show convergence632

at the theoretically predicted rates for formal order of accuracy p = 2, 3, 4, 5, while633

wave speeds in C0\C1 reveal a reduction to second-order convergence for all p con-634

sidered. Wave speeds with a jump discontinuity reveal a reduction to first order635

convergence for all p considered. We showed however, that theoretical convergence636

rates can be recovered by including an interface where wave speeds are not smooth.637

We computed the spectrum of the differential operator for the vector equation638

and compared it with that of the discrete operator. For wave speeds that gener-639

ate continuous eigenvalues with negative real part, the skew-symmetric SBP-SAT640

method is stable for all wave speeds considered. However, for non-smooth wave641

speeds, some eigenvalues of the discrete operator lie to the right of the continu-642

ous spectrum, even with an interface present, an indication that dissipative strict643

stability is not achieved. For wave speeds corresponding to purely imaginary eigen-644

values, stability is obtained for smooth wave speeds and continuous wave speeds645

with a discontinuous derivative. Wave speeds with jump discontinuity, however,646

generate discrete eigenvalues with positive real part, an indication of an instability.647

Stability is recovered in this case, however, if an interface is included where the648

wave speed is not smooth. For wave speeds corresponding to eigenvalues of the649

continuous operator with positive real part, the discrete spectrum converges from650

the left to the continuous spectrum for smooth coefficients and for that with a dis-651

continuous derivative. For the discontinuous wave speeds we considered, however,652

we again observe discrete eigenvalues that lie to the right of the continuous spec-653

trum, indicating a numerical growth rate that is faster than that dictated by the654

continuous problem. This issue is mitigated by incorporating an interface where655

the wave speeds are not smooth.656

We have considered piecewise linear wave speeds with different smoothness657

conditions, and reported on convergence rates of numerical solutions and discrete658

spectra. If the wave speeds are not smooth we found that convergence rates for659

high-order accurate methods drop significantly, and (for large N) the overall error660

remains constant with increasing order of accuracy p. The higher-order methods661

in this case offer no added benefit and would be more computationally expensive662

than the lower order methods due to the larger stencil (and smaller time-step663

required). We also found that smooth, linear wave speeds as well as continuous,664

linear wave speeds with a discontinuous derivative correspond to methods with665

dissipative strict stability. Without any special treatment, such as including an666

interface, discontinuous wave speeds can lead to instabilities. Finally, our results667

suggest the need for a theory on how well the discrete spectrum approximates the668

continuous one for general wave speeds, if they are to be used to understand the669

stability of more general physical problems.670
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Fig. 12: Continuous spectrum (plotted in blue stars) for linearly varying wave
speeds corresponding to ηc > 0. Discrete spectra also shown, for increasing N ,
for a(x), b(x) (a) ∈ C∞ (case 2), (b) ∈ C0\C1 (case 3) and (c) /∈ C0 (case 4).
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A Detailed analytic solutions732

Below we provide detailed analytic solutions for the scalar and vector equations considered.733

The code for computing these is available online at https://github.com/brittany-erickson/734

analytic_wave/.735

https://github.com/brittany-erickson/analytic_wave/
https://github.com/brittany-erickson/analytic_wave/
https://github.com/brittany-erickson/analytic_wave/
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Fig. 15: Time series of energy E(t) and energy decay rate r(t) for ηc < 0, with
wave speeds a(x), b(x) (a) ∈ C∞, (b) ∈ C0\C1 and (c) /∈ C0 and for ηc > 0,
with wave speeds a(x), b(x) (d) ∈ C∞, (e) ∈ C0\C1 and (f) /∈ C0.

A.1 Analytic solution to the scalar equation736

The scalar equation (1) has analytic solution given by (14) which requires the calculation of737

Ia(x) and ξ(t, x) given by (2), (15), respectively. These are provided below for the four cases738

of wave speeds considered in section 2.3.739
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Fig. 16: Long time series of energy E(t) for ηc = 0 and a(x), b(x) /∈ C0.

For case 1,740

Ia(x) = x, (82a)741

ξ(t, x) = x− t. (82b)742
743

For case 2,744

Ia(x) =
1

ε
ln |1 + εx| (83a)745

ξ(t, x) =
1

ε

[
e−εt(1 + εx)− 1

]
. (83b)746

747

For case 3,748

Ia(x) =xH(x0 − x) +

(
x0 +

1

ε
ln |1− εx0 + εx|

)
H(x− x0), (84a)749

ξ(t, x) =d1(t, x)H(x0 − x)H(x0 − d1(t, x))+750

d2(t, x)H(x− x0)H(x0 − d2(t, x))+751

d3(t, x)H(x− x0)H(d3(t, x)− x0), (84b)752
753

where754

d1(t, x) = x− t, (85a)755

d2(t, x) = x0 +
1

ε
ln |1− εx0 + εx| − t, (85b)756

d3(t, x) =
1

ε

[
(1− εx0 + εx)e−εt − 1 + εx0

]
. (85c)757

758

For case 4,759

Ia(x) =xH(x0 − x) +

[
x0 +

x− x0
1 + εx0

]
H(x− x0), (86a)760

ξ(t, x) =d4(t, x)H(x0 − x)H(x0 − d4(t, x))+761

d5(t, x)H(x− x0)H(x0 − d5(t, x))+762

d6(t, x)H(x− x0)H(d6(t, x)− x0), (86b)763
764

where765

d4(t, x) = x− t, (87a)766

d5(t, x) = x0 +
x− x0
1 + εx0

− t, (87b)767

d6(t, x) = x− t(1 + εx0). (87c)768
769
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A.2 Analytic solution to the vector equation770

The vector equation (37) with initial/boundary conditions given by (38)-(39) has analytic771

solution given by (55) which requires the calculation of Ia(x), Ib(x) and three characteristic772

variables ξ(t, x), ωn(t, x) and γn given by (2) and (56) respectively. These are provided below773

for the four cases of wave speeds considered in section 3.4.774

For case 1,775

Ia(x) = x, (88a)776

Ib(x) = x, (88b)777

ξ(t, x) = x− t, (88c)778

ωn(t, x) = x+ tn − t, (88d)779

γn(t, x) = −x+ tn − t. (88e)780
781

For case 2,782

Ia(x) =−
1

ε
ln |1− εx|, (89a)783

Ib(x) =
1

ε
ln |1 + εx|, (89b)784

ξ(t, x) =−
1

ε

[
(1− εx)eεt − 1

]
, (89c)785

ωn(t, x) =−
1

ε

[
(1− εx)eε(t−tn) − 1

]
, (89d)786

γn(t, x) =−
1

ε

[
(1 + εx)eε(t−tn) − 1

]
. (89e)787

788

For case 3,789

Ia(x) =−
1

ε
ln |1− εx|H(x0 − x)+790 [

−
1

ε
ln |1− εx0|+

x− x0
1− εx0

]
H(x− x0), (90a)791

Ib(x) =
1

ε
ln |1 + εx|H(x0 − x)+792 [
1

ε
ln |1 + εx0|+

x− x0
1 + εx0

]
H(x− x0), (90b)793

ξ(t, x) =k−1 (t, x)H(x0 − x)H(x0 − k−1 (x, t))+794

k−2 (t, x)H(x− x0)H(x0 − k−2 (x, t))+795

k3(t, x)H(x− x0)H(k3(t, x)− x0), (90c)796

ωn(t, x) =k−1 (t− tn, x)H(x0 − x)H(x0 − k−1 (x, t− tn))+797

k−2 (t− tn, x)H(x− x0)H(x0 − k−2 (t− tn, x))+798

k3(t− tn, x)H(x− x0)H(k3(t− tn, x)− x0)+799

k−5 (t, x)H(x0 − x)H(k−5 (t, x)− x0), (90d)800

γn(t, x) =k+1 (t− tn, x)H(x0 − x)H(x0 − k+1 (t− tn, x))+801

k+2 (t− tn, x)H(x− x0)H(x0 − k+2 (x, t− tn))+802

k4(t, x)H(x− x0)H(k4(t, x)− x0)+803

k+5 (t, x)H(x0 − x)H(k+5 (t, x)− x0), (90e)804
805
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where806

k±1 (t, x) = −
1

ε

[
(1± εx)eεt − 1

]
, (91a)807

k±2 (t, x) = −
1

ε

[
(1± εx0)eε(t±[x−x0]/[1±εx0] − 1

]
, (91b)808

k3(t, x) = x− (1− εx0)t, (91c)809

k4(t, x) = x0 + (1− εx0)

(
1

ε
ln

∣∣∣∣1− εx01 + εx0

∣∣∣∣− x− x0
1 + εx0

+ tn − t
)
, (91d)810

k±5 (t, x) = x0 + (1− εx0)

(
1

ε
ln

∣∣∣∣1− εx01± εx

∣∣∣∣+ tn − t
)
. (91e)811

812

For case 4,813

Ia(x) =xH(x0 − x) +

[
x0 +

x− x0
1− εx0

]
H(x− x0), (92a)814

Ib(x) =xH(x0 − x) +

[
x0 +

x− x0
1 + εx0

]
H(x− x0), (92b)815

ξ(t, x) =(x− t)H(x0 − x)+816

k6(t, x)H(x− x0)H(x0 − k6(t, x))+817

k7(t, x)H(x− x0)H(k7(t, x)− x0) (92c)818

ωn(t, x) =k8(t, x)H(x0 − x)H(x0 − k8(t, x))+819

k6(t− tn, x)H(x− x0)H(x0 − k6(t− tn, x))+820

k7(t− tn, x)H(x− x0)H(k7(t− tn, x)− x0)+821

k9(t, x)H(x0 − x)H(k9(t, x)− x0) (92d)822

γn(t, x) =k8(t,−x)H(x0 − x)H(x0 − k8(t,−x))+823

k9(t,−x)H(x0 − x)H(k9(t,−x)− x0)+824

k10(t, x)H(x− x0)H(x0 − k10(t, x))+825

k11(t, x)H(x− x0)H(k11(t, x)− x0), (92e)826
827

where828

k6(t, x) = x0 +
x− x0
1− εx0

− t, (93a)829

k7(t, x) = x− (1− εx0)t, (93b)830

k8(t, x) = x+ tn − t, (93c)831

k9(t, x) = x0 + (1− εx0)(x− x0 + tn − t), (93d)832

k10(t, x) = −x0 −
x− x0
1 + εx0

+ tn − t, (93e)833

k11(t, x) = x0 + (1− εx0)

(
−1−

x− x0
1 + εx0

+ tn − t
)
. (93f)834

835

B Including an interface836

By placing an interface at x = 1/2, the vector equation (37) becomes837

uLt + aL(x)uLx = 0, (94a)838

vLt − bL(x)vLx = 0, (94b)839

uL(t, 0) = αvL(t, 0), (94c)840

vL(t, 1/2) = vR(t, 1/2), (94d)841

uL(0, x) = fL(x), (94e)842

vL(0, x) = 0 (94f)843
844
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and845

uRt + aR(x)uRx = 0, (95a)846

vRt − bR(x)vRx = 0, (95b)847

vR(t, 1) = βuR(t, 1), (95c)848

uR(t, 1/2) = uL(t, 1/2), (95d)849

uR(0, x) = fR(x), (95e)850

vR(0, x) = 0, (95f)851
852

where α =
√
bL(0)/aL(0), β =

√
aR(1)/bR(1). The energy method applied to (94)-(95) yields853

d
(
||uL||22 + ||vL||22 + ||uR||22 + ||vR||22

)
dt

=
[
aR(1/2)− aL(1/2)

]
uL(t, 0.5)2854

−
[
bR(1/2)− bL(1/2)

]
vR(t, 1/2)2+855

+

ˆ 1/2

0
aLx (uL)2 − bLx (vL)2dx856

+

ˆ 1

1/2
aRx (uR)2 − bRx (vR)2dx (96)857

858

and again we note that the first two terms on the right of (96) are zero if the wave speeds are859

continuous across the interface.860

The discrete equations are given by861

uLt +
1

2

[
ALD + DAL

]
uL −

1

2
ULDaL = σ1H

−1(uL0 − αvL0 )e0862

+ σ2H
−1(uLN − u

R
0 )eN (97a)863

vLt −
1

2

[
BLD + DBL

]
vL +

1

2
VLDbL = σ3H

−1(vLN − v
R
0 )eN , (97b)864

uRt +
1

2

[
ARD + DAR

]
uR −

1

2
URDaR = σ4H

−1(uR0 − uLN )e0 (97c)865

vRt −
1

2

[
BRD + DBR

]
vR +

1

2
VRDbR = σ5H

−1(vR0 − vLN )e0866

+ σ6H
−1(vRN − βu

R
N )eN . (97d)867

868

A discrete energy estimate can be obtained as in previous sections, yielding869

d
(
||uL||2H + ||vL||2H + ||uR||2H + ||vR||2H

)
dt

= (uL,ULDaL)H + (vL,VLDbL)H870

+ (uR,URDaR)H + (vR,VRDbR)H871

+
(
aR0 − aLN

)
(uLN )2872

−
(
bR0 − bLN

)
(vR0 )2873

+ y0
TM0y0 + yN

TMNyN874

+ y1
TM1y1 + y2

TM2y2 (98)875
876

where matrices877

M0 =

[
aL0 + 2σ1 −ασ1
−ασ1 −bL0

]
, MN =

[
−aRN −βσ6
−βσ6 2σ6 + bRN

]
, (99a)878

M1 =

[
−aR0 + 2σ2 −σ2 − σ4
−σ2 − σ4 aR0 + 2σ4

]
, M2 =

[
bLN + 2σ3 −σ3 − σ5
−σ3 − σ5 −bLN + 2σ5

]
(99b)879

880
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and vectors yT0 = [uL0 vL0 ],yTN = [uRN vRN ],yT1 = [uLN uR0 ],yT2 = [vLN vR0 ]. The semi-881

discrete estimate (98) mimics the continuous estimate (96), with some additional dissipation882

if the matrices (99) are negative semi-definite. This can be accomplished by choosing for the883

boundary SAT terms σ1 = −aL0 , σ6 = −bRN , and interface penalties corresponding to full884

upwinding, namely σ2 = σ5 = 0, σ3 = −bLN , σ4 = −aR0 .885
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