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a b s t r a c t

Many geophysical phenomena are characterized by properties that evolve over a wide
range of scaleswhich introduce difficultieswhen attempting tomodel these features in one
computational method. We have developed a high-order finite difference method for the
elastic wave equation that is able to efficiently handle varying temporal and spatial scales
in a single, stand-alone framework.We apply thismethod to earthquake cyclemodels char-
acterized by extremely long interseismic periods interspersed with abrupt, short periods
of dynamic rupture. Through the use of summation-by-parts operators and weak enforce-
ment of boundary conditions we derive a provably stable discretization. Time stepping is
achieved through the implicit ✓-methodwhich allows us to take large time steps during the
intermittent period between earthquakes and adapts appropriately to fully resolve rupture.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Earthquake rupture is one example of many geophysical phenomena that are characterized by properties that evolve
over many orders of magnitude in both time and space. Modeling these phenomena with full temporal and spatial reso-
lution is thus quite difficult and it is often the case that simplifying assumptions are made in numerical studies. Because
the initial conditions prior to an earthquake are not well understood, many studies of earthquake rupture for example, im-
pose artificial initial conditions in the form of a stress perturbation in order to immediately nucleate dynamic rupture [1–3].
These methods capture the fine details of the rupture process and wave propagation, but are limited to single-earthquake
simulations without realistic initial data.

Obtaining self-consistent initial conditions would require modeling the interseismic loading period prior to rupture, but
this is computationally infeasible with the explicit time-stepping techniques generally used. Since stability considerations
with explicit methods limit the size of the time step to fractions of a second, thesemethods are not appropriate formodeling
the tectonic loading period characterized by tens to hundreds of years. In order to model full earthquake cycles however,
thesemultiple time scales have been handledwith several different techniques. Themethods of [4] and [5] involve an abrupt
switching between solving the static problem (in which inertia is neglected) and the dynamic problem. The method in [6]
disregard inertia entirely and assume that the rupture is quasi-dynamic and therefore donot simulatewave propagation. The
authors of [7] present a method that is able to simulate long interseismic periods punctuated by dynamic events within one
computational framework, but the method is based on the boundary integral method andmake the simplifying assumption
of rupture occurring in a homogeneous, linear elastic whole or half-space.
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Fig. 1. Physical and computational setting for 1D elastic wave equation in first order form on an unstaggered grid. The system, initially essentially at rest,
is loaded at the remote boundary y = H by a velocity boundary condition intended to capture the effect of slow tectonic loading. Periodic earthquakes
nucleate at the fault, which lies at the boundary y = 0 and is governed by a stress boundary condition. The domain is discretized at N + 1 points with grid
spacing h = H/N .

In this work we simulate both the interseismic period and fully dynamic rupture in one-computational setting, with
a volume discretization which allows the method to incorporate variable material properties. The method applies high
order finite difference operators which provide an efficient approach, and yields a semi-discrete problemwhich is provably
stable. The efficiency can be used either to increase the accuracy for a fixed number of mesh points or to reduce the
computational cost for a given accuracy by reducing the number of mesh points [8,9]. In the past, the main drawback with
high order finite differencemethodswas the complicated boundary treatment required to obtain a stablemethod. However,
the development during the last two decades has removed this obstacle. Finite difference operators which satisfy the
summation-by-parts (SBP) property [10–12], are central difference operators in the interior domain augmentedwith special
stencils near the domain boundaries. These SBP operators in combination with weak well-posed boundary conditions lead
to energy stability [13–19]. The preferred boundary treatment is the simultaneous approximation term (SAT) method [20],
which linearly combines the partial differential equation to be solved with well-posed boundary conditions [21,13,22,23].
A complete description of the SBP–SAT method is given in the review article [24].

Time-stepping is done through the implicit ✓-method which yields a first or second-order accurate (in time) method
and is A-stable [25]. The time step adapts according to an estimate of the local truncation error, and can be quite large
during the interseismic period while still maintaining stability. Although the main drawback compared to explicit methods
is that a nonlinear system of equations must be solved at every time step, efficiency is gained by the ability to take large
time steps, and we make no simplifying assumption of inertia being negligible during the interseismic period. Through this
technique we obtain self-consistent initial conditions prior to rupture which reflect many years of tectonic loading. In this
initial development we focus on the development of an efficient and stable time-stepping method for a high-order accurate
spatial discretization. We consider the one-dimensional problem which contains all of the difficulties present in the multi-
dimensional problem (such as varying temporal and spatial scales, and extreme stiffness), while providing the simplest
possible framework in which to introduce the method. The extension to multi-dimensions is straight forward.

2. Continuous formulation and well-posedness

2.1. Preliminaries

We simulate multiple earthquake cycles where events nucleate at a frictional fault at one boundary of the domain. The
material off the fault is governed by the elastic wave equation in first order form, see Fig. 1. In addition to the varying
time scales governing geophysical phenomena, as described in the introduction, there are also computational challenges
introduced through varying spatial scales. Faults can be hundreds of kilometers long, with frictional properties on the order
of microns. These features often lead to very large problems in order to fully resolve multiple length scales.

2.2. Governing equations and well-posedness via the energy method

Assuming linear elasticity in first order form, the governing equations and boundary conditions are:

@w

@t
= B

@w

@y
, B =


0 1/⇢
µ 0

�
, w =


v
�

�
, y 2 [0,H] (2.1a)

Lo(w) = � (0, t) = F(V (t)), L1(w) = v(H, t) = Vp. (2.1b)
The parameters ⇢ and µ are the material density and shear modulus and the boundary operators Lo and L1 act on the shear
stress � and particle velocity v, respectively. We assume that a frictional fault lies at y = 0 and is governed by a boundary
condition that equates shear stress with fault strength given through an experimentally-motivated friction law F dependent
on the particle velocity at the fault V (t) = v(0, t) (known as the ‘‘slip velocity’’), discussed in Section 4.3. The system is
initially at rest and undergoes an interseismic period where it is loaded at the remote boundary. We set the velocity at the
remote boundary y = H to a slow ‘‘plate rate’’ Vp, intended to capture the effect of slow tectonic loading. Measurements of
typical values of Vp are around 32 mm/a (e.g. the San Andreas Fault in southern California). This remote boundary condition
will load the system and increase the stress at the fault, which will eventually cause earthquakes to initiate at the fault,
sending waves through the medium.
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To analyze problem (2.1) we symmetrize the equations to

@u
@t

= A
@u
@y

, A =

0 cs
cs 0

�
, u = W�1w =

r
⇢

2
v,

1p
2µ
�

�T

, (2.2)

where cs = p
µ/⇢ is the shear wave speed and B = WAW�1,W = diag(

p
2/⇢,

p
2µ). The eigenvalues of A are ±cs, which

imply that one boundary condition is required at each end of the domain.
The non-conventional nonlinear boundary condition in (2.1b) forces a check of well-posedness, see [26,27]. Letting || · ||

denote the standard L2 norm we may now consider the total mechanical energy of the system ||u||2 as a sum of the kinetic
and strain energies. Taking the data Vp = 0, the energy method applied to Eq. (2.2) yields

d
dt

kuk2 = 2
Z H

0
uTAudy = 2csu1u2|H0 = v� |H0 = �VF(V )  0, (2.3)

with the assumption that the friction law F has the physically relevant property that it takes the sign of its argument,
i.e. F(V )V � 0.

Uniqueness is obtained by considering the difference problem of the form (2.2), i.e.

@�u
@t

= A
@�u
@y

(2.4)

where�u = u� û is the difference between two solutions satisfying the boundary conditions�u1(H, t) = 0 and�u2(0, t)
= 1p

2µ(F(V ) � F(V̂ )).
The energy method thus yields:

d
dt

k�uk2 = 2
Z H

0
�uTA�udy = 2cs(u1 � û1)(u2 � û2)

��H
0

= �(V � V̂ )(F(V ) � F(V̂ )) = ��V 2F 0(V ⇤)  0, (2.5)

where V  V ⇤  V̂ and the intermediate value theorem is applied. We can summarize this result in the following proposi-
tion [26]:

Proposition 1. The problem (2.1) is well-posed if the friction law F in (2.1) satisfies VF(V ) � 0 and F 0(V ) � 0.

3. Spatial discretization and stability

3.1. Semi-discretization

For the discrete problem we will make use of the Kronecker product

A ⌦ B :=
2

64
a0,0B · · · a0,NB

...
...

aN,0B · · · aN,NB

3

75

which has the following properties:

(A ⌦ B)T = (AT ⌦ BT ), (A ⌦ B)�1 = (A�1 ⌦ B�1), A ⌦ (B + C) = (A ⌦ B) + (A ⌦ C).

We discretize (2.1) using high-order summation-by-parts (SBP) finite difference operators for first derivatives [28]. The
boundary conditions are imposed weakly through the simultaneous-approximation-term (SAT) [20] which penalizes the
solution at the boundaries for not satisfying the boundary conditions.

The semi-discrete form of Eqs. (2.1) using the SBP–SAT framework is

(P ⌦ I2)wt = (Q ⌦ B)w +
✓
e0 ⌦⌃0


�0 � F(v0)
�0 � F(v0)

�◆
+

✓
eN ⌦⌃N


vN � Vp
vN � Vp

�◆
(3.1)

where bold quantities refer to grid vectors:w = [v0, �0, v1, �1, . . . , vN , �N ]T and I2 is a 2⇥ 2 identity matrix. We will often
refer to the vectorwi = [vi, �i]T , i = 0, . . . ,N . The operators P and Q are building blocks that form the finite difference SBP
operator @/@y ⇡ P�1Q where P is a matrix norm defining the discrete norm ||u||2P = u

T Pu for any grid vector u. The 2 ⇥ 2
matrices⌃0 and⌃N are penalty matrices that enforce the boundary conditions weakly

⌃0 :=

�1 0
0 �1

�
, ⌃N :=


�3 0
0 �4

�
. (3.2)
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We symmetrize the matrix B = WAW�1 as before. By letting IN denote the N ⇥ N identity matrix, Eq. (3.1) becomes

(P ⌦ I2)ut = (Q ⌦ A)u +
✓
e0 ⌦ ⌃̃0


�0 � F(v0)
�0 � F(v0)

�◆
+

✓
eN ⌦ ⌃̃N


vN � Vp
vN � Vp

�◆
(3.3)

where ⌃̃0 = W�1⌃0, ⌃̃N = W�1⌃N and u = �
IN ⌦ W�1

�
w is the scaled vector of grid data,

u = �
IN ⌦ W�1�

w =
hp
⇢/2vo, (1/

p
2µ)�o, . . . ,

p
⇢/2 vN , (1/

p
2µ)�N

iT
(3.4)

which allows us to consider the total semi-discrete energy of the system

E = ||u||2P⌦I2 . (3.5)

3.2. Semi-discrete stability via discrete energy method

The penalty matrices ⌃̃0 and ⌃̃N will be determined such that we get a discrete energy estimate. We will also make use
of matrices C0 and CN in order to map vectors [v0,N , v0,N ]T and [�0,N , �0,N ]T back to w0,N . We define

C0 =

0 1
0 1

�
and CN =


1 0
1 0

�
, (3.6)

so that

C0w0,N =

�0,N
�0,N

�
= C0Wu0,N and CNw0,N =


v0,N
v0,N

�
= CNWu0,N . (3.7)

By multiplying Eq. (3.3) by u

T and adding the transpose, we obtain

d
dt

||u||2P⌦I2 = u

T ⇥
(Q + QT ) ⌦ A

⇤
u + u

T
0

✓
⌃̃0


�0 � F(v0)
�0 � F(v0)

�◆
+

✓
⌃̃0


�0 � F(v0)
�0 � F(v0)

�◆T

u0

+u

T
N

✓
⌃̃N


vN � Vp
vN � Vp

�◆
+

✓
⌃̃N


vN � Vp
vN � Vp

�◆T

uN . (3.8)

Using the fact that Q is almost skew-symmetric and taking Vp = 0, Eq. (3.8) simplifies to:
d
dt

||u||2P⌦I2 = �uT
0Au0 + uT

NAuN + uT
0W

�1⌃0C0Wu0 � uT
0W

�1⌃0[F(v0) F(v0)]T

+ uT
0W

TCT
0⌃

T
0 (W�1)T u0 � [F(v0) F(v0)]⌃T

0 (W�1)T u0 + uT
NW

�1⌃NCNWuN

+ uT
NW

TCT
N⌃

T
N(W�1)T uN (3.9)

where matrices C0, CN are given by (3.7). Collecting terms yields
d
dt

||u||2P⌦I2 = �uT
0[A � W�1⌃0C0W � WTCT

0⌃
T
0 (W�1)T ]u0

+ uT
N [A + W�1⌃NCNW + WTCT

N⌃
T
N(W�1)T ]uN

� uT
0W

�1⌃0[F(v0) F(v0)]T � [F(v0) F(v0)]⌃T
0 (W�1)T u0 (3.10)

which we can express as
d
dt

||u||2P⌦I2 = �uT
0


0 cs � Z�1

cs � Z�1 �2�2

�
u0 + uT

N


2�3 cs + �4/Z

cs + �4/Z 0

�
uN

� uT
0W

�1⌃0[F(v0) F(v0)]T � [F(v0) F(v0)]⌃T
0 (W�1)T u0 (3.11)

where Z = p
⇢µ is the shear impedance and �1, �2, �3, �4 correspond to the penalty matrices defined in (3.2). Taking

�1 = 1/⇢, �2 = 0, �3 = 0 and �4 = �µ (3.12)
Eq. (3.11) simplifies to

d
dt

||u||2P⌦I2 = �wT
0 (W

�1)TW�1⌃0[F(v0) F(v0)]T � [F(v0) F(v0)]⌃T
0 (W�1)TW�1w0

= �v0F(v0)  0, (3.13)
which is the discrete analog to estimate (2.3). We can summarize the result in the following proposition:

Proposition 2. The semi-discrete Eq. (3.1) with the penalty matrices determined by (3.12) is a stable approximation of (2.1).
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a b

Fig. 2. (a) Most of the eigenvalues of J for ↵ = 1, 1e3, 1e6, 1e9 lie on or near the imaginary axis, characteristic of hyperbolic PDEs. Not visible in (a) is the
eigenvalue with largest (in magnitude) real part shown in (b) whose real part tends towards �1 with increasing ↵.

4. Time stepping

4.1. Preliminaries

For a preliminary analysis on which time stepping method to use, we consider a linear friction law of the form F(v0) =
↵v0. This allows us to express Eq. (3.1) as

wt = Ew. (4.1)

We diagonalize matrix E = X�1⇤X , where the diagonal matrix ⇤ stores the eigenvalues of E. Thus (4.1) can be expressed
as yt = ⇤y (where y = Xw) which has the solution y(t) = e⇤t

y0, where y0 is the initial condition. Thus the eigenvalues of
E must have negative real part for the ODE (4.1) to be stable. The explicit form of Eq. (4.1) with zero boundary data is

wt = (P ⌦ I2)�1

Q ⌦ B + E0 ⌦

✓
⌃0

�↵ 1
�↵ 1

�◆
+ EN ⌦

✓
⌃N


1 0
1 0

�◆�
w (4.2)

where the value of ↵ influences the eigenvalues of the Jacobian matrix of system (4.2):

J = @E
@w

= (P ⌦ I2)�1

Q ⌦ B + E0 ⌦

✓
⌃0

�↵ 1
�↵ 1

�◆
+ EN ⌦

✓
⌃N


1 0
1 0

�◆�
. (4.3)

In [26] it was found that ↵/Z can range over tens of orders of magnitude during a single earthquake rupture and leads to
numerical stiffness. As Fig. 2 shows, if the friction law exhibits a linear relationship with slip velocity through a coefficient ↵
which varies temporally overmany orders ofmagnitude, then the Jacobianmatrix J will have an eigenvaluewith increasingly
large negative real part. Thus, in order to not have to take prohibitively small time steps, our time stepping scheme should
be both implicit and A-stable (the region of absolute stability contains the left half of the complex plane).

4.2. ✓-method

The ✓-method for solving a general ODE given by u0 = g(t, u) is given by

un � un�1

�t
= ✓g(tn, un) + (1 � ✓)g(tn�1, un�1).

For ✓ = 1 we have the 1st order backward Euler formula, and ✓ = 1/2 corresponds to the 2nd order trapezoidal method.
Both methods are implicit, A-stable, and the backward-Euler method is also L-stable (an A-stable method where, when
applied to the test equation y0 = �y, the amplification factor ! 0 as �t� ! 1. See [25]). We apply the backward-Euler
method (✓ = 1) for its desirable stability properties. To derive an adaptive backward-Euler method we compare the first
order approximation with that of a higher order method. Thus two numerical approximations to the solution are computed
at each time step with both ✓ = 1 and ✓ = 1/2. The norm of the error made between the first (✓ = 1) and second order
(✓ = 1/2) accurate solutions yield an estimate EST to the local truncation error. The error estimate is used to decidewhether
to accept the results from the first order method, or to redo the step with a smaller step size, according to whether or not
EST < ETOL, a desired integration tolerance. Therefore the resulting method has a discontinuous change in time step. For a
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Fig. 3. Time step and slip velocity as a function of time for the manufactured solution. Time steps (blue) are quite large while slip velocity V (t) (green)
remains around vmin for a 10 year interseismic loading period. At t̄ = 10 years, a dynamic ‘‘event’’ occurs where the slip velocity increases over 10 orders
of magnitude to a value vmax over the time scale tw . Parameters used in this simulation are given in Table 1. We allow �t to be as large as 107 seconds
⇠several months, and it adapts accordingly during the event (decreasing to values on the order of fractions of a second) in order to resolve rupture. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

method of order p, the new step size hn+1 = rhn is chosen conservatively so that the estimated error is a fraction of ETOL,
|rp+1EST | = frac ETOL, with frac = 0.9, for example. Thus

r =
✓
frac ETOL

EST

◆ 1
p+1

determines the next time step, see [25] for more details.

4.3. The friction law

The specific form of the friction law we use is the aging law in rate-and-state friction [29–32], where the shear stress on
the fault ⌧ (t) = � (0, t) is equated with fault strength

⌧ = F(V , ), (4.4)

where fault strength F is the normal stress �n times the friction coefficient f . In the rate-and-state framework, the fault
strength is a function of slip velocity V (t) = v(0, t) and a state variable  in the following form:

F(V , ) = �nf (V , ) = �n a sinh�1
✓

V
2V0

e
 
a

◆
(4.5)

where  undergoes its own time evolution according to

d 
dt

= G(V , ) = bV0

Dc

✓
e

f0� 
b � V

V0

◆
. (4.6)

Here f0 is a reference friction coefficient for steady sliding at slip velocity V0, a and b are dimensionless parameters character-
izing the direct and state evolution effects, respectively, and Dc is the state evolution distance. For commonly used frictional
parameters (which we state in Sections 5 and 6.2) and for all values of the state variable  , (4.5) satisfies the conditions of
Proposition 1. The relevant time scale introduced by friction in Eq. (4.6) is Dc/V , which means we may take large time steps
during the interseismic period, when the slip velocity V is quite small.

5. Method of manufactured solutions

In order to test the spatial accuracy of ourmethod aswell as the ability to time step quickly through regions characterized
by varying time scaleswe proceed by themethod ofmanufactured solutions [33].We construct an exact solution to (2.1) and
use the exact solution to specify the initial and boundary conditions, as well as source terms. Because we want to be able to
capture both the slow loading period as well as the dynamic rupture (fast variations in time), we choose a time dependence
for the solution that ranges over many orders of magnitude. For the velocity component of the exact solution, we want
the velocity at the fault (y = 0) to remain ‘‘locked’’ for a long period of time, that is, at a value close to zero (denoted vmin)
followed by an ‘‘event’’ or ‘‘earthquake’’ where its value increases overmany orders ofmagnitude to a value vmax over a short
time scale, as seen in Fig. 3. We also want the stress component to mimic what we often see in simulations where, during
this event, the stress drops from a background level �b to a lower, residual value �r . This event occurs at a time centered at
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Fig. 4. Velocity v(y, t) and stress � (y, t) from the manufactured solution plotted every 2 min in 10 min period leading up to event time t̄ . Time
increases with darker shades of blue. Essentially at rest v(y, t) = vmin during the interseismic period, the system undergoes an event where slip velocity
V (t) = v(0, t) increases to a new value vmax , and stress at the fault � (0, t) drops from a background value �b to a residual value �r . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

t̄ and over a time scale characterized by tw . The exact solution is given by
v(y, t) = R(t)�(y) + Vp(1 � �(y)) (5.1)

� (y, t) = �S(t)�(y) + �b (5.2)
where

R(t) = vmax

1 +
⇣

t�t̄
tw

⌘2 + vmin, S(t) = (�b � �r)

1 + ( t�t̄
tw

)2
, �(y) = 1p

2⇡yw

e
�y2

2y2w . (5.3)

Thus the velocity at the remote boundary remains set at the slow plate rate Vp and during the long interseismic period the
velocity at the fault remains at a low value vmin, but increases to vmax at which point the velocity profile takes the shape of
a Gaussian centered at the fault. The stress mimics this behavior, as seen in Fig. 4.

The exact solution solves the following problem
@w

@t
= B

@w

@y
+


f1(y, t)
f2(y, t)

�
, B =


0 1/⇢
µ 0

�
, w =


v
�

�
, y 2 [0,H] (5.4a)

Lo(w) = � (0, t) = F(V (t), (t)), L1(w) = v(H, t) = Vp (5.4b)
where again, the slip velocity V (t) = v(0, t). The source terms in (5.4a) are

f1(y, t) = R0(t)�(y) + (1/⇢)S(t)
@�

@y
, f2(y, t) = �S 0(t)�(y) � µ


R(t)

@�

@y
� Vp

@�

@y

�
. (5.5)

We must also add a source term to Eq. (4.6). Enforcing boundary conditions at the fault lets us solve for the exact, known
solution for the state variable  (t):

 (t) = a ln

2V0

V (t)
sinh

✓
� (0, t)
�na

◆�
(5.6)

which we insert into
d 
dt

= G(V , ) + s(y, t) (5.7)

and solve for the source term s(y, t). Although this manufactured solution does not explicitly generate waves which prop-
agate through the medium, it is sufficiently complex in that it evolves over 12 orders of magnitude for the parameters we
consider.We test the spatial accuracy of ourmethod by performing convergence testswith SBP operators of order p = 2, 4, 6
and 8, using the time stepping method detailed in Section 4. The SBP operators are order p in the interior of the domain,
but due to how they transition to one-sided differences near the boundary, accuracy is lost, and the global order of accuracy
obtained is p/2 + 1 (i.e. global accuracy of 2, 3, 4 and 5, respectively) [34–39]. Specific values of the parameters used in
convergence tests are given in Table 1.

For the numerical solutionw to Eq. (5.4), we letw⇤ denote the exact solution (evaluated at the grid points), and calculate
the error in the discrete energy norm defined in (3.5). The error is thus given by

E = ku � u

⇤k
P⌦I

2

, where u = (IN ⌦ W�1)w, u

⇤ = (IN ⌦ W�1)w⇤. (5.8)
We expect to see convergence rates of (p/2) + 1, due to the lower accuracy at the boundary, see [40]. The convergence
results are shown in Table 2.
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Table 1

Parameters used in manufactured solution convergence tests.

Parameter Value Parameter Value

H 10 km Vp 10�9 m/s
vmin 10�12 m/s vmax 1 m/s
t̄ 10 yr tw 100 s
�b 30 MPa �r 20 MPa
yw 1/

p
2⇡ km Vp 10�9 m/s

f0 0.6 V0 10�6 m/s
a 0.015 b 0.02
cs 3 km/s µ 30 GPa
�n 100 MPa Dc 0.2 m

Table 2

Error computed in the discrete energy-norm.We expect to achieve convergence rates of 2, 3, 4, 5 for the 2nd, 4th, 6th and 8th order operators, respectively.

N E (2nd) Rate E (4th) Rate E (6th) Rate E (8th) Rate

25 1.822 ⇥ 10�2 — 8.850 ⇥ 10�3 — 1.977 ⇥ 10�3 — 1.906 ⇥ 10�3 —
26 4.894 ⇥ 10�3 1.897 1.204 ⇥ 10�3 2.877 8.913 ⇥ 10�5 4.471 8.584 ⇥ 10�5 4.473
27 1.099 ⇥ 10�3 2.155 1.452 ⇥ 10�4 3.052 3.997 ⇥ 10�6 4.478 3.005 ⇥ 10�6 4.836
28 2.833 ⇥ 10�4 1.955 1.754 ⇥ 10�5 3.048 2.080 ⇥ 10�7 4.264 9.043 ⇥ 10�8 5.054
29 7.106 ⇥ 10�5 1.995 2.166 ⇥ 10�6 3.018 1.063 ⇥ 10�8 4.290 2.833 ⇥ 10�9 4.996

a b

Fig. 5. (a) During a cycle consisting of an interseismic period (when slip velocity V (t) ⌧ 1 mm/s) followed by a dynamic event, our method integrates
efficiently through both periods. Large time steps are taken during the slow loading period until the event takes place and the time step reduces to
⇠fractions of a second in order to fully resolve rupture. (b) During the same cycle, we calculate the Jacobian matrix of the system at each time step
for the full, nonlinear friction law. Here we show that during the interseismic period, this eigenvalue assumes absolute values of around 108–1010, and
decreases abruptly during rupture. The eigenvalue is influenced directly by the partial derivative of the friction law @F/@V .

6. Application problem

Having verified that our numerical method converges to the true solution under mesh-refinement, we apply our time-
stepping method to solve Eq. (2.1) in order to simulate multiple earthquake cycles.

6.1. Stiffness in the interseismic and dynamic rupture periods

Our implicit time-stepping method is capable of efficiently integrating through both the interseismic loading period as
well as the dynamic rupture itself, with the full, nonlinear friction law given by Eq. (4.5). Fig. 5(a) shows slip velocity and
time step during the interseismic period (when slip velocity V (t) ⌧ 1 m/s) and during the dynamic rupture period where
the slip velocity increases over 10 orders of magnitude. The time step is quite large during the slow loading period, and
adapts accordingly in order to resolve rupture.

As pointed out in Section 4.1, a linearized friction law of the form F(V ) = ↵V , was shown to introduce stiffness in sin-
gle event simulations (modeling just the earthquake itself) due to the fact that ↵ = @F/@V was seen to range over many
orders of magnitude. We calculate the Jacobian matrix of the right hand side of Eq. (2.1) with the full non-linear friction
law and with state variable evolution given by Eq. (4.6). As shown in Fig. 5(b), the Jacobian matrix exhibits an eigenvalue
with large (negative) real part on the order of 1010 during the interseismic period for commonly used frictional parameters,
listed in Table 3. During the earthquake itself, the real part of the eigenvalue drops to values on the order of 102, suggesting
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Table 3

Parameters used in model application problem.

Parameter Value Parameter Value

H 10 km Vp 10�9 m/s
f0 0.6 V0 10�6 m/s
a 0.015 b 0.02
�n 50 (MPa) Dc 8 mm
µ 36 GPa cs 3 km/s

that in addition to the dynamic rupture period, stiffness is even greater during the interseismic period. Fig. 5(b) echoes the
linearized analysis, in that the relevant eigenvalue of the Jacobian matrix depends directly on the partial derivative @F/@V ,
which ranges over 10 orders of magnitude during the cycle. While explicit time-stepping methods with a very small time
step (⇠fractions of a second) in order to maintain stability might be able to integrate efficiently through the short rupture
period (⇠seconds), to use them to simulate the interseismic period (⇠100 years) with any efficiency is not possible.

6.2. The multiple-penalty technique for an absorbing boundary

In order to apply our method to a model problem and generate multiple events in our simulation, we need a technique
for deriving non-reflecting boundary conditions so that waves emitted at the fault do not reflect off the remote boundary.
We do this through the use of the so-called multiple-penalty technique, which will draw the velocity of the outgoing wave
at the remote boundary towards the slow plate rate Vp. This technique is described in detail in [41]. The semi-discrete form
of the Eqs. (2.1) withm additional penalty matrices is

(P ⌦ I2)wt = (Q ⌦ B)w +
✓
e0 ⌦⌃0


�0 � F(v0)
�0 � F(v0)

�◆
+

✓
eN ⌦⌃N


vN � Vp
vN � Vp

�◆

+
mX

j=1

✓
eN�j ⌦⌃N�j


vN�j � Vp
vN�j � Vp

�◆
. (6.1)

The penalty matrices will be determined such that we get a discrete energy estimate. It can be shown by similar analysis
through the discrete energy method that the additional penalty matrices are

⌃N�j =

�j 0
0 0

�
, �j  0, j = 1, 2, . . . ,m (6.2)

and lead to a stable scheme if �j  0. In summary, the approximation (6.1) of (2.1) in combination with (6.2) is stable. To
test this technique, we apply our time-stepping technique outlined in Section 4 to the semi-discrete equation given in (6.1).
The model parameters used are listed in Table 3.

We take �j = �1 for j = 1, 2, . . . ,m, wherem is the number of penalties in the vicinity of y = H . For this simulation we
take N = 400, and m = 80, corresponding to a penalty domain of 2 km. The penalties �j are turned on when the wave hits
the remote boundary, damping the outgoing wave (see [41] for more details).

As seen in Fig. 6, the system initially undergoes an interseismic period lasting ⇠125 years, where the fault remains
essentially locked with slip velocities lower than 10�15 m/s. The system is loaded at the remote boundary at the rate
Vp = 32 mm/yr which increases the stress on the fault until an earthquake nucleates at which point slip velocity increases
over 10 orders of magnitude during one of these dynamic events. These events nucleate periodically every⇠125 years, each
event sending a wave from the fault and through themedium. Themultiple penalties damp this outgoing wave and another
interseismic period ensues. The time-steppingmethod outlined in Section 4 adapts appropriately,with long time steps taken
during the interseismic period followed by very small time-steps during each earthquake in order to resolve wave propaga-
tion during rupture, as illustrated in Figs. 3 and 5(a). The method is extremely efficient and allows for the simulation of the
full earthquake cycle where initial conditions are generated from capturing the effect of slow, tectonic loading. The inter-
seismic period and the dynamic rupture itself are characterized by vastly different time scales and our method incorporates
both regimes within a single computational framework.

7. Conclusions

We have derived a provably stable, high-order accurate discretization to the elastic wave equation and used an A- and
L-stable time-stepping method capable of integrating through regimes characterized by time scales that vary over many
orders ofmagnitude. The stiffness of the problem is present during the interseismic loading period in addition to the dynamic
rupture, thus explicit methods cannot be used. Our method efficiently handles stiffness and multi-scale temporal features,
taking large time steps during the interseismic period and adapting the time-step accordinglywhen an earthquakenucleates.

We have tested our numerical method through the method of manufactured solutions and shown that the numerical
solution converges to the true solution at the appropriate rate. Finally, we have utilized themultiple-penalty technique that
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Fig. 6. Slip velocity V as a function of time for the application problem. Large time steps are taken during the interseismic period lasting approximately
150 years. Periodic events nucleate during which slip velocity increases over 15 orders of magnitude.

mimics a non-reflecting boundary in order to effectively damp outgoing waves. Rather than imposing artificial initial condi-
tions, our method generates multiple cycles of earthquakes with self-consistent initial data obtained through interseismic
loading.
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