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Abstract. We study call-by-need from the point of view of the dual-
ity between call-by-name and call-by-value. We develop sequent-calculus
style versions of call-by-need both in the minimal and classical case. As
a result, we obtain a natural extension of call-by-need with control oper-
ators. This leads us to introduce a call-by-need λµ-calculus. Finally, by
using the dualities principles of λµµ̃-calculus, we show the existence of a
new call-by-need calculus, which is distinct from call-by-name, call-by-
value and usual call-by-need theories.1
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Introduction

The theory of call-by-name λ-calculus [10,9] is easy to define. Given the syntax of
λ-calculusM ::= x || λx.M ||MM , the reduction semantics is entirely determined
by the β-reduction rule (λx.M)N →β M [x← N ] in the sense that:

– for any closed term M , either M is a value λx.N or M is a β-redex and for
all M→→V , there is standard path M 7→→ V ′ made only of β-redexes at the
head, together with the property that V ′→→V using internal β-reductions;

– the observational closure of β induces a unique rule η that fully captures
observational equality over finite normal terms (so-called Böhm’s theorem);

– the extension with control, typically done à la Parigot [30], is relatively easy
to get by adding just two operational rules and an observational rule (though
the raw version of Böhm’s theorem fails [16,35]).

The theory of call-by-value λ-calculus, as initiated by Plotkin [31], has a similar
property with respect to the βv rule (the argument of β being restricted to
a variable or a λx.M only), but the observational closure is noticeably more
complex: it at least includes the rules unveiled by Moggi [27] as was shown by
Sabry and Felleisen [34]. Extensions of standardization and Böhm theorem for
call-by-value are more delicate than in call-by-name [25,33].

Comparatively, call-by-need λ-calculus, though at the core of implementation
languages such as Haskell [17], is in a rudimentary state of development as the
1 An extended version [7] is available at http://www.pps.jussieu.fr/~saurin/
Publi/need_duality_long.pdf.
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first approach to it as a proper calculus goes back to the 90’s with the works of
Ariola et al. [3] and Maraist et al. [26] for whom the concern was the character-
ization of standard weak-head reduction. Our paper is an attempt to raise the
study of call-by-need to the same level of study as call-by-name, and in a slightly
less extent call-by-value. In particular, we will address the question of adding
control to call-by-need and the question of what is the dual of call-by-need along
the lines of the duality between call-by-name and call-by-value [21,36,12]. Call-
by-need is close to call-by-value in the sense that only values are substituted,
but call-by-need is also close to call-by-name in the sense that only those terms
that are bound to needed variables are evaluated. In particular, with respect to
evaluation of pure closed terms, the call-by-name and call-by-need calculi are
not distinguishable. In order to tackle the problem of developing a classical ver-
sion of call-by-need, we first study how to formulate (minimal) call-by-need in
the sequent calculus setting [23] (while current call-by-need calculi are based on
natural deduction [32]). An advantage of a sequent calculus presentation of a cal-
culus is that its extension to the classical case does not require the introduction
of new rules but simply the extension of existing ones [8].

Curien and Herbelin [12] designed a calculus that provides an appealing com-
putational interpretation of proofs in sequent calculus, while providing at the
same time a syntactic duality between terms, i.e., producers, and evaluation
contexts, i.e., consumers, and between the call-by-name and call-by-value re-
duction strategies. By giving priority to the producer one obtains call-by-value,
whereas by giving priority to the consumer one obtains call-by-name. In this pa-
per, we present how call-by-need fits in the duality of computation. Intuitively,
call-by-need corresponds to focusing on the consumer to the point where the
producer is needed. The focus goes then to the producer till a value is reached.
At that point, the focus returns to the consumer. We call this calculus lazy
call-by-value, it is developed in Section 2 and 3. In addition to the properties
of confluence and standardization, we show its correctness with respect to the
call-by-name sequent calculus [12]. In Section 4, we develop the natural deduc-
tion presentation of call-by-need. The reduction theory is contained in the one
of Maraist et al. [26] and extends the one of Ariola et al. [3]. Interestingly, the
sequent calculus has suggested an alternative standard reduction which consists
of applying some axioms (i.e., lift and assoc) eagerly instead of lazily. In Section
5, we show that the natural deduction and sequent calculus call-by-need are in
reduction correspondence. In Section 6, we extend the minimal sequent calcu-
lus call-by-need with control, in both sequent calculus and natural deduction
form. The calculi still enjoy confluence and standardization. The sequent cal-
culus presentation of call-by-need naturally leads to a dual call-by-need, which
corresponds to focusing on the producer and going to the consumer on a need
basis. We call this calculus lazy call-by-name. In Section 7, we show how the
dual call-by-need is obtained by dualizing the lazy call-by-value extended with
the subtraction connective. We conclude and discuss our future work in Section
8. We start next with an overview of the duality of computation.
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1 The duality of computation

Curien and Herbelin [12] provided classical sequent calculus with a term as-
signment, which is called the λµµ̃ calculus. In λµµ̃ there are two dual syntactic
categories: terms which produce values and contexts which consume values. The
interaction between a producer v and a consumer e is rendered by a command
written as 〈v||e〉, which is the computational counterpart of a sequent calculus
cut. Contexts can be seen as evaluation contexts, that is, commands with a hole,
written as �, standing for the term whose computation is to be done next: 〈�||e〉.
Thus, a command 〈v||e〉 can be seen as filling the hole of the evaluation context e
with v. Dually, terms can also be seen as commands with a context hole, standing
for the context in which the term shall be computed. The duality of terms and
contexts is also reflected at the variable level. One has two distinct sets of vari-
ables. The usual term variables (x, y, · · ·) and the context variables (α, β, · · ·),
which correspond to continuation variables. The set of terms, in addition to
variables and lambda abstractions, contains a term of the form µα.c, where c
is a command, after Parigot’s λµ-calculus [30]. The µ construct corresponds to
Felleisen’s C control operator [19,20,18]; one can read µα.c as C(λα.c). Whereas
the µ construct allows one to give a name to a context, so as to invoke it later,
the dual construct, named µ̃, allows one to name terms. One can read µ̃x.c as
let x = � in c. Given a context e, v · e is also a context, which corresponds to
an applicative context of the form e[�v]. The grammar of λµµ̃ and its reduction
theory are given below:

c ::= 〈v||e〉 v ::= x || λx.v || µα.c e ::= α || µ̃x.c || v · e

(β) 〈λx.v||s · e〉→ 〈s||µ̃x.〈v||e〉〉
(µ) 〈µα.c||e〉 → c[α← e]
(µ̃) 〈v||µ̃x.c′〉 → c′[x← v]

The reduction theory can be seen as consisting of structural reduction rules, µ
and µ̃, as well as logical reduction rules (here, only β, the rule corresponding to
implication).

The calculus is not confluent due to a critical pair between µ and µ̃:

〈z||β〉←µ 〈µα.〈z||β〉||µ̃x.〈y||β〉〉→µ̃ 〈y||β〉

To regain confluence one can impose a strategy on how to resolve the critical
pair µ/µ̃. By giving priority to the µ̃ rule one captures call-by-name, whereas by
giving priority to the µ rule one captures call-by-value. More generally, one can
describe various ways to specialize the pair µ/µ̃ as reduction rules parametrized
by sets E and V, which denote sets of contexts and terms, respectively:

(µE) 〈µα.c||e〉 → c[α← e] if e ∈ E
(µ̃V) 〈v||µ̃x.c′〉→ c′[x← v] if v ∈ V

This presentation with parametric rules is inspired by the work of Ronchi and
Paolini on parametric λ-calculus [33]. A strategy corresponds to specifying which
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contexts and terms can be duplicated or erased. For call-by-name, E and V are
instantiated with the following sets En and Vn:

En ::= α || v · En Vn ::= x || λx.v || µα.c

resulting in reduction rules that we will denote as µn and µ̃n, respectively. For
call-by-value, the instantiations are Ev and Vv:

Ev ::= α || v · Ev || µ̃x.c Vv ::= x || λx.v

resulting in reduction rules that we will denote as µv and µ̃v, respectively. In
call-by-name (i.e., with µn/µ̃n) every term is substitutable for a term variable,
while only specific contexts can be substituted for a context variable. Dually, call-
by-value (i.e., with µv/µ̃v) restricts what is substituted for a term variable, but
does not impose restrictions on substitution of contexts. Notice also that full
non-deterministic λµµ̃ corresponds to choosing µv together with µ̃n. Call-by-
need λµµ̃-calculus will be defined with respect to another choice of parameters.

Curien and Herbelin also developed a subcalculus of λµµ̃ called λµµ̃T (after
Danos et al’s LKT [13,14]), which restricts the syntax of legal contexts. This
captures the intuition that according to the call-by-name continuation passing
style, the continuation follows a specific pattern. The syntax of λµµ̃T becomes:

c ::= 〈v||e〉 v ::= Vn e ::= µ̃x.c || En

Notice that whereas v · µ̃x.c is a legal context in λµµ̃, it is not legal in λµµ̃T .
The reduction theory of λµµ̃T consists of β, µn and µ̃n.

In addition to the instantiations of the structural rules µE and µ̃V , the calculi
developed in the rest of the paper will contain rules for evaluating connectives.
We will only consider implication, except in Section 7 where subtraction will
also be added. We will also consider the following extensionality rules:

(ηVµ ) µα.〈v||α〉→ v v ∈ V and α is not free in v
(ηEµ̃) µ̃x.〈x||e〉 → e e ∈ E and x is not free in e

2 Call-by-need and duality

As we did for call-by-name and call-by-value, we have to specify the parametric
sets used for call-by-need, that is, which terms and contexts can be substituted
for term and context variables. Since call-by-need avoids duplication of work, it
is natural to restrict the set V to Vv, thus allowing substitution of variables and
lambda abstractions only. One should allow the reduction of 〈µα.〈I||I · α〉||v · α〉
(I stands for λx.x) to 〈I||I · v · α〉 since the applicative redex is needed in order
to continue the computation. This implies that En should be part of E . That
however is not enough. One would also want to reduce 〈µα.〈I||I · α〉||µ̃x.〈x||α〉〉
to 〈I||I · µ̃x.〈x||α〉〉. This however does not imply that µ̃x.c should be part of E
since that would unveil an unwanted redex, such as in 〈µα.〈I||I · α〉||µ̃x.〈z||α〉〉.
The only time we want to allow a change of focus from the consumer to the
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producer is when the producer is needed, which means that the variable bound
to the producer occurs in the hole of a context; x is needed in 〈x||En〉 but it is
not needed in 〈x||µ̃y.〈z||x · y〉〉. This notion will still not capture a situation such
as 〈µα.〈I||I · α〉||µ̃x.〈v1||µ̃y.〈x||En〉〉〉, since the needed variable is buried under
the binding for y. This motivates the introduction of the notion of a call-by-need
meta-context, which is simply a hole surrounded by µ̃-bindings:

Cµ̃l ::= � || 〈µα.c||µ̃z.Cµ̃l 〉

A variable x is needed in a command c, if c is of the form Cµ̃l [〈x||En〉].
We have so far determined that E contains the call-by-name applicative con-

texts and contexts of the form µ̃x.Cµ̃l [〈x||En〉]. This would allow the reduction of
〈µα.〈I||I · α〉||µ̃f.〈f ||f · α〉〉 to 〈I||I · µ̃f.〈f ||f · α〉〉. The problem is that the call-
by-name applicative context considered so far does not contain a µ̃. This is nec-
essary to capture sharing. For example, in the above term 〈I||I · µ̃f.〈f ||f · α〉〉,
the µ̃f captures the sharing of II. We need however to be careful about which
µ̃ we allow in the notion of applicative context. For example, we should disallow
contexts such as I · µ̃f.〈z||f · α〉 since they might cause unwanted computation.
Indeed, in the following reduction the application of I to I is computed while it
is not needed to derive the result:

〈I||I · µ̃f.〈z||f · α〉〉→β 〈I||µ̃x.〈x||µ̃f.〈z||f · α〉〉〉→µ̃v 〈I||µ̃f.〈z||f · α〉〉→µ̃v 〈z||I · α〉.

This implies that a context µ̃x.c is allowed in an applicative context only if c
demands x.

We are ready to instantiate the structural and extensional rules; V and E are
instantiated as follows, resulting in reduction rules denoted as µl, µ̃v and ηvµ:

Vv ::= x || λx.v El ::= F || µ̃x.Cµ̃l [〈x||F 〉] with F ::= α || v · El

3 Minimal call-by-need in sequent form (λmlv)

A classical sequent calculus naturally provides a notion of control. However, one
can restrict the calculus to be control-free by limiting the set of continuation
variables to a single variable, conventionally written ?, which is linearly used.
This corresponds to the restriction to minimal logic [1]. We introduce next the
lazy call-by-value calculus, λmlv .

Definition 1. The syntax of λmlv is defined as follows:

command c ::= 〈v||e〉
meta-context C ::= � || 〈µ?.c||µ̃z.C〉
term v ::= x || λx.v || µ?.c
applicative context F ::= ? || v · E
linear context E ::= F || µ̃x.C[〈x||F 〉]
context e ::= E || µ̃x.c
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The reduction of λmlv , written as →mlv , denotes the compatible closure of β,
µl, µ̃v and ηvµ; the relation →→mlv denotes the reflexive and transitive closure of
→mlv . The notion of weak head standard reduction is defined as:

c→β c
′

C[c] 7→mlv C[c
′]

c→µl
c′

C[c] 7→mlv C[c
′]

c→µ̃v c
′

C[c] 7→mlv C[c
′]

The notation 7→→mlv stands for the reflexive and transitive closure of 7→mlv .
A weak head normal form (whnf) is a command c such that for no c′, c 7→mlv c

′.

Notice how in the lazy call-by-value calculus, the standard redex does not
necessarily occur at the top level, in 〈v1||µ̃x1.〈v2||µ̃x2.〈λx.v||s · ?〉〉〉, the standard
redex is buried under the bindings for x1 and x2, which is why the standard
reduction refers to the meta-context. This however can be solved simply by going
to a calculus with explicit substitutions, which would correspond to the abstract
machine given in [7]. Note that in a term of the form 〈λz.v||µ̃x.〈x||µ̃y.〈y||?〉〉〉, the
substitution for y is not the standard redex, and in

〈µ?.〈I||I · ?〉||µ̃x.〈x||µ̃y.〈y||?〉〉〉 〈µ?.〈V ||µ̃y.〈y||?〉〉||µ̃x.〈x||?〉〉

the standard redex is the underlined one. The ηvµ rule is not needed for standard
reduction. The ηvµ rule turns a computation into a value, allowing for example
〈µ?.〈V ||?〉||µ̃x.〈y||x · ?〉〉→ 〈V ||µ̃x.〈y||x · ?〉〉→ 〈y||V · ?〉, which is not a standard
reduction; in fact, the starting term is already in whnf.

Proposition 1. →mlv is confluent.

Remark 1 In λmlv the duplicated redexes are all disjoint. This was not the
situation in λneed [26], where the assoc rule could have duplicated a lift redex.
This does not happen in λmlv because the contexts are moved all at once, as
described in the example below, which mimics the situation in λneed .

〈µ?〈µ?.〈z||µ̃y.〈y||?〉〉||µ̃x.〈x||?〉〉||N · ?〉→µn 〈µ?.〈z||µ̃y.〈y||µ̃x.〈x||?〉〉〉||N · ?〉
↓µn

↓µn

〈µ?.〈z||µ̃y.〈y||?〉〉||µ̃x.〈x||N · ?〉〉 →µn
〈z||µ̃y.〈y||µ̃x.〈x||N · ?〉〉〉

The needed constraint breaks the property that commands in weak head
normal form are of the form 〈x||E〉 or 〈λx.v||?〉 (a property that holds for λµµ̃
in call-by-name or call-by-value).

Definition 2. Let x be a sequence of variables. cx is defined by the grammar:

cx ::= 〈µ?.c||µ̃y.cyx〉 || 〈λx.v||?〉 || 〈z||F 〉 z 6∈ x.

Proposition 2. A command c is in weak head normal form iff it is in cε, where
ε denotes the empty sequence of variables.

Note that in cx, x records the variables which are µ̃-bound to a computation
on the path from the top of the term to the current position. 〈x||?〉 is in whnf,
however it is not of the form cx since it demands variable x. Neither 〈y||µ̃x.c〉 nor
〈µ?.c||µ̃x.〈x||?〉〉 are in whnf. A whnf is either of the form C[〈x||F 〉] or C[〈λx.v||?〉].
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Proposition 3 (Unique Decomposition). A command c is either a whnf or
there exists a unique meta-context C and redex c′ such that c is of the form C[c′].

Proposition 4 (Standardization). Given a command c and a whnf c′, if
c→→mlvc

′ then there exists a whnf c′′ such that c 7→→mlv c
′′ and c′′→→mlvc

′.

3.1 Soundness and Completeness of λmlv

The λmlv calculus is sound and complete with respect to the minimal restriction
of the call-by-name sequent calculus, λµµ̃T . We first need to translate λmlv terms
to λµµ̃T terms by giving a name to the µ̃-term contained in a linear context.
The only interesting cases of the translation, written as (.)◦ are:

(〈v||w1 · . . . wn · α〉)◦ = 〈v◦||w◦1 · . . . w◦n · α〉
(〈v||w1 · . . . wn · µ̃x.c〉)◦ = 〈µ?.〈v◦||w◦1 · . . . w◦n · ?〉||µ̃x.c◦〉

we then have the following properties.

Proposition 5. (i) Given a λmlv term v, v =mlv v
◦.

(ii) Given λµµ̃T terms v and w:
(a) v =mlv w then v =λµµ̃T

w;
(b) v =λµµ̃T

〈λx.w||?〉 then v =mlv C[〈λx.w′||?〉] for some C and w′.

Indeed, λmlv theory restricted to the call-by-name syntax of λµµ̃T is included
in λµµ̃T theory.

Intermezzo 2 Soundness can also be shown with respect to the λµµ̃ calculus
without the need of doing a translation, since the λµµ̃ calculus does not impose
any restrictions on the context. This however requires extending the µ̃ rule to
〈v||v1 · · · vn.µ̃x.c〉→ c[x = µ?.〈v||v1 · · · vn.?〉]. The rule is sound for call-by-name
extended with the eta rule, called ηR→ in [24], given as y = λx.α.〈y||x.α〉.

4 Minimal call-by-need in Natural Deduction (λneed)

We now present the call-by-need calculus inspired by the sequent calculus.

Definition 3. The syntax of λneed is defined as follows:

term M ::= V ||Mnv

term value V ::= x || λx.M
computation Mnv ::=MM || let x =M in N
applicative context Cap ::= � || CapM
needed context C ::= Cap || let x =Mnv in C || let x = CapM in C[x]

Reduction in λneed , written as →need , is the compatible closure of the following
rules:

(β) (λx.N)M → let x =M in N
(lift) (let x =M in P )N → let x =M in PN
(deref v) let x = V in M →M [x← V ]
(assoc) let z = (let x =M in N) in C[z]→ let x =M in let z = N in C[z]
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The relation →→need denotes the reflexive and transitive closure of →need .
The notion of weak head standard reduction is defined as:

M →β,lift N

Cβl[M ] 7→need Cβl[N ]

M →deref v,assoc N

Cda [M ] 7→need Cda [N ]

where
Cβl ::= Cap || let x =Mnv in Cβl || let x = Cap in C[x]
Cda ::= � || let x =Mnv in Cda

The notation 7→→need stands for the reflexive and transitive closure of 7→need .
A weak head normal form (whnf) is a term M such that for no N , M 7→need N .

Unlike the calculi defined by Maraist et al. [26] and Ariola et al. [3], the
deref v rule follows the call-by-value discipline since it substitutes a value for
each occurrence of the bound variable, even if the variable is not needed. The
rule is derivable in the calculus of Maraist et al. using garbage collection. The
assoc rule is more constrained than in the calculus of Maraist et al. since it
performs the flattening of the bindings on a demand basis. The assoc requires
the variable to appear in the hole of a context C, whose definition does not
allow a hole to be bound to a let variable. For example, let x = � in x and
let x = � in let y = x in y are not C contexts. This restriction is necessary to
make sure that in a term of the form

let x = (let z = N in P ) in let y = x in y

the standard redex is the substitution for y and not the assoc redex. The assoc
rule is more general than in [3], since it does not require the binding for z to
be an answer (i.e., an abstraction surrounded by bindings). The lift rule is the
same as in [26], it is more general than the corresponding rule in [3] since the
left-hand side of the application is not restricted to be an answer. The calculi in
[26] and [3] share the same standard reduction. For example, in the terms:

(let y =M in (λx.x)y)P let y = (let z = N in (λx.x)y) in y

(λx.x)y is the standard redex. Our standard reduction differs. The above terms
correspond to a lift and assoc redex, respectively. Moreover, our standard reduc-
tion is also defined for open terms. Thus, the following terms:

(let y = xz in y)P let y = (let z = xP in z) in y

instead of being of the form C[x], reduce further. The standard reduction requires
different closure operations to avoid the interference between reductions. In

let z = (let x = V in N) in z let y = (let z = (let x =M in N) in P ) in y

the standard redex is the (outermost) assoc, and in let x = II in let y = x in y,
the deref v is the standard redex.

Proposition 6. →need is confluent.
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Proposition 7 (Unique Decomposition). A term M is either a whnf or
there exists a unique Cβl such that M is of the form Cβl[P ], where P is a β or
lift redex, or there exists a unique Cda such that M is of the form Cda [P ], where
P is a deref v or assoc redex.

The previous proposition essentially relies on the facts that C[x] is a whnf
and that Cda ⊂ C ⊂ Cβl.

Proposition 8 (Standardization). Given a termM and whnf N , ifM→→needN
then there exists a whnf N ′ such that M 7→→need N

′ and N ′→→needN .

Definition 4. Let x be a sequence of variables. Mx is defined as:
Mx ::= λx.N || let y = Nnv in Myx || zN1· · ·Nn || let y = zNN1· · ·Nn in C[y] z 6∈ x

Proposition 9. A termM is in whnf iff it is inMε (with ε the empty sequence).

4.1 Soundness and completeness of λneed

Our calculus is sound and complete for evaluation to an answer (i.e., an abstrac-
tion or a let expression whose body is an answer) with respect to the standard
reduction of the call-by-need calculi defined in [26] and [3], denoted by 7→→af

mow.

Proposition 10. Let M be a term and A be an answer.

– If M 7→→need A then there exists an answer A′ such that M 7→→af
mow A

′;
– If M 7→→af

mow A then there exists an answer A′ such that M 7→→need A
′.

5 Correspondence between λmlv and λneed

The calculi λmlv and λneed are in reduction correspondence for the following
translations from λneed to λmlv and vice-versa:

Definition 5. Given a term M in λneed , a term v, a context e and a command
c in λmlv , translations M., M.

e , v/, e/ and c/ are defined as follows:

x. = x (λx.M)
.
= λx.M. V .e = 〈V .||e〉

(MN)
.
= µ?.(MN)

.
?

(MN)
.
e =M.

N.·e

(let x =M in N)
.
= µ?.(let x =M in N)

.
?

(let x =M in N)
.
e =

{
M.
µ̃x.N.

e
N ≡ C[x]

〈M.||µ̃x.N.
e 〉 otherwise

〈v||e〉/ = e/[v/]
x/ = x
(λx.v)

/
= λx.v/

(µ?.c)
/
= c/

?/ = �
(v · E)

/
= E/[�v/]

(µ̃x.c)
/
= let x = � in c/

We first illustrate the correspondence on an example.
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Example 3 Consider the following λneed reduction, where I stands for λy.y and
M for (λf.fI(fI))((λz.λw.zw)(II)):

M →β let
f = (λz.λw.zw)(II)
in fI(fI)

→β let
f = let

z = II
in λw.zw

in fI(fI)

→assoc let
z = II
in let
f = λw.zw
in fI(fI)

We have M.
? = 〈λf.µ?.〈f ||I · (fI). · ?〉||µ?.〈λz.λw.(zw).||(II). · ?〉 · ?〉. The first

β step is simulated by the following λmlv reduction, where we underline the redex
to be contracted unless it occurs at the top:

〈λf.µ?.〈f ||I · (fI). · ?〉||µ?.〈λz.λw.(zw).||(II). · ?〉 · ?〉→β

〈µ?.〈λz.λw.(zw).||(II). · ?〉||µ̃f.〈µ?.〈f ||I · (fI). · ?〉||?〉〉→µl

〈µ?.〈λz.λw.(zw).||(II). · ?〉||µ̃f.〈f ||I · (fI). · ?〉〉→µl

〈λz.λw.(zw).||(II). · µ̃f.〈f ||I · (fI). · ?〉〉

The second µl step corresponds to moving the redex in the context let f =
� in C[f ] at the top. The simulation of the second β step leads to:

〈(II).||µ̃z.〈λw.(zw).||µ̃f.〈f ||I · (fI). · ?〉〉〉

The assoc corresponds to an identity in λmlv .
Notice that the restriction on the assoc rule is embedded in the sequent

calculus. The simulation of a non restricted assoc would require a generalization
of the µl rule. For example, the simulation of the reduction:

let x = (let y = II in y) in 0→ let y = II in let x = y in 0

would require equating the following terms:

〈µ?.〈I||I · µ̃y.〈y||?〉〉||µ̃x.〈0||?〉〉 = 〈µ?.〈I||I · ?〉||µ̃y.〈y||µ̃x.〈0||?〉〉〉

However, those should not be equated to 〈I||I · µ̃y.〈y||µ̃x.〈0||?〉〉 · ?〉. That would
correspond to relaxing the restriction of El in the µl rule, and has the problem
of bringing the redex II to the top and thus becoming the standard redex.

Proposition 11. Call-by-need reduction in natural deduction and sequent form
are in reduction correspondence:
(i) M→→needM

./

(ii) c→→mlvc
/.

(iii) If M →need N then M.→→mlvN
.

(iv) If c→mlv c
′ then c/→→needc

′/

Remark 4 Note that the translation (_)
.
e of a let expression depends on the

bound variable being needed or not. The choice of this optimized translation
was required to preserve reduction. Indeed, otherwise, to simulate the assoc
reduction one would need an expansion in addition to a reduction.
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6 Classical call-by-need in sequent (λlv) and natural
deduction form (λµneed)

Defining sequent classical call-by-need, called λlv , requires extending the applica-
tive context and the µ construct to include a generic continuation variable2. The
syntax of λlv becomes:

c ::= 〈v||e〉
C ::= � || 〈µα.c||µ̃z.C〉
v ::= x || λx.v || µα.c

F ::= α || v · E
E ::= F || µ̃x.C[〈x||F 〉]
e ::= E || µ̃x.c

Reduction, weak head standard reduction (written as →lv and 7→lv , respec-
tively) and weak head normal form (whnf) are defined as in the minimal case
by replacing ? with any context variable α. For example, a term of the form
〈µα.〈x||β〉||µ̃x.〈y||y · δ〉〉 is in weak head normal form.

Unique decomposition, confluence and standardization extend to the classi-
cal case. Once control is added to the calculus, call-by-need and call-by-name
are observationally distinguishable, as witnessed by the example given in the
next section. It is important to notice that the bindings are not part of the cap-
tured context. For example, in the following command, the redex II written as
µα.〈λx.x||(λx.x) · α〉 will be executed only once. Whereas, if the bindings were
part of the captured context then that computation would occur twice.

〈II||µ̃z.〈µα.〈λx.µβ.〈z||(µδ.〈λx.x||α〉) · β〉||α〉||µ̃f.〈f ||z · γ〉〉〉〉〉

Unlike the sequent calculus setting, to extend minimal natural deduction to
the classical case, we need to introduce two new constructs: the capture of a
continuation and the invocation of it, written as µα.J and [α]M , where J stands
for a jump (i.e., an invocation of a continuation). The reduction semantics makes
use of the notion of structural substitution, which was first introduced in [30] and
is written as J [α← [α]F ] indicating that each occurrence of [α]M in J is replaced
by [α]F [M ], where F is the context captured by a continuation which is either
�M or let x = � in C[x]. The benefits of structural substitution are discussed
in [4]. In addition to lift , assoc, deref v and β, the reduction theory includes the
following reduction rules:

(µap) (µα.J)M → µα.J [α← [α](�M)]
(µlet) let x = µα.J in C[x] → µα.J [α← [α](let x = � in C[x])]
(µlift) let x =Mnv in µα.[β]N → µα.[β](let x =Mnv in N)
(µbase) [β]µα.J → J [α← β]

The relation →µneed
denotes the compatible closure of →, and →→µneed

denotes
the reflexive and transitive closure of→µneed

. The weak head standard reduction
is defined as follows:

M →β,lift,µap N

[α]Cβl[M ] 7→µneed
[α]Cβl[N ]

M →deref v,assoc,µlet ,µlift
N

[α]Cda [M ] 7→µneed
[α]Cda [N ]

J →µbase
J ′

J 7→µneed
J ′

2 To reduce closed commands one can introduce a constant named tp as in [5], or one
can encode the top-level using subtraction (see Section 7).
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The notation 7→→µneed
stands for the reflexive and transitive closure of 7→µneed

.
Note that we only reduce jumps. A weak head normal form (whnf) is a term M
such that for no N,M 7→µneed

N . For example, let x = µα.[β]P in yx is in whnf.

Proposition 12. →µneed
is confluent.

Proposition 13. Given a term M and whnf N , if M→→µneed
N then there exists

a whnf N ′ such that M 7→→µneed
N ′ and N ′→→µneed

N .

The translation between classical call-by-need in natural and sequent form is
modified in the following way to cover the classical constructs:

(µα.J)
.

= µα.J. ([α]M)
.

=M.
α

αα = α Fα = �
αv·E = αE Fv·E = FE [�v/]
α
µ̃x.〈v||e〉 = αe F

µ̃x.〈v||e〉 = let x = � in Fe[v
/]

µα.c/ = µα.c/ e/ = [αe]Fe

Proposition 14. Classical call-by-need in natural deduction and sequent form
are in equational correspondence:
(i) M =µneed

M./

(ii) c =lv c
/.

(iii) If M =µneed
N then M. =lv N

.

(iv) If c =lv c
′ then c/ =µneed

c′
/

Notice that the main reason for having only equational correspondence in-
stead of a more precise reduction correspondence is the fact that, in λµneed, µap
can be applied atomically (µα.J)N1 . . . Nn →µap

(µα.J [α ← [α]�N1])N2 . . . Nn
while in λlv the whole applicative context �N1 . . . Nn is moved at once. In par-
ticular the following reduction still holds c→lv c

′ then c/→→µneed
c′
/.

7 Dual classical call-by-need in sequent form (λln)

In call-by-need, the focus is on the consumer and goes to the producer on a need
basis. This suggests a dual call-by-need which corresponds to focusing on the
producer and going to the consumer on a need basis. To that end, we first extend
the classical call-by-need calculus of the previous section, λlv , with the dual of
the implication, the subtraction connective, and then build the dual classical
call-by-need calculus by using duality constructions typical from λµµ̃-calculi.

While µ and µ̃ constructs are dual of each other, implicative constructions
λx.t and t·E currently have no dual in λlv . We extend λlv by adding constructions
for the subtraction connective [11]. Subtraction was already considered in the
setting of λµµ̃ in Curien et al. [12]. We follow the notation introduced by
Herbelin in his habilitation thesis [24]. Terms are extended with the construction
v − e and contexts with λ̃α.e. The corresponding reduction is:

(−) 〈v − e||λ̃α.e′〉→ 〈µα.〈v||e′〉||e〉

12



We can now present the classical call-by-need calculus extended with sub-
traction, λ−lv . The structural rules are obtained by instantiating V and E as:

V −v = x || λx.t || (V −v −e) E−l = F− || µ̃x.Cµ̃l [〈x||F
−〉] with F− = α || v·E−l || λ̃α.e

The syntax for the language with subtraction is finally as follows (with c = 〈v||e〉):

meta-context C ::= � || 〈µα.c||µ̃x.C〉
linear term V ::= x || V − e || λx.v
term v ::= V || µα.c

applicative context F ::= α || v · E || λ̃α.e
linear context E ::= F || µ̃x.C[〈x||F 〉]
context e ::= E || µ̃x.c

Using the duality principles developed in [12], we obtain λ−ln by dualizing λ−lv :
The syntax of the calculus is obtained by dualizing λ−lv syntax and its reductions
are also obtained by duality: (β) and (−) are dual of each other while µv and µ̃l
are respectively turned into:

– the µ-reduction associated with set E−n ::= α || t · E−n || λ̃α.e, written µn
– the µ̃-reduction associated with set V −l ::= W || µα.Cµl [〈W ||α〉], with W ::=

x || λx.t ||W − e (and Cµl being the dual of Cµ̃l ), written µ̃l.

Since only linear contexts are substituted for context variables, as in call-by-
name, but only on a needed basis, we call the resulting calculus lazy call-by-name.
Its syntax is given as follows:

meta-context C ::= � || 〈µα.C||µ̃x.c〉
linear context E ::= α || λ̃α.e || t · E
context e ::= E || µ̃x.c

linear term W ::= x || λx.t ||W − e
value V ::=W || µα.C[〈W ||α〉]
term t ::= V || µα.c

The four theories can be discriminated by the following command:

c ≡ 〈µα.〈λx.µ_.〈λy.x||α〉||α〉
||µ̃f.〈µβ.〈f ||t · β〉

||µ̃x1.〈µγ.〈f ||s · γ〉
||µ̃x2.〈x1||x2 · x2 · δ〉〉〉〉

We call c1 the command obtained by instantiating t and s to λx.λy.x and
λx.λy.y, respectively. Then c1 evaluates to 〈λx.λy.x||δ〉 in lazy call-by-value
and to 〈λx.λy.y||δ〉 in call-by-name. We call c2 the command obtained by in-
stantiating t and s to λf.λx.µα.〈f ||x · α〉 and λx.x. We now consider c3 to be
〈µγ.c2||µ̃w.c1〉, where w does not occur free in c1 and γ does no occur free in
c2. In call-by-name and lazy call-by-value, c3 evaluates as c1, up to garbage col-
lection. However, c3 evaluates to 〈λf.λx.µα.〈f ||x · α〉||δ〉 in call-by-value, and to
〈I||δ〉 in lazy call-by-name, up to garbage collection. This can be generalized by
the following example, where we assume that α1 does not occur free in c and V ,
and that x1 does not occur free in c′ and E. If we define

c0 , 〈µα1.〈µα2.〈V ||α2〉||µ̃y.c〉||µ̃x1.〈µβ.c′||µ̃x2.〈x2||E〉〉〉

then c0 →→n c′[β ← E[x2 ← µβ.c′]]
c0 →→v c[y ← V [α2 ← µ̃y.c]]
c0 →→ln 〈µα1.c[y ← µα2.〈V ||α2〉]||µ̃x1.〈µβ.c′||µ̃x2.〈x2||E〉〉〉
c0 →→lv 〈µα1.〈µα2.〈V ||α2〉||µ̃y.c〉||µ̃x1.c′[β ← µ̃x2.〈x2||E〉]〉
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8 Conclusions and Future work

The advantage of studying evaluation order in the context of sequent calculus
has shown its benefits: extending the calculus (both syntax and reduction the-
ory) to the classical case simply corresponds to going from one context variable
to many. The study has also suggested how to provide a call-by-need version
of Parigot’s λµ-calculus, and in the minimal case, has led to a new notion of
standard reduction, which applies the lift and assoc rule eagerly. In the mini-
mal case, the single context variable, called ?, could be seen as the constant tp
discussed in [6,5]. In the cited work, it is also presented how delimited control
can be captured by extending tp to a dynamic variable named t̂p. This suggests
that one could use t̂p instead of tp to represent computations also in the min-
imal setting. Since evaluation goes under a t̂p, it means that one would obtain
a different notion of standard reduction, which would correspond to the one of
Ariola et al. [3] and Maraist et al. [26].

A benefit of sequent calculus over natural deduction in both call-by-name
and call-by-value is that the standard redex in the sequent calculus always oc-
curs at the top of the command. In other words, there is no need to perform an
unbounded search to reach the standard redex [2]: this search is embedded in
the structural reduction rules. However, this does not apply to our call-by-need
sequent calculus: the standard redex can be buried under an arbitrary number
of bindings. This can be easily solved by considering a calculus with explicit sub-
stitutions. A command now becomes 〈v||e〉τ , where τ is a list of declarations.
For example, the critical pair will be solved as: 〈µα.c||µ̃x.c′〉τ → c′[x = µα.c]τ
and the switching of context is realized by the rule: 〈x||E〉τ0[x := µα.c]τ1 →
c[α := µ̃x.〈x||E〉τ0]τ1. This will naturally lead us to developing abstract ma-
chines, which will be compared to the abstract machines of Garcia et al. [22]
and Danvy et al. [15], inspired by natural deduction.

We have related the lazy call-by-value with subtraction to its dual. We plan
to provide a simulation of lazy call-by-value in lazy call-by-name and vice-versa,
without the use of subtraction. We are also interested in devising a complete set
of axioms with respect to a classical extension of the call-by-need continuation-
passing style of Okasaki et al. [29]. A natural development will then be to extend
our lazy call-by-value and lazy call-by-name with delimited control. Following
a suggestion by Danvy, we will investigate connections between our lazy call-
by-name calculus and a calculus with futures [28]. At last, we want to better
understand the underlying logic or type system.
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