
Skew and ω-Skew Confluence and Infinite

Normal Forms

Zena M. Ariola⋆1 and Stefan Blom2

1 University of Oregon
2 University of Innsbruck

Abstract. The notion of skew confluence was introduced to characterize
non-confluent term rewriting systems that had unique infinite normal
forms or Böhm like trees. This notion however is not expressive enough to
deal with all possible sources of non-confluence in the context of infinite
terms or terms extended with letrec. To that end, we present a new notion
called ω-skew confluence. We show that ω-skew confluence constitutes a
sufficient and necessary condition for uniqueness of infinite normal forms
over infinite terms or terms with letrec.

1 Introduction

It is well-known that uniqueness of normal forms follows from confluence and
termination and that given termination, confluence and uniqueness of normal
forms are equivalent [1, 2]. There are however interesting systems that lack the
notion of normal form. For example, according to the rewriting rule given below:

F x → Cons(x, F x)

the term F 1 does not have a normal form. It has however a well-defined meaning
consisting of the infinite list of ones. This implies that for non-terminating rewrite
systems an alternative viable semantics could consist of the notion of infinite
normal form [3, 4]. This notion is a generalization of the Böhm Tree in the
lambda calculus [5].

The notion of infinite normal form is related to the notion of information con-
tent, also called instant semantics [6] or direct approximation [7, 8]. Intuitively,
the information content of a term is that part of the infinite normal form which
is already present in the term. The information content of a term can itself be
finite or infinite. In our example, where we build towards an infinite list of ones,
we never have an infinite list present in the term, but only finite prefixes. Hence,
we speak of finite information content. If we consider the information content
of infinite terms then it is obvious that the information content itself can be
infinite. Since graphs can be used to represent infinite terms, it could happen
that a finite object has infinite information content, like in the graph in Fig. 1.

⋆ Supported by National Science Foundation grant number CCR-0204389

Cons

1

Fig. 1. Finite representation of an infinite list of ones.

An important property of infinite normal forms is uniqueness. This property
is similar to uniqueness of normal forms and states that every two convertible
terms have the same infinite normal form. Confluence implies uniqueness of
infinite normal forms. However, confluence is not necessary for guaranteeing
uniqueness.

Skew confluence3, as introduced in [9, 10], characterizes rewrite systems that
have unique trees with respect to a notion of direct approximant or notion of
finite information content. The idea behind skew confluence is that if there ex-
ists a computation that develops a certain set of information, then any other
computation can be extended to develop a superset of that information. The
theory of skew confluence works well for term rewriting. It can also be applied
smoothly to some forms of term graph rewriting. However, the application to
other forms of term graph rewriting and to infinitary rewriting is not as smooth
as one would hope for. The reason is that the information content can be infinite.
To illustrate the problem of infinite terms with finite and infinite information
content, we consider term M below:

M ≡ (λx.f x (f x (f x (· · ·))))(I I)

On one side, term M rewrites to a normal form in two steps:

(λx.f x (f x (f x (· · ·))))(I I) −−→
β

(λx.f x (f x (f x (· · ·))))I −−→
β

f I (f I (f I (· · ·)))

This normal form has infinite information content. Term M also rewrites to a
term M1 which does not even have a finite normalizing sequence:

M ≡ (λx.f x (f x (f x (· · ·))))(I I) −−→
β

M1 ≡ f (I I) (f (I I) (f (I I) (· · ·)))

Moreover, in each reduct of M1 only finitely many of the (I I) redexes have been
reduced, which means that each reduct has finite information content. In Section
3, we will give a similar example for term graphs.

We introduce a new variant of skew confluence, called ω-skew confluence,
which is more suitable to the case of infinite information content. The idea
behind ω-skew confluence is that if there exists a computation that develops
a certain set of information, then any other computation can be extended to
develop a set of information that contains a given element from the first set, but
not necessarily all of its elements.

3 The name was suggested to us by Jan Willem Klop.

• ≤
��

==• ≤
!!

• ≤ ==• ≤
!!

• ≤ ==• ≤ • ···

Fig. 2. A skew confluent ARS which is not confluent

Proving (ω-)skew confluence of a non-confluent rewrite system can be rather
tedious and non-confluence often complicates matters. In the case of cyclic calculi
the source of non-confluence is often a subset of the rewrite rules which deals
with substitution and/or unwinding. The idea behind the lifting theory in [11] is
to partition the problem into a problem of the substitution rules and a problem
for the other rules. The intention is that only the part dealing with substitution is
non-confluent. Thus, one deals with non-confluence in a simplified setting and in
the more complicated setting, one can use confluence in the proofs. In this paper
we present an abstract version of this lifting theory. We start with a well-behaved
abstract rewrite system (ARS for short) and an infinite normal form with finite
information content. We assume the ARS is equipped with a partial order. Next,
we consider an extension of the rewrite system where we use the ideal completion
of the original set of objects as the semantics of the objects of the extension.
We define a construction which lifts the notion of information content from the
original ARS to the extension and provides conditions under which this lifted
notion of information content yields unique infinite normal forms.

The paper is organized as follows: We start in Section 2 with an intuitive
description of the three distinct notions of confluence. In Section 3, we present a
counterexample to confluence which arises from unwinding a graph in different
ways. We discuss how confluence modulo bisimilarity provides a solution. We
also explain the need of skew and ω-skew confluence to cope with the loss of
confluence when the substitution rules are extended with other rewrite rules. In
Section 4, we formalize skew and ω-skew confluence and the notion of infinite
normal form. In Section 5, we use these notions to show the consistency of the
call-by-name and call-by-need cyclic calculi. In Section 6, we present an abstract
version of the lifting theory. We conclude in Section 7.

2 Confluence, Skew Confluence and ω-Skew Confluence

We give an intuitive description of these properties through a series of examples.
We define the set of objects A as the set consisting of the bottom element ⊥ and
two copies of the set of natural numbers:

A = {⊥} ∪ IN ∪ {n | n ∈ IN} .

We define the reduction relation −→
1

on A as follows:

⊥−→
1

0, ⊥−→
1

0, n −→
1

n + 1, n −→
1

n + 1, 2n −→
1

2n, 2n + 1 −→
1

2n + 1 .

We then have that (A,−→
1

) is confluent.

We define next the reduction relation −→
2

on A as follows:

⊥−→
2

0, ⊥−→
2

0, n −→
2

n + 1, n −→
2

n + 1 .

We have that (A,−→
2

) is not confluent. To that end, we define a quasi order �

(i.e., � is reflexive and transitive) and an equivalence ∼ on A (i.e., ∼ is reflexive,
symmetric and transitive) as follows:

a � a′, if |a| ≤ |a′| and a ∼ a′, if a � a′ ∧ a′ � a ,

where |.| : A → IN is defined as follows:

| ⊥ | = 0, |n| = n + 1, |n| = n + 1 .

We then obtain that (A,−→
2

) is confluent modulo ∼. According to confluence,
divergent reductions can converge to the same term. Whereas, according to con-
fluence modulo, divergent reductions can reach equivalent terms.

We define the reduction relation −→
3

on A as follows:

⊥−→
3

0, ⊥−→
3

1, n −→
3

n + 2, n −→
3

n + 2 .

We have that (A,−→
3

) is neither confluent nor confluent modulo ∼. The situation

is depicted below (in Fig. 2 we also give a schematic presentation):

⊥

��>
>>

>>
>>

>
// 1 // 3 // 5

0 // 2 // 4 // 6

To cope with this situation we need skew confluence which states that diverging
reductions can always be extended in the same direction.

To explain ω-skew confluence, consider the ARS (IN ∪ {∞},−→), where

i −→ i + 1, i ∈ IN and 0 −→ ∞

and let |α| = {i ∈ IN | i ≤ α} We also change the definition of the quasi-ordering
as follows:

a � a′, if |a| ⊆ |a′|

For all α ∈ IN ∪ {∞} we have that the infinite normal form of α is IN. However,
the ARS is not skew confluent: 0−→→∞ and 0−→→60, but there does not exist an α,
such that 60−→→α and ∞ � α.

See Fig. 3 and 4 for an illustration of the reduction graphs of ⊥ for each of
the four reduction relations.

1

OO

oo
1

1

OO

1

OO

1
//

1

OO

1

OO

oo
1

1

OO

1

OO

1
//

1

OO

1

OO

oo
1

1

OO

1

OO

1
//

1

OO

1

__????
1

??����

2

OO
2

OO

2

OO
2

OO

2

OO
2

OO

2

OO
2

OO

2

OO
2

OO

2

OO
2

OO

2

__????
2

??����

3

OO

3

OO

3

OO

3

OO

3

OO

3

__????
3

GG��������

Confluent yes no no
Confluent modulo ∼ yes yes no
Skew confluent yes yes yes

Fig. 3. Some reduction graphs and their confluence properties.

∞

3

2

99ssssss

1

@@��������

0

OO

FF�������������

Fig. 4. An illustration of the need for ω-skew confluence.

3 Lack of Confluence in Term Graphs

The need for a less restrictive notion of confluence arises in practice if one wants
to provide a more accurate foundation of programming languages. To reason
about either execution or optimizations one has to deal with the notion of sharing
and cyclic structures [12–14]. As pointed out by Wadsworth [15], these concerns
can be accommodated by considering term graph rewriting as opposed to term
(or tree) rewriting.

As pointed out in [16, 17], term graphs can be nicely represented as terms
with letrec’s. The cyclic structure depicted in Fig. 1 would be represented as

〈x | x = Cons(1, x)〉

The advantage of this representation is that one can apply existing term rewrite
rules directly to the cyclic term4. However, the old rewrite rules are not enough:
we must also use rules that modify the letrec structure. Typical examples of such
rules are the rules for external, internal and cyclic substitution:

〈C[x] | x = M, E〉 es−−→ 〈C[M] | x = M, E〉

〈M | x = C[y], y = N, E〉 is−−→ 〈M | x = C[N], y = N, E〉
〈M | x = C[x], E〉 cs−−→ 〈M | x = C[C[x]], E〉

where C[x] stands for a one-hole context filled with variable x. The problem
with these simple rules is that confluence is lost. The classical example is:

M
≡

〈x | x = F(x)〉
es //

cs

��

〈F(x) | x = F(x)〉
cs // 〈F(x) | x = F(F(x))〉

≡

Mo

〈x | x = F(F(x))〉
≡

Me

The cyclic terms Mo and Me do not have a common reduct because any reduct
of Mo will contain an odd number of F symbols and any reduct of Me an even
number.

The lack of confluence of the substitution rules themselves is not a major
point of concern. Substitution rules transform terms to bisimilar terms. That
is, into terms which represent the same infinite tree. From this it follows that
although the reduction is not confluent, it is confluent modulo bisimulation.

However, when we combine the substitution rules with a rewrite system then
matters can become worse. For example, consider the TRS

F(F(X)) → F(G(X))
G(G(X)) → G(F(X))

4 Because of the capability of the letrec to represent graphs with cycles, we refer to
terms with letrec’s as cyclic terms.

This TRS is confluent and terminating. However, when we apply these rewrite
rules to Mo and Me we get:

Me → 〈x | x = F(G(x))〉 ≡ M ′
e

Mo → 〈F(x) | x = F(G(x))〉 ≡ M ′
o

As before, a count of the symbols leads to the conclusion that these M ′
e and M ′

o

do not have a common reduct. But unlike before, we also lose confluence modulo
bisimulation. All reducts of M ′

e will be of the form

〈(FG)n(x) | x = (FG)m(x)〉

where (FG)0(x) = x and (FG)n+1(x) = F(G((FG)n(x))). All reducts of M ′
o will

be of the form

〈(FG)n(G((FG)k(x))) | x = (FG)m(x)〉 or 〈(FG)n(F((FG)k(x))) | x = (FG)m(x)〉

Let us consider the symbols we find after following paths of even length starting
from the root. In the case of a reduct of M ′

e, we find only F symbols, which
means that we find infinitely many F symbols. In the case of a reduct of M ′

o, it
is difficult to say what symbol we find in the prefix. But once we get to the loop,
we find only G symbols. Hence, we find at most finitely many F symbols. If two
graphs are bisimilar then the symbols reachable by paths of a certain length are
identical. Hence, it is impossible that any reduct of M ′

e is bisimilar to a reduct
of M ′

o.

We know that our rewrite system is not confluent modulo bisimulation. How-
ever, neither can we produce random results: any reduct of the original M will
be of the form

〈F(?(?(?(· · · (x) · · ·)))) | x = (FG)m(x)〉

where ? stands for F or G. Any term of this form will reduce to

〈F(G(F(G(· · · (x) · · ·)))) | x = (FG)m(x)〉

From this we can derive that given any two reducts of M , we can reduce the
second reduct until its alternating F/G prefix is at least as big as the alternat-
ing F/G prefix of the first reduct. This means that when we look at prefixes,
we have skew confluence. If we look at unwindings then the F/G prefix of the
unwinding of M ′

e is an infinite alternating F/G sequence, but the unwindings of
the reducts of M ′

o only start with a finite alternating F/G sequence. So when
we look at unwindings, we do not have skew confluence. However, we do have
ω-skew confluence because by reducing M ′

o we can match any finite prefix of the
unwinding of M ′

e.

4 Skew and ω-Skew Confluence and Infinite Normal

Forms

In this section we introduce skew confluence, ω-skew confluence and infinite
normal forms with (in)finite information content.

To define skew confluence we need a way of telling if an object is better than
another object. We formalize this by considering an ARS and a quasi order.

Definition 1 (skew confluence). Given an ARS A ≡ (A,→) and a quasi
order (A,�). The ARS A is skew confluent up to � if

∀a1, a2, a3 ∈ A : a1−→→a2 ∧ a1−→→a3 ⇒ ∃a4 : a2 � a4 ∧ a3−→→a4 .

The commutative diagram for skew confluence is

����

// //

�����
�
�

�

Confluence implies skew confluence. More precisely, if the reduction relation
is increasing in a quasi order then confluence implies skew confluence up to that
quasi order:

Proposition 1. Given an ARS A ≡ (A,→) and a quasi order (A,�). If →⊂�
and A is confluent then A is skew confluent up to �.

We will now formally define infinite normal forms with finite information
content. But first we introduce the following definition.

Definition 2. Given a partial order (D,≤),

– we define the downward closure of a set C ⊂ D, denoted by ↓C, as

↓C = {b ∈ D | b ≤ a ∈ C} ;

– a subset I of D is an ideal iff (i) I is non-empty, (ii) I is directed: ∀a, b ∈

I, ∃c ∈ I, a ≤ c and b ≤ c, (iii) I is downward closed: ∀c ∈ I, if ∃d ∈ D, d ≤ c

then d ∈ I.

Definition 3. Given an ARS (A,→) and a partial order (D,≤).

– A notion of finite information content is a function ω : A → D, such that
a1 → a2 ⇒ ω(a1) ≤ ω(a2).

– The infinite normal form generated by ω is defined as

Infω(a) = ↓{ω(a′) | a−→→a′}

– A notion of information content yields unique infinite normal forms if

a → a′ ⇒ Infω(a) = Infω(a′)

– The information order ≤ω is defined by

a1 ≤ω a2 if ω(a1) ≤ ω(a2) .

Next, we prove that uniqueness of infinite normal forms with finite informa-
tion content is equivalent to skew confluence up to.

Theorem 1. A notion of information content ω yields unique infinite normal
forms iff the ARS is skew confluent up to ≤ω.

Proof. ”⇒” Assuming uniqueness of infinite normal form. If a1−→→a2 and a1−→→a3

then Infω(a1) = Infω(a3) by induction on the length of the reduction from
a1 to a3. Because a1−→→a2, we know that ω(a2) ∈ Infω(a1). So we also know
that ω(a2) ∈ Infω(a3). That means that there exists an a4, such that a3−→→a4

and ω(a2) ≤ ω(a4).
”⇐” Assuming skew confluence, we have to show Infω(a1) = Infω(a2).

”⊃” Trivial.
”⊂” Given d ∈ Infω(a1), there exist and a3, such that a1−→→a3 and d ≤ ω(a3).

By skew confluence there exists an a4, such that a2−→→a4 and a3 ≤ω a4.
By definition, we have ω(a4) ∈ Infω(a2) and since d ≤ ω(a4) this implies
d ∈ Infω(a2).

To define infinite normal forms with infinite information content, we use the
notion of ideal completion of a partial order. If D is a partial order then I(D)
denotes the ideal completion of D. Using this notation, we define infinite normal
form with infinite information content as follows:

Definition 4. Given an ARS (A,→) and a partial order (D,≤).

– A notion of infinite information content is a function ω : A → I(D), such
that a1 → a2 ⇒ ω(a1) ⊆ ω(a2).

– The infinite normal form generated by ω is defined as

Infω(a) = ∪{ω(a′) | a−→→a′}

– The information order ≤ω is defined by

a1 ≤ω a2 if ω(a1) ⊂ ω(a2) .

The examples in Sections 2 and 3 show that skew confluence up to the infor-
mation order is not a necessary condition for uniqueness of infinite normal forms
with infinite information content. The notion that is necessary and sufficient is
the notion of ω-skew confluence, which we introduce next.

Definition 5 (ω-skew confluence). Given an ARS A ≡ (A,→), a partial
order (D,≤) and a function ω : A → I(D). The ARS A is ω-skew confluent
with respect to ω if

∀a1, a2, a3, d1, a1−→→a2∧a1−→→a3∧d1 ∈ ω(a2) : ∃a4, d2 : a3−→→a4∧d2 ∈ ω(a4)∧d1 ≤ d2 .

For use in diagrams we define −−→
ω

by

a ω−−→ d, if d ∈ ω(a) .

Note that the ω in ω-skew confluence is not the function ω used in the
definition, but the first infinite ordinal. The commutative diagram for ω-skew
confluence is

����

// //

�����
�
�

ω

��
ω

���
�
�

≤

Theorem 2. A notion of infinite information content ω yields unique infinite
normal forms iff the ARS is ω-skew confluent with respect to ω.

Proof. Observe that
Infω(a) = {d | a−→→a′ −−→

ω
d} .

”⇒” Assuming uniqueness of infinite normal form. If a1−→→a2 −−→
ω

d1 and a1−→→a3

then Infω(a1) = Infω(a3) by induction on the length of the reduction from
a1 to a3. We know that d1 ∈ Infω(a1). So we also know that d1 ∈ Infω(a3).
That means that there exists an a4, such that a3−→→a4 and a4 −−→

ω
d1.

”⇐” Assuming skew confluence, we have to show Infω(a1) = Infω(a2).
”⊃” Trivial.
”⊂” Given d ∈ Infω(a1), there exist and a3, such that a1−→→a3 and a3 −−→

ω
d.

By skew confluence there exists an a4 and d′, such that a2−→→a4 and

a4 −−→
ω

d′ and d ≤ d′. This implies that a4 −−→
ω

d and hence d ∈ Infω(a2).

Proposition 2. Given an ARS A ≡ (A,→), a partial order (D,≤) and a func-
tion ω : A → I(D). If A is skew confluent up to ≤ω then A is ω-skew confluent
with respect to ω.

Observe that we have ω-skew confluence iff

∀a1, a2, a3∀d1∃a4∃d2 : a1−→→a2∧a1−→→a3∧d1 ∈ ω(a2), a3−→→a4∧d2 ∈ ω(a4)∧d1 ≤ d2

and skew confluence iff

∀a1, a2, a3∃a4∀d1∃d2 : a1−→→a2∧a1−→→a3∧d1 ∈ ω(a2), a3−→→a4∧d2 ∈ ω(a4)∧d1 ≤ d2 .

5 Cyclic Lambda Calculi

We now apply the notions of skew and ω-skew confluence to extensions of the
call-by-name lambda-calculus and of the call-by-need lambda-calculus [18, 19]
with cyclic structures, as defined below.

Definition 6. The set of cyclic lambda terms Λ◦ is defined as follows:

Terms M ::= x | λx.M | M N | 〈M | D〉
Declarations D ::= x1 = M1, . . . , xn = Mn

where the variables xi, 1≤i≤n, are distinct from each other and the order of the
equations does not matter.

(λx.M) N −−−→
β◦

〈M | x = N〉

〈C[x] | x = M, D〉 −−→
es

〈C[M] | x = M, D〉

〈M | x = C[y], y = N, D〉 −−→
is

〈M | x = C[N], y = N, D〉

〈〈M | D1〉 | D2〉 −−−→
em

〈M | D1, D2〉

〈M | x = 〈N | D1〉, D2〉 −−→
im

〈M | x = N, D1, D2〉

〈M | D〉 N −−−→
lift

〈M N | D〉

M 〈N | D〉 −−−→
lift

〈M N | D〉

λx.〈M | D1, D2〉 −−−→
lift

〈λx.〈M | D1〉 | D2〉 (x = x,D1) ⊥ D2 6= {}

〈M | D1, D2〉 −−→
gc

〈M | D1〉 D2 6= {}, D2 ⊥ 〈M | D1〉

〈M |〉 −−→
gc

M

Mσ −−→
cp

M σ : V → V

Fig. 5. The cyclic call-by-name lambda calculus

5.1 The Cyclic Call-by-name Calculus

As an application of skew-confluence we consider the cyclic call-by-name calcu-
lus, given in Fig. 5. Note that Mσ doesn’t stand for substitution but for defined
variable collapsing, as defined next.

Definition 7. Given a function σ from recursion variables V to V, Mσ is de-
fined as follows:

xσ = σ(x)
(M N)σ = Mσ Nσ

(λx.M)σ = λx.Mσ if σ(x) = x ∧ σ−1(x) = {x}
〈M | x1 = M1, · · · , xn = Mn〉

σ = 〈Mσ | xσ
1 = Mσ

1 , · · · , xσ
n = Mσ

n 〉
if σ(xi) = σ(xj) ⇒ Mσ

i = Mσ
j

For example if M is λz.〈x | x = z y, y = z x〉 and σ(x) = σ(y) = u then

Mσ ≡ λz.〈u | u = z u〉

The symbol ⊥ is used to denote independence of definitions: D2 ⊥ 〈M | D1〉
means that the set of variables that occur as the left-hand side of an equation
in D2 does not intersect with the set of free variables of M and of D1. This
guarantees that the free variables of M and of D1 do not refer to the variables
defined in D2.

In Section 3, we already pointed out that the substitution rules lead to non-
confluence. However, λ◦ is skew-confluent with respect to the following notion
of finite information content.

Definition 8. Given M, N ∈ Λ◦, the finite information content of M is given by
the function ωλ◦. Given M , ωλ◦(M) returns the normal form of M with respect

(λx.M)N −−−→
β◦

〈M | x = N〉

〈C[x] | x = V, D〉 −−−→
esV

〈C[V] | x = V, D〉

〈M | x = C[x1], x1 = V, D〉 −−−→
isV

〈M | x = C[V], x1 = V, D〉

〈M | D〉N −−−→
lift

〈MN | D〉

M〈N | D〉 −−−→
lift

〈MN | D〉

λx.〈M | D, VD〉 −−−→
lift

〈λx.〈M | D〉 | VD〉 (x = x, D) ⊥ VD 6= {}

〈〈M | D〉 | D′〉 −−−→
em

〈M | D, D′〉

〈M | x = 〈N | D〉, D1〉 −−→
im

〈M | x = N, D, D1〉

〈M | D, D′〉 −−→
gc

〈M | D〉 {} 6= D′, D′ ⊥ 〈M | D〉

〈M | 〉 −−−→
gc2

M

M −−−−→
cpV

N ∃σ : V → V, Nσ ≡ M and
∀x 6≡ x′, σ(x) ≡ σ(x′) :
σ(x) bound to a value in M

Csafe[M N] −−−−−→
name

Csafe[〈x | x = M N〉] x a new variable

where
Csafe ::= C′ | C[λx.C′] | C[C′ M] | C[M C′] .

C′ ::= 2 | 〈C′ | D〉
V ::= x | λx.M

VD ::= x1 = V1, · · · , xn = Vn

Fig. 6. The cyclic call-by-need lambda calculus

to the following rules:

(λx.M)N −−−−→
ωλ◦

Ω βω

〈C[x] | x = M, D〉 −−−−→
ωλ◦

〈C[Ω] | x = M, D〉 esω

ΩM −−−−→
ωλ◦

Ω @ω

〈M | D〉 −−−−→
ωλ◦

M D ⊥ M gcω

Examples: ωλ◦(〈λx.yz | y = I〉) = λx.Ω, ωλ◦(〈x | x = x〉) = Ω, ωλ◦(〈xy | y =
I〉x) = (xΩ)x, and ωλ◦(〈xx | x = I〉) = Ω. Note that even though 〈xy | y = I〉x
is a lift redex, its information content is not Ω.

Theorem 3. The ARS λ◦ is skew confluent up to ≤ωλ◦
.

A direct proof can be found in [10]. In the next section, we will develop a
theory which allows us to prove uniqueness of infinite normal forms from a list
of other properties.

5.2 A Cyclic Call-by-need Calculus

The cyclic call-by-need calculus λ◦need is given in Fig. 6.

Definition 9. Given M, N ∈ Λ◦, the infinite information content of M is given
by the following function ωλ◦

need
:

ωλ◦
need

(M) =↓ {ωλ◦(N) | M−−→es→N}

Due to the fact that the information content is infinite, we do not have skew
confluence up to the information order. Consider the following two reductions:

M ≡ 〈x | x = λz.z y, y = λz′.z′ (x z′)〉 −−−−−−→
λ◦need

→ 〈λz.z y | y = λz′.z′ ((λz.z y) z′)〉

−−−−−−→
λ◦need

〈λz.z y | y = λz′.z′ (z′ y)〉 ≡ M1

and

M ≡ 〈x | x = λz.z y, y = λz′.z′ (x z′)〉 →→ 〈x | x = λz.z (λz′.z′ (x z′))〉 ≡ M2 .

We have that ωλ◦
need

(M1) = Infneed(M1), because the only redexes in M1 and

any of its reducts are value substitutions, which are performed as part of the
computation of the information content. However, there cannot exist M3 such
that M2−−−−−−→λ◦need

→M3 and ωλ◦
need

(M1) ⊆ ωλ◦
need

(M3) because ωλ◦
need

(M1) is infi-

nite whereas the information content of any reduct of M2 is finite. The reason
is that in the unwinding of M we have an infinite number of β-redexes. When
we rewrite M into M1 we do all of those redexes at once and when we rewrite
M into M2 we destroy the opportunity to do them in one step. The consistency
of λ◦

need is guaranteed by the following theorem.

Theorem 4. The ARS λ◦
need is ω-skew confluent with respect to ≤ωλ◦

need

.

A direct proof can be found in [20]. In the next section, we will develop a
theory which allows us to prove consistency from a list of other properties.

6 Lifting Infinite Normal Forms

The infinite normal forms of both the cyclic call-by-name and call-by-need
lambda calculi are closely related to unwinding. The information content for
the cyclic call-by-name calculus can be seen as a two steps process. First, one
computes the normal form with respect to the esω and gcω rules. Second, one
applies the notion of information content associated to the lambda-calculus [8].
The call-by-need information content of a term is the information content of the
unwinding of the term. In this section, we study how to derive this notion of
information content in an abstract setting.

We first introduce in Section 6.1 the notion of a finite basis and its properties.
The finite basis will be modeling the lambda calculus. In Section 6.2 we con-
sider extensions consisting of infinite objects over the basis and objects whose
semantics are infinite objects. In Section 6.3, we consider infinite normal forms
of extensions.

6.1 Finite Basis

We start from an ARS equipped with a partial order on its objects and a notion
of finite information content. Using the partial order we can build the ideal
completion [21], which will function as the set of possibly infinite objects. To
be able to lift the notion of information content to infinite objects, we must
require that the notion of information content and the rewrite relation are also
monotonic with respect to the partial order. We formalize this starting point
with the notion of a finite basis, for which we need one auxiliary definition:
monotonicity of a rewrite relation with respect to an order.

Definition 10. Given an ARS (A,−→) and a partial order (A,≤), we say that
−→ is monotonic with respect to ≤ if

a −→ a′ ∧ a ≤ a′′ ⇒ ∃a′′′ : a′ ≤ a′′′ ∧ a′′ −→ a′′′

The diagram of monotonicity is

��

≤

���
�
�
�
�

≤

Definition 11 (finite basis). A tuple (A,−→,≤A, ω, D,≤D) is a finite basis if

– (A,−→) is an ARS;
– (A,≤A) and (D,≤D) are partial orders;
– ω : A → D is a finite notion of information content on (A,−→), which yields

unique infinite normal forms and is monotone with respect to ≤A;
– −→ is monotone with respect to ≤A.

Example 1. Let Λ stand for the set of lambda-calculus terms and ωLL stand for
the function which given a term M returns the normal form of M with respect
to the following ωLL-rules [7]:

(λx.M)N −−−−→
ωLL

Ω

Ω M −−−−→
ωLL

Ω

Then one has that (Λ,−−→
β

,≤Ω, ωLL, Λ,≤Ω) is a finite basis.

Next, we consider rewrite systems, referred to as extensions, whose objects
have infinite objects as semantics. Moreover, we want these rewrite systems to
mimic the behavior of their finite counterparts. For the cyclic lambda calculi
mimicking the finite lambda calculus meant that the rewrite relation induced by
the cyclic calculi was contained in the infinitary lambda calculus and that finite
reductions in an approximation could be lifted to reduction in the extension. The
equivalent of this involves lifting the reduction in a finite basis to a reduction on
its ideal completion.

6.2 Extensions

The set of infinite terms can be seen as the ideal completion of the set of finite
terms under the prefix order ≤Ω. Therefore, we treat the ideal completion of a
set of objects as infinite objects. We then define a rewrite relation on ideals as
follows: we say that an ideal rewrites to another if every sufficiently large element
of the first ideal rewrites to an element of the second and every sufficiently large
element of the second ideal can be obtained by rewriting an element of the first.
This is in a way similar to how Corradini defined complete developments of an
infinite set of redexes in an infinite term [22].

Definition 12. Given a finite basis A = (A,−−→
A

,≤A, ω, D,≤D). The operator

[·〉 : (A × A) → I(A) × I(A) is defined by I1[−−→R 〉I2 if

∀a ∈ I1 : ∃a′
∈ I1, a

′′
∈ I2 : a ≤ a′ −−→

R
a′′

∀a′′
∈ I2 : ∃a′

∈ I2, a ∈ I1 : a −−→
R

a′ ≥ a′′

If for I ∈ I(A), we denote a ∈ I as I −−→
α

a then we can phrase this definition
with the following 2 diagrams:

α

��

[−−→
R

〉

α

��/
/

/
/

/
/

/

α

���
�
�
�
�
�

≤A

R

//___

and
[−−→

R
〉

α

���
�
�
�
�
�

α

��

α

���
�
�
�
�
�
�

R
//___

≥A

Example 2. Consider the infinitary lambda calculus term

(λx.f x (f x (f x (· · ·))))(I I)

from the introduction. The reduction of I I to I can be matched:

(λx.f x (f x (f x (· · ·))))(I I) [−−→
β

〉(λx.f x (f x (f x (· · ·))))I

because
(λx.Ω) (I I) −−→

β
(λx.Ω) I

(λx.f x (Ω)) (I I) −−→
β

(λx.f x (Ω)) I

(λx.f x (f x (Ω))) (I I) −−→
β

(λx.f x (f x (Ω))) I

...
...

...

It is obvious that for any single step we can do this. So we also have

(λx.f x (f x (f x (· · ·))))I [−−→
β
〉 f I (f I (f I (· · ·)))

and
(λx.f x (f x (f x (· · ·))))(I I) [−−→

β
〉 f (I I) (f (I I) (f (I I) (· · ·)))

Interestingly, we can also do infinite developments. An infinite development, of
course, means performing a finite development on the prefix, so we have to use
[−−→

β
→〉 rather than [−−→

β
〉. The fact is that

f (I I) (f (I I) (f (I I) (· · ·))) [−−→
β
→〉 f I (f I (f I (· · ·)))

follows from

f (I I)Ω −−→
β
→ f I Ω

f (I I) (f (I I)Ω) −−→
β
→ f I (f I (Ω))

f (I I) (f (I I) (f (I I) (Ω))) −−→
β
→ f I (f I (f I (Ω)))

...
...

...

Now that we can lift any relation from an order to its ideal completion, it is
logical to also extend information content from the order to the ideal completion.
Naturally the information contained in an ideal is infinite, so we define the
information content of an ideal as the downward closure of the set of information
contents of its elements:

Definition 13. Given a finite basis A = (A,−−→
A

,≤A, ω, D,≤D) and I ∈ I(A).
Let

ω∞(I) = ↓{ω(a) | a ∈ I}

This is well-defined because of the monotonicity of ω with respect to ≤A.
Next, we consider the abstract version of an extension which contains objects
whose semantics are infinite objects over the basis:

Definition 14. A tuple AX ≡ (AX ,−−−→
AX

, [[·]]) is an extension of a finite basis

A ≡ (A,−−→
A

,≤A, ω, D,≤D), if (AX ,−−−→
AX

) is an ARS and [[·]] : AX → I(A).

The cyclic lambda calculi are extensions of the lambda calculus in this sense
because the semantics of a cyclic lambda term is its unwinding, which is an
infinite term. For an extension to make sense, we require it to be sound and
complete with respect to the basis [23, 24]. In other words, the extension cannot
do more than the basis (soundness) and the extension can simulate everything
the basis can do (completeness). To define soundness we use the [·〉 operator. To
define completeness we use a simple lifting property:

Definition 15. Given a finite basis A ≡ (A,−−→
A

,≤A, ω, D,≤D), its extension

AX ≡ (AX ,−−−→
AX

) and a function [[·]] : AX → I(A). Then,

– AX is infinitarily sound with respect to [[·]] and A if

s −−−→
AX

t ⇒ [[s]] [−−→
A
→〉 [[t]]

α

��

AX

//

α

��/
/

/
/

/
/

/

α

���
�
�
�
�
�

≤A

A

// //___

AX

//

α

���
�
�
�
�
�

α

��

α

���
�
�
�
�
�
�

A

// //___ ≥A ___

α

��

AX

// //______

α

���
�
�
�
�
�

A

// //
A

// //___

Fig. 7. Soundness and completeness of an extension as commutative diagrams

extension domain AX

ω[[·]]

vvmmmmmmmmmmmmm
[[·]]

))SSSSSSSSSSSSSS

finite domain A

ω

��

oo
α

I(A) infinite domain

ω∞

��
D semantic domains I(D)

Fig. 8. Overview of the given domains and their connections.

– AX is infinitarily complete respect to [[·]] and A if

∀a, s : a ∈ [[s]] ∧ a−−→
A
→a′ ⇒ ∃t, a′′ : s−−−→

AX
→t ∧ a′−−→

A
→a′′

∈ [[t]]

In order to be able to draw diagrams, we denote a ∈ [[s]] by s −−→
α

a as well.
Using this notation, the diagrams for soundness and completeness can be drawn
as given in Fig. 7.

At this point we have all of the domains that we want to consider: finite and
infinite semantic domains, finite and infinite basis domains and an extension
domain. Notions of information content from the finite base to the semantic do-
main are given as well. This is enough to define an infinite notion of information
content on the extension. To define a finite notion of information content, we also
need a function for the extension to finite objects. We will call this function ω[[·]].
It will be explained later. In Fig. 8 we have given an overview of the domains
and the connection between them.

6.3 Infinite Normal Forms

We start with infinite information content because we only need the semantics
of the extended objects. The idea is that the information content of an extended
object is just the information content of the unwinding.

Theorem 5. Given a finite basis A ≡ (A,−−→
A

,≤A, ω, D,≤D) and an extension

AX ≡ (AX ,−−−→
AX

, [[·]]). If

1. AX is infinitarily sound with respect to [[·]] and A;
2. AX is infinitarily complete with respect to [[·]] and A;

then ωX : AX → I(D) defined by

ωX(s) = ω∞([[s]])

is a notion of infinite information content which yields unique infinite normal
forms.

Proof. To show that ωX is a notion of infinite information content we need to
show that if s −−−→

AX
s′ then ωX(s) ⊆ ωX(s′). If d ∈ ωX(s) then there exists

an a ∈ A such that a ∈ [[s]] and d ≤ ω(a). By soundness of the extension
there exist a′ and a′′ such that a′ ∈ [[s]], a ≤A a′, a′′ ∈ [[s′]] and a′−−→

A
→a′′. By

monotonicity of ω w.r.t. ≤A, we have that ω(a) ≤ ω(a′). Because ω is a notion
of information content, we have ω(a′) ≤ ω(a′′). Hence d ∈ ωX(s′). To show that

ωX yields unique infinite normal forms, we need to show that −−−→
AX

is ω-skew

confluent up to ≤ωX
. We do this by constructing a commutative diagram. The

numbers indicate the order in which the construction can take place and below
the diagram we indicate the reasons for the pieces of the diagram.

5
AX

����
��

��
�

AX

//

α

���
�
�

α

��
α

���
�
�

AX

// //

AX

�� ��/
/

/
/

/
/

/

α

���
�
�

AX

������
��

��
�

α

���
�
�

α

��

2

6

A
�����
�
�

≤A

8

A

�����
�
�
�
�
�

A
// //___

A

�����
�
�
�
�
�

A

�����
�
�
�
�
�

ωX

����
��
��
��
��
��
�

IHα

���
�
�

A
�����
�
�

≤A

3 A
�����
�
�

repeat

5,6,7,8
9

ωX

��/
/

/
/

/
/

/

α

���
�
�

1 4ω

���
�
�

≤A

≤A

7ω

���
�
�

≤A

ω

���
�
�

ω

���
�
�

10ω

���
�
�

A
// //___

ω

���
�
�

11

≤

≤

≤

≤

≤

≤

≡

1, 11 Definition of ωX .
2, 5 Because AX is infinitarily sound with respect to [[·]] and A
4,7,10 Because ω is monotonic w.r.t. ≤A.
3,6 Because −−→

A
and ≤A commute.

8 Because −−→
A

is skew confluent up to ≤ω.

9 Because AX is infinitarily complete with respect to [[·]] and A.
10 Because ω is monotonic w.r.t. −−→

A
.

Next, we consider the more complicated matter of defining a notion of finite
information content on an extension. This situation arises when the extension

contains the computation of the semantics as a proper subset. This is the case
in the call-by-name cyclic lambda calculus. The unwinding of a cyclic lambda
term is an infinite normal form itself. One can define the rewrite system [[·]] as
external substitution

〈C[x] | x = M, D〉 −−→
[[·]]

〈C[M] | x = M, D〉

and ω[[·]] as the normal form with respect to

〈M | x1 = M1, · · · , xn = Mn〉 −−−−→ω[[·]]
M [x1 := Ω, · · · , xn := Ω]

Then the information content of a cyclic term M becomes:

ωλ◦(M) = ωLL(ω[[·]](M))

We copy the idea for our abstract setting. That is, we assume that [[·]] is given
as an infinite normal form with finite information content. Based on this as-
sumption, we define the information content of an extended object as the base
information content of the unwiding information content of the extended object.
Unfortunately, it is not guaranteed that this composition is actually a notion of
information content. For example, consider the TRS

F(F(X)) → F(G(X))
G(G(X)) → G(F(X))

Let ω(M) denote the largest possible alternating prefix of M . For example,
ω(F(F(X))) = F(Ω). The function ω is a proper notion of information content,
but if we consider the cyclic extension

F(F(X)) → 〈x | x = F(G(X))〉
G(G(X)) → 〈x | x = G(F(X))〉
〈x | x = M, D〉 → 〈M | x = M, D〉
〈F(x) | x = M, D〉 → F(〈x | x = M, D〉)
〈G(x) | x = M, D〉 → G(〈x | x = M, D〉)

then ω ◦ ω[[·]] is not a notion of information content:

(ω ◦ ω[[·]])(F(F(X))) = ω(F(F(X))) = F(Ω)

and
(ω ◦ ω[[·]])(〈x | x = F(G(X))〉) = ω(Ω) = Ω

So ω◦ω[[·]] is not monotonic with respect to the reduction relation of the extension.
The problem is that the extended rewrite rules destroy a part of the unwinding,
which was already part of the information content. The solution therefore is to
require that every rewrite step in the extension preserve enough unwinding to
compute at least the information content of the left-hand side:

∀s, t ∈ AX : s −−−→
AX

t ⇒ ∃a ∈ A : a ≤A ω[[·]](s) ∧ a ≤A ω[[·]](t) ∧ ω(a) = ω(ω[[·]](s))

So the rewrite step from s to t preserves a part of the unwinding a and a is
enough to compute the information content of s.

For the call-by-name calculus this property holds, because if M −−→
λ◦

N then

it is either not a β◦ step and ω[[·]](M) ≤Ω ω[[·]](N) and we can take a = ω[[·]](M)
or it is a β◦ step C[(λx.P)Q] −−−→

β◦
C[〈P | x = Q〉]. In this case we can take

a = ω[[·]](C[Ω]).

Theorem 6. Given a finite basis A ≡ (A,−−→
A

,≤A, ω, D,≤D), an extension

AX ≡ (AX ,−−−→
AX

, [[·]]) and a subset −−→
[[·]]

of −−−→
AX

plus a notion of information

content ω[[·]] that computes [[·]]. If

1. AX is infinitarily sound with respect to [[·]] and A;
2. AX is infinitarily complete with respect to [[·]] and A;
3. ∀s, t ∈ AX : s −−−→

AX
t ⇒ ∃a ∈ A : a ≤A ω[[·]](s) ∧ a ≤A ω[[·]](t) ∧ ω(a) =

ω(ω[[·]](s))

then
ωX(M) = ω(ω[[·]](M))

is a notion of information content which yields unique infinite normal forms.

Proof. To show that ωX is a notion of finite information content we need to
show that if M −−−→

AX
M ′ then ωX(M) ≤ ωX(M ′). By condition 3, we can find

a ∈ A such that

a ≤A ω[[·]](M) ∧ a ≤A ω[[·]](M
′) ∧ ω(a) = ω(ω[[·]](M))

Because ω is monotone with respect to ≤A, we have

ωX(M) = ω(ω[[·]](M)) = ω(a) ≤ ω(ω[[·]](M
′)) = ωX(M ′)

To show that ωX yields unique infinite normal forms, we need to show that −−−→
AX

is skew confluent up to ≤ωX
. We do this by constructing a commutative diagram.

The numbers indicate the order in which the construction can take place and
below the diagram we indicate the reasons for the pieces of the diagram.

5
AX

����
��

��
�

AX

//

α

���
�
�

α

��
α

���
�
�

AX

// //
AX

�� ��?
?

?
?

α

���
�
�

AX

������
��

��
�

α

���
�
�

α

��

2

6

A
�����
�
�

≤A

8

A

�����
�
�
�
�
�

A
// //___

A

�����
�
�
�
�
�

A

�����
�
�
�
�
�

α

���
�
�
�
�
�

[[·]]

�� ��?
?

?
?

ωX

����
��
��
��
��
��
�

IHα

���
�
�

A
�����
�
�

≤A

3 A
�����
�
�

repeat

5,6,7,8
9 11

ω[[·]]

���
�
�

ωX

��/
/

/
/

/
/

/

1 4ω

���
�
�

≤A

≤A

7ω

���
�
�

≤A

ω

���
�
�

ω

���
�
�

10ω

���
�
�

A
// //___

ω

���
�
�

12

≤A

ω

���
�
�

13

≤

≤

≤

≤

≤

≤

≤

≡

1, 13 Definition of ωX .
2, 5 Because AX is infinitarily sound with respect to [[·]] and A
4,7,10,12 Because ω is monotonic w.r.t. ≤A.
3,6 Because −−→

A
and ≤A commute.

8 Because −−→
A

is skew confluent up to ≤ω.

9 Because AX is infinitarily complete with respect to [[·]] and A.
10 Because ω is monotonic w.r.t. −−→

A
.

11 Because −−→
[[·]]

and ω[[·]] compute [[·]].

7 Conclusions

The applicability of rewriting to model software systems demands the introduc-
tion of new properties which give an assurance of the correctness of the for-
malization. We have introduced two new notions: skew-confluence and ω-skew
confluence. Whereas confluence allows one to reason about normal forms, the
two new properties allow one to reason about infinite normal forms. Infinite ob-
jects arise in many different scenarios. For example, they appear in memory or
in a source program. Therefore, properties that guarantee their uniqueness are
important.

We have developed an abstract framework to be able to construct a new
system while deriving properties from the old one. In particular, we have defined
the notion of a finite basis, consisting of an ARS and a notion of information
content with suitable properties. We have defined how to extend the ARS to its
ideal completion. We have defined an extension as an ARS, whose objects have
the ideal completion of the basis as their semantics and we have defined when
such an extension is sound and complete. We have shown that a finite basis
and a sound and complete extension give rise to a notion of infinite information
content on the extension. Assuming that we have an extension which contains
the computation of the semantics as a proper subset, we also gave a notion of
finite information content.

We think that using all of this machinery is easier than giving a direct proof
of uniqueness of infinite normal forms in the extension. With a direct proof,
we have to deal with effects of non-confluence for most of the proof. When we
use the extension approach, we have a lot more statements to prove, but most
of them can be proven in a context where the rewrite system is confluent. For
example, in the case of the lambda calculus we can use the fact that the lambda
calculus is confluent while proving that the lambda calculus is a basis. Proving
that the cyclic lambda calculus is infinitarily sound for the β◦ rule is made easy
by the fact that the rewrite system consisting of external substitution, external
lift and β◦ is confluent. Proving soundness for the other rules is somewhat harder,
because this involves a property of non-confluent rules. However, it should be
noted that what we really have to do is to prove that those rules preserve the
unwinding. Hence, the result can be reused for other calculi. Finally, to prove
completeness it is sufficient to prove a confluent subset complete.

References

1. Klop, J.W.: Term rewriting systems. In Abramsky, S., Gabbay, D., Maibaum, T.,
eds.: Handbook of Logic in Computer Science. Volume II., Oxford University Press
(1992) 1–116

2. Terese: Term Rewriting Systems. Cambdrige University Press (2003)
3. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Infinitary lambda calculus.

In: Proc. Rewriting Techniques and Applications, Kaiserslautern. (1995)
4. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: Transfinite reductions in

orthogonal term rewriting systems. Information and Computation 119 (1995)
5. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Revised edn.

Volume 103 of Studies in Logic and the Foundations of Mathematics. Elsevier
(1984)

6. Welch, P.: Continuous Semantics and Inside-out Reductions. In: λ-Calculus and
Computer Science Theory, Italy (Springer-Verlag LNCS 37). (1975)

7. Lévy, J.J.: Réductions Correctes et Optimales dans le Lambda-Calcul. PhD thesis,
Universite Paris VII (1978)

8. Wadsworth, C.: Semantics And Pragmatics Of The Lambda-Calculus. PhD thesis,
University of Oxford (1971)

9. Ariola, Z.M., Blom, S.: Cyclic lambda calculi. In Abadi, M., Ito, T., eds.: Theo-
retical Aspects of Computer Software. Volume 1281 of Lecture Notes in Computer
Science., Springer Verlag (1997) 77–106

10. Ariola, Z.M., Blom, S.: Skew confluence and the lambda calculus with letrec.
Annals of Pure and Applied Logic 117 (2002) 95–168

11. Blom, S.: Lifting Infinite Normal Form Definitions from Term Rewriting to Term
Graph Rewriting. In: TERMGRAPH 2002 - International Workshop on Term
Graph Rewriting. (2002)

12. Barendregt, H., Brus, T., van Eekelen, M., Glauert, J., Kennaway, J., van Leer, M.,
Plasmeijer, M., Sleep, M.R.: Towards an intermediate language based on graph
rewriting. In: Proc. Conference on Parallel Architecture and Languages Europe
(PARLE ’87), Eindhoven, The Netherlands, Springer-Verlag LNCS 259. (1987)

13. Sleep, M.R., Plasmeijer, M.J., van Eekelen, M.C.D.J., eds.: Term Graph Rewriting:
Theory and Practice. John Wiley & Sons (1993)

14. Ariola, Z.M., Arvind: Properties of a first-order functional language with sharing.
Theoretical Computer Science 146 (1995) 69–108

15. Wadsworth, C.: The Relation between Computational and Denotational Properties
for Scott’s D∞-Models of the Lambda-Calculus. Theoretical Computer Science 5

(1976)
16. Ariola, Z.M., Klop, J.W.: Equational term graph rewriting. Fundamentae Infor-

maticae 26 (1996) 207–240 Extended version: CWI Report CS-R9552.
17. Ariola, Z.M., Klop, J.W.: Lambda calculus with explicit recursion. Information

and computation 139 (1997) 154–233
18. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: The call-by-

need lambda calculus. In: Proc. ACM Conference on Principles of Programming
Languages. (1995) 233–246

19. Ariola, Z.M., Felleisen, M.: The call-by-need lambda calculus. Journal of Functional
Programming 7 (1997)

20. Ariola, Z.M., Blom, S.: Lambda calculi plus letrec. Technical Report IR-434,
Department of Mathematics and Computer Science, Vrije Universiteit Amsterdam
(1997)

21. Hennessy, M. In: Algebraic Theory of Processes. MIT Press (1988)
22. Corradini, A.: Term rewriting in CTΣ . In Gaudel, M.C., Jouannaud, J.P., eds.:

Proc. Colloquium on Trees in Algebra and Programming (CAAP ’93), Springer-
Verlag LNCS 668. (1993) 468–484

23. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.J.: The adequacy of term
graph rewriting for simulating term rewriting. In Sleep, M.R., Plasmeijer, M.J.,
van Eekelen, M.C.D.J., eds.: Term Graph Rewriting: Theory and Practice, John
Wiley & Sons (1993) 157–168

24. Ariola, Z.M.: Relating graph and term rewriting via Böhm models. Applicable
Algebra in Engineering, Communication and Computing 7 (1996)

