
Permutation Groups in NCL�aszl�o Babai �E�otv�os University, Budapest,and University of Chicago Eugene M. Luks yUniversity of Oregon �Akos Seress *Mathematical Institute of theHungarian Academy of SciencesAbstractWe show that the basic problems of permutation groupmanipulation admit e�cient parallel solutions. Given apermutation group G by a list of generators, we �nd aset of NC-e�cient strong generators in NC. Using this,we show, that the following problems are in NC: mem-bership in G; determining the order of G; �nding thecenter of G; �nding a composition series of G along withpermutation representations of each composition factor.Moreover, given G, we are able to �nd the pointwise sta-bilizer of a set in NC. One consequence is that isomor-phism of graphs with bounded multiplicity of eigenvaluesis in NC.The analysis of the algorithms depends, in severalways, on consequences of the classi�cation of �nite sim-ple groups.1. IntroductionWe resolve the central problem in parallel managementof permutation groups. The key to this resolution isTheorem 1.1. Given a permutation group by a listof generators, one can �nd a set of NC-e�cient stronggenerators (SGS) in NC.Using this, NC-algorithms for basic permutation groupmanipulation, and well beyond, are derived.Theorem 1.2. Given a permutation group G by a listof generators, the following problems are in NC:(a) Test membership in G.(b) Find order of G.(c) Find the center of G.(d) Find a composition series of G.�Research partially supported by Hungarian Natl. Found. forScient. Res. Grant 1812yResearch supported by NSF Grant DCR-8609491.

We remark that an NC-solution of the membership prob-lem has been suggested to be impossible, that is, theproblem was conjectured to be LOGSPACE-complete forP [MC].We also report the resolution of a problem that is in-spired by graph isomorphism applications.Theorem 1.3. Given a permutation group G, one can�nd the pointwise stabilizer of a set in NC.Note that, in earlier work, pointwise set-stabilizers werenot known even for then \manageable" groups, i.e. thosefor which membership-testing was available (cf. [LM],[Lu86]). In particular, this was the source of a Las Vegas- deterministic gap [Ba86] in isomorphism testing that wenow close.Theorem 1.4. Isomorphism of graphs with boundedmultiplicity of eigenvalues is in NC.For comparison, we brie
y review earlier work. The re-sults of Theorems 1.1{1.3 were known for solvable groups[LM] and more generally for groups with bounded non-abelian composition factors [Lu86]. A Las Vegas algo-rithm for a somewhat less restrictive class of groups forthe pointwise set-stabilizer problem appears in [Ba86].In the same paper, a Las Vegas version of Theorem1.4 appears. Polynomial time sequential algorithms foreach problem have been known for some time: [Si70],[FHL] for Theorems 1.1 and 1.3 as well as for Theorem1.2 (a),(b); [Lu87] (cf. [BKL]) for Theorem 1.2(c),(d);[BGM] for Theorem 1.4. A more detailed account of thehistory of the problems can be found in [Lu86] which isa key reference for several parts of the new algorithm aswell.The principal novelty of this paper is our ability tohandle symmetric and alternating groups (the \giants")(Section 5). Two other chief ingredients are: (1) theaugmented structure forest and the descent through theassociated semisimple structure (involving the \noncom-mutative linear algebra") [Lu86]; (2) the composition se-ries algorithm [Lu87].Most striking is the depth of group-theoretic machin-ery that is required for parallelizing even the rudimen-tary task of membership testing. Three levels of group1



theory arise: elementary 19th century style combinato-rial arguments; structure theory of primitive permuta-tion groups; and applications of three deep results, cur-rently derivable only by using the full force of the clas-si�cation of �nite simple groups.Remarkably, the new methods have sequential impli-cations as well; these will be exploited in another paper[BLS].2. De�nitions and preliminariesWe assume familiarity with the complexity class NC([Pi],[Co]), informally, the class of problems solvable inpolylog (= logconst n) time using a polynomial numberof processors. We refer to any standard text, e.g. [Ha],for basic facts about groups. For permutation groupconcepts we refer to [Wi] and [Cam]. We mention twosources of information on the classi�cation of �nite sim-ple groups [Go], [Car], but no knowledge of these workswill be required. Cameron [Cam] gives a nice survey ofall the consequences of the simple groups classi�cationrelevant to our work.2.1. Group theoryWe write H � G if H is a subgroup of G and H / G ifH is a normal subgroup.Lemma 2.1. [Ha, p.96] Let H � G and assume S isa set of generators of G and R is a (complete) set of(right) coset representatives of G mod H. Then the setf����11 j�; �1 2 R; � 2 S; ����11 2 Hggenerates H.The generators described here are called Schreier gener-ators of H; their number is jSjjG : Hj.For H � G the normal closure NClG(H) of H in Gis the smallest normal subgroup of G containing H. AgroupG 6= 1 is called simple if it has no nontrivial normalsubgroups. G is semisimple if it is the direct product ofsimple groups. A composition series of G is any series1 = Gr / � � � / G1 / G0 = Gwhere the quotients Gi�1=Gi are simple; these quotientsare the composition factors. One calls G solvable if allcomposition factors of G are cyclic. The following isfolklore.Proposition 2.2. Let 1 = Gr / ::: / G1 / G0 = G be acomposition series of G and Ni = NClG(Gi): Then eachquotient Ni�1=Ni is semisimple; in fact, it is isomorphicto the direct product of copies of Gi�1=Gi. �

The socle of G is the subgroup generated by all minimalnormal subgroups and is denoted Soc(G). The socle issemisimple.The automorphism group of G is denoted Aut(G).Every element g 2 G induces an inner automorphismx 7! g�1xg. The group of inner automorphisms, Inn(G),is normal in Aut(G). The factor group Out(G) =Aut(G)=Inn(G) is the outer automorphism group. Thefollowing result is needed for some of our analyses; it isnow a consequence of the classi�cation of �nite simplegroups.Theorem 2.3. (Schreier's Hypothesis).The outer auto-morphism group of every �nite simple group is solvable.2.2. Permutation groupsThe group of all permutations of an n-element set A isdenoted Sym(A), or Sn if the speci�c set is inessential.Subgroups of Sn are the permutation groups of degree n.The even permutations of A form the alternating groupAlt(A) (or An). We shall refer to Sym(A) and Alt(A) asthe giants. These two families of groups require specialtreatment in most algorithms (see Section 5).The support, supp(�), of � 2 Sym(A) consists of thoseelements of A actually displaced by �. The degree of �is deg(�) = jsupp(�)j.We say that G acts on A if a homomorphism G !Sym(A) is given. This action is faithful if its kernel isthe identity. The orbit of a 2 A under G is the set ofimages fa
 j
 2 Gg. G is transitive on A if there is onlyone orbit. G is t-transitive if the action of G induced onthe set of ordered t-tuples of distinct elements of A istransitive (t � n). The maximum such t is the degree oftransitivity of G. The degree of transitivity of the giantsis � n� 2.Theorem 2.4. The degree of transitivity of any per-mutation group other than the giants is � 5:This is another consequence of the classi�cation of �nitesimple groups we require and is essentially due to Curtis,Kantor, and Seitz [CKS] (cf. [Cam]). A combinationof Theorem 2.4 with elementary tricks for permutationsfacilitated the breakthrough in handling the giants thathas led, in combination with [Lu86] and [Lu87], to themain results of this paper as well as to the start of thelargely independent project of [BLS].2.3. Orbits, orbitals, blocksIf G acts onA, the orbits of the induced (componentwise)G-action onA�A are called orbitals [Si76]. The stabilizerof x 2 A is the subgroup Gx = f
 2 Gjx
 = xg. If G istransitive, there is a bijection between the orbitals of Gand the orbits of Gx. For an orbital � of G and x 2 A,2



the (out)neighbors of x in the (di)graph (A;�) form theorbit �(x) = fyj(x; y) 2 �g of the stabilizer Gx:If G is transitive on A and Gx = 1 for some (thus,every) x 2 A, then G is regular. If G is transitive andD � A, D is called a block (for G) if for all 
 2 G, eitherD
 = D or D
 \ D = ;; and G is called primitive ifno nontrivial blocks exist. (Trivial blocks have 0, 1 orn elements.) If D is a block then the set of images ofD is called a block system and an action of G is inducedon the block system. The block system is minimal, ifthat action is primitive. We shall need the followingelementary results on the structure of primitive groups.They all follow from the O'Nan-Scott Lemma [Sc] (cf.[Cam], [Lu82]).Theorem 2.5. Let G � Sym(A) be primitive andsuppose Soc(G) is abelian. Then, n = pd for some primep, A can be identi�ed with the d-space over GF (p) so thatG � AGL(d; p) (the group of a�ne transformations ofA), and Soc(G) �= Zdp is the group of translations of A.Theorem 2.6. Let G � Sym(A) be primitive. ThenSoc(G) = T1 � :::� Tdwhere the Ti are isomorphic simple groups. If Soc(G) isnonabelian then G contains a normal subgroup N suchthat(a) Soc(G) � N � Aut(T1)� :::� Aut(Td);(b) G=N is a subgroup of Sd;(c) n � 5d.Theorem 2.7. Let G � Sym(A) be primitive. If Ghas more than one minimal normal subgroup then G hasprecisely two minimal normal subgroups, each of orderjAj.2.4. Groups of Cameron typeImportant examples of primitive groups whose socles areproducts of alternating groups are obtained in the follow-ing way.First we de�ne a class of imprimitive groups. Let Bbe a set of k elements, and suppose 1 � s � k=2. LetC = rB = B1 _[ : : : _[Br denote the disjoint union of rcopies of B. An s-transversal of C is a subset X � Csuch that jX \ Bij = s for i = 1; :::; r: Let A denote theset of s-transversals; and n = jAj = �ks�r. The wreathproduct W (B; r) = Sym(B) o Sr � Sym(C) consists ofall permutations of C that respect the partition fBig.Clearly,Soc(W (B; r)) = Alt(B1) � :::�Alt(Br ):Let now W (B; r) � G � Soc(W (B; r)) and assume Gacts transitively on the set of blocks fBig. Under these

conditions, the action of G on A is primitive (and al-ternating type, since Soc(G) = Soc(W (B; r)).) We saythat the primitive groups so obtained are of Camerontype.Theorem 2.8. [Cam]There exists a constant c such thatevery primitive group of degree n and order > nc logn isof Cameron type.This is the third consequence of the simple groups classi-�cation (proved via a result of Kantor [Ka1]) required forthe analysis of our algorithms. For large n, c approaches1. We remark that the value of c does not play a role inthe algorithms; its existence enters only in the analysis.2.5. Cameron schemesIn Section 4 we shall analyze a combinatorial structureassociated with the action of W (B; r) on A. Let A, B,C be as above. For an s-transversal X 2 A, let Xi =X\Bi. ForX;Y 2 A, let di = jXi\Yij and let f1 � f2 �::: � fr be the sorted sequence fdig. We call (f1; :::; fr)the intersection pattern ofX and Y . Let us partitionA�A according to intersection patterns: A�A = R0 [ :::[RN . We call the system C(n; k; s; r) = (A;R0; :::; RN)the Cameron scheme with parameters (n; k; s; r): Thisis a particular association scheme [Bo], [De], [MS]; itincludes the Hamming schemes (s = 1) and the Johnsonschemes (r = 1) as particular cases. The scheme canbe thought of as a coloring of the edges of the completegraph on n vertices (including self-loops); we refer to theRi as color classes.It is clear that each group of Cameron type acts ona Cameron scheme. In fact, the color classes are pre-cisely the orbitals of the action ofW (B; r) on A. It may,however, happen, that the color-classes split under theaction of a Cameron-type group G � W (B; r). One ofour key subroutines, NATURAL ACTION, will recoverthe imprimitive action of G on C = rB using the orbitalstructure of the primitive G-action on A, thereby reduc-ing the Cameron-type groups to imprimitive groups witha unique maximal block system of r � logn= log 5 blocks,in which giants act on each block.2.6. Strong generatorsIn algorithms, permutation groups will always be inputand output via a set of generators.A standard tool for permutation group computationis a strong generating set (SGS) [Si70]. As generalizedin [Bab79] (see also [FHL]), an SGS for G presumes anytower of subgroupsG = G0 � G1 � : : : � Gr = 1:An SGS is then a union of sets Ci of coset representativesfor Gi�1 mod Gi. Hence, any � 2 G has a unique fac-torization � = �1�2 � � ��r with �i 2 Ci. We call an SGS3



NC-e�cient if it comes along with an NC-procedure tofactor any � 2 G. It is useful to observe that an SGS fora factor group G=N; pulled back to G, appended to anSGS for N; gives an SGS for G:3. Organization of the algorithmThe overall algorithm follows the lines of [Lu86, Sections4 and 5].A structure forest for a permutation group G �Sym(A) is a forest on which G acts as automorphismssuch that: the leaves form the permutation domain A;the roots correspond to the orbits; and denoting by G(v)the permutation group induced by Gv on the children ofv, each G(v) is primitive. As noted in [LM], NC containsthe problem of computing a structure forest.We shall need further re�nements of the structure ofthe groups G(v). In an extended structure forest we allowsmaller trees T (v) be appended from each node v of thestructure forest. We identify v with the root of T (v) andthink of T (v) being placed entirely between the levelsof v and its original children. The leaves of T (v) mustform a faithful permutation domain for G(v), and theentire group G should act on the extended forest. T (v)is required to be a structure forest in the above sense forthe new action of G(v).The insertion of these \small" trees allows us to utilizethe structure of G(v) through a di�erent permutationrepresentation. We use G1(w) to denote the permutationgroup induced byGw on the set of the immediate childrenof the node w of the extended structure forest. (G1(v) =G(v) if no T (v) has been appended at v of the originalforest.)Delving further into the structure of the primitivegroups G1(w), we de�ne the augmented structure for-est for G to be an extended structure forest F togetherwith an assignment of to each node w 2 F of a tower ofnormal subgroups of G1(w)(1) 1 = G1m(w)(w) / � � � / G11(w) / G10(w) = G1(w)with semisimple quotients G1i�1(w)=G1i(w), and suchthat the induced action of G on fG1(w)gw2F induces, inturn, isomorphisms between subgroups at correspondingplaces in the towers.The \small" trees T (v) will arise from new permu-tation representations of some of the primitive groupsG(v), called \large groups", and found via our routineNATURAL ACTION (Section 4).The main phases of the SGS algorithm are these. Theinput is a set of generators for G � Sym(A).Main procedure1. Construct structure forest.2. For a representative v of each G-orbit of nodes ofthe forest, use NATURAL ACTION to decide if G(v)

is a \large group" and, if so, construct new action andcorresponding structure tree T (v).3. Via the G-action, transfer each T (v) to all nodesin the orbit vG, thus obtaining an extended structureforest.4. For a representative w of each G-orbit of nodes of theextended forest F , construct a semisimple tower (1) ofnormal subgroups of G1(w).5. Via the G-action, transfer each semisimple tower toall nodes in the orbit wG, thus obtaining an augmentedstructure forest.6. As in [Lu86], use the augmented structure forest toconstruct e�cient strong generators for G. end.Phase 6 uses Luks' \generalized (commutative andnoncommutative) linear algebra" and follows the linesof [Lu86]. We shall not discuss the details of that pro-cedure here but we give a detailed account of the extratools required for the implementation of the proceduresof [Lu86] in the absence of structural constraints on G.In order to complete Phases 4 and 6, we need to be ableto perform management of the primitive groups G1(w).This comprises �nding e�cient strong generators, nor-mal closure, kernel of action, and a composition series.For giants, all this will be accomplished in Section 5; for\small groups" in Section 6 (building on [Lu87]). The re-maining \large groups" will not occur as G1(w), thanksto the routine NATURAL ACTION. Thus, the proof ofTheorem 1.1 will be complete by the end of Section 6.Parts (a) and (b) of Theorem 1.2 are follow immediately.A solution to part (d) is explicitly given in the course ofthe main procedure. We comment on the solution of part(c) as well as on further consequences in Section 7.4. Reducing large to giantIn this section we classify primitive groups as \large" and\small". Large groups are seen to have a speci�c struc-ture and a \natural" (often imprimitive) action com-prised of giants acting on each block with a small grouppermuting the blocks. Thereby algorithmic problems arereduced to problems for giants and and small groups.This objective is achieved by the subroutine NATU-RAL ACTION. The procedure involves a global variablen, the degree of the permutation group which is the in-put of the full algorithm. We shall always assume thatn is su�ciently large.Procedure NATURAL ACTIONINPUT: a primitive group G � Sym(A), where m :=jAj � n.Step 1. if m � 4 logn, then (output \small group";halt).Step 2. if G is 6-transitive, then (output D := B1 :=A, r := 1; output \giant"; halt).4



Step 3. Consider the orbitals (G-orbits on A�A). Let� be the second smallest and � the largest orbital. (�the smallest orbital is the diagonal � )for each (x; y) 2 � compute (in parallel) the setsB(x; y) = �(y) ��(x);C(x; y) = A � [z2B(x;y)�(z);D := fC(x; y)j(x; y) 2 �g:Step 4. Consider the (transitive) G-action on D. Selecta system fB1; :::; Brg of minimal (nonsingleton) blocksof imprimitivity (� SiBi = D �).if (k := jBij > 4 logn and r � logn= log 5 and thestabilizer of B1 is 6-transitive on B1)then output (\large group, faithfully acting on D"and a structure tree for the G-action on D that repre-sents the blocks Bi by nodes adjacent to the leaves)else output \small group"; end.We say G fails the large groups test if \small group" isoutput. Otherwise G is said to pass the large groups test.The following result justi�es the term \small groups" andprovides additional information about large groups.Theorem 4.1.(1) If NATURAL ACTION outputs \giant" then G is agiant.(2) If NATURAL ACTION outputs \large group" thenG acts faithfully on D and the stabilizer of each blockBi restricted to Bi contains Alt(Bi).(3) If NATURAL ACTION outputs \small group" then,for su�ciently large n, jGj < exp(7 log2 n log logn):Statement (1) is obviously correct. For (2) we needthe following lemma, whose proof is implicit in [Lu82,Lemma 3.6].Lemma 4.2. For p 6= r primes, the order of the Sylowr-subgroups of the a�ne linear group AGL(d; p) is lessthan p2d. �Corollary 4.3. For k � 4d logp, the order of Ak doesnot divide the order of AGL(d; p):Proof. Let r = 3 if p = 2 and let r = 2 otherwise. Theresult follows from Lemma 4.2 (except for the two easycases p = 2, d � 2). �Proof of Theorem 4.1, part (2). We say that the groupH is involved in the group K if H �= L=M for someM / L � K. If a simple group H is involved in K thenH is involved in a composition factor of K.We may assume G is not a giant. Let K be the kernelof the G-action on D. The stabilizer of B1 restrictedto B1 is 6-transitive, whence it contains Ak. As the G-action on the set of blocks is transitive, the same holdsfor each Bi. Also, it follows that Ak is involved in G=K.

If Soc(G) were abelian, then, by Theorem 2.5,m = pdfor some prime p and G � AGL(d; p). But, d log p =logm � logn � k=4 and therefore, by Corollary 4.3,the order of Ak could not divide jGj. Hence Soc(G) isnonabelian and the results stated in Theorem 2.6 apply.We use the notation of Theorem 2.6 and refer to N /Gestablished there.First we show that Ak is not involved in G=Soc(G).Indeed, otherwise Ak must be involved either in G=Nor in N=Soc(G). The �rst case is impossible becauseG=N � Sd (Theorem 2.6(b)) and d � logm= log 5 < k=8(Theorem 2.6(c)). In the second case, Ak is involvedin N=Soc(G) � Out(T )d, a solvable group by Schreier'sHypothesis (Theorem 2.3), again a contradiction.It follows now that Ak is involved in Soc(G) andK 6� Soc(G). Now Soc(G) must be the unique mini-mal normal subgroup for otherwise, by Theorem 2.7, wehave the contradiction:n2 � m2 = jSoc(G)j � jAkj = k!=2 > 2k � n4:It follows that K contains no minimal normal subgroup,whence K = 1. �Proof of Theorem 4.1, part (3). Assume the order of jGjexceeds the stated bound. By Theorem 2.8 it follows thatG is of Cameron type andA can be identi�ed with the setof points of a Cameron scheme C(m; k; s; r). Of course,the parameters and the identi�cation are not known apriori. Our task is to prove that NATURAL ACTIONwill have recovered this structure by Step 3.In addition to the material of Section 2.5, we introducesome more notation concerning this Cameron scheme.We use the letters r, k, Bi, C = rB = B1 [ ::: [ Br tomean what they do in Section 2.5. We shall prove thatthis concurs with the output of NATURAL ACTION(with D corresponding to C, the only object where iden-tical notation could lead to confusion). We call the ac-tion of G on C \natural".Each a 2 A corresponds to an s-transversal T (a) �rB.Let �i be the color class corresponding to the inter-section pattern (s� i; s; :::; s) and � to (0; 0; :::; 0).Claim 1. �i (0 � i � s) and � are orbitals of G, i.e.they do not split.Proof. For � this follows from the fact that G � Ark. For�i we need in addition that the stabilizer of any a 2 Aacts transitively on the set of blocks fBig. �Claim 2. rs � logm:Proof. m = �ks�r � (k=s)rs � 2rs: �Claim 3. If k < 2rs2 then jGj satis�es the bound statedin Part (3) of Theorem 4.1.5



Proof. jGj � (k!)rr! < (2rs2)2r2s2r! <(2 log2 n)2 log2 n(logn)! < exp(7 log2 n log logn): �Claim 4. If k � 2r then � = �1:Proof. Fix x 2 A and consider an orbital �: We have toprove that j�1(x)j < j�(x)j for any � other than �1 andthe diagonal �0. Observe that for i > 1;j�i(x)j = r� ss � i��k � si � > rs(k � s) = j�1(x)j:Assume now that � is contained in the color class withintersection pattern (i1; i2; :::) where i2 < s; let (x; y) 2�. Just counting the images of y under the stabilizer ofx in Ark we obtainj�(x)j � � si1��k � ss � i1�� si2��k � ss� i2�� s2(k � s)2 > rs(k � s);since k � 2r. �Claim 5. If k � 2rs2 then � = �:Proof. We have to prove that � is the largest color classin the Cameron scheme. (Note that G plays no rolehere.)First observe that for 1 � i � s, the inequality k �2rs2 implies r�k � ss� i��si� < �k � ss �:Let now the color class � have intersection pat-tern (0r0 ; :::; srs): (The exponents denote multiplicities.)Thenj�(x)j = � rr0; r1; :::; rs� sYi=0�k � ss � i�ri�si�ri <� rr0; r1; :::; rs��k � ss �r 1rr�r0 < �k � ss �r = j�(x)j: �Claim 6. If k � 2rs2 then the G-action on D is similarto the natural G-action on C:Proof. For b 2 rB = C; let U (b) = fu 2 Ajb 2 T (u)g:We claim that D = fU (b)jb 2 rBg: By Claims 2 and3, � = �1 and � = �. Thus, for any (x; y) 2 �, theset T (x) � T (y) is a singleton fb(x; y)g. Now, a simpleinspection of the Cameron scheme, using the fact thatk > 3s, shows that C(x; y) = U (b(x; y)):The result follows since G acts transitively on C. �5. The giants5.1. The legal moves

Recall that the \giants" are the symmetric and alter-nating groups in their natural action. By testing 6-transitivity, we can decide whether or not G is a giant.We describe a procedure for constructing NC-e�cientstrong generators of the giants from the given generators.Henceforth, we use the term \construction" to mean asequence of the following legal operations: multiplication,inversion, and taking powers of permutations. These op-erations can be implemented in NC. The exponent in thelast case can be any integer with a polynomial numberof digits [MC].A permutation circuit is an algebraic circuit with per-mutations as inputs and outputs and legal operations asgates. A construction will be in NC if (from the gener-ators) an NC-procedure builds a polylog depth, polyno-mial size permutation circuit which in turn (again fromthe generators) computes the desired output.The reason for the constraint on the set of legal oper-ations is that the procedure will be applied to the casewhen the actual permutation group G is imprimitive andacts on a set B of blocks as a giant. In such a case, al-though we know a priori that some � 2 G acts on B asa given 3-cycle, no such permutation will be guaranteedto belong to G unless it has been constructed, by way oflegal operations, from the generators of G.We note that a byproduct of the procedure yields asimple, elementary proof of the old result, known toJordan (1895) [Jo], (and vastly surpassed by Theorem2.4) that the only c log2 n= log logn -fold transitive per-mutation groups are the giants [BS1]. It also yields anexp(pn logn(1 + o(1))) upper bound on the diameter ofany Cayley graph of the giants [BS2].The crux of the matter is the following result.Theorem 5.1. Given generators of a giant, one canconstruct, in NC, a cycle of length 3 (using legal opera-tions only).Once a cycle of length 3 has been found, an NC-e�cientset of strong generators is easily constructed (Section5.6). Sections 5.2{5.5 are devoted to the proof of Theo-rem 5.1.5.2. Pruning the Schreier generatorsWe begin the procedure with a preprocessing phase:�nding coset representatives for the �rst t < logc n mem-bers of the stabilizer chain.Given G � Sym(A) and x 2 A, �nding (right) cosetrepresentatives for G mod Gx amounts to a transitiveclosure problem. Once the coset representatives areknown, we construct Schreier generators for Gx (Lemma2.1). This step increases the number of generators by afactor � n. In order to avoid a superpolynomial blow-up, we prune the generators of our new giant Gx, keep-ing just enough to make the subgroup they generate 6-6



transitive on A � fxg. (Transitive closure on the set of6-tuples of distinct elements of A � fxg.) The possibleloss of odd permutations causes no harm (and is easilycorrected by picking a single odd permutation from theSchreier generators). This way the number of generatorswill never exceed n6 and we can repeat the process apolylog number of times.Remark. We make no attempt to minimize the numberof processors. For n > 25, testing 4-transitivity wouldsu�ce. A simple trick [BLS] reduces the task to testing2-transitivity and even more can be saved using addi-tional tricks from [BLS].Given the coset representatives just constructed, oneeasily constructs a member of G having a prescribed re-striction on a subset of size t:Lemma 5.2. Given a giant G � Sym(A) and an in-jection f : D ! A where D � A and jDj � t � logc n;one can construct in NC an element � 2 G such that� jD = f:Proof. Let A = f1; :::; ng. Let Gi be the pointwise sta-bilizer of f1; :::; ig. Let f�(i; j) : i � j � ng be thecoset representatives of Gi�1 mod Gi just constructed,where �(i; j) �xes 1; :::; i� 1 and moves i to j (1 � i �t). For any distinct a1; :::; ad 2 A, recursively de�ne�(a1; :::; ad) = ��(d; a�d)�1, where � = �(a1; :::; ad�1):Then, for i � d we have a�(a1 ;:::;ad)i = i. Let now D =fl1; :::; ldg. Then � = �(l1; :::; ld)�(f(l1); :::; f(ld))�1works. �5.2. A commutator lemmaFor � 2 Sym(A), we call a subset B of supp(�) indepen-dent with respect to � if B \ B� = ;: The commutatorof �; � 2 Sym(A) is [�; � ] = ����1��1: The following iseasily veri�ed.Lemma 5.3. Let �; � 2 Sym(A). Assume that B is anindependent set w.r. to � and � jB� is the identity. Then[�; � ]jB = ��1jB: �Corollary 5.4. Let G and t be as in Lemma 5.2. As-sume � 2 G of degree s is given and d � minfs=3; t=2g:Then, for any (d1; :::; dr) such that d1+ � � �+ dr = d; wecan �nd, in NC, an element � 2 G such that � includescycles of lengths d1; :::; dr; and deg(�) � 2s:Proof. Let � 2 G have degree s: As s � 3d; obviously, a� -independent set B of size d can be found. Since t �2d; we can, by Lemma 5.2, construct an element � 2 Gthat �xes B� pointwise and acts on B as a permutationwith cycle structure (d1; :::; dr): Now, the commutator� = [�� ] will have the prescribed cycle structure on Bby Lemma 5.3. Moreover, deg(�) = deg(���1��1) = s;therefore deg(�) � 2s: �

5.3. Large powersLet pi denote the ith prime number, p(r) = p1:::pr andf(n) = minfrjp(r) > n4g: Let g(n) = Pf(n)i=1 pi: Thefollowing estimates follow from the Prime Number The-orem.Proposition 5.5. f(n) = O( lognlog logn ) and g(n) =O( log2 nlog logn ): �Lemma 5.6. Let � 2 Sn; k = deg(�). Suppose �contains cycles of each prime length pi, i � r = f(n):Let m(i) be the product of the lengths of all cycles of� divided by the highest possible power of pi. Then2 � deg(�m(i)) < k=4 for some i � r.Proof. Let K = supp(�): For each x 2 K; consider theset P (x) of those primes pi dividing the length of the�-cycle through x: Clearly, the product of these primesis � k:Let n(i) denote the number of points x such that pi 2P (x): Let us estimate the weighted averageW of the n(i)with weights log pi. Recall that the sum of the weightsis P logpi > log(n4) = 4 logn; thereforeW < Xx2K Xpi2P (x) logpi=(4 logn)� (k logk)=(4 logn) � k=4:We infer that n(i) < k=4 for some i � r: Clearly, �m(i)is not the identity and it �xes all but n(i) points. �5.5. Reducing the degreeLemma 5.7. Given an element � 2 G of degree s �3g(n); one can construct, in NC, a nonidentity elementof degree � s=2:Proof. For c = 2 and n � n0 we have t � 2g(n): Letus apply Corollary 5.4 with r = f(n); di = pi and thusd = g(n): We obtain � 2 G of degree � 2s such that �includes cycles of each prime length pi, i � r: By Lemma5.6, some NC-computable power �m 6= 1 has degree <2s=4 = s=2: �Proof of Theorem 5.1. Repeating the procedure ofLemma 5.7, we shall in O(logn) rounds arrive at some� 2 G of degree 2 � deg(�) < 3g(n): Since t � 3g(n),by Lemma 5.2 we can construct � 2 G such thatjsupp(�) \ supp(� )j = 1: Thus the commutator [�; � ] isa 3-cycle. �5.6. Strong generators for a giantLet A = f1; : : : ; ng. Let Ai be the set of transpositionsf(i j) : i < j � ng (1 � i � n� 1). These sets togetherform the standard set of strong generators of Sym(A).Let Bi = f� (n� 1 n) : � 2 Aig: The sets Bi combine tothe standard set of strong generators of Alt(A).7



Theorem 5.8(a) If G is one of the giants acting on A, the corre-sponding standard set of strong generators can beconstructed in NC.(b) Each standard set of strong generators is NC-e�cient for the respective giant.Proof. I. First we prove part (b) for G = Sym(A). Let� 2 G. We give an NC-procedure to factor � via stan-dard strong generators (cf. Section 2.6). For i 2 A, letl(i) be the length of the �-cycle through i. Setj(i) = maxfj j 0 � j � l(i) � 1; i�j � ig;and k(i) = i�j(i) .Claim. � = (1 k(1))(2 k(2)) � � � (n� 1 k(n � 1)).Clearly, it su�ces to prove the Claim for the case when �is a single cycle, say, of length l. Let i0 = minfsupp(�)g.Then k(i) = i for i < i0 and j(i0) = l � 1. Now,(i0 j(i0))� is an l � 1-cycle and the proof follows byinduction.Since l(i), j(i), and k(i) are clearly NC-computable, theproof of Part (b) for G = Sym(A) is complete. Part(b) for G = Alt(A) follows immediately. As a matterof fact, let � 2 Alt(A), and let � = �1�2 � � � �s be therepresentation of � given in the Claim, where the �i aretranspositions, i.e. the terms with i = k(i) have beenomitted. Now s is even, and, setting � = (n� 1 n),� = (�1�)(��2)(�3�)(��4) � � � (�s�1�)(��s):Each parenthesised term is a standard strong generatorof Alt(A): �� = � 0� where � 0 = ����1.II. Now we prove part (a). By Theorem 5.1, we havealready constructed a 3-cycle. All 3-cycles are conjugatesof a single one. The conjugating elements can be con-structed by Lemma 5.2 with t = 3. Products of pairs of3-cycles provide the additional standard strong genera-tors of Alt(A): (a c b)(c b d) = (a b)(c d). This completesthe proof for Alt(A). Assume now that G = Sym(A) and� 2 G is an odd generator. Using the strong generatorsjust constructed for Alt(A), we can construct � = (1 2)�and thus the transposition (12) = ���1. The conju-gates of (1 2) provide the standard strong generators forSym(A). �5.7. Giant managementLet G � Sym(A) be a giant, jAj � 5. For a set S � G,the normal closure is Alt(A) if S � Alt(A), and Sym(A)otherwise. The kernel of any G-action is either 1 orAlt(A) or Sym(A) and these cases are easily distin-guished. Likewise the unique composition series of Gis easily constructed.6. Managing small groups

Again, let n be a global parameter (the degree of theinput group for the main procedure). The resource limi-tations in the de�nition of NC below refer to this globalparameter.Theorem 6.1 Let G � Sym(A), where jAj = m � nc.Assume jGj < exp(logc n). Then the following problemsare in NC:(a) Finding e�cient strong generators of G.(b) Finding the normal closure of a subgroup of G.(c) Finding the kernel of any G-action.(d) Finding a composition series for G.(e) Finding the pointwise set-stabilizer of B � A.The proof of (a) is based on a combination of the Schreiergenerator method and Sims' sifting. Sifting becomes fea-sible because the length of any subgroup chain in G is� log jGj < logc n. We need the following routine.Procedure SIFTSTEPINPUT: S � Sym(A); S 6= ;.OPTIONAL INPUT: x 2 A.Step 1. if hSi = 1 then halt.Step 2. if no x 2 A has been input then let x be anyelement of the support of a member of S.Step 3. for each y 2 xS , select � = � (y) 2 S such thatx� = y; T := f� (y)jy 2 xSg.Step 4. outputx, T and the set S0 = f���1j� 2 S; � =� (x�)g; end.We informally describe Procedure SCHREIER SIFT.This procedure constructs strong generators with respectto the stabilizer chainG = G0 � G1 � : : : � Gr = 1;where Gi �xes fa1; : : : ; aig � A. The order of the ele-ments of A as well as the value r � log jGj are determinedby the procedure such that Gi+1 always be a proper sub-group of Gi. At the end of the ith Phase, we shall havea set Si of generators for Gi. If Gi = 1, set r = i andhalt. Else, we begin Phase (i+1) by letting ai+1 be anyelement in the support of any member of Si unless ai+1has already been de�ned. We solve (in NC) the transi-tive closure problem that yields coset representatives ofGi mod Gi+1. Next we construct the corresponding setRi+1 of Schreier generators for Gi+1. We apply SIFT-STEP to S = Ri+1 with optional input ai+2, then againto S0 and ai+3, etc. until we halt because S(j) = f1g.Set Si+1 = ST (j) where T (j) is the set T output by thejth round of SIFTSTEP. End Phase (i+1).Observe that for each i, jSij < nr and r � logjGj. Conse-quently, for small groups, this procedure remains withinNC, proving part (a) of the Theorem. Part (b) is solvedby a simple modi�cation along the lines of [FHL], again8



noting that every chain of subgroups has now polyloglength. The kernel of action easily reduces to normalclosure (cf. [LM]). Given these ingredients, Luks' al-gorithm for �nding a composition series in a permuta-tion group G [Lu87] can be implemented in NC, pro-vided jGj < exp(logc n). Finally, part (e) is inherent inSCHREIER SIFT if preference for the next input pointis always given to un�xed elements of B. �7. CorollariesIn addition to the results listed in Theorem 1.2, we men-tion several more.Theorem 7.1 Given G � Sym(A), NC includes(1) Finding the normal closure of a subset of G.(2) Finding the kernel of an action of G.(3) Finding the derived series of G.(4) Finding the centralizer of H � Sym(A) in G assum-ing that G normalizes H.(5) Finding G \H assuming that G normalizes H.(6) Factoring � 2 GH as 
�, with 
 2 G and � 2 H,assuming that G normalizes H.The proofs of (1) and (2) follow the lines of [Lu86]. For(3), we note that the commutator subgroup is obtainableas the normal closure of the commutators of the genera-tors; use this repeatedly, noting the following lemma.Lemma 7.2 The length of the derived series of any G �Sn is O(log2 n).Proof. Let m be the length of the largest orbit of G.We actually prove, by induction on the depth k of thestructure forest of G, that the length d(G) of the de-rived series of G is O(log2m). By [Ba86, Lemma 11.2],any chain of normal subgroups of a primitive group haslength O(log2 n). This settles the case k = 1. The induc-tion step uses the observation d(G) � d(N ) + d(G=N ) ifN /G. �We say that K / G is an NC-constructible kernel if NCcontains the problem of constructing a representationG! Sym(B) with kernel K; in particular, by Theorem7.1(2), one can �nd such K. The centralizer in (4) isan NC-constructible kernel [Lu87]. Note that part (c) ofTheorem 1.2 is a particular case of (4).We give an indication of the solution to (5). Our ba-sic procedures (see [Lu86]) construct a series of normalsubgroups of G1 = Gr / � � � / G1 / G0 = G;with r = O(logc n) and semisimple Gi=Gi+1. Avail-able, as well, are faithful representations of the quotientsGi=Gi+1. This gives rise to the normal seriesH = GrH / � � � / G1H /G0H = GH:

Using the epimorphism Gi=Gi+1 ! GiH=Gi+1H andexploiting the semisimplicity of Gi=Gi+1, one constructsa faithful action for each GiH=Gi+1H. Then G\Gi+1His the kernel of this action restricted to G \ GiH; thus,G \H is constructed in r rounds from G \GH = G.The solution to (6) involves keeping track of factoriza-tions in the construction of an SGS for GH from genera-tors forG (factored as 
 = 
1) and generators forH (fac-tored as � = 1�). Acceptable \G-factors" for products,inverses, powers are always obtainable as correspondingproducts, inverses, powers of G-factors. Similarly, thefactorization of � 2 GH parallels its membership test.�Remarks. 1. The solutions to (5) and (6) resolve the�rst three open problems proposed in [Ba86].2. A solution to (4) is also obtainable via (5) and anNC-construction of the centralizer of H in Sym(A).For application in Section 8, we show the constructibil-ity of some other classes of characteristic subgroups. LetT be a class of isomorphism types of simple groups. Forany groupG, we de�ne, ResT (G) to be the (unique) min-imal R /G such that G=R is a product of simple groupsfrom the class T . In particular, we are concerned withthe subgroups ResA(G), ResN (G), Resp(G), Res(G)corresponding to T being the class of abelian simplegroups, nonabelian simple groups, simple p-groups, allsimple groups, respectively. We call Res(G) the residualof G.Theorem 7.3 Given G � Sym(A), ResA(G) is an NC-constructible kernel.Proof. For each prime p � jAj, Resp(G) is the (nor-mal) subgroup generated by the derived group of G andthe pth powers of the generators of G. Linear algebrain G=Resp(G) is used to establish Resp(G) as an NC-constructible kernel. The action of G on the disjointunion of these actions over all p has kernel ResA(G). �In anticipation of a later strengthening (Theorem 8.3),for now we list the following as a lemma.Lemma 7.4 Let G � Sym(A) and suppose jGj <exp(logc n). Then ResN (G), and therefore Res(G) =ResA(G) \ResN (G), is an NC-constructible kernel.Proof. We determineM(G) = fM /G j G=M is nonabelian simpleg:Faithful representations of each G=M are constructible[Lu87] and then ResN (G) is the kernel of the ac-tion on the disjoint union. Since G=ResN (G) �=QM2M(G)G=M , one knows that jM(G)j � jAj.Now let K be any maximal normal subgroup of G. Werecursively determineM(K) (the depth of the recursionG > N > � � � will be polylog). Let M 2 M(G). We9



may assume that M 6= K. Then N = M \K 2 M(K)and M=N is the centralizer of K=N in G=N . Thus, if� 2 G�K centralizes K mod N , M = NCLG(h�;N i).So, knowing N , we only need a suitable � to locateM . Now, in general, centralizers in quotient groupsseem di�cult to obtain (even sequentially). However,in this case, we can reduce the problem to Theorem7.1(4). Using representations of G=K and K=N we �ndN < X < K < Y < G such that jY : Kj and jK : Xjare polynomial size, and determine coset representativesfor Y modK and K modX; for example, take for X;Y ,appropriate terms in point-stabilizer chains in those rep-resentations (Theorem 6.1(e)). This enables us to repre-sent Y on the cosets of X in Y and to �nd � centralizingthe action of K. Of course, we do this for all N 2M(K)in parallel, rejecting those that do not yield a suitableM. �8. Pointwise set-stabilizersWe outline the ingredients of Theorem 1.3. For brevityherein, we must rely heavily on the discussion in [Lu86,Section 6]. The following may be uncomfortably vaguewithout that reference in hand.Let HO denote the group induced by H � G in theorbit O. We may assume that each GO is primitive andthat each orbit (under current investigation) contains ex-actly one target point to be �xed; G is always interpretedas the group induced on these orbits. The objective isto locate a collection Y of orbits and a normal subgroupN /G such thatI. For O 2 Y , NO = Soc(GO).II. The actions of N on the orbits in Y are reasonably\independent".III. Fixing targets in Y makes \signi�cant" progress.Since NO, for O 2 Y , is necessarily transitive, one canuse elements in NO to modify (in parallel) each generatorof G so that it �xes the target in O. Furthermore, byII, this can be done in parallel for many O. The methodthen depends upon a formalization of \signi�cant" in III.The inadequacy of the method in [Lu86] is that Nwas captured in a series of length O(logc n), where c isa function of the class of composition factors of G. Byo�ering an alternate approach to III, we are able to usea shorter series, reducing c to O(1).It is convenient to deal �rst with the case when the GOare small groups, which, for the moment, we'll interpretas log jGOj � logc n with c arbitrary but �xed. For H �G, let R(H) consist of those elements that project intoRes(HO) (Section 6) for each O.Lemma 8.1 R(H) is an NC-constructible kernel.Proof. Construct, by Lemma 7.4, an action of each HOwith kernel Res(HO). Then H acts naturally on thedisjoint union of the domains with kernel R(H). �

As noted in [Lu86], the ith term in tower1 / � � � /R(R(R(G))) /R(R(G)) /R(G) / Gprojects on the i residual of each GO, hence the towerlength, t, is at most logc n. One also knows that thesocle of each (primitive) GO occurs as a projection ofa unique term in the tower. We choose N to be theterm in the tower that projects onto a maximal numberof socles; that is, going from N to R(N ) the action ona maximal collection, X, of orbits �rst becomes trivial.Then X includes at least 1=t of the orbits. It su�cesthen to describe a procedure that will decrease GO forall O 2 X, so we'll assume that X contains all orbits.The subcollection Y � X is chosen as in [Lu86], in par-ticular, at each O 2 Y there is a subgroup 1 6= S(O)/GOsuch that N = QO2Y S(O) (in two of three `socle-types',S(O) = NO). Next, N is employed to cut G down to asubgroup H that �xes the target points in Y . As a conse-quence, (N \H)O < NO for all O 2 X. (For the groupswith two minimal normal subgroups, this procedures re-quires logn rounds of N; Y selection and application).The following lemma enables us to measure progress andjustify the signi�cance of Y .Lemma 8.2 log jHj � log jGj(1� 1logc n )Idea of proof. One shows that if � 2 G projects intoNO for O 2 Y then it does so for all O 2 X. This isused to show log jGj � y logc n, where y = jY j. SincejGjjHj � jNjjN\Hj � 2y, the result follows. �Thus, by the bound on G, O(logc+1 n) rounds su�ceto �x targets in X.We turn now to the general group case. Again, we mayassume the orbit constituents are primitive. It su�cesto consider only the orbits where giants or large groupsoccur (as declared by procedure NATURAL ACTION),for having �xed the targets there, we dispatch the restwith the above small-groups technique.We suppose that we have deciphered the natural ac-tions. Now, it is possible that groups across various or-bits are \linked" in a diagonal action (see [Lu86]). Insuch case, one can identify their natural actions (thus,identifying their C's, Bi's). Using the deciphered natu-ral action, we can identify each target point x with itss-transversal in the corresponding C and we color thepoints of the transversal so as to recall their x-origin. Ingeneral, a point may lie in several transversals and were�ne the colorings so that identical colors imply iden-tical originating sets. The objective now is to �nd thesubgroup that �xes colored sets in the natural actions.In each C, we group the blocks Bi into classes accord-ing to their list of colors. The �rst task is to stabilizeclasses in the action on the blocks. Here, we make useof the observation that the induced action on the blocks10



of C is a polynomial size group, for k � 4 logm forcesr! = O(m). But the class- (or color-) stabilization prob-lem easily reduces to pointwise set stabilizer in this caseby looking at actions on appropriate cosets within eachorbit [LM], [Ba86]. Since these orbit actions are small,this is done by above methods.The next step uses an N / G, as in the small-groupscase, to cut the group down. Suppose that not allcolor classes are singletons. Then using elements ofthe Alt(Bi)'s we can modify each generator of G sothat it �xes colors. By the independence of the natu-ral actions, this can be done in parallel across all suchC. These modi�ed generators, together with the easily-constructed color-preserving subgroup of the alternating-group-product action, generate the answer.The above generator modi�cation may not be possiblewhen color classes are singletons. However, an elementthat is not so modi�able should not be in the answeranyway. Thus, in a �rst pass, we cut down to modi�ableelements. Use the (singleton) color classes to rank theelements in each Bi. Thus the actions Bi �! Bj of � 2 Gcan be identi�ed as creating an even or an odd permuta-tion of ranks. Assign to each Bi a new two-element set,with one point colored red and one blue. The action of Gis extended to the union of these new pairs so that colorsare preserved i� the map between the corresponding Bi'sis even. The objective is to cut G down so that it pre-serves the red set. This is again a small group problem.Now, every element in G is modi�able as we proceed asabove.We conclude with an application promised in Sec-tion 7.Theorem 8.3 Given G � Sym(A), NC contains theproblem of �nding Res(G).Idea of proof. The proof of Lemma7.4 required pointwiseset stabilizer, which we now have. Also, to guarantee asmall depth of recursion, we modify the proof so that itsu�ces to assume G=K is semisimple. �Remark. As far as we know, the determination ofRes(G) was not previously observed to be in P.9 Applications to graph isomorphismWe discuss only the proof of Theorem 1.4. Other graph-isomorphism applications ([Lu86], [Ba86]) will be devel-oped in a �nal paper.We rely on the discussion in [Ba86]. There were threepoints at which coin-tossing was invoked:(1) To factor polynomials over tiny (input in unary)�elds.(2) To �nd a prime p < 4n2 modulo which eigenspacesof a (0,1)-matrix remain non-isotropic.(3) To �nd a pointwise set stabilizer in a group withpolynomial size orbit constituents.

The �rst two are avoidable: the necessary factorizationfor (1) is in NC [vzGS]; for (2), instead of picking a ran-dom p, try them all in parallel. Finally, (3) has now beenresolved even without the orbit restriction.10. Open problems1. Find the Sylow subgroups of G in NC. A polynomial-time solution to this problem is given by Kantor [Ka2],but the NC question is open even for solvable groups.2. Find, in NC, set-stabilizers in 2-groups. By [Lu86],this would put trivalent graph isomorphism in NC.3. Find the descending central series of a nilpotent groupin NC. The problem is easily in P. Note that, unlike thederived series, this series does not necessarily have poly-log length. On the other hand, some central compositionseries, which is at least as long, is NC-constructible [LM].4. Find the ascending central series of a nilpotent groupin NC. We can show the problem is in P but our tech-nique uses group intersection in the sequential construc-tion of each term as the center of the group modulo thelast term. Thus there are two obstructions to paralleliz-ability.5. If H is a subgroup of G of polynomial index, constructa complete set of coset representatives for G mod H.Again, the problem is in P. In fact, it is in Las Vegas{NC, for one can generate random elements of G usingan SGS and an appropriate number of these will hit allcosets with high probability [Ba79]. Note that if thegroup induced by the action of G on the cosets of Hitself has polynomial size, the \reachability-lemma" ofBabai and Szemer�edi [BSz] (see also [Ba86]) guaranteesan NC-solution.6. Now that pointwise set stabilizers are available, wecan also, in NC, produce an SGS in Sims' sense [Si70],that is, allowing Gi (Section 2.6) to be the pointwiseset stabilizer of the �rst i points. However, it remainsopen whether such an SGS is necessarily NC-e�cient.To be precise, are the factorizations, � = �1�2 � � ��r with�i 2 Ci, obtainable in NC?7. The deterministic methods for the small-orbit-groupcase of pointwise set-stabilizer (Section 8) do not followthe basic approach of the Las Vegas solution in [Ba86].That probabilistic method relied on an approach to �nd-ing large independent sets in a modular lattice. Indeed,for the latter problem, a Las Vegas { deterministic gappersists. We refer the reader to [Ba86, Section 9] for adescription of this and related questions.References[Ba79] Babai, L., Monte Carlo algorithms in graph iso-morphism testing, Tech. Rep. 79-10, D�ep. Math. etStat., Univ. de Montr�eal, 1979.11
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