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Abstract

We show that the basic problems of permutation group
manipulation admit efficient parallel solutions. Given a
permutation group G by a list of generators, we find a
set of NC-efficient strong generators in NC. Using this,
we show, that the following problems are in NC: mem-
bership in G; determining the order of G; finding the
center of G; finding a composition series of G along with
permutation representations of each composition factor.
Moreover, given (3, we are able to find the pointwise sta-
bilizer of a set in NC. One consequence is that isomor-
phism of graphs with bounded multiplicity of eigenvalues
1sin NC.

The analysis of the algorithms depends, in several
ways, on consequences of the classification of finite sim-
ple groups.

1. Introduction

We resolve the central problem in parallel management
of permutation groups. The key to this resolution is

Theorem 1.1.  Given a permutation group by a list
of generators, one can find a set of NC-efficient strong
generators (SGS) in NC.

Using this, NC-algorithms for basic permutation group
manipulation, and well beyond, are derived.

Theorem 1.2. Given a permutation group G by a list
of generators, the following problems are in NC:
(a) Test membership in G.

(b) Find order of G.
¢) Find the center of G.
(d) Find a composition series of G.
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We remark that an NC-solution of the membership prob-
lem has been suggested to be impossible, that 1s, the
problem was conjectured to be LOGSPACE-complete for
P [MC].

We also report the resolution of a problem that is in-
spired by graph isomorphism applications.

Theorem 1.3. Given a permutation group G, one can
find the pointwise stabilizer of a set in NC.

Note that, in earlier work, pointwise set-stabilizers were
not known even for then “manageable” groups, i.e. those
for which membership-testing was available (cf. [LM],
[Lu86]). In particular, this was the source of a Las Vegas
- deterministic gap [Ba86] in isomorphism testing that we
now close.

Theorem 1.4.  Isomorphism of graphs with bounded
multiplicity of eigenvalues 1s in NC.

For comparison, we briefly review earlier work. The re-
sults of Theorems 1.1-1.3 were known for solvable groups
[LM] and more generally for groups with bounded non-
abelian composition factors [Lu86]. A Las Vegas algo-
rithm for a somewhat less restrictive class of groups for
the pointwise set-stabilizer problem appears in [Ba86].
In the same paper, a Las Vegas version of Theorem
1.4 appears. Polynomial time sequential algorithms for
each problem have been known for some time: [Si70],
[FHL] for Theorems 1.1 and 1.3 as well as for Theorem
1.2 (a),(b); [Lu87] (c¢f. [BKL]) for Theorem 1.2(c),(d);
[BGM] for Theorem 1.4. A more detailed account of the
history of the problems can be found in [Lu86] which is
a key reference for several parts of the new algorithm as
well.

The principal novelty of this paper is our ability to
handle symmetric and alternating groups (the “giants”)
(Section 5). Two other chief ingredients are: (1) the
augmented structure forest and the descent through the
associated semisimple structure (involving the “noncom-
mutative linear algebra”) [Lu86]; (2) the composition se-
ries algorithm [Lu87].

Most striking is the depth of group-theoretic machin-
ery that is required for parallelizing even the rudimen-
tary task of membership testing. Three levels of group



theory arise: elementary 19th century style combinato-
rial arguments; structure theory of primitive permuta-
tion groups; and applications of three deep results, cur-
rently derivable only by using the full force of the clas-
sification of finite simple groups.

Remarkably, the new methods have sequential impli-
cations as well; these will be exploited in another paper

[BLS].

2. Definitions and preliminaries

We assume familiarity with the complexity class NC
([Pi],[Co]), informally, the class of problems solvable in
polylog (= log®"*" n) time using a polynomial number
of processors. We refer to any standard text, e.g. [Hal,
for basic facts about groups. For permutation group
concepts we refer to [Wi] and [Cam]. We mention two
sources of information on the classification of finite sim-
ple groups [Go], [Car], but no knowledge of these works
will be required. Cameron [Cam] gives a nice survey of
all the consequences of the simple groups classification
relevant to our work.

2.1. Group theory

We write H < G if H is a subgroup of G and H <« G if
H is a normal subgroup.

Lemma 2.1. [Ha, p.96] Let H < G and assume S is
a set of generators of G and R is a (complete) set of
(right) coset representatives of G mod H. Then the set

{popilp.p1 € R0 € S, popy* € H}

generates H.

The generators described here are called Schreier gener-
ators of H; their number is |S||G : H|.

For H < (G the normal closure NClg(H) of H in G
is the smallest normal subgroup of G containing H. A
group G' # 1is called simple if it has no nontrivial normal
subgroups. (G is semisimple if it is the direct product of
simple groups. A composition series of (G is any series

1IGT<1~~~<1G1<1GQIG

where the quotients G;_1/G; are simple; these quotients
are the composition factors. One calls G solvable if all
composition factors of G are cyclic. The following is

folklore.

Proposition 2.2. Leil =G, <4..1G1<1Gyg =G be a
composition series of G and N; = NClg(G;). Then each
quotlient N;_1/N; is semisimple; in facl, il is isomorphic
to the direct product of copies of Gi—1/Gi. #

The socle of G is the subgroup generated by all minimal
normal subgroups and is denoted Soec(G). The socle is
semisimple.

The automorphism group of G is denoted Aut(G).
Every element ¢ € (G induces an inner automorphism
x — g~ lzg. The group of inner automorphisms, Inn(G),
is normal in Aut(G). The factor group Out(G) =
Aut(G)/Inn(G) is the outer automorphism group. The
following result is needed for some of our analyses; it is
now a consequence of the classification of finite simple
groups.

Theorem 2.3. (Schreier’s Hypothesis). The outer auto-
morphism group of every finite simple group is solvable.

2.2. Permutation groups

The group of all permutations of an n-element set A is
denoted Sym(A), or Sy, if the specific set is inessential.
Subgroups of S, are the permutation groups of degree n.
The even permutations of A form the alternating group
Alt(A) (or A,). We shall refer to Sym(A) and Alt(A4) as
the giants. These two families of groups require special
treatment in most algorithms (see Section 5).

The support, supp(w), of # € Sym(A) consists of those
elements of A actually displaced by #. The degree of «
is deg(w) = |supp(w)|.

We say that G acts on A if a homomorphism G —
Sym(A) is given. This action is faithful if its kernel is
the 1dentity. The orbit of a € A under G is the set of
images {a”|y € G}. G is transitive on A if there is only
one orbit. (i is t-transitive if the action of G induced on
the set of ordered t-tuples of distinct elements of A is
transitive (¢ < n). The maximum such ¢ is the degree of
transitivity of G. The degree of transitivity of the giants
is>n—2.

Theorem 2.4. The degree of transitivity of any per-
mutation group other than the giants 1s <5.

This is another consequence of the classification of finite
simple groups we require and 1s essentially due to Curtis,
Kantor, and Seitz [CKS] (c¢f. [Cam]). A combination
of Theorem 2.4 with elementary tricks for permutations
facilitated the breakthrough in handling the giants that
has led, in combination with [Lu86] and [Lu87], to the
main results of this paper as well as to the start of the
largely independent project of [BLS].

2.3. Orbits, orbitals, blocks

If G acts on A, the orbits of the induced (componentwise)
G-action on Ax A are called orbitals [Si76]. The stabilizer
of £ € A is the subgroup G, = {y € G|zY = z}. If G is
transitive, there is a bijection between the orbitals of G
and the orbits of (G,,. For an orbital © of G and = € A,



the (out)neighbors of # in the (di)graph (A4, ©) form the
orbit O(z) = {y|(z,y) € O} of the stabilizer G,.

If G is transitive on A and G, = 1 for some (thus,
every) @ € A, then G is regular. If G is transitive and
D C A, Dis called a block (for G) if for all v € G, either
DY =Dor D"ND =0, and G is called primitive if
no nontrivial blocks exist. (Trivial blocks have 0, 1 or
n elements.) If D is a block then the set of images of
D is called a block system and an action of G is induced
on the block system. The block system is minimal, if
that action is primitive. We shall need the following
elementary results on the structure of primitive groups.
They all follow from the O’Nan-Scott Lemma [Sc] (cf.
[Cam], [Lu82]).

Theorem 2.5. Let G < Sym(A) be primitive and
suppose Soc(G) is abelian. Then, n = p? for some prime
p, A can be identified with the d-space over GF(p) so that
G < AGL(d,p) (the group of affine transformations of
A), and Soc(G) = Zg is the group of translations of A.

Theorem 2.6. Let G < Sym(A) be primitive. Then

Soc(G) =Ty x ... x Ty

where the T; are isomorphic simple groups. If Soc(G) is
nonabelian then G contains a normal subgroup N such
that

(a) Soc(G) < N < Aut(Th) x ... x Aut(Ty);

(b) G/N is a subgroup of Sq;

(c) n > 5.

Theorem 2.7. Let G < Sym(A) be primitive. If G
has more than one minimal normal subgroup then G has
precisely two minimal normal subgroups, each of order

Al

2.4. Groups of Cameron type

Important examples of primitive groups whose socles are
products of alternating groups are obtained in the follow-
ing way.

First we define a class of imprimitive groups. Let B
be a set of k elements, and suppose 1 < s < k/2. Let
C = rB = BiU...UB, denote the disjoint union of r
copies of B. An s-transversal of (' is a subset X < C
such that |X N B;| = s for i = 1,...,r. Let A denote the

set of s-transversals; and n = |A| = (lz)r The wreath

product W(B,r) = Sym(B) 1.5, < Sym(C) consists of
all permutations of C' that respect the partition {B;}.
Clearly,

Soc(W (B, r)) = Alt(By) x ... x Ali(B,).

Let now W(B,r) > G > Soc(W(B,r)) and assume G
acts transitively on the set of blocks {B;}. Under these

conditions, the action of G on A is primitive (and al-
ternating type, since Soc(G) = Soc(W(B,r)).) We say
that the primitive groups so obtained are of Cameron
type.

Theorem 2.8. [Cam] There exists a constant ¢ such that

every primitive group of degree n and order > n°1°8"
of Cameron type.

18

This is the third consequence of the simple groups classi-
fication (proved via a result of Kantor [Kal]) required for
the analysis of our algorithms. For large n, ¢ approaches
1. We remark that the value of ¢ does not play a role in
the algorithms; its existence enters only in the analysis.

2.5. Cameron schemes

In Section 4 we shall analyze a combinatorial structure
associated with the action of W(B,r) on A. Let A, B,
C be as above. For an s-transversal X € A, let X; =
XNB;. For XY € A let d; = | X;NY;|and let f; < fo <
... < [ be the sorted sequence {d;}. We call (f1,..., fr)
the intersection pattern of X and Y. Let us partition A x
A according to intersection patterns: A x A = RyU...U
Ry. We call the system C(n,k,s,r) = (A; Ro, ..., RN)
the Cameron scheme with parameters (n,k,s,r). This
is a particular association scheme [Bo], [De], [MS]; it
includes the Hamming schemes (s = 1) and the Johnson
schemes (r = 1) as particular cases. The scheme can
be thought of as a coloring of the edges of the complete
graph on n vertices (including self-loops); we refer to the
R; as color classes.

It is clear that each group of Cameron type acts on
a Cameron scheme. In fact, the color classes are pre-
cisely the orbitals of the action of W (B, r) on A. It may,
however, happen, that the color-classes split under the
action of a Cameron-type group G < W(B,r). One of
our key subroutines, NATURAL_ACTION, will recover
the imprimitive action of G on C' = rB using the orbital
structure of the primitive G-action on A, thereby reduc-
ing the Cameron-type groups to imprimitive groups with
a unique maximal block system of » <logn/logh blocks,
in which giants act on each block.

2.6. Strong generators
In algorithms, permutation groups will always be input
and output via a set of generators.

A standard tool for permutation group computation
is a strong generating set (SGS) [Si70]. As generalized
in [Bab79] (see also [FHL]), an SGS for ¢ presumes any
tower of subgroups

G=Go>G >...>Gr =1

An SGS is then a union of sets C; of coset representatives
for G;_1 mod (;. Hence, any o« € G has a unique fac-
torization & = p1pa---pr with p; € C;. We call an SGS



NC-efficient if it comes along with an NC-procedure to
factor any o € (. It is useful to observe that an SGS for
a factor group G/N, pulled back to GG, appended to an
SGS for N, gives an SGS for G.

3. Organization of the algorithm

The overall algorithm follows the lines of [Lu86, Sections
4 and 5].

A structure forest for a permutation group G <
Sym(A) is a forest on which G acts as automorphisms
such that: the leaves form the permutation domain A;
the roots correspond to the orbits; and denoting by G(v)
the permutation group induced by G, on the children of
v, each G(v) is primitive. As noted in [LM], NC contains
the problem of computing a structure forest.

We shall need further refinements of the structure of
the groups G((v). In an extended structure forest we allow
smaller trees T'(v) be appended from each node v of the
structure forest. We identify v with the root of T'(v) and
think of T'(v) being placed entirely between the levels
of v and its original children. The leaves of T'(v) must
form a faithful permutation domain for G(v), and the
entire group G should act on the extended forest. T'(v)
is required to be a structure forest in the above sense for
the new action of G(v).

The insertion of these “small” trees allows us to utilize
the structure of G(v) through a different permutation
representation. We use G1(w) to denote the permutation
group induced by G, on the set of the immediate children
of the node w of the extended structure forest. (G1(v) =
G(v) if no T(v) has been appended at v of the original
forest.)

Delving further into the structure of the primitive
groups G1(w), we define the augmented structure for-
est for G to be an extended structure forest F' together
with an assignment of to each node w € F' of a tower of
normal subgroups of G1(w)

(1)

with semisimple quotients G1,_1(w)/G1;(w), and such
that the induced action of G on {G1(w)}yep induces, in
turn, 1somorphisms between subgroups at corresponding
places in the towers.

The “small” trees T(v) will arise from new permu-
tation representations of some of the primitive groups
G(v), called “large groups”, and found via our routine
NATURAL_ACTION (Section 4).

The main phases of the SGS algorithm are these. The
input is a set of generators for G < Sym(A).

1= Glyy(w) a---<aGli(w) « Glo(w) = G1(w)

Main procedure

1. Construct structure forest.
2. For a representative v of each G-orbit of nodes of

the forest, use NATURAL_ACTION to decide if G(v)

is a “large group” and, if so, construct new action and
corresponding structure tree T'(v).

3. Via the G-action, transfer each T(v) to all nodes
in the orbit v“, thus obtaining an extended structure
forest.

4. For a representative w of each G-orbit of nodes of the
extended forest F', construct a semisimple tower (1) of
normal subgroups of G'1(w).

5. Via the G-action, transfer each semisimple tower to
all nodes in the orbit w®, thus obtaining an augmented
structure forest.

6. As in [Lu86], use the augmented structure forest to
construct efficient strong generators for G. end.

Phase 6 uses Luks’ “generalized (commutative and
noncommutative) linear algebra” and follows the lines
of [Lu86]. We shall not discuss the details of that pro-
cedure here but we give a detailed account of the extra
tools required for the implementation of the procedures
of [Lu86] in the absence of structural constraints on G.

In order to complete Phases 4 and 6, we need to be able
to perform management of the primitive groups G1(w).
This comprises finding efficient strong generators, nor-
mal closure, kernel of action, and a composition series.
For giants, all this will be accomplished in Section 5; for
“small groups” in Section 6 (building on [Lu87]). The re-
maining “large groups” will not occur as G'1(w), thanks
to the routine NATURAL_ACTION. Thus, the proof of
Theorem 1.1 will be complete by the end of Section 6.
Parts (a) and (b) of Theorem 1.2 are follow immediately.
A solution to part (d) is explicitly given in the course of
the main procedure. We comment on the solution of part
(c) as well as on further consequences in Section 7.

4. Reducing large to giant

In this section we classify primitive groups as “large” and
“small”. Large groups are seen to have a specific struc-
ture and a “natural” (often imprimitive) action com-
prised of giants acting on each block with a small group
permuting the blocks. Thereby algorithmic problems are
reduced to problems for giants and and small groups.

This objective 1s achieved by the subroutine NATU-
RAL_ACTION. The procedure involves a global variable
n, the degree of the permutation group which is the in-
put of the full algorithm. We shall always assume that
n is sufficiently large.

Procedure NATURAL_ACTION

INPUT: a primitive group G < Sym(A), where m :=
Al <n

Step 1. if m < 4logn, then (output “small group”;
halt).

Step 2. if G is 6-transitive, then (output D := By :=
A, r:=1; output “giant”; halt).



Step 3. Consider the orbitals (G-orbits on A x A). Let
T' be the second smallest and A the largest orbital. (x
the smallest orbital is the diagonal * )

for each (#,y) € T compute (in parallel) the sets

B(z,y) = A(y) — A=),

U A

z€B(z,y)

D :={C(z,y)|(x,y) € T'}.
Step 4. Consider the (transitive) G-action on D. Select
a system {Bji,..., B} of minimal (nonsingleton) blocks
of imprimitivity (* (J, B; = D *).

if (k := |B;| > 4logn and r < logn/logh and the
stabilizer of By is 6-transitive on Bj)

then output (“large group, faithfully acting on D”
and a structure tree for the G-action on D that repre-
sents the blocks B; by nodes adjacent to the leaves)

else output “small group”; end.

Clz,y) = A—

We say G fauls the large groups test if “small group” is
output. Otherwise G is said to pass the large groups test.
The following result justifies the term “small groups” and
provides additional information about large groups.

Theorem 4.1.
(1) If NATURAL_ACTION outputs “giant” then G is a
giant.

(2) If NATURAL_ACTION outputs “large group” then
G acts faithfully on D and the stabilizer of each block
B; restricted to By contains Alt(By;).

If NATURAL_ACTION outputs “small group” then,
for sufficiently large n, |G| < exp(7log® n loglogn).

Statement (1) is obviously correct. For (2) we need
the following lemma, whose proof is implicit in [Lu82,
Lemma 3.6].

(3)

Lemma 4.2. For p # r primes, the order of the Sylow
r-subgroups of the affine linear group AGL(d,p) is less

than p*?. &

Corollary 4.3. For k > 4dlogp, the order of Ay does
not divide the order of AGL(d, p).

Proof. Let r = 3 if p = 2 and let r = 2 otherwise. The
result follows from Lemma 4.2 (except for the two easy
cases p=12,d<2). &

Proof of Theorem 4.1, part (2). We say that the group
H is involved in the group K if H = L/M for some
M« L < K. If a simple group H 1is involved in K then
H is involved in a composition factor of K.

We may assume G is not a giant. Let K be the kernel
of the G-action on D. The stabilizer of B restricted
to By is 6-transitive, whence it contains Aj. As the G-
action on the set of blocks is transitive, the same holds
for each B;. Also, it follows that Ay is involved in G/K.

If Soc(G) were abelian, then, by Theorem 2.5, m = p?
for some prime p and G < AGL(d,p). But, dlogp =
logm < logn < k/4 and therefore, by Corollary 4.3,
the order of Ay could not divide |G|. Hence Soc(G) is
nonabelian and the results stated in Theorem 2.6 apply.
We use the notation of Theorem 2.6 and refer to N « G
established there.

First we show that Ay is not involved in G/Soc(G).
Indeed, otherwise Aj must be involved either in G/N
or in N/Soc(G). The first case is impossible because
G/N <S4 (Theorem 2.6(b)) and d < logm/logh < k/8
(Theorem 2.6(c)). In the second case, Aj is involved
in N/Soc(G) < Out(T)?, a solvable group by Schreier’s
Hypothesis (Theorem 2.3), again a contradiction.

It follows now that Ay is involved in Soc(G) and
K # Soc(G). Now Soc(G) must be the unique mini-
mal normal subgroup for otherwise, by Theorem 2.7, we
have the contradiction:

n? > m? = |Soc(G)| > |Ar] = k!/2 > 2F > nt.

It follows that K contains no minimal normal subgroup,
whence K =1. &

Proof of Theorem 4.1, part (3). Assume the order of |G|
exceeds the stated bound. By Theorem 2.8 it follows that
G 1s of Cameron type and A can be identified with the set
of points of a Cameron scheme C'(m, k, s,r). Of course,
the parameters and the identification are not known a
priori. Our task is to prove that NATURAL_ACTION
will have recovered this structure by Step 3.

In addition to the material of Section 2.5, we introduce
some more notation concerning this Cameron scheme.
We use the letters v, k, B;, C =rB = B U...UB, to
mean what they do in Section 2.5. We shall prove that
this concurs with the output of NATURAL_ACTION
(with D corresponding to C', the only object where iden-
tical notation could lead to confusion). We call the ac-
tion of G on C “natural”.

Fach a € A corresponds to an s-transversal T'(a) C
rB.

Let ¥; be the color class corresponding to the inter-
section pattern (s —4,s,...,s) and ® to (0,0,...,0).

Claim 1. ; (0 < i < s) and ® are orbitals of G| i.e.
they do not split.

Proof. For ® this follows from the fact that G > Aj. For
¥; we need in addition that the stabilizer of any a € A
acts transitively on the set of blocks {B;}. #

Claim 2. rs < logm.
Proof. m = (f)r > (k/s)™* >27. &

Claim 3. If k < 2rs” then |G| satisfies the bound stated
in Part (3) of Theorem 4.1.



Proof. |G| < (k')rrl < (27a52)27‘2s2r! <
(210g2 n)210g2"(10g n)! < eXp(?log2 n loglogn). &

Claim 4. If £ > 2r then I’ = ¥;.

Proof. Fix € A and consider an orbital ©. We have to
prove that |31 (z)| < |©(x)| for any © other than X; and
the diagonal ¥g. Observe that for ¢ > 1,

’ ) (k B 5) > rs(k — s) = |S4(2)].

5 —1 1

o)l =

Assume now that © is contained in the color class with
intersection pattern (iy,4s,...) where iy < s; let (x,y) €
O. Just counting the images of y under the stabilizer of
z in A} we obtain

©(2)] > (Z) (f__z) (Z) (f—_zj

> s%(k — s)* > rs(k — s),
since k > 2r. &

Claim 5. If k > 2rs? then A = ®.

Proof. We have to prove that ® is the largest color class
in the Cameron scheme. (Note that G plays no role
here.)

First observe that for 1 < ¢ < s, the inequality £ >

2rs? implies
r . )< .
s—1i/)\i s

Let now the color class © have intersection pat-
tern (07, ..., s"*). (The exponents denote multiplicities.)
Then

r S (k—s\" s\
|®(x):<r0,r1,...,rs)i:H0<5—i) (z) <
( ' )(k_) - <(’“‘5) = o). &
0,71, -5 Ts S r o s

Claim 6. If k > 2rs? then the G-action on D is similar
to the natural G-action on C'.

Proof. For b € rB = C, let U(b) = {u € Alb € T(u)}.
We claim that D = {U(b)|b € rB}. By Claims 2 and
3, T = X; and A = ®&. Thus, for any (z,y) € T, the
set T(x) — T(y) is a singleton {b(x,y)}. Now, a simple
inspection of the Cameron scheme, using the fact that
k > 3s, shows that C'(x,y) = U(b(x,y)).

The result follows since G acts transitively on C'. &

5. The giants
5.1. The legal moves

Recall that the “giants” are the symmetric and alter-
nating groups in their natural action. By testing 6-
transitivity, we can decide whether or not G is a giant.
We describe a procedure for constructing NC-efficient
strong generators of the giants from the given generators.
Henceforth, we use the term “construction” to mean a
sequence of the following legal operations: multiplication,
mversion, and taking powers of permutations. These op-
erations can be implemented in NC. The exponent in the
last case can be any integer with a polynomial number
of digits [MC].

A permutation circuit is an algebraic circuit with per-
mutations as inputs and outputs and legal operations as
gates. A construction will be in NC if (from the gener-
ators) an NC-procedure builds a polylog depth, polyno-
mial size permutation circuit which in turn (again from
the generators) computes the desired output.

The reason for the constraint on the set of legal oper-
ations is that the procedure will be applied to the case
when the actual permutation group G is imprimitive and
acts on a set B of blocks as a giant. In such a case, al-
though we know a prior: that some ¢ € G acts on B as
a given 3-cycle, no such permutation will be guaranteed
to belong to G unless it has been constructed, by way of
legal operations, from the generators of G.

We note that a byproduct of the procedure yields a
simple, elementary proof of the old result, known to
Jordan (1895) [Jo], (and vastly surpassed by Theorem
2.4) that the only clog® n/loglogn -fold transitive per-
mutation groups are the giants [BS1]. Tt also yields an
exp(v/nlogn(l+ o(1))) upper bound on the diameter of
any Cayley graph of the giants [BS2].

The crux of the matter is the following result.

Theorem 5.1. Given generators of a giant, one can
construct, in NC, a cycle of length 3 (using legal opera-
tions only).

Once a cycle of length 3 has been found, an NC-efficient
set of strong generators is easily constructed (Section
5.6). Sections 5.2-5.5 are devoted to the proof of Theo-
rem H.1.

5.2. Pruning the Schreier generators

We begin the procedure with a preprocessing phase:
finding coset representatives for the first ¢ < log® n mem-
bers of the stabilizer chain.

Given G < Sym(A) and z € A, finding (right) coset
representatives for ¢ mod (G, amounts to a transitive
closure problem. Once the coset representatives are
known, we construct Schreier generators for G, (Lemma
2.1). This step increases the number of generators by a
factor < n. In order to avoid a superpolynomial blow-
up, we prune the generators of our new giant GG,., keep-
ing just enough to make the subgroup they generate 6-



transitive on A — {x}. (Transitive closure on the set of
6-tuples of distinct elements of A — {x}.) The possible
loss of odd permutations causes no harm (and is easily
corrected by picking a single odd permutation from the
Schreier generators). This way the number of generators
will never exceed n% and we can repeat the process a
polylog number of times.

Remark. We make no attempt to minimize the number
of processors. For n > 25, testing 4-transitivity would
suffice. A simple trick [BLS] reduces the task to testing
2-transitivity and even more can be saved using addi-
tional tricks from [BLS].

Given the coset representatives just constructed, one
easily constructs a member of GG having a prescribed re-
striction on a subset of size ¢:

Lemma 5.2. Given a giant G < Sym(A) and an in-
jection f : D — A where D C A and |D| <t < log°n,
one can construct in NC an element 7 € G such that
T|D = f

Proof. Let A = {1,...,n}. Let G; be the pointwise sta-
bilizer of {1,...,i}. Let {a(d,j) : i < j < n} be the
coset representatives of GG;_1 mod (; just constructed,
where a4, j) fixes 1,...,i— 1 and moves i to j (1 < i <
t). For any distinct aq,...,aq € A, recursively define
m(a,...,aq) = pa(d,af)™t, where p = w(ai,...,a4_1).
Then, for i < d we have af @t — G et now D =

{li,...,lz}. Then 7 = 712;(11,...,ld)ﬂ'(f(ll),...,f(ld))_l
works. &

5.2. A commutator lemma

For m € Sym(A), we call a subset B of supp(w) indepen-
dent with respect to 7 if BN B™ = (. The commutator
of m,7 € Sym(A) is [r, 7] = mrw~ 171, The following is
easily verified.

Lemma 5.3. Let w1, 7 € Sym(A). Assume that B is an
independent sel w.r. to m and 7|g~ is the identily. Then

[m,7lle=7""1p. #

Corollary 5.4. Let G and t be as in Lemma 5.2. As-
sume ® € G of degree s is given and d < min{s/3,t1/2}.
Then, for any (dy,...,dy) such that dy+---+dr = d, we
can find, in NC, an element A € G such that X includes
cycles of lengths dy, ..., d,, and deg(X) < 2s.

Proof. Let w € GG have degree s. As s > 3d, obviously, a
7 -independent set B of size d can be found. Since ¢ >
2d, we can, by Lemma 5.2, construct an element 7 € GG
that fixes B™ pointwise and acts on B as a permutation
with cycle structure (dy, ...,d;). Now, the commutator
A = [n7] will have the prescribed cycle structure on B
by Lemma 5.3. Moreover, deg(w) = deg(rm=1771) = s,
therefore deg(A) < 2s. &

5.3. Large powers
Let p; denote the i*" prime number, p(r) = p;...p, and
f(n) = min{r|p(r) > n?}. Let g(n) = ng)pl The
following estimates follow from the Prime Number The-
orem.

O(lolglogn) and g(n) =

Proposition 5.5. f(n) =

log?
O(lo(;lognn)' *

Lemma 5.6. Let # € Sy, k = deg(w). Suppose «
contains cycles of each prime length p;, i < r = f(n).
Let m(i) be the product of the lengths of all cyeles of
7w divided by the highest possible power of p;. Then

2 < deg(7™D) < k/4 for some i < 7.

Proof. Let K = supp(w). For each # € K, consider the
set P(x) of those primes p; dividing the length of the
m-cycle through #. Clearly, the product of these primes
1s < k.

Let n(¢) denote the number of points # such that p; €
P(z). Let us estimate the weighted average W of the n(i)
with weights log p;. Recall that the sum of the weights
is > logp; > log(n*) = 4logn, therefore

W<Z Z log pi/(4logn)

€K p,eP(x)

< (klogk)/(4logn) < k/4.

We infer that n(i) < k/4 for some i < r. Clearly, 77(%)
is not the identity and it fixes all but n(¢) points. &

5.5. Reducing the degree

Lemma 5.7. Given an element 7 € G of degree s >
3g(n), one can construct, in NC, a nonidentity element

of degree < s/2.

Proof. For ¢ = 2 and n > ng we have t > 2¢(n). Let
us apply Corollary 5.4 with » = f(n), d; = p; and thus
d = g(n). We obtain A € G of degree < 2s such that A
includes cycles of each prime length p;, ¢ < r. By Lemma
5.6, some NC-computable power A™ # 1 has degree <
2s/4=s/2. &

Proof of Theorem 5.1. Repeating the procedure of
Lemma 5.7, we shall in O(logn) rounds arrive at some
7 € G of degree 2 < deg(m) < 3g(n). Since t > 3g(n),
by Lemma 5.2 we can construct 7 € ( such that
|supp(7w) N supp(7)| = 1. Thus the commutator [x, 7] is
a 3-cycle. &

5.6. Strong generators for a giant
Let A ={1,...,n}. Let A; be the set of transpositions
{(ij):i<j<n}(1<i<n=—1). These sets together
form the standard set of strong generators of Sym(A).
Let B; = {r(n—1n):7 € A;}. The sets B; combine to
the standard set of strong generators of Alt(A).



Theorem 5.8

(a) If G is one of the giants acting on A, the corre-
sponding standard set of strong genmerators can be
constructed in NC.

(b) Fach standard set of strong gemerators is NC-
efficient for the respective giant.

Proof. 1. First we prove part (b) for G = Sym(A). Let
m € G. We give an NC-procedure to factor 7 via stan-
dard strong generators (cf. Section 2.6). For ¢ € A, let
l(é) be the length of the m-cycle through 4. Set

J) = max{j | 0 <j <i(i) =1, i >},

and k(7) = i~

Claim. 7 = (1 k(1)(2 k(2))---(n =1 k(n = 1)).
Clearly, 1t suffices to prove the Claim for the case when #
is a single cycle, say, of length {. Let ip = min{supp(x)}.
Then k(i) = i for ¢ < iy and j(ip) = [ — 1. Now,
(f9 j(é0))m is an [ — l-cycle and the proof follows by
induction.

Since (%), j(7), and k(7) are clearly NC-computable, the
proof of Part (b) for G = Sym(A) is complete. Part
(b) for G = Alt(A) follows immediately. As a matter
of fact, let # € Alt(A4), and let # = 77275 be the
representation of 7w given in the Claim, where the 7; are
transpositions, i.e. the terms with ¢ = k(¢) have been
omitted. Now s is even, and, setting p = (n — 1 n),

m = (mp)(pr2)(Tap)(pra) - - - (Ts—1p)(pTs ).

Each parenthesised term is a standard strong generator
of Alt(A): pr = 7'p where 7/ = prp~t.

IT. Now we prove part (a). By Theorem 5.1, we have
already constructed a 3-cycle. All 3-cycles are conjugates
of a single one. The conjugating elements can be con-
structed by Lemma 5.2 with ¢t = 3. Products of pairs of
3-cycles provide the additional standard strong genera-
tors of Alt(A): (acb)(cbd)=(ab)(cd). This completes
the proof for Alt(A4). Assume now that G = Sym(A) and
m € (G is an odd generator. Using the strong generators
just constructed for Alt(A), we can construct o = (1 2)x
and thus the transposition (12) = ox~!. The conju-
gates of (1 2) provide the standard strong generators for

Sym(A). &

5.7. Giant management
Let G < Sym(A) be a giant, |4| > 5. For a set S C G,
the normal closure is Alt(A4) if S C Alt(A), and Sym(A)
otherwise. The kernel of any G-action is either 1 or
Alt(A) or Sym(A) and these cases are easily distin-
guished. Likewise the unique composition series of ¢
is easily constructed.

6. Managing small groups

Again, let n be a global parameter (the degree of the
input group for the main procedure). The resource limi-
tations in the definition of NC below refer to this global
parameter.

Theorem 6.1 Let G < Sym(A), where |[A] = m < n°.
Assume |G| < exp(log®n). Then the following problems
are in NC:

(a) Finding efficient strong generators of G.

(b) Finding the normal closure of a subgroup of G.

(¢c) Finding the kernel of any G-action.

(d) Finding a composition series for G.

(e) Finding the pointwise set-stabilizer of B C A.

The proof of (a) is based on a combination of the Schreier
generator method and Sims’ sifting. Sifting becomes fea-
sible because the length of any subgroup chain in G is
< log |G| < log® n. We need the following routine.

Procedure SIFTSTEP

INPUT: S C Sym(A), S # 0.
OPTIONAL INPUT: z € A.

Step 1. if (S) = 1 then halt.

Step 2. if no # € A has been input then let x be any
element of the support of a member of S.

Step 3. for each y € 7, select 7 = 7(y) € S such that
e” =y T = {r(y)ly € 2}

Step 4. output z, T and theset S’ = {or7 e €S, 7 =
(z7)}; end.

We informally describe Procedure SCHREIER_SIFT.
This procedure constructs strong generators with respect
to the stabilizer chain
G=Gy>CG1>...>0G, =1,
where G; fixes {ai,...,a;} C A. The order of the ele-
ments of A as well as the value r < log |G| are determined
by the procedure such that G;;1 always be a proper sub-
group of G;. At the end of the i*® Phase, we shall have
a set 5; of generators for G;. If Gy = 1, set » = ¢ and
halt. Else, we begin Phase (i+1) by letting a;41 be any
element in the support of any member of S; unless a;41
has already been defined. We solve (in NC) the transi-
tive closure problem that yields coset representatives of
G; mod G;41. Next we construct the corresponding set
R;+1 of Schreier generators for G;41. We apply SIFT-
STEP to S = R;y1 with optional input @;y2, then again
to S” and a;y3, etc. until we halt because SU) = {1}.
Set Siy1 = UT(j) where TU) is the set T output by the
j*" round of SIFTSTEP. End Phase (i+1).

Observe that for each i, |S;| < nr and r < log|G|. Conse-
quently, for small groups, this procedure remains within
NC, proving part (a) of the Theorem. Part (b) is solved
by a simple modification along the lines of [FHL], again



noting that every chain of subgroups has now polylog
length. The kernel of action easily reduces to normal
closure (cf. [LM]). Given these ingredients, Luks’ al-
gorithm for finding a composition series in a permuta-
tion group G [Lu87] can be implemented in NC, pro-
vided |G| < exp(log®n). Finally, part (e) is inherent in
SCHREIER_SIFT if preference for the next input point
is always given to unfixed elements of B. #

7. Corollaries

In addition to the results listed in Theorem 1.2, we men-
tion several more.

Theorem 7.1 Given G < Sym(A4), NC includes

(1) Finding the normal closure of a subset of G.

(2) Finding the kernel of an action of G.

(3) Finding the derived series of G.

(4) Finding the centralizer of H < Sym(A) in G assum-

wng that G normalizes H.

(5) Finding G N H assuming that G normalizes H.

(6) Factoring o« € GH as v, withy € G and § € H,
assuming that G normalizes H.

The proofs of (1) and (2) follow the lines of [Lu86]. For
(3), we note that the commutator subgroup is obtainable
as the normal closure of the commutators of the genera-
tors; use this repeatedly, noting the following lemma.

Lemma 7.2 The length of the derived series of any G <
S, is O(log” n).

Proof. Let m be the length of the largest orbit of G.
We actually prove, by induction on the depth & of the
structure forest of GG, that the length d(G) of the de-
rived series of G is O(log2 m). By [Ba86, Lemma 11.2],
any chain of normal subgroups of a primitive group has
length O(log? n). This settles the case k = 1. The induc-
tion step uses the observation d(G) < d(N)+d(G/N) if
N<aG. &

We say that K <« G is an NC-constructible kernel if NC
contains the problem of constructing a representation
G — Sym(B) with kernel K; in particular, by Theorem
7.1(2), one can find such K. The centralizer in (4) is
an NC-constructible kernel [Lu87]. Note that part (¢) of
Theorem 1.2 is a particular case of (4).

We give an indication of the solution to (5). Our ba-
sic procedures (see [Lu86]) construct a series of normal
subgroups of G

1IGT<1~~~<1G1<1GQIG,
with r = O(log®n) and semisimple G;/G;y1. Avail-
able, as well, are faithful representations of the quotients

G;/Gi+1. This gives rise to the normal series

H=G,H«<--- <G H<GyH =GH.

Using the epimorphism G;/G;41 — G;H/G;31H and
exploiting the semisimplicity of G;/G;y1, one constructs
a faithful action for each G; H/G;41H. Then GNGi41 H
is the kernel of this action restricted to G N G; H; thus,
G N H 1s constructed in r rounds from GNGH = G.

The solution to (6) involves keeping track of factoriza-
tions in the construction of an SGS for GH from genera-
tors for G (factored asy = 1) and generators for H (fac-
tored as & = 18). Acceptable “G-factors” for products,
inverses, powers are always obtainable as corresponding
products, inverses, powers of G-factors. Similarly, the
factorization of « € GH parallels its membership test.

)

Remarks. 1. The solutions to (5) and (6) resolve the
first three open problems proposed in [Ba&6].

2. A solution to (4) is also obtainable via (5) and an
NC-construction of the centralizer of H in Sym(A).

For application in Section 8, we show the constructibil-
ity of some other classes of characteristic subgroups. Let
T be a class of isomorphism types of simple groups. For
any group G, we define, Res7(G) to be the (unique) min-
imal R <G such that G/R is a product of simple groups
from the class 7. In particular, we are concerned with
the subgroups Ress((), Resy(G), Resp(G), Res(G)
corresponding to 7 being the class of abelian simple
groups, nonabelian simple groups, simple p-groups, all
simple groups, respectively. We call Res(() the residual
of GG.

Theorem 7.3 Given G < Sym(A), Resa(G) is an NC-

constructible kernel.

Proof. For each prime p < |A|, Resp(G) is the (nor-
mal) subgroup generated by the derived group of G and
the pth powers of the generators of GG. Linear algebra
in G/Resp((G) is used to establish Res,(G) as an NC-
constructible kernel. The action of G on the disjoint
union of these actions over all p has kernel Ress(G). &

In anticipation of a later strengthening (Theorem 8.3),
for now we list the following as a lemma.

Lemma 7.4 Let G < Sym(A) and suppose |G| <
exp(log®n). Then Resy(G), and therefore Res(G) =
Resa(G) N Resy(G), is an NC-constructible kernel.

Proof. We determine
M(G)={M aG | G/M is nonabelian simple}.

Faithful representations of each GG/M are constructible
[Lu87] and then Resp (G) is the kernel of the ac-
tion on the disjoint union. Since G/Resy(G) =
[Tasremia) G/M, one knows that |M(G)| < [A].

Now let K be any maximal normal subgroup of G. We
recursively determine M(K) (the depth of the recursion
G > N > --- will be polylog). Let M € M(G). We



may assume that M # K. Then N = M N K € M(K)
and M/N is the centralizer of K/N in G/N. Thus, if
a € G — K centralizes K mod N, M = NCLg({a, N}).
So, knowing N, we only need a suitable « to locate
M. Now, in general, centralizers in quotient groups
seem difficult to obtain (even sequentially). However,
in this case, we can reduce the problem to Theorem
7.1(4). Using representations of G/K and K/N we find
N < X < K <Y < G such that |Y : K| and |K : X|
are polynomial size, and determine coset representatives
for Y mod K and K mod X; for example, take for XY,
appropriate terms in point-stabilizer chains in those rep-
resentations (Theorem 6.1(e)). This enables us to repre-
sent Y on the cosets of X in Y and to find « centralizing
the action of K. Of course, we do this for all N € M(K)
in parallel, rejecting those that do not yield a suitable
M. &

8. Pointwise set-stabilizers

We outline the ingredients of Theorem 1.3. For brevity
herein, we must rely heavily on the discussion in [Lu86,
Section 6]. The following may be uncomfortably vague
without that reference in hand.

Let HY denote the group induced by H < G in the
orbit O. We may assume that each G© is primitive and
that each orbit (under current investigation) contains ex-
actly one target point to be fixed; GG is always interpreted
as the group induced on these orbits. The objective is
to locate a collection Y of orbits and a normal subgroup
N <« such that

[. For O €Y, N9 = Soc(G9).
II. The actions of N on the orbits in Y are reasonably
“independent”.

III.

Since N9, for O € Y, is necessarily transitive, one can
use elements in N9 to modify (in parallel) each generator
of G so that it fixes the target in O. Furthermore, by
II, this can be done in parallel for many O. The method
then depends upon a formalization of “significant” in I1I.

The inadequacy of the method in [Lu86] is that N
was captured in a series of length O(log” n), where ¢ is
a function of the class of composition factors of . By
offering an alternate approach to III, we are able to use
a shorter series, reducing ¢ to O(1).

It is convenient to deal first with the case when the G©
are small groups, which, for the moment, we’ll interpret
as log |G| < log® n with ¢ arbitrary but fixed. For H <
G, let R(H) consist of those elements that project into
Res(H®) (Section 6) for each O.

Lemma 8.1 R(H) is an NC-constructible kernel.

Fixing targets in Y makes “significant” progress.

Proof. Construct, by Lemma 7.4, an action of each H¢
with kernel Res(H?). Then H acts naturally on the
disjoint union of the domains with kernel R(H). &

As noted in [Lu86], the ith term in tower
la---aR(R(R(G))) «R(R(G)) aR(G) a G

projects on the i residual of each G¢, hence the tower
length, ¢, is at most log®n. One also knows that the
socle of each (primitive) GY occurs as a projection of
a unique term in the tower. We choose N to be the
term in the tower that projects onto a maximal number
of socles; that is, going from N to R(N) the action on
a maximal collection, X, of orbits first becomes trivial.
Then X includes at least 1/t of the orbits. It suffices
then to describe a procedure that will decrease G© for
all O € X, so we’ll assume that X contains all orbits.
The subcollection Y C X is chosen as in [Lu86], in par-
ticular, at each O € Y there is a subgroup 1 # S(0)<aG?
such that N = [y S(O) (in two of three ‘socle-types’,
S(0) = N9). Next, N is employed to cut GG down to a
subgroup H that fixes the target pointsin Y. As a conse-
quence, (NN H)? < N© for all O € X. (For the groups
with two minimal normal subgroups, this procedures re-
quires logn rounds of N,V selection and application).
The following lemma enables us to measure progress and
justify the significance of Y.

Lemma 8.2 log || < log |G|(1 L

~ o)

Idea of proof. One shows that if « € G projects into
NO for O € Y then it does so for all O € X. This is
used to show log|G| < ylog®n, where y = |Y|. Since

% > % > 2Y the result follows. &

Thus, by the bound on G, O(logc‘l'1 n) rounds suffice
to fix targets in X.

We turn now to the general group case. Again, we may
assume the orbit constituents are primitive. It suffices
to consider only the orbits where giants or large groups
occur (as declared by procedure NATURAL_ACTION),
for having fixed the targets there, we dispatch the rest
with the above small-groups technique.

We suppose that we have deciphered the natural ac-
tions. Now, it 1s possible that groups across various or-
bits are “linked” in a diagonal action (see [Lu86]). In
such case, one can identify their natural actions (thus,
identifying their C’s, B;’s). Using the deciphered natu-
ral action, we can identify each target point = with its
s-transversal in the corresponding C' and we color the
points of the transversal so as to recall their z-origin. In
general, a point may lie in several transversals and we
refine the colorings so that identical colors imply iden-
tical originating sets. The objective now is to find the
subgroup that fixes colored sets in the natural actions.

In each C', we group the blocks B; into classes accord-
ing to their list of colors. The first task is to stabilize
classes in the action on the blocks. Here, we make use
of the observation that the induced action on the blocks

10



of C'is a polynomial size group, for & > 4logm forces
rl = O(m). But the class- (or color-) stabilization prob-
lem easily reduces to pointwise set stabilizer in this case
by looking at actions on appropriate cosets within each
orbit [LM], [Ba86]. Since these orbit actions are small,
this is done by above methods.

The next step uses an N < (G, as in the small-groups
case, to cut the group down. Suppose that not all
color classes are singletons. Then using elements of
the Alt(B;)’s we can modify each generator of G so
that it fixes colors. By the independence of the natu-
ral actions, this can be done in parallel across all such
C'. These modified generators, together with the easily-
constructed color-preserving subgroup of the alternating-
group-product action, generate the answer.

The above generator modification may not be possible
when color classes are singletons. However, an element
that is not so modifiable should not be in the answer
anyway. Thus, in a first pass, we cut down to modifiable
elements. Use the (singleton) color classes to rank the
clements in each B;. Thus the actions B; — Bjofaec G
can be identified as creating an even or an odd permuta-
tion of ranks. Assign to each B; a new two-element set,
with one point colored red and one blue. The action of G
is extended to the union of these new pairs so that colors
are preserved iff the map between the corresponding B;’s
is even. The objective is to cut G down so that it pre-
serves the red set. This is again a small group problem.
Now, every element in (G is modifiable as we proceed as
above.

We conclude with an application promised in Sec-
tion 7.

Theorem 8.3 Given G < Sym(A), NC contains the
problem of finding Res(G).

Idea of proof. The proof of Lemma 7.4 required pointwise
set stabilizer, which we now have. Also, to guarantee a
small depth of recursion, we modify the proof so that it
suffices to assume G/ K is semisimple. &

Remark. As far as we know, the determination of
Res(G) was not previously observed to be in P.

9 Applications to graph isomorphism

We discuss only the proof of Theorem 1.4. Other graph-
isomorphism applications ([Lu86], [Ba86]) will be devel-
oped in a final paper.

We rely on the discussion in [Ba86]. There were three
points at which coin-tossing was invoked:

(1) To factor polynomials over tiny (input in unary)
fields.

(2) To find a prime p < 4n? modulo which eigenspaces
of a (0,1)-matrix remain non-isotropic.

(3) To find a pointwise set stabilizer in a group with
polynomial size orbit constituents.

11

The first two are avoidable: the necessary factorization
for (1) is in NC [vzGS]; for (2), instead of picking a ran-
dom p, try them all in parallel. Finally, (3) has now been
resolved even without the orbit restriction.

10. Open problems

1. Find the Sylow subgroups of G in NC. A polynomial-
time solution to this problem is given by Kantor [Ka2],
but the NC question is open even for solvable groups.

2. Find, in NC, set-stabilizers in 2-groups. By [Lu86],
this would put trivalent graph isomorphism in NC.

3. Find the descending central series of a nilpotent group
in NC. The problem is easily in P. Note that, unlike the
derived series, this series does not necessarily have poly-
log length. On the other hand, some central composition
series, which is at least as long, is NC-constructible [LM].

4. Find the ascending central series of a nilpotent group
in NC. We can show the problem is in P but our tech-
nique uses group intersection in the sequential construc-
tion of each term as the center of the group modulo the
last term. Thus there are two obstructions to paralleliz-
ability.

5. If H is a subgroup of G of polynomial index, construct
a complete set of coset representatives for G mod H.
Again, the problem is in P. In fact, it is in Las Vegas—
NC, for one can generate random elements of G using
an SGS and an appropriate number of these will hit all
cosets with high probability [Ba79]. Note that if the
group induced by the action of G on the cosets of H
itself has polynomial size, the “reachability-lemma” of
Babai and Szemerédi [BSz] (see also [Ba86]) guarantees
an NC-solution.

6. Now that pointwise set stabilizers are available, we
can also, in NC, produce an SGS in Sims’ sense [Si70],
that is, allowing G; (Section 2.6) to be the pointwise
set stabilizer of the first ¢ points. However, it remains
open whether such an SGS is necessarily NC-efficient.
To be precise, are the factorizations, o = pyps - - - p, with
pi € C}, obtainable in NCT'

7. The deterministic methods for the small-orbit-group
case of pointwise set-stabilizer (Section 8) do not follow
the basic approach of the Las Vegas solution in [Ba86].
That probabilistic method relied on an approach to find-
ing large independent sets in a modular lattice. Indeed,
for the latter problem, a Las Vegas — deterministic gap
persists. We refer the reader to [Ba86, Section 9] for a
description of this and related questions.
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