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ABSTRACT
APIs often feature dynamic relations between client and service
provider, such as registering for notifications or establishing a con-
nection to a service. Dynamic specification mining techniques at-
tempt to fill gaps in missing or decaying documentation, but current
miners are blind to relations established dynamically. Because they
cannot recover properties involving these dynamic structures, they
may produce incomplete or misleading specifications. We have
devised an extension to current dynamic specification mining tech-
niques that ameliorates this shortcoming. The key insight is to
monitor not only values dynamically, but also properties to track
dynamic data structures that establish new relations between client
and service provider. We have implemented this approach as an
extension to the instrumentation component of Daikon, the leading
example of dynamic invariant mining in the research literature. We
evaluated our tool by applying it to selected modules of widely
used software systems published on GitHub.
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1 INTRODUCTION
Software API documentation is often incomplete, and misunder-

standings of behavior can be disastrous [9]. Dynamic specification
miners that extract information about observed behavior based on
running code could be helpful, but only if the conjectures1 they
observe are raised to the appropriate abstraction level and include
dynamically created relationships, such as registering an event
listener.

Specification miners and invariant detectors extract potentially
useful conjectures about program behavior from program source
code [14, 15], dynamic monitoring of behavior [5, 7, 8, 10–13, 17], or
1The mined specifications are called "conjectures" or "likely-invariants" because they
depend on observed executions, not all possible behaviors.
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both [6]. Ideally these would be true specifications or design descrip-
tions, as might be produced by a human programmer with a deep
understanding of a program’s design. Current software invariant
detectors are best at detecting simple relations in static structures,
such as relations among simple variables stored as fields of an ob-
ject or local variables of a method. They are limited in detecting
dynamically established relations, such as dynamic attachment of
client code to libraries.

Dynamic invariant detectors can be extended to capture prop-
erties of interactions between objects whose relations are cre-
ated during execution, such as between an observer and its
subject in the observer pattern or a view and model in the
model-view-controller pattern. To do so requires monitoring dy-
namic data structures (e.g. the list of observer objects to be no-
tified by a subject object in the observer pattern) and tracking
relations that span variables among multiple objects. For ex-
ample, the method handle(Invocation) from Mockito [4]
loops through existing elements of its list of listeners (invo-
cationListeners) and calls the method reportInvoca-
tion(MethodInvocationReport) on each listener which
on return alters some variables for each listener. Current invariant
detectors monitor the relation between values of two variables only
if they have a static relationship. Therefore, invariants reported
by current invariants detectors (e.g. Daikon [8]) might lead one to
believe the method has no effect, regardless of the completeness of
the test suite.

We have constructed a proof-of-principle prototype instrumen-
tation tool called eChicory (Enhanced Chicory) for inferring invari-
ants about objects in dynamic relationships by extending the front
end of Daikon (Chicory) dynamic invariant detector for Java [8].
eChicory can recognize dynamic relationships between classes and
objects that arise in common design patterns such as the observer
and model-view-controller patterns. While our prototype implemen-
tation is limited to Java libraries and is based on Daikon [8], the
basic approach should be applicable to other programming lan-
guages and invariant detection tools.

2 DYNAMIC INSTRUMENTATION
Flexible APIs often support dynamic association of clients with

services. Dynamic data structures (DDS) associating client code
with service code provide flexibility and utility, but they present a
challenge to dynamic invariant detectors. To understand why, we
must consider how these systems work. Daikon [8], for example,
expects a stable structure of variables to track at method entrance
and exit points.

https://doi.org/10.1145/3194793.3194797
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Section 4 describes evaluation of a prototype tool with deployed
libraries taken from Github. In this section we illustrate the ap-
proach with a simplified example that follows a widely used pat-
tern but consists of just two classes, Modifier and Receiver
(Example 1). The Modifier allows adding an unlimited number
of Receivers in an ArrayList. The Receiver is even sim-
pler: its variable internalValue is initialized to 0 but can be
modified through its public interface increment().

1 public class Modifier {
2 public List<Receiver> receivers = new

ArrayList<Receiver>();
3

4 public void addReceiver (Receiver rcv){
5 receivers.add(rcv);
6 }
7

8 public void modify (){
9 for(Receiver rcv:receivers)
10 rcv.increment();
11 }
12 }
13

14 public class Receiver {
15 public int internalValue = 0;
16

17 public void increment(){
18 internalValue+=1;
19 }
20 }

Example 1: Classes Modifier and Receiver
The variables tree structure in Figure 1 shows the ac-

tual tree structure Chicory (the current instrumentation tool
for Daikon) will generate for the method Modifier.add-
Receiver(Receiver) at an exit point from Example 1 as well
as a potential branching to fully understand the technique. The
actual nodes, as shown in the diagram, are constructed based on
the passed arguments and object fields (another branch would be
constructed if the method addReceiver has a return value). User
defined objects are the only fields or variables further explored. The
variables receivers and internalValue are a DDS and a
primitive respectively, thus no further exploration is conducted.
The exploration process in the actual case thus halts and no more
variables to track are added.

We are assuming that the Modifier, as the potential nodes
shows, has a user-defined object a. The object a has another user
defined object b and b has an instance of c that points to a mak-
ing a loop of references. The unbounded referencing loop makes
it clear why an arbitrary fixed depth is necessary. Even though
the depth 2 could result on the loss of valuable insight about the
system, it is a widely used value and arguably helps exploring a
target application thoroughly. Thus, we can see that when Chicory
encounters complex fields (e.g. the DDS receivers) it violates
the given max_depth rule by discarding the exploration process of
that field in favor of determinability.

In Chicory, the given structure is defined as soon as a method
is invoked and must never change. All future invocations of the
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Figure 1: Chicory (Daikon instrumenter) tree of variables for
method addReceiver labeled as actual, plus potential ref-
erences not included in this simple example.

given method will use the given tree structure of the method to
track traces (values of variables). Thus, it is dynamic on values
assigned to variables, but static on system fields structure (the set
of variables it tracks). This established behavior ignores the fact that
the receivers DDS could hold some interesting element to track
at a future point in the program execution. Dynamically tracking
only the values could be beneficial in observing behaviors like size
change (e.g. observing that method addReceiver increases the
size of the given array list), but it drives inference systems to miss
opportunities of observing the states of the elements within a DDS.
A fully dynamic instrumentation tool is required to show such
effect.

3 TRACKING FLOW AND UNIFYING
KNOWLEDGE

To overcome the challenge of the changes in variables structure of
a given method execution point, not only the values of the variables
should be evaluated each time a method is invoked, but also the
variables structure should be regularly evaluated. For example, each
time the method addReceiver is invoked a new variables tree
structure must be constructed and buffered. Each time a method
variable tree is constructed, we observe possible current elements
of a given DDS treating them as user-defined classes. For each
buffered method variable tree, we record traces (values).

Given any method at its entrance or exit point, in addition to the
observation of user-defined fields, we observe all the elements of a
possible DDS. As long as we are within the given max_depth, we
explore the elements’ fields if they are non-primitives. Even if the
elements themselves are a type of DDS, we still observe them by
only exposing their elements (in the case of max_depth = 2).

The presented new behavior should ensure that we can al-
ways observe elements of a possible DDS. Moreover, it ensures that
we keep track of the elements’ fields values similar to any object
that is associated with the current method. However, this design
introduces issues like the inconsistency in the variables trees that
cannot be used on existing inference tools. To mitigate this, we
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Application Targeted Design Pattern Description Class # of Methods Tested Number of Pure Methods
jPure Chicory eChicory

Mockito [4] Observer Pattern Mocking framework for unit tests in Java InvocationNotifierHandler 7 0 5 2

Apache Struts [1] MVC Framework for creating Java web
applications

DefaultActionInvocation 29 - À À
DefaultUnknownHandlerManager 3 ď 2 0
ConfigurationManager 16 - M M
VelocityManager 18 - I I
SimpleTextNode 17 - I I
SimpleAdapterDocument 43 - I I

Table 1: Selected target applications, their classes, the number of observed methods on them and the result from Chicory and
eChicory. I: Inadequate unit tests. M: Usage of mocks to represent DDS elements. À: Absence of DDS manipulation. ď: Failure
on observing the class.

introduce a unifying stage to unify all the variable trees of a method
considering elements additions and removal from the DDS.

The essence of the issue is that it is possible to have (1) an
element be introduced that was not present at an earlier invocation
or (2) an element that exists before in the DDS but was removed
at a later point on time. For the first case, we found that we could
treat a newly introduced but never later removed element as an
uninstantiated variable. Moreover, we can consider the value of
any introduced variable from the merge process as nonsensical,
which is how Chicory handles uninitialized variables. However,
because Daikon was not designed to track an evolving set of fields,
a variable cannot be removed or given a nonsensical value once it
is initialized. In that case the element’s state is not as interesting
as the fact that it was taken out (size change). Thus, we take the
variable out from all trees as well as its traces for that particular
method in which its existence is not guaranteed over all invocations
Therefore, we only observe the size of the DDS but not the state in
this particular case.

This behavior should guarantee that all unified variable trees and
traces are readable by an inference tool. Moreover, the technique
should guarantee that the behavior of the target application is intact
(no values are wrongly changed or introduced).

4 EVALUATION
4.1 Evaluation Methods
We wished to evaluate the extent to which our enhancement to

dynamic invariant detection was useful with widely used code bases
ofmodest size (2k to 10k LOC)whichwere not constructed by us and
with which we had no special knowledge or familiarity. The natural
criteria for measuring the effectiveness of invariant detection are
recall and precision, but we faced a problem in applying these to
systems that are both unfamiliar and of significant size. They must
be measured with respect to some ground truth, which in this case
would be specifications. We cannot know the “real” specifications
for our target applications, and manually extracting a complete
set of specifications does not scale to applications of even modest
size. It was imperative to find an alternative that could at least be
partially mechanized.

Our goal is to characterize invariant relations maintained by
updating fields in a dynamic data structure (showing effect). Some
invariants can highlight a variable state in comparison to another
variable (e.g. a > b), others can define the state of the variable
(e.g. a is null) and few invariants can show the effect on a
variable (e.g. a = orig(a) + 1). Although neither Chicory nor
eChicory are purity checkers, for this limited purpose we can use a
static purity checker (e.g. jPure [16]) to detect cases when either

Chicory or eChicory fails to recognize that fields have been updated.
When jPure identifies a method as effectful (impure), and only one
miner characterizes that effect, we credit that miner with greater
accuracy.

4.2 Artifact Selection
We searched GitHub for Java projects (applications and libraries)

of size between 2k and 10k lines of code, small enough to control
the cost of evaluation but large enough to increase the probabil-
ity of encountering relevant patterns. We selected projects with
indications of popularity (“stars” in GitHub), well-regarded and
established development communities (e.g., Apache projects) and,
to the extent possible, high test coverage. We also looked at appli-
cation wikis and issue trackers for mentions of design patterns that
could create dynamic relations between clients and library code
(observer, model-view-controller, etc).

We selected four artifacts (of which we show two 2, see Table
1), and from these we focused analysis on classes that appeared,
from superficial examination, to present interfaces with dynamic
creation of relations between client and library code.

4.3 Analysis
To evaluate our approach we ran eChicory and Chicory against

each class from Table 1 alone. Ideally, each class should have its own
comprehensive suite of unit tests. In practice this is often not the
case. Thus, in the case where a class has no designated unit tests we
ran all available unit tests within a module or the whole application
to increase the probability of testing the given class thoroughly.
We then fed the given traces from eChicory and Chicory to the
same version of Daikon. From the resulting invariants we look at
whether a method has any effect 3 of any sort (e.g. a variable value
is changed) for each given invariant. A method that has reported
invariants shows an effect is non-pure. Otherwise, the given method
appears pure based on the given instrumentation technique.

We performed the analysis on a Linux virtual machine with 5GB
of memory and an Intel i7-3667U CPU on the host machine.

The only test case provided with Mockito [4] has seven meth-
ods. A constructor, which clearly sets the only two fields of the
class, two expectedly pure getters, a setter for one of the fields, and
three special purposes methods (handle, notifyMethodCall,
and notifyMethodCallException). Each one of the three
special purpose methods iterate over elements calling methods that
eventually change the elements’ state. jPure reports the class has no
pure methods at all. Both Chicory and eChicory report invariants
2We do not show the detailed result for two of the selected artifact as our tests were
not fruitful. However, we discuss the reasons in the following section.
3Any change on the accessible fields. Including treating a method result as a filed.
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indicate that the constructor is not pure. Moreover, both agree on
showing that the getters are pure (all the reported invariants do not
show any effect of accessible variables). However, neither Chicory
nor eChicory is able to show the effect of the only setter and thus
consider it pure. eChicory was able to help Daikon infer the effect
of the three special purpose methods that were missed by Chicory.
These three methods are non-pure according to eChicory, which is
closer to the result report by jPure.

Analysis with the provided test cases was not fruitful for other
artifacts. The most common problem was inadequate (I) unit test
suites. Some did not cover portions of the library that used dynamic
design patterns, and some included broken test cases (most of which
we confirmed with the developers e.g. JabRef [3]). A less common
issue (M) was mocking frameworks, which made it impossible to
observe actual client objects (e.g. Zeppelin [2]). In rare cases (À)
the dynamic relations were never established, for example iterating
over an empty list of related objects. Failure due to limitations of
our tool (ď) appeared in a single example from Zeppelin [2].

Since provided test suites were inadequate for our purposes,
we wrote new test cases for class DefaultUnknownHandler-
Manager from Apache Struts. eChicory successfully charac-
terized effects of methods handleUnknownAction and han-
dleUnknownMethod on other objects, while Chicory found no
effects. Our new tests were approved and merged into Apache
Struts’s main repository.

Performance Impact. While our objective is to improve accuracy
and usefulness of analysis, performance cannot be entirely ignored
in any tool that, like Daikon, generates and tests conjectures about
relations among objects. We can trade some performance for utility,
but we cannot afford to forfeit key factors such as the number of
variables in scope or the number of defined program points. Our
modified technique affects performance in two parts of the overall
process, trace collection and invariant inference from traces.

Trace collection on eChicory is followed by trace unification,
as explained above. We compare the combined cost of trace col-
lection and unification in eChicory to the cost of trace collection
in Chicory. We omitted from our comparison Struts.Config-
urationManager since its methods are not implemented and
Zeppelin.Notebook since we failed to analyze it. The worst
cost increase we observed in trace collection and unification was
less than 25% (49.79 seconds) for the Folder class from Zeppelin
[2]; for most classes the difference was negligible. The Folder
class was also, by far, the worst observed case for the invariant
detection step, with a 214% increase in time (from 13.24 to 41.62
seconds); the second worst observed penalty was 40%, and most
were much smaller.

The large difference for class Folder from Zeppelin [2] is attrib-
utable to tracking a large number of dynamically created relations,
and suggests that further summarization or selection of representa-
tives may be necessary in some cases. The performance data we
have been able to gather so far is quite limited and would not justify
any claims of generality, but it at least hints that invariant detection
can often be feasible but also that in some cases additional measures
will be required to prevent unreasonable costs when large numbers
of dynamic relations are created.

5 CONCLUSION
Existing invariant miners dynamically observe values but depend
on static associations of variables, making them blind to dynam-
ically established connections between API client and provider.
These are not corner cases; they occur frequently in widely used
design patterns. We proposed expanding the scope of tracking to
encompass dynamic relations such as a client registering with a
provider, and produced and evaluated a proof-of-concept imple-
mentation.

Evaluation with real-world examples suggests our approach
can find invariants missed by current techniques, with reasonable
performance costs.
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