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Abstract. Event Argument Extraction (EAE) is the task of identifying
roles of entity mentions/arguments in events evoked by trigger words. Most
existing works have focused on sentence-level EAE, leaving document-
level EAE (i.e., event triggers and arguments belong to different sentences
in documents) an under-studied problem in the literature. This paper
introduces a new deep learning model for document-level EAE where
document structures/graphs are utilized to represent input documents
and aid the representation learning. Our model employs different types
of interactions between important context words in documents (i.e.,
syntax, semantic, and discourse) to enhance document representations.
Extensive experiments are conducted to demonstrate the effectiveness
of the proposed model, leading to the state-of-the-art performance for
document-level EAE.

Keywords: Event Argument Extraction · Document Structures

1 Introduction

Event Extraction (EE) is an important and challenging task in Information
Exaction (IE) that aims to identify instances of events (i.e., change of states of
real-world entities) in text. To this end, two subtasks should be solved: (1) Event
Detection (ED) to recognize event-triggering expressions (verbal predicates or
nominalizations, called event triggers/mentions), and (2) Event Argument Ex-
traction (EAE) to identify entity mentions that are involved in events (event par-
ticipants and spatio-temporal attributes, collectively known as event arguments).
This work focuses on EAE, a relatively less-explored task for EE (compared to
ED). Technically speaking, our EAE task takes as inputs an event trigger and
an argument candidate (entity mention), seeking to predict the role that the
argument candidate plays in the event mention associated with the trigger. A
well performing EAE system will benefit various downstream applications such
as Knowledge Base Construction and Question Answering.
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Most of the recent work on EAE employs deep learning models to achieve
state-of-the-art performance [17]. Unfortunately, these models are often restricted
to sentence-level EAE where event triggers and arguments appear in the same
sentence. In real world scenarios, arguments of an event might have been presented
in sentences other than the sentence that hosts the event trigger in the input
document. For instance, in the EE dataset of the DARPA AIDA program (phase
1)3, 38% of arguments has been shown to be outside the sentences containing
the corresponding triggers, i.e., in the document-level context [3]. As such, it
is of paramount importance to develop models that can extract arguments of
event mentions over the entire documents to provide a more complete view of
information for events in documents.

A major challenge in document-level EAE involves long document context
that hinders the ability of models to effectively identify important context words
(among long word sequences) and link them to event triggers and arguments for
role prediction. Recently, a promising approach to address this document context
modeling issue has been explored for other related tasks in IE [15, 14, 10] where
document structures (i.e., direct interactions between parts of documents) are
employed to facilitate the connections and reasoning between important context
words for a prediction problem.

Thus, one simple solution towards utilizing document structures for EAE is
to exert one of the existing document-level models that has been designed for
other related tasks. However, in this work, we show that such prior models have
critical constraints that should be addressed to better serve EAE. As such, the
existing document-level models have only exploited some (typically one) specific
types of information/heuristics to form the edges in document structures, thus
failing to leverage a diversity of useful information to enrich document structures
in EAE. This is unfortunate as multiple information sources are often required
simultaneously to capture necessary interaction information between nodes/words
and improve the coverage/performance for EAE models. For instance, consider the
following document: “The foundation said that immediately following the Haitian
earthquake, the Embassy of Algeria provided an unsolicited lump-sum fund to the
foundation’s relief plan. This was a one-time, specific donation to help Haiti and
it had donated twice to the Clinton Foundation before.”. In this two-sentence
document, an EAE system needs to recognize the entity mention “Embassy of
Algeria” as an argument (of role Giver) for the event mention associated with
the trigger word “donated”. To perform this reasoning, the models can utilize
the coreference link between “Embassy of Algeria” and the pronoun “it” (i.e.,
discourse information) that can be directly connected with the trigger word
“donated” via an edge in the syntactic dependency tree of the second sentence.
Alternatively, if the coreference link cannot be obtained (e.g., due to errors in
the coreference resolution systems), EAE models can rely on the close semantic
similarity between “donated” and “provided an unsolicited lump-sum fund” that
can be further linked to “Embassy of Algeria” via a dependency edge in the
first sentence. As such, document-level models might need to jointly capture

3 https://tac.nist.gov/2019/SM-KBP/data.html
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the information from syntax, semantic, and discourse structures to sufficiently
encode necessary interactions between words for EAE.

Motivated by this intuition, we propose to combine different information
sources to generate effective document structures for our EAE problem, focusing
on the knowledge from syntax (i.e., dependency trees), discourse (i.e., coreference
links), and semantic similarity. Importantly, for the semantic similarity, in addition
to using contextualized representation vectors to compute interaction scores
between words as in prior work [10], we propose to further leverage external
knowledge bases to enrich document structures for EAE. As such, we link the
words in the documents to the entries in some external knowledge bases and
exploit the entry similarity in such knowledge bases to obtain word similarity
scores for the structures. To our knowledge, this is the first work to employ
external knowledge bases to compute document structures for an IE task in the
literature.

Given various document structures, how can we effectively combine these
structures for EAE? Our main principle for this goal is motivated from the running
example where the role reasoning process for the event trigger and argument
candidate involves a sequence of interactions with multiple other words, possibly
using different types of information at each interaction step, e.g., syntax, discourse
or semantic information (called heterogeneous interaction types). To this end,
we propose to employ Graph Transformer Networks (GTN) [18] to facilitate the
implementation of this multi-hop heterogeneous reasoning idea. More specifically,
GTNs fulfill the multi-hop heterogeneous reasoning by multiplying weighted sums
of different initial document structures to generate rich combined structures.
Finally, the resulting combined structures will be used to learn representation
vectors for EAE based on graph convolutional networks (GCN). To our knowledge,
this is also the first work that introduces GTN and GCN for document structure
computation and representation learning in document-level EAE.

We evaluate the proposed model on two benchmark datasets; one for document-
level EAE [3] and one for the closely related task of implicit semantic role labeling.
Our experiments demonstrate the effectiveness of the proposed model, establishing
new state-of-the-art results on both benchmark datasets.

2 Model

We formulate document-level EAE as a multi-class classification problem. The
input to the models is a document D = w1, w2, . . . , wN which consists of multiple
sentences, i.e., Si’s. To be comparable with previous work [3], we also use a
golden event trigger, i.e., the t-th word of D (wt), and an argument candidate,
i.e., the a-th word of D (wa), as the inputs (wt and wa can occur in different
sentences). The goal of EAE is to predict the role of the argument candidate
wa in the event evoked by wt. Here, the role might be None, indicating that wa

is not a participant in the event mention wt. Our model for EAE involve three
major components: (i) Document Encoder to transform the words in D into
high dimensional vectors, (ii) Structure Generation to generate initial document
structures for EAE, and (iii) Structure Combination to combine the structures
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and learn representation vectors for role prediction. We provide details for these
components below.

2.1 Document Encoder

In the first step, we transform each word wi ∈ D into a representation vector xi
that is the concatenation of the following two vectors:

(i) The pre-trained word embedding of wi: Here, we consider both non-
contextualized embeddings, i.e., GloVe and contextualized embeddings, i.e., BERT
in the experiments. In particular, for BERT, as wi might be split into multiple
word-pieces, we use the average of the hidden vectors for the word-pieces of wi in
the last layer as the word embedding vector for wi. Following [3], we employ the
BERTbase version that divides D into segments of 512 word-pieces to be encoded
separately. In our experiments, we fix the parameters of the BERTbase.

(ii) The position embeddings of wi: These vectors are obtained by looking up
the relative distances between wi and the trigger and argument words (i.e., i− t
and i − a respectively) in a position embedding table. This table is initialized
randomly and updated in the training process. Position embedding vectors
are important as they notify the model about the positions of the trigger and
argument words.

Given the vector sequence X = x1, x2, . . . , xN to represent the words in D,
we further send it to a bidirectional long short-term memory network (LSTM)
to generate a more abstract vector sequence H = h1, h2, . . . , hN . Here, hi is
the hidden vector for wi that is obtained by concatenating the corresponding
forward and backward hidden vectors from the bidirectional LSTM. We will use
the hidden vectors in H as the inputs for the next computation. Note that we do
not include the sentence boundary information of D into the hidden vectors H
so far as it will be addressed in our document structures later.

2.2 Structure Generation

The goal of this section is to generate initial document structures that will be
combined to learn representation vectors for document-level EAE in the next
step. Formally, a document structure in our work involves an interaction graph
G = {N , E} between the words in D, i.e., N = {wi|wi ∈ D}. As such, the
document structure G can be represented via a real-valued adjacency matrix
A = {aij}i,j=1..N where the value/score aij reflects the importance (or the level of
interaction) of wj for the representation computation of wi for EAE. As presented
in the introduction, we simultaneously consider three types of information to
form the edges E (or compute the interaction scores aij) in this work, including
syntax, semantics, and discourse. We describe initial document structures based
on these information types in the following.
Syntax-based Structures: The motivation for this type of document structures
is based on sentence-level EAE where dependency parsing trees of input sentences
have been used to reveal important context, i.e., via shortest dependency paths
to connect event triggers and arguments, and guide the interaction modeling
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between words for argument role prediction. As such, we expect dependency
trees for sentences in D can also be exploited to provide useful information for
document structures for EAE. In particular, we propose to leverage dependency
relations/connections between pairs of words in D to compute the interaction

scores adepij in the syntax-based document structure Adep = {adepij }i,j=1..N for D.
Here, two words are more important to each other for representation learning
if they are connected in dependency tress. To this end, we first obtain the
dependency tree Ti for each sentence Si in D using an off-the-shelf dependency
parser4. Afterward, to connect the dependency trees Ti for the sentences, following
[5], we create a link between the root node of a tree Ti for Si with the root node
of the tree Ti+1 for the subsequent sentence Si+1. The resulting graph with linked
trees Ti is denoted by TD. In the next step, motivated by shortest dependency
paths in sentence-level EAE, we retrieve the shortest path PD between the nodes
for wt and wa in TD. Finally, we compute the interaction score adepij by setting it

to 1 if (wi, wj) or (wj , wi) is an edge in PD, and 0 otherwise.
Semantic-based Structures: These document structures aim to evaluate the
interaction scores in the structures based on the semantic similarity between words
(i.e., two words are more important for the representation learning of each other
if they are more semantically related). As such, we consider two complementary
approaches to capture the semantics of the words in D for semantic-based
structure generation, i.e., contextual semantics and knowledge-based semantics.

First, in contextual semantics, we seek to reveal the semantic of a word via
the context in which it appears. This suggests the use of the contextualized repre-
sentation vectors hi ∈ H (obtained from the LSTM model) to capture contextual
semantics for the words wi ∈ D and produce the contextual semantic-based
document structure Acontext = {acontextij }i,j=1..N for D. Accordingly, to com-

pute the semantic-based interaction score acontextij for wi and wj , we employ the
normalized similarity score between their contextualized representation vectors:

ki = Ukhi, qi = Uqhi

acontext
ij = exp(kiqj)/

∑
v=1..N

exp(kiqv) (1)

where Uk and Uq are trainable weight matrices, and the biases are omitted in
this work for brevity.

Second, in knowledge-based semantics, our goal is to employ the external
knowledge of the words from knowledge bases to capture their semantics. We
expect that such external knowledge can provide a complementary source of
information for the contextual semantics of the words (i.e., external knowledge
vs internal context), thereby enriching the document structures for D. To this
end, we propose to utilize WordNet, a rich knowledge base for word meanings, to
obtain external knowledge for the words in D. Essentially, WordNet involves a
network that connects word meanings (i.e., synsets) according to various semantic
relations (e.g., synonyms, hyponyms). Each node/synset in WordNet is associated
with a textual glossary to provide expert definition about the corresponding
meaning.

4 We use the Stanford Core NLP Toolkit to parse the sentences in this work.
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Our first step to generate knowledge-based document structures for D is to
map each word wi ∈ D to a synset node Mi in WordNet that can be done with a
Word Sense Disambiguation (WSD) tool. In this work, we use WordNet 3.0 and
the state-of-the-art BERT-based WSD tool in [1] to perform such word-synset
mapping. Afterward, to determine knowledge-based interaction scores between
two words wi and wj in D, we can leverage the similarity scores between the
two linked synset nodes Mi and Mj in WordNet. As such, to leverage the rich
information embedded in the synset nodes Mi, we introduce two versions of
knowledge-based document structures for D based on the glossaries of the synset
nodes and the hierarchy structure in WordNet:

(1) The glossary-based structure Agloss = {aglossij }i,j=1..N : Here, for each
word wi ∈ D, we first retrieve the glossary GMi from the corresponding linked
node Mi in WordNet (GMi can be seen as a sequence of words). A representation
vector VMi is then computed to capture the semantic information in GMi, by
applying the max-pooling operation over the pre-trained GloVe embeddings of
the words in GMi. Finally, the glossary-based interaction score aglossij for wi and
wj is estimated via the similarity between the glossary representations VMi and

VMj (with the consine similarity): aglossij = cosine(VMi, V Mj).

(2) The WordNet hierarchy-based structure Astruct = {astructij }i,j=1..N : The

interaction score astructij for wi and wj in this case relies on the structure-based
similarity of the linked synset nodes Mi and Mj in WordNet. Accordingly, we
employ the Lin similarity measure for the synset nodes in WordNet for this

purpose: astructij =
2∗IC(LCS(Mi,Mj))
IC(Mi)+IC(Mj)

where IC and LCS represent the information

content of the synset nodes and the least common subsumer of the two synsets
in the WordNet hierarchy (most specific ancestor node), respectively.

Discourse-based Structures: Besides the typical lengths of the input texts,
a key difference between document-level and sentence-level EAE involves the
presence of multiple sentences in document-level EAE where discourse infor-
mation (i.e., where the sentences span and how they relate to each other) is
helpful to understand the input documents. The goal of this part is to leverage
such discourse structures to provide complementary information for the syntax-
and semantic-based document structures for EAE. To this end, we propose
to exploit two following types of discourse information to generate discourse-
based document structures for EAE: (1) the sentence boundary-based document
structure Asent = {asentij }i,j=1..N : This document structure concerns the same
sentence information of the words in D. The intuition is that two words in
the same sentence would involve more useful information for the representation
computation of each other than those in different sentences. To implement this
intuition, we compute Asent by setting the sentence boundary-based score asentij

to 1 if wi and wj appear in the same sentence in D and 0 otherwise; and (2)

the coreference-based document structure Acoref = {acorefij }i,j=1..N : Instead of

considering within-sentence information as in Asent, this document structure
exploits relations/connections between sentences (cross-sentence information) in
D. To this end, we consider two sentences in D as being related if they contain
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entity mentions that refer to the same entity in D (coreference information)5.
Given such a relation between sentences, we consider two words in D to be more
relevant to each other if they appear in related sentences. To this end, for the
coreference-based structure, acorefij is set to 1 if wi and wj appear in different,
but related sentences; and 0 otherwise.

2.3 Structure Combination

Up to this point, we have generated six different document structures for D (i.e.,
A = [Adep, Acontext, Agloss, Astruct, Asent, Acoref ]). As these document structures
are based on complementary types of information (called structure types), this
section aims to combine them to generate richer document structures for EAE.
Our key intuition to achieve such a combination is to note that each importance
score avij in one of the structures Av

ij (v ∈ V = {dep, context, gloss, struct,
sent, coref}) only considers the direct interaction between the two involving
words wi and wj (i.e., not including any other words) according to one specific
information type v. As motivated in the introduction, we expect each importance
score in the combined structures to further condition on interactions with other
important context words in D (i.e., in addition to the two involving words) where
each interaction between a pair of words can flexibly use any of the six structure
types (multi-hop and heterogeneous-type reasoning). To this end, we propose
to use Graph Transformer Networks (GTN)[18] to enable such a multi-hop and
heterogeneous-type reasoning in the structure combination for EAE.

In particular, to enable multi-hop reasoning paths at different lengths, we first
add the identity matrix I (of size N×N) into the set of initial document structures
A = [Adep, Acontext, Agloss, Astruct, Asent, Acoref , I] = [A1, . . . ,A7]. The GTN
model is then organized into C channels for structure combination, where the
k-th channel contains M intermediate document structures Qk

1 , Q
k
2 , . . . , Q

k
M

of size N × N . As such, each intermediate structure Qk
i is computed by a

linear combination of the initial structures in A using learnable weights αk
ij :

Qk
i =

∑
j=1..7 α

k
ijAj . Here, due to the linear combination, the interaction scores

in Qk
i are able to reason with any of the six initial structure types in V (although

such scores still consider the direct interactions of the involving words only).
Afterward, the intermediate structures Qk

1 , Q
k
2 , . . . , Q

k
M in each channel k are

multiplied to generate the final document structure Qk = Qk
1 ×Qk

2 × . . .×Qk
M of

size N ×N (for the k-the channel). As shown in [18], the matrix multiplication
enables the importance score between a pair of words wi and wj in Qk to condition
on the multi-hop interactions/reasoning between the two words and other words
in D (up to M − 1 hops due to the inclusion of I in A). The interactions involved
in one importance score in Qk can also realize any of the initial structure types in
V (heterogeneous reasoning) due to the flexibility of the intermediate structure
Qk

i .
Given the rich document structures Q1, Q2, . . . , QC from the C channels,

GTN then feed them into C graph convolutional networks (GCN) [6] to induce
document structure-enriched representation vectors for argument role prediction

5 We use the Stanford Core NLP Toolkit to determine the coreference of entity mentions.
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in EAE (one GCN for each Qk = {Qk
ij}i,j=1..N ). As such, each of these GCN

models involve G layers that produces the hidden vectors h̄k,t1 , . . . , h̄k,tN at the
t-th layer of the k-th GCN model for the words in D (1 ≤ k ≤ C, 1 ≤ t < G):

h̄k,t
i = ReLU(Uk,t

∑
j=1..N

Qk
ij h̄

k,t−1
j∑

u=1..N Qk
iu

) (2)

where Uk,t is the weight matrix for the t-th layer of the k-th GCN model and
the input vectors h̄k,0i for the GCN models are obtained from the contextualized

representation vectors H (i.e., h̄k,0i = hi for all 1 ≤ k ≤ C, 1 ≤ i ≤ N).
In the next step, the hidden vectors in the last layers of all the GCN models

(at the G-th layers) for wi (i.e., h̄1,Gi , h̄2,Gi , . . . , h̄C,G
i ) are concatenated form

the final representation vector h′i for wi in the proposed GTN model: h′i =

[h̄1,Gi , h̄2,Gi , . . . , h̄C,G
i ].

Finally, to predict the argument role for wa and wt in D, we assemble a
representation vector R based on the hidden vectors for wa and wt from the GTN
model via: R = [h′a, h

′
t,MaxPool(h′1, h

′
2, . . . , h

′
N )]. This vector is then sent to a

two-layer feed-forward network with softmax in the end to produce a probability
distribution P (.|D, a, t) over the possible argument roles. We then optimize the
negative log-likelihood Lpred to train the model: L = − logP (y|D, a, t) where y
is the golden argument role for the input example. We call the proposed model
the Multi-hop Reasoning for Event Argument extractor with heterogeneous
Document structure types (MREAD) for convenience.

3 Experiments

Dataset & Parameters: We evaluate the document-level EAE models in this
work on RAMS, a recent dataset introduced in [3] for document-level EAE.
RAMS contains 9,124 annotated event mentions across 139 types for 65 argument
roles, serving as the largest available dataset for document-level EAE. We use
the official train/dev/test split and evaluation script for RAMS provided by
[3] to achieve a fair comparison. In addition, we evaluate the models on the
BNB dataset [4] for implicit semantic role labelling (iSRL), a closely related
task to document-level EAE where the models need to predict roles of argument
candidates for a given predicate (arguments and predicates can appear in different
sentences in iSRL). In our experiments, we use the version of BNB prepared by
[3] (with the same data split and pre-processing script) for a fair comparison.
This dataset annotates 2,603 argument mentions for a total of 12 argument roles
(for 1,247 predicates/triggers). We use the development set of the RAMS dataset
to fine-tune the hyper-parameters of the proposed model MREAD.
Results: We compare our model MREAD with two categories of baselines on
RAMS:

(1) Structure-free: These baselines do not exploit document structures for EAE.
In particular, we compare MREAD with the RAMSmodel model in [3] and the
Head-based model in [19]. Here, RAMSmodel currently has the state-of-the-art
(SOTA) performance for document-level EAE on RAMS.
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Model Standard Decoding Type Constrained
P R F1 P R F1

RAMS 62.8 74.9 68.3 78.1 69.2 73.3
Head-based 71.5 66.2 68.8 81.1 66.2 73.0
iDepNN 65.8 68.0 66.9 77.1 67.7 72.1
EoG 71.0 71.7 71.4 82.4 69.2 75.2
GCNN 72.2 72.8 72.5 85.1 69.4 76.5
LSR 72.6 73.6 73.1 83.9 71.4 77.2
MREAD (ours) 75.7 75.3 75.5 88.2 72.1 79.3

Table 1. Performance on the RAMS test set using BERT.

(2) Structure-based: These baselines employ some forms of document struc-
tures (mostly based on syntax and semantic information) to learn representation
vectors for input documents. Note that as none of the prior work has explored
document structure-based models for document-level EAE, we compare MREAD
with the existing document structure-based models for a related task of document-
level relation extraction (DRE) in IE. As such, the following SOTA models for
DRE are considered in this category: (i) iDepNN [5]; (ii) GCNN [14]: This
baseline generates document structures based on both syntax and discourse in-
formation (e.g., dependency trees, coreference links). Note that although GCNN
also considers more than one source of information for document structures as we
do, it fails to exploit semantic-based document structures (for both contextual
and knowledge-based semantics) and lacks effective mechanisms for structure
combination (i.e., not using GTN); (iii) LSR [10]; and (iv) EoG [2].

In addition to the standard decoding (i.e., using argmax with P (.|D, a, t)
to obtain the predicted roles), following [3], we also consider the decoding
setting where the models’ predictions are constrained to the permissible roles
for the event type e evoked by the trigger wt. Tables 1 and 2 show the the
models’ performance on the RAMS test set using BERT and GloVe embeddings,
respectively. There are several observations from these tables. First, the proposed
model MREAD significantly outperforms all the baselines in both the standard
and type constrained decoding regardless of the used embeddings (BERT or
GloVe). This consistent performance improvement is significant with p < 0.01 and
clearly demonstrates the effectiveness of MREAD for document-level EAE. Second,
except for iDepNN, all the structure-based models significantly outperform the
structure-free baselines. This finding is significant especially considering that
the structure-based models are not originally designed for document-level EAE,
thereby clearly showing the benefits of document structures for document-level
EAE. Finally, compared to GCNN and EoG that also consider multiple sources
of information as our model, MREAD achieves substantially better performance,
suggesting the advantages of contextual and knowledge-based structures along
with multi-hop heterogeneous reasoning in our EAE problem.

Finally, we evaluate the performance of MREAD on the BNB dataset for iSRL.
As we use the data version prepared by [3] that involves a different train/dev/test
split from the original BNB dataset in [4], we directly use the RAMSmodel model
in [3] as our baseline for a fair comparison. In addition, we report the performance
of the structure-based baselines (iDepNN, GCNN, LSR, and EoG) for a complete
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Model Standard Decoding Type Constrained
P R F1 P R F1

RAMS 66.3 69.8 68.0 77.4 68.8 72.9
Head-based 70.2 63.4 66.6 74.6 65.3 69.6
iDepNN 65.7 65.4 65.5 75.7 63.2 68.9
EoG 69.2 69.0 69.1 81.3 68.0 74.1
GCNN 71.1 70.9 71.0 83.7 68.1 75.1
LSR 72.5 72.0 72.2 82.9 70.3 76.1
MREAD (ours) 73.6 73.5 73.5 86.7 71.0 78.1

Table 2. Performance on the RAMS test set using GloVe.

view. Table 3 shows the performance of the models on the BNB test dataset
(using BERT embeddings). As can be seen, MREAD is also better than all the
baseline models substantially and significantly (p < 0.01), further confirming the
benefits of our proposed model in this work.

Model P R F1
RAMS - - 76.6
iDepNN 80.0 75.1 77.5
EoG 78.5 74.4 76.4
GCNN 81.0 73.9 77.3
LSR 80.3 74.1 77.1
MREAD (ours) 82.9 75.0 78.8

Table 3. Performance on the BNB test set for iSRL.

Ablation Study: Our proposed model combines different types of document
structures (i.e., six types in A) using GTN to enable multi-hop and heterogeneous
reasoning for document-level EAE. This section studies the contribution of the
proposed document structures and structure combination in MREAD by evaluat-
ing the performance of the ablated versions of the model on the development set
of the RAMS dataset. In particular, the following ablated models are examined:
(i) MREAD-Av: In this group of ablated models, we eliminate each of the doc-
ument structures in A from MREAD and evaluate the performance of the model
with the remaining structures (e.g., MREAD-Adep, MREAD-Asent, etc.), (ii)
MREAD-GTN: In this ablated model, the GTN architecture is excluded from
MREAD, so the GCN models are directly and separately applied to each docu-
ment structure in A. (iii) MREAD-Multi-hop: This ablated model is to show
the effectiveness of multi-hop heterogeneous reasoning/interaction for EAE. As
such, this model avoids the multiplication of the intermediate structures Qk

i in
each channel of GTN, and directly runs the GCN models over the intermediate
document structures Qk

i (i.e., the final structures Qk are not produced).

Table 4 presents the performance of the models on the RAMS development
set. As can be seen from the table, the removal of any document structures
in A would significantly hurt the performance of MREAD, thus confirming
the effectiveness of the introduced document structures for EAE. Also, the
significantly better performance of MREAD over MREAD-Multi-hop suggests
that the multiplication of the intermediate structures in the channels of GTN
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is helpful to generate richer structures for EAE (i.e., by enabling multi-hop
heterogeneous reasoning/interactions of words).

Model P R F1
MREAD 75.5 76.5 76.0

MREAD-Adef 73.5 74.9 74.2
MREAD-Acontext 72.7 73.5 73.1
MREAD-Agloss 74.6 73.4 74.0
MREAD-Astruct 74.1 74.3 74.2
MREAD-Asent 72.8 73.2 73.0
MREAD-Acoref 73.2 74.9 74.1
MREAD-GTN 72.1 73.7 72.9
MREAD-Multi-Hop 73.2 74.6 73.9

Table 4. Performance of the models on the RAMS development set using BERT
embeddings and standard decoding.

4 Related Work

Most of prior work on EE has focused on sentence-level EAE [9, 11, 12, 8, 7, 13].
Recently, some work has considered document-level EAE, featuring [3] as the
most related work to our problem. However, the model proposed by [3] (i.e.,
RAMSmodel) does not consider document structures to improve the performance
for document-level EAE as we do in this work. Our work is also related to
the recent document structure-based models for other NLP tasks [2, 15, 16].
However, compared to our proposed model, these prior works on document
structures fail to exploit external knowledge to generate the structures and do not
involve mechanisms to combine multiple structures for multi-hop heterogeneous
reasoning.

5 Conclusion

This work presents a novel deep learning model for document-level EAE. To facil-
itate the interaction of important context words in the documents for EAE, our
model leverages multiple sources of information, including the novel employment
of external knowledge bases, to generate document structures to provide effective
knowledge for representation learning in EAE. Also, for the first time in EAE,
graph transformer networks are employed to produce richer document structures.
The experiments confirm the benefits of the proposed model, yielding to SOTA
performance on benchamrk datasets.
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