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Abstract—Stackelberg Security Games (SSG) have been
widely applied for solving real-world security problems —
with a significant research emphasis on modeling attackers’
behaviors to handle their bounded rationality. However, access
to real-world data (used for learning an accurate behavioral
model) is often limited, leading to uncertainty in attacker’s
behaviors while modeling. This paper therefore focuses on
addressing behavioral uncertainty in SSG with the following
main contributions: 1) we present a new uncertainty game
model that integrates uncertainty intervals into a behavioral
model to capture behavioral uncertainty; and 2) based on
this game model, we propose a novel robust algorithm that
approximately computes the defender’s optimal strategy in the
worst-case scenario of uncertainty. We show that our algorithm
guarantees an additive bound on its solution quality.

I. INTRODUCTION

Real-world deployed applications of Stackelberg Security
Games [17], [16], [2], [9] have led to significant research
emphasis on modeling the attacker’s bounded rationality
[21], [15], [5]. One key assumption in behavioral modeling
is the availability of a significant amount of data to obtain an
accurate prediction. However, in real-world security domains
such as the wildlife protection, this assumption may be
inapplicable due to the limited access to real-world data [8],
leading to uncertainty in the attacker’s behaviors — a key
research challenge of security problems.

Recent research has focused on addressing the behavioral
uncertainty in modeling, following two different approaches:
1) one approach assumes a known distribution of multiple
attacker types, each follows a certain behavioral model, and
attempts to solve the resulting Bayesian games [20]; and 2)
another approach considers the existence of multiple attacker
types of which behavioral models are perfectly known, but
without a known distribution over the types. It then focuses
on addressing the worst attacker type for the defender [3].
These two approaches have several limitations. First, both
still require a sufficient amount of data to precisely esti-
mate either the distribution over attacker types (the former
approach) or the decision making for each individual type
(the latter approach). Second, solving the resulting Bayesian
games in the former case is computationally expensive.
Third, the latter approach tends to be overly conservative
as it only focuses on the worst case.

This paper is an extension of the work in [14] which
remedies these shortcomings of state-of-the-art approaches

when addressing behavioral uncertainty in SSG by providing
two key contributions. First, we present a new uncertainty
game model in which we consider a single behavioral model
to capture decision making of the whole attacker population
(instead of multiple behavioral models), while uncertainty
intervals are integrated with the chosen model to capture
behavioral uncertainty. The idea of uncertainty interval is
commonly used in literature [1] and has been shown to
effectively represent uncertainty in SSG [6], [13]. Second,
based on this game model, we propose a new efficient
robust algorithm, CUBIS (Competing Uncertainty in at-
tacker Behaviors using Interval-based maximin Solution),
that approximately computes the defender’s optimal strategy
which that robust to the uncertainty; we provide a bound
guarantee for CUBIS’s solution quality.

Overall, the resulting robust optimization problem for
computing the defender’s optimal strategy against the worst
case of behavioral uncertainty is a non-linear non-convex
fractional maximin problem. Our new CUBIS algorithm
efficiently solves this problem based on the following key
insights: 1) it converts the problem into a single maximiza-
tion problem via a non-linear conversion for fractional terms
and the dualty of the inner minimization in maximin; 2) a
binary search is then applied to simplify the resulting op-
timization problem; and 3) CUBIS explores extreme points
of the feasible solution region and use the piece-wise linear
approximation to convert the problem into a Mixed Integer
Linear Program (MILP). CUBIS provides an O(ε + 1

K )-
optimal solution where ε is the convergence threshold for
the binary search and K is the number of segments in the
piecewise linear approximation.

II. BACKGROUND AND RELATED WORK

Stackelberg security games (SSG). As defined in [14],
SSG refer to a class of defender-attacker games in which the
defender attempts to optimally allocate her limited security
resources to protect a set of T targets from being attacked by
the attacker. The key assumption of SSG is that the defender
has to commit to a (mixed) strategy first and the attacker
can observe that strategy and then attack one of the targets
[4], [7], [18]. Suppose that the defender has R resources
(R � T ) and x = {xi} is a defender’s mixed strategy
where xi is the defender’s coverage probability at target i,
the defender’s feasible strategy set is defined as follows:



X = {x : 0 ≤ xi ≤ 1,
∑
i xi = R}. Suppose that the

attacker attacks target i, he will obtain a reward Rai if the
defender is not protecting that target, otherwise he will get
a penalty P ai . Conversely, the defender receives a penalty
P di in the former case while she obtains a reward Rdi in the
latter case. The expected utility for the two players at target
i can be computed as follows:

Udi (xi) = xiR
d
i + (1− xi)P di (1)

Uai (xi) = xiP
a
i + (1− xi)Rai (2)

Adversarial behavioral models. Recent research in SSG
has focused on modeling the attacker’s bounded rationality
and computing the defender’s optimal strategy, assuming
the attacker’s response follows the given behavioral model.
One leading class of behavioral models is Quantal Response
(QR) [10], [11], [12]. The SUQR model builds on QR by
integrating a subjective utility (Equation 3) into QR, which
was shown to provide a better prediction accuracy than QR
[15].

Ûai (xi) = w1xi + w2R
a
i + w3P

a
i (3)

where (w1, w2, w3) are key parameters indicating the im-
portance of corresponding features for the attacker.

In modeling the attacker’s decision making, we consider
a general discrete choice model of QR to capture behaviors
of the attacker [19] in which the probability that the attacker
chooses target i, qi(x), is predicted as follows:

qi(xi) =
Fi(xi)∑
j Fj(xj)

(4)

where Fi(xi) : [0, 1]→ R∗ is a positive and monotonically
decreasing function of xi at target i, which refers to the
attacker’s utility at that target. For example, SUQR is a
special case of (4) in which Fi(xi) = eÛ

a
i (xi).

Behavioral uncertainty. Previous work has proposed dif-
ferent methods to handle the behavioral uncertainty. One
method follows a Bayesian-based approach which assumes
a known distribution of multiple SUQR-followed attackers
[20]. Yet, this method requires a significant amount of data
to precisely estimate a Bayesian distribution. Furthermore,
there does not exist an efficient algorithm to solve the
resulting complicated Bayesian games. The second method,
on the other hand, considers a robust-based approach which
assumes the existence of multiple SUQR-followed attackers
without a known distribution and then attempts to address
the worst attacker type [3]. This method has two disadvan-
tages: 1) it requires a precise prediction of behaviors for each
individual attacker type; and 2) it is overly conservative as it
does not consider the fact that all these attacker types exist
simultaneously.

Here, we consider a single behavioral model for the whole
attacker population and present a new game model that inte-
grates uncertainty intervals into the chosen model, allowing
a flexible game representation that captures the behavioral

Table I
A 2-TARGET, 1-RESOURCE GAME.

Targets Att. reward Att. penalty
1 [1, 5] [-7, -3]
2 [5, 9] [-9, -5]

uncertainty. Based on that, we present a new efficient robust
algorithm that computes the defender’s optimal strategy.

III. BEHAVIORAL ROBUST PROBLEM

In this work, we consider a general model of QR (Equa-
tion 4) to reason about the attacker’s decision making.
However, due to the behavioral uncertainty, we assume that
the value of Fi(xi) in (4) is not perfectly known given xi.
Instead, Fi(xi) has known lower and upper bounds,

Li(xi) ≤ Fi(xi) ≤ Ui(xi)

where Li(xi), Ui(xi) : [0, 1] → R∗ are positive functions
of the defender coverage at target i. Denote by I(xi) =
[Li(xi), Ui(xi)] the uncertainty interval, the interval size
indicates the uncertainty level when modeling, which could
be specified based on the available data for learning. We aim
at computing the defender’s optimal strategy by maximizing
her utility under the worst case resulting from the behavioral
uncertainty. The corresponding robust optimization problem
is represented as follows:

max
x∈X

min
Fi(xi)∈I(xi),∀i

∑
i
qi(xi)U

d
i (xi) (5)

For example, in a 2-target game as shown in Table I,
each target is associated with uncertainty intervals of the
attacker’s payoffs. For example, if the attacker successfully
attacks target 1, he receives a reward which belongs to
[2, 3]. Conversely, if he gets caught by the defender at that
target, the attacker will get a penalty which lies within
[−2, 0]. Furthermore, parameters for behavioral models of
the attacker, i.e., SUQR, are often difficult to precisely
estimate due to lack of data. Then the defender can only
determine the lower bounds and upper bounds of these
parameters. For example, values of (w1, w2, w3) belong to
[−6.0,−2.0], [0.5, 1.0], and [0.4, 0.9] respectively.

As a result of uncertainties, the defender can only predict
that the value of F1(x1) at target 1 where x1 = 0.3 has lower
bound L1(x1) = e−6.0×0.3+0.5×1+0.4×(−7) = e−4.1 and
upper bound U1(x1) = e−2.0×0.3+1.0×5+0.9×(−3) = e1.7.
Similarly, only lower bound L2(x2) and upper bound U2(x2)
for F2(x2) at target 2 are known. If the defender simply
uses the mid points of the uncertainty intervals to compute
the optimal strategy for the defender which is (0.34, 0.66),
she will receive a utility of −2.26 in the worse case of
uncertainty. On the other hand, if the defender plays the
robust optimal strategy based on (5) which is (0.46, 0.54),
she obtains a utility of −0.90 in the worst-case scenario,
which is significantly higher than the former case.



Now, we will introduce our new algorithm to solve the
behavioral robust problem represented in (5). Overall, the
problem (5) is a non-convex fractional and 2-layer opti-
mization problem (its objective is non-convex fractional)
which is not straightforward to solve. In this paper, we
present our novel algorithm, CUBIS, which efficiently solves
the maximin problem (5) with a bound guarantee on its
approximate solution.

IV. THE CUBIS ALGORITHM

In short, there are three key ideas in CUBIS: 1) convert
(5) into a single maximization problem via a non-linear
conversion for fractional terms and dualty of the inner
minimization in (5); 2) apply a binary search to simplify
the resulting optimization problem; and 3) explore extreme
points of the feasible solution region and use piece-wise
linear approximation to convert the resulting feasibility
problem at each binary step into a MILP.

A. Convert to a Single Maximization Problem

As a first step, CUBIS attempts to convert (5) into a
single maximization problem. Given a defender strategy x,
the objective of (5) remains a non-linear fractional function
of Fi(xi), thus making the inner minimization problem in
(5) non-linear and fractional. CUBIS first tries to convert
the inner minimization problem of (5) into a linear mini-
mization problem through a non-linear variable conversion.
In particular, it introduces the following new variables:
yi = qi(xi) =

Fi(xi)∑
j Fj(xj)

which is the attacking probability

at target i and z = 1∑
j Fj(xj)

which is the normalization
term in the attacking probabilities. By replacing Fi(xi) with
the new variables and denote by y = {yi}, CUBIS can
represent the inner minimization of (5) as the following
linear minimization problem of the new variables y and z:

miny,z
∑

i
yiU

d
i (xi) (6)

s.t.
∑

i
yi = 1 (7)

Li(xi)z ≤ yi ≤ Ui(xi)z,∀i. (8)

where constraint (7) ensures the condition on the attacking
probability distribution that

∑
i qi(xi) = 1 holds. In addi-

tion, constraint (8) is equivalent to the condition on the lower
and upper bound of Fi(xi) that Fi(xi) ∈ [Li(xi), Ui(xi)].

As (6 – 8) is a linear minimization problem of y and z, its
optimal solution is equivalent to the optimal solution of its
duality which is the following linear maximization problem:

max
{αi},{βi},η

η (9)

s.t. Udi (xi)− αi + βi − η = 0 (10)∑
i
Li(xi)αi −

∑
i
Ui(xi)βi = 0 (11)

αi, βi ≥ 0,∀i. (12)

where {αi}, {βi}, η are dual variables corresponding to the
lower bound constraint on the attacker utility Fi(xi) ≥
Li(xi) (LHS inequality of (8)), the upper bound constraint
Fi(xi) ≤ Ui(xi) (RHS inequality of (8)), and attacking
probability constraint (7) respectively. CUBIS then takes a
further step to simplify the problem (9 – 12) via reducing the
number of variables by replacing αi and η with the following
equations:

αi = Udi (xi) + βi − η (13)

η =

∑
i Li(xi)U

d
i (xi)−

∑
i [Ui(xi)− Li(xi)]βi∑

i Li(xi)
(14)

where (13) is obtained based on the constraint (10) and
(14) results from replacing αi with (13) to the constraint
(11). Finally, after replacing αi and η with (13) and (14),
CUBIS merges (9 – 12) with the outer maximization of (5)
to induce the final single maximization problem (15 – 17)
which consists of only two variables: the defender’s strategy
x and the dual variable β of the upper bound constraint on
the attacker utility, Fi(xi) ≤ Ui(xi), ∀i.

maxx,βH(x,β) (15)

s.t. Udi (xi) + βi −H(x,β) ≥ 0,∀i (16)
x ∈ X, βi ≥ 0,∀i. (17)

where H(x,β) is the RHS of Equation (14) which is a
non-convex fractional function of x and β = {βi}. In fact,
H(x,β) is the defender’s utility for playing x in the worst
case of uncertainty. In addition, constraint (16) is equivalent
to the constraint αi ≥ 0 in (12). Although the maximin prob-
lem (5) is now transformed into a maximization problem (15
– 17), this optimization problem remains non-convex. We
can use any non-convex solver, e.g., Fmincon of MATLAB
to solve (15 – 17) with multiple starting points. However,
using such non-convex solver is time-consuming.

To solve (15 – 17) efficiently, CUBIS first tries to simplify
(15 – 17) by applying a binary search and then apply
piecewise linear approximation to linearize the resulting
feasibility problem at each binary search step.

B. Binary Search to Remove Fractional Terms

The idea of applying binary search to remove fractional
terms is commonly used in security optimization with QR-
based adversary behavioral models [21], [3]. However, in
these optimization problems, only either objectives or con-
straints are fractional. Yet, in our modeling robust problem
(15 – 17), both the objective and constraints are fractional
(the function H(x,β) is fractional). Therefore, it is im-
possible to remove fractional terms by directly checking
value range feasibility at each binary search step as done
in previous work, i.e., given a value of defender utility c,
checking if there exist (x,β) such that the utility of the
defender H(x,β) ≥ c and simultaneously constraints (15 –
16) are satisfied. Here, in each binary search step, given a



value c, CUBIS instead considers the following value point
feasibility problem (P1) which can be easily converted into a
non-fractional feasibility problem (as explained later). The
result of (P1) then can be used to solve the value range
feasibility problem of binary search based on Proposition 1.

Problem 1. (P1) Given a value c, ∃x ∈ X and β ≥ 0 such
that H(x,β) = c and Udi (xi) + βi ≥ c,∀i?

Given this value point feasibility problem (P1), CUBIS now
can determine the value range feasibility at each binary
search step based on the following proposition:

Proposition 1. If (P1) is infeasible for a given value c0,
then (P1) is infeasible for all value c ≥ c0.

Proof: We denote by S(c) = {(x,β) : Udi (xi) + βi ≥
c,∀i}. We observe that inf(x,β)∈S(c)H(x,β) = −∞ for
any given value of c (by taking βi to +∞, ∀i). Therefore,
if the problem (P1) is infeasible for c0, it means that for
all values of (x,β) ∈ S(c0), the value of H(x,β) must be
less than c0. Otherwise, if H(x,β) > c0 for some value of
(x,β) ∈ S(c0), since H(x,β) is continuous over the set
S(c0), the value range of H(x,β) will consist of the range
(−∞, c0]. Therefore, there must exist (x,β) ∈ S(c0) such
that H(x,β) = c0, meaning that (P1) is feasible.

Now given that (P1) is infeasible for c0, it means that
H(x,β) < c0 for all (x,β) ∈ S(c0) as explained before.
Let’s consider a value c > c0, we have S(c) ⊆ S(c0).
Thus, since H(x,β) < c0 < c for all (x,β) ∈ S(c0), then
H(x,β) < c for all (x,β) ∈ S(c) which means that (P1)
is also infeasible for c.

Based on Proposition 1, CUBIS provides the binary search
method that iteratively searches over the defender’s utility
space to find the optimal solution of (15 – 17). At each
binary step, CUBIS attempts to solve the feasibility problem
(P1) that can be transformed to the following feasibility
problem which has only non-fractional terms:

Problem 2. (Reformulation of (P1)) Given a value c, ∃x ∈
X,β ≥ 0 such that G(x,β) = 0 and Udi (xi) + βi ≥ c, ∀i?

Here, the non-convex non-fractional function G(x,β) is
the enumerator of the fractional function H(x,β)−c which
is formulated as the follows:

G(x,β) =
∑

i
Li(xi)U

d
i (xi)−

∑
i
[Ui(xi)− Li(xi)]βi

− c[
∑

i
Li(xi)] (18)

In order to solve this feasibility problem (P1), CUBIS con-
siders the following optimization problem of which optimal
solution can be used to determine the feasibility of (P1)
according to Proposition 2:

maxx,βG(x,β) (19)

s.t. Udi (xi) + βi ≥ c,∀i (20)
x ∈ X, βi ≥ 0,∀i. (21)

Proposition 2. Denote by (x∗,β∗) the optimal solution of
(19 – 21), if G(x∗,β∗) < 0, then the problem (P1) is
infeasible. Otherwise, if G(x∗,β∗) ≥ 0, there exists β such
that (x∗,β) is a feasible solution of (P1).

Proof: Denote by S(c) = {(x,β) : Udi (xi) + βi ≥
c,∀i,x ∈ X,β ≥ 0} the set of feasible solutions for (19
– 21). If the optimal solution G(x∗,β∗) < 0, it means
that G(x,β) < 0 for all (x,β) ∈ S(c) and thus (P1) is
infeasible.

Conversely, let’s suppose that the optimal objective value
G(x∗,β∗) > 0. Since inf(x∗,β)∈S(c)G(x

∗,β) = −∞ (when
β goes to +∞) and G(x∗,β) is continuous, the feasible
value range of G(x∗,β) is (−∞, G(x∗,β∗)] which contains
0. Hence, there exists (x∗,β) ∈ S(c) such that G(x∗,β) =
0, meaning that (P1) is feasible.

According to Proposition 2, the feasibility of P1 can
be determined via solving the optimization problem (19 –
21). However, the objective function, G(x,β), of (19 – 21)
remains non-linear non-convex and thus, (19 – 21) is still
difficult to solve. CUBIS then attempts to linearize non-
linear non-convex terms of this optimization problem by
applying piecewise linear approximation.

C. Piecewise Linear Approximation

In general, in order to apply piecewise linear approxi-
mation for a non-linear multivariate function f(y) of the
variable vector y, it is essential that f(y) is separable,
meaning that it can be represented as a sum of terms
which are univariate functions of individual scalar variables,
i.e., f(y) =

∑
i fi(yi). In previous work on QR-based

security problems, it is straightforward to apply piecewise
linear approximation for these problems since all related
functions are separable [21], [3]. However, in (19 – 21),
the current form of the objective G(x,β) has the term∑
i [Ui(xi)− Li(xi)]βi which is not separable between xi

and βi. Thus, to overcome this issue, CUBIS attempts to
explore the extreme points of the feasible solution space of
βi (Proposition 3) and then convert G(x,β) into a separable
form through a variable conversion (as explain next).

Proposition 3. If (x∗,β∗) is an optimal solution of (19 –
21), then β∗i = max{0, c− Udi (x∗i )},∀i.

Proof: According to the constraints (20 – 21), for any
x ∈ X, (x,β) is a feasible solution of the problem (19
– 21) if and only if βi ≥ max{0, c − Udi (x)},∀i. On
the other hand, as Ui(xi)−Li(xi) ≥ 0,∀i, the objective
function G(x,β) is a monotonically decreasing in βi for all
i. Therefore, G(x,β) is maximized when βi is minimized
for all i. Thus, if (x∗,β∗) is an optimal solution, then
β∗i =max{0, c− Udi (x∗i )},∀i.

Based on this proposition, CUBIS replaces β with βi =
max{0, c− Udi (xi)},∀i. CUBIS then substitutes each non-
separable term in G(x,β), i.e., [Ui(xi) − Li(xi)]βi by a



new variable vi = [Ui(xi) − Li(xi)]βi of which values are
determined by the following mixed integer linear constraints:

0 ≤ vi ≤Mqi (22)

[c− Udi (xi)][Ui(xi)− Li(xi)] ≤ vi (23)

vi ≤ [c− Udi (xi)][Ui(xi)− Li(xi)] +M(1− qi) (24)

where M is a sufficient large positive constant to ensure
that the RHS of constraint (22) and constraint (24) are
effective only when qi = 0 and qi = 1 respectively. In
addition, qi is an integer variable which indicates whether
vi = 0 (qi = 0) or vi = [Ui(xi) − Li(xi)][c − Udi (xi)]
(qi = 1). In other words, these constraints ensure that
βi = max{0, c − Udi (xi)},∀i as following Proposition
3. In particular, constraints (22–23) guarantee that vi ≥
max{0, [c−Udi (xi)][Ui(xi)−Li(xi)]} which is equivalent to
βi ≥ max{0, c−Udi (xi)}. When qi = 1, constraints (23–24)
enforce that vi = [c− Udi (xi)][Ui(xi)− Li(xi)], indicating
that βi = c − Udi (xi). Conversely, when qi = 0, constraint
(22) guarantees that vi = 0 (or βi = 0).

We denote by f1i (xi) = Li(xi)[U
d
i (xi)−c] and f2i (xi) =

Ui(xi)[U
d
i (xi)−c] for the sake of simplifying the description

of the piecewise linear approximation later. These two func-
tions are non-convex. The objective of (19 – 21), G(x,β),
now can be formulated as follows which only consists of
separable terms w.r.t variables xi and vi:

G(x,β) =
∑

i
f1i (xi)−

∑
i
vi (25)

As a result, the optimization problem (19 – 21) can be
reformulated as the following mixed integer non-linear pro-
gramming where all terms are separable w.r.t x and v:

maxx,v,qi
∑

i
f1i (xi)−

∑
i
vi (26)

s.t. 0 ≤ vi ≤Mqi,∀i (27)

f1i (xi)− f2i (xi) ≤ vi,∀i (28)

vi ≤ f1i (xi)− f2i (xi) +M(1− qi),∀i (29)
x ∈ X, qi ∈ {0, 1},∀i. (30)

where constraints (27 – 29) are equivalent to constraints
(22 – 24) respectively. In (26 – 30), the functions f1i (xi)
and f2i (xi) are non-linear in xi for all target i. Therefore,
CUBIS then applies piecewise linear approximations for
these two functions. Overall, the feasible region of the
defender’s coverage xi for all target i, [0, 1], is divided
into K equal segments

{[
0, 1

K

]
,
[
1
K ,

2
K

]
, . . . ,

[
K−1
K , 1

]}
where K is given. The values of f1i (xi) are then approx-
imated by using the segments connecting pairs of points(
k−1
K , f1i

(
k−1
K

))
and

(
k
K , f

1
i

(
k
K

))
for all k = 1 . . .K.

Specifically, f1i (xi) is approximated as the follows:

f1i (xi) ≈ f1i (0) +
∑K

k=1
s1kxik (31)

where s1k are the slopes of the kth segment for f1i (xi)
which can be determined based on the two end points of the

segment, i.e., s1k = K ×
[
f1i
(
k
K

)
− f1i

(
k−1
K

)]
. In addition,

xi,k refers to the portion of the defender’s coverage, xi, at
target i that belongs to the kth segment. In other words,
xi =

∑
k xi,k. Here, xi,k = 1

K if xi ≥ k
K or xi,k = 0 if

xi <
k−1
K ; otherwise, xi,k = k

K − xi.

Example 1. Suppose that the number of segments, K =
5, and the defender’s coverage at target i, xi = 0.3, as
1
5 < xi <

2
5 , we obtain xi,1 = 1

5 , xi,2 = 0.1, and xi,3 =
xi,4 = xi,5 = 0. Then f1i (xi) can be piecewise-linearly
approximated as f1i (xi) ≈ f1i (0)+ 5×

[
f1i
(
1
5

)
− f1i (0)

]
×

1
5 + 5×

[
f1i
(

2
K

)
− f1i

(
1
K

)]
× 0.1.

Similarly, we also obtain the following piecewise-linearly
approximation of f2i (xi):

f2i (xi) ≈ f2i (0) +
∑K

k=1
s2kxik (32)

where s2k are the slopes of the kth segments for f2i (xi). As
a result, we obtain the final MILP representation for (19 –
21) as shown in (33 – 40) which can be solved by CPLEX.

max
x,v,q,h

∑
i

f1i (0) +

K∑
k=1

s1kxi,k −
∑
i

vi (33)

s.t. 0 ≤ vi ≤Mqi,∀i (34)[
f1i (0) +

K∑
k=1

s1kxi,k

]
−

[
f2i (0) +

K∑
k=1

s2kxi,k

]
≤ vi,∀i

(35)

vi≤

[
f1i (0)+

K∑
k=1

s1kxi,k

]
−

[
f2i (0)+

K∑
k=1

s2kxi,k

]
+M(1−qi),∀i

(36)∑
i,k
xi,k ≤ R, 0 ≤ xi,k ≤

1

K
,∀i, k = 1 . . .K (37)

hi,k
1

K
≤ xi,k,∀i, k = 1 . . .K − 1 (38)

xi,k+1 ≤ hi,k,∀i, k = 1 . . .K − 1 (39)
qi ∈ {0, 1}, hi,k ∈ {0, 1},∀i, k = 1 . . .K − 1. (40)

where constraints (34 – 36) are equivalent to constraints
(27 – 29) when f1(xi) and f2(xi) are replaced by its
approximations. In addition, constraints (37 – 40) ensures
that the segmentation is valid. In particular, hi,k is an
auxiliary integer variable which indicates whether xi,k = 1

K
(when hi,k = 1) or xi,k+1 = 0 (when hi,k = 0).

D. Bound on Solution Quality

In providing a bound on solution quality of CUBIS, we
consider the case where the lower and upper bound functions
Li(xi) and Ui(xi) are differentiable. We denote by H(x,β)
the resulting piecewise approximation of H(x,β). Also, lb
and ub are the final upper bound and lower bound of the
binary search in CUBIS, i.e., ub− lb < ε. We first provide
an error bound of the piecewise linear approximation for the
defender utility H(x,β) in (15 – 17).



Lemma 1. Given that βi is determined as max{0, c −
Udi (xi)} for all i and for any utility value c ∈
[mini P

d
i ,maxiR

d
i ] (Proposition 3), the error bound for the

approximation,
∣∣H(x,β)−H(x,β)

∣∣, is O
(

1
K

)
.

Proof: In general, as βi is determined as max{0, c −
Udi (xi)} for all target i, the objective function H(x,β)

has the form H(x,β) = N(x)
D(x) . Similarly, the approximate

function H(x,β) has the form H(x,β) = N(x)

D(x)
where

N(x) and D(x) are piecewise linear approximations of the
enumerator N(x) and the denominator D(x) respectively.
The error bound is computed as the following:

∣∣H(x,β)−H(x,β)
∣∣ = ∣∣∣∣N(x)

D(x)
−N(x)

D(x)

∣∣∣∣
=

∣∣∣∣N(x)−N(x)

D(x)
+N(x)

[
1

D(x)
− 1

D(x)

]∣∣∣∣
≤
∣∣N(x)−N(x)

∣∣ 1

|D(x)|
+
∣∣D(x)−D(x)

∣∣ ∣∣N(x)
∣∣

|D(x)|
∣∣D(x)

∣∣
(41)

As N(x) and D(x) are continuous functions over the

compact set X, the two terms 1
|D(x)| and |N(x)|

|D(x)||D(x)| are

bounded for all c ∈ [mini P
d
i ,maxiR

d
i ]. Thus, there exist

constants C1, C2 ≥ 0 such that the following inequality
holds true:∣∣H(x,β)−H(x,β)

∣∣≤C1
∣∣N(x)−N(x)

∣∣+C2
∣∣D(x)−D(x)

∣∣
(42)

On the other hand, the error for piecewise linearly approxi-
mating D(x) satisfies:∣∣D(x)−D(x)

∣∣= ∣∣∣∑
i
Li(xi)− Li(xi)

∣∣∣
≤
∑

i

∣∣Li(xi)−Li(xi)∣∣ (43)

In addition, suppose that xi ∈
[
k−1
K , kK

]
for some 1 ≤ k ≤

K, according to the approximation, the following condition
holds:

min

{
Li

(
k − 1

K

)
, Li

(
k

K

)}
≤ Li(xi)

≤ max

{
Li

(
k − 1

K

)
, Li

(
k

K

)}
(44)

According to (44) and since Li(xi) is a continuous func-
tion, there exists x̂i ∈

[
k−1
K , kK

]
such that the value of

Li(xi) at x̂i is equal to the value of its approximation
at xi, i.e., Li(x̂i) = Li(xi). As a result, we obtain∣∣Li(xi)− Li(xi)∣∣ = |Li(xi)− Li(x̂i)|. On the other hand,
according to the Lagrange mean value theorem, there exists
a ∈ [min{xi, x̂i},max{xi, x̂i}] such that the derivative at a

satisfies the following equality:

L′i(a) =
Li(xi)− Li(x̂i)

xi − x̂i
(45)

Thus, we obtain the following inequality:

|Li(xi)−Li(xi)|= |Li(xi)−Li(x̂i)|

= |L′i(a)| |xi − x̂i|≤
1

K
max
xi∈[0,1]

|L′i(xi)| (46)

As a result, denote by Ci = maxxi∈[0,1] |L′i(xi)| the max-
imum derivative value of Li(xi) over the range [0, 1], by
combining (43) and (46), we obtain an upper bound on the
error for approximating D(x) as the follows:∣∣D(x)−D(x)

∣∣ ≤ 1

K

∑
i
Ci = O

(
1

K

)
(47)

Similarly, we also have
∣∣N(x)−N(x)

∣∣ to be bounded by
O
(

1
K

)
for any value c ∈ [mini P

d
i ,maxiR

d
i ].

Finally, according to (41) and the error bounds O
(

1
K

)
for two terms

∣∣Li(xi)−Li(xi)∣∣ and
∣∣N(x)−N(x)

∣∣, the
error bound for the approximation,

∣∣H(x,β)−H(x,β)
∣∣,

is O
(

1
K

)
.

The proof of Lemma 1 is described in Online Appendix A.
Lemma 1 implies that when the number of segments, K, in
piecewise linear approximation increases, the approximation
error of H(x,β) decreases and it converges to zero when
K → +∞. Based on this lemma, we present the following
two lemmas which in turn provide a lower bound for the
approximated solution provided by CUBIS and an upper
bound for the exact optimal solution of (15 – 17).

Lemma 2. Suppose that (x∗,β
∗
) is the optimal solution of

CUBIS and Hβ(x
∗) is the defender’s worst-case utility w.r.t

x∗, then Hβ(x
∗) has a lower bound of lb+O

(
1
K

)
.

Proof: Denote by S(x, c) = {β ≥ 0 : Udi (xi) + βi ≥
c,∀i}, then S(x, H(x,β)) is the set of feasible values of β
for (15 – 17) given x. The defender utility for playing the
strategy x∗ in the worst case of uncertainty is computed by
solving (15 – 17) given the defender’s strategy x = x∗:

Hβ(x
∗) = max

β∈S(x∗,H(x∗,β))
H(x∗,β)

We consider the following two cases:
If H(x∗,β) ≥ lb for some β ∈ S(x∗, lb), since
inf

β∈S(x∗,lb)
H(x∗,β) = −∞ and H(x∗,β) is continuous,

the value range of H(x∗,β) covers the range [−∞, lb].
Therefore, there exists β′ ∈ S(x∗, lb) such that H(x∗,β′) =
lb, hence this value of β′ also belongs to the set
S(x∗, H(x∗,β′)). We obtain Hβ(x

∗) ≥ H(x∗,β′) = lb.
Conversely, we suppose that H(x∗,β) < lb for all

β ∈ S(x∗, lb). As (x∗,β
∗
) and lb is in turn the final solution

and final lower bound in the binary search of CUBIS, the
following condition holds: Udi (x

∗
i ) + β

∗
i ≥ lb,∀i (due to

the feasibility of (P1)). This indicates that β
∗ ∈ S(x∗, lb).



Since H(x∗,β) < lb for all β ∈ S(x∗, lb) and the
fact that β

∗ ∈ S(x∗, lb), we obtain the condition for the
objective H(x∗,β

∗
) < lb ≤ Udi (x

∗
i ) + β

∗
i ,∀i. Therefore,

(x∗,β
∗
) is a feasible solution of (15 – 17) and thus

Hβ(x
∗) ≥ H(x∗,β

∗
). Finally, by using the Lemma 1 and

the fact that H(x∗,β
∗
) ≥ lb (due to the feasibility of

(P1)), we obtain a lower bound on Hβ(x
∗) ≥ H(x∗,β

∗
) =

H(x∗,β
∗
)−H(x∗,β

∗
) +H(x∗,β

∗
) ≥ lb+O

(
1
K

)
.

Lemma 2 shows that CUBIS provides an approximated
solution for (15 – 17) which has a lower bound of lb+O

(
1
K

)
where lb is the final lower bound of CUBIS’s binary search.

Lemma 3. Suppose that (x∗,β∗) is the ε-optimal solution of
(15 – 17) which is obtained by following CUBIS ’s procedure
but without the piecewise linear approximation step. Then
H(x∗,β∗) has an upper bound of ub+O

(
1
K

)
.

Proof: If H(x∗,β∗) ≤ ub, obviously, the statement
is true. Otherwise, if H(x∗,β∗) > ub, this indicates that
Udi (x

∗
i ) + β∗i ≥ ub for all i (due to the constraint (16)).

Since ub is the final upper bound of CUBIS, the problem
(P1) is infeasible for c = ub, meaning that H(x,β) ≤ ub
for all (x,β) that satisfy the constraints Udi (xi) + βi ≥
ub,∀i. Therefore, we have: H(x∗,β∗) ≤ ub. Finally, based
on Lemma 1, we obtain the upper bound on H(x∗,β∗) =
H(x∗,β∗)−H(x∗,β∗)+H(x∗,β∗) ≤ ub+O( 1

K ).
Finally, based on Lemmas 2 and 3, we obtain the

following theorem which provides a bound on CUBIS’s
approximated solution of computing the defender’s optimal
strategy against the worst case of uncertainty in (5).

Theorem 1. CUBIS provides an O
(
ε+ 1

K

)
-optimal solu-

tion of the maximin problem (5).

Proof: By combining Lemma 2 and 3 and the
fact that |ub − lb| ≤ ε, we obtain the difference,
|H(x∗,β∗)−Hβ(x

∗)|, to be bounded by O(ε+ 1
K ). Since

Hβ(x
∗) is CUBIS’s solution and H(x∗,β∗) is the ε-optimal

solution of (15 – 17), CUBIS provides an O
(
ε+ 1

K

)
-

optimal solution of (15 – 17) which is equivalent to the
maximin problem (5).

V. SUMMARY

In summary, modeling the attacker’s behavior is critical
in security games in order to generating effective patrolling
strategies for the defender. However, access to real-world
data (used for learning an accurate behavioral model) is
often limited, leading to uncertainty in attacker’s behaviors
while modeling. In this paper, we attempt to address the
uncertainty in behavioral modeling of the attacker while
providing the following key contributions: (i) we present a
new uncertainty game model in which we consider a single
behavioral model to capture decision making of the whole
attacker population (instead of multiple behavioral models),
while uncertainty intervals are integrated with the chosen
model to capture behavioral uncertainty; and (ii) based on

this game model, we propose a new efficient robust algo-
rithm, CUBIS, that approximately computes the defender’s
optimal strategy which is robust to the uncertainty. We
show that CUBIS provides an O(ε + 1

K )-optimal solution
where ε is the convergence threshold for the binary search
and K is the number of segments in the piecewise linear
approximation.
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