
Multi-Stage A�ack Graph Security Games: Heuristic Strategies,
with Empirical Game-Theoretic Analysis

�anh H. Nguyen, Mason Wright, Michael P. Wellman, Satinder Singh
University of Michigan, Ann Arbor

{thanhhng,masondw,wellman,baveja}@umich.edu

ABSTRACT
We study the problem of allocating limited security countermea-
sures to protect network data from cyber-a�acks, for scenarios
modeled by Bayesian a�ack graphs. We consider multi-stage in-
teractions between a network administrator and cybercriminals,
formulated as a security game. �is formulation is capable of rep-
resenting security environments with signi�cant dynamics and
uncertainty, and very large strategy spaces. For the game model,
we propose parameterized heuristic strategies for both players. Our
heuristics exploit the topological structure of the a�ack graphs and
employ di�erent sampling methodologies to overcome the com-
putational complexity in determining players’ actions. Given the
complexity of the game, we employ a simulation-based methodol-
ogy, and perform empirical game analysis over an enumerated set
of these heuristic strategies. Finally, we conduct experiments based
on a variety of game se�ings to demonstrate the advantages of our
heuristics in obtaining e�ective defense strategies which are robust
to the uncertainty of the security environment.
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1 INTRODUCTION
Cyber-a�acks on computer networks are a critical threat which has
been rapidly increasing and becoming more sophisticated. Accord-
ing to the U.S. Government Accountability O�ce’s survey of 24
federal agencies, the number of cyber-a�ack incidents rose thirteen-
fold from about 5,500 in 2006 to over 75,000 in 2015 [19]. �ese
a�acks can lead to serious economic and security consequences
such as sensitive data loss and disruption of services provided by
critical infrastructure. Various solutions for enhancing network se-
curity have been provided such as deploying �rewalls, �nding and
patching vulnerabilities, and detecting and preventing intrusions
[2, 21, 23].

A�ack graphs are a graphical model form, employed as a tool
in cybersecurity research to hierarchically decompose complex se-
curity scenarios into simple and quanti�able actions [3, 4, 12, 17].
Many research e�orts have used a�ack graphs or related forms
of graphical security models to analyze di�erent complex security
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scenarios [12]. In particular, a�ack graph models have been used
as a tool for evaluating network hardening strategies, in which a
network administrator (the defender) deploys security countermea-
sures to protect network data from cybercriminals (the a�acker)
[1, 5–7, 11, 15, 16, 25].

A�ack graphs are particularly suitable for modeling scenarios
in moving target defense (MTD) [10], where the defender employs
proactive tactics to dynamically change network con�gurations
to limit the exposure of vulnerabilities. �e advantages of MTD
techniques are most salient for thwarting progressive a�acks [8, 24],
as recon�guration prevents the a�acker from exploiting knowledge
accumulated over time. A�ack graphs naturally represent progress
of an a�ack, and the defense actions in our model, here de�ned
abstractly, may incorporate MTD methods or other measures.

We build on prior work representing a variety of security prob-
lems with a�ack graphs, and take a game-theoretic approach to
reason about the strategic interaction between the defender and the
a�acker. Building on an existing Bayesian a�ack graph formalism
[15, 18], we model the problem as a simultaneous multi-stage a�ack-
graph security game. Nodes in a Bayesian a�ack graph represent
security conditions of the network system. For example, an SSH
bu�er over�ow vulnerability in an FTP server can be considered a
security condition, as could user privileges achieved as a result of
exploiting that vulnerability. �e defender a�empts to protect a set
of goal nodes (critical security conditions) in the a�ack graph. Con-
versely, the a�acker, starting from some initial security conditions,
follows paths through the graph to undermine these goal nodes. At
every time step, both the defender and the a�acker simultaneously
take actions. Given limited security resources, the defender has
to decide for which nodes of the a�ack graph to deploy security
countermeasures. Meanwhile, the a�acker selects nodes to a�ack
in order to progress toward the goals. �e outcome of the players’
actions (whether the a�acker succeeds) follows a stochastic process,
which represents the success probability of the actions taken. �ese
outcomes are only imperfectly observed by the defender, adding
further uncertainty which must be taken account in its strategic
reasoning.

Based on our game model, we propose di�erent parameterized
strategies for both players. At each time step, our a�ack strategies
assess the value of each possible a�ack action, by examining possi-
ble a�ack paths. �ese paths are sequences of nodes which could
feasibly be a�acked in future time steps (as a result of a�ack actions
in the current time step) in order to reach goal nodes. Since there
are exponentially many possible a�ack paths, it is impractical to
evaluate all of them. �erefore, we introduce two heuristics. First,
we estimate the a�ack value for each individual node locally, based
on the a�ack values of neighboring nodes. A�ack values of goal
nodes, in particular, correspond to the importance of each goal node.



Second, we consider only a small subset of a�ack paths, selected
by random sampling, according to the likelihood the a�acker will
successfully reach a goal node by following each path.

At each time step, our defense strategies have two stages: (i) up-
date the defender’s belief about the outcome of players’ actions
in the previous time step, and (ii) generate a new defense action
based on the updated belief and the defender’s assumption about
the a�acker’s strategy. For stage (i), we apply particle �ltering [20]
to deal with the exponential number of possible outcomes. For
stage (ii), we evaluate defense candidate actions using concepts
similar to those employed in the a�ack strategies.

Finally, we employ a simulation-based methodology, called em-
pirical game-theoretic analysis (EGTA) [22], to construct and ana-
lyze game models over the heuristic strategies. We present detailed
evaluation of the proposed strategies based on this game analysis.
Our experiments are conducted over a variety of game se�ings
with di�erent a�ack graph topologies. We show that our defense
strategies provide high solution quality compared to multiple base-
lines. Furthermore, we examine the robustness of defense strategies
to uncertainty about game actions and to the a�acker’s strategy
selection.

2 RELATEDWORK
A�ack graphs are commonly used to provide a convenient represen-
tation for analysis of network vulnerabilities [3, 4, 17]. In an a�ack
graph, nodes can represent conditions on a�ack states of a sys-
tem, and edges can represent relationships among these conditions:
speci�cally, how the achievement of speci�c conditions through
an a�acker’s actions can enable other conditions. Bayesian a�ack
graphs, proposed later by Liu and Man, combine a�ack graphs with
quanti�ed uncertainty on a�ack states and relations [13]. Revised
versions of Bayesian a�ack graphs were then introduced which
incorporate other security aspects such as dynamic behavior and
mitigation strategies [9, 18]. In fact, several di�erent graph-based
security models with some analogy to a�ack graphs have been pro-
posed to represent and analyze complex security scenarios [12]. Our
work is based on a speci�c formulation of Bayesian a�ack graphs,
detailed below. �e basic ideas of our game model and heuristic
strategies would also apply to variant forms of graph-based security
models with reasonable modi�cations.

Given the prominence of graph-based security models, previous
work has proposed di�erent game-theoretic solutions for �nding an
optimal defense policy based on those models. Durkota et al. study
the problem of hardening security of a network system by deploying
honeypots to the network to deceive the a�acker [6, 7]. �ey model
the problem as a Stackelberg security game in which the a�acker’s
plans are compactly represented using a�ack graphs. Zonouz et
al. present an automated intrusion response system which models
the security problem on an a�ack-response tree as a two-player
zero-sum Stackelberg stochastic game [25]. Besides Stackelberg
games, single-stage simultaneous games are also applied to model
the security problem on a�ack-defense trees, and Nash equilibrium
is used to �nd an optimal defense policy [1, 5, 11].

Our speci�c game-theoretic model is built on the a�ack graph
formalism of Miehling et al. [15]. In their work, the a�acker’s
behavior is modeled by a probabilistic spreading process, which is

known by the defender. In our model, both the defender and the
a�acker dynamically decide on which actions to take at every time
step, depending on their knowledge with respect to the game.

3 GAME MODEL
3.1 Game de�nition

De�nition 3.1 (Bayesian A�ack Graph [9, 15]). A Bayesian a�ack
graph is a directed acyclic graph, denoted by G = (V, s0,E,θ ,p).

• V is a non-empty set of nodes, representing security con-
ditions of a system.

• At time t , each node v has a state st (v) ∈ {0, 1}, where 0
means v is inactive (i.e., a security state not compromised
by the a�acker) and 1 means it is active (compromised).
�e initial state s0(v) represents the initial se�ing of node
v .
• E is a set of directed edges between nodes in V, each edge

representing an atomic a�ack action or an exploit. For edge
e = (u,v) ∈ E, u is called a precondition and v is called a
postcondition. We denote by π−(v) = {u | (u,v) ∈ E} the
set of preconditions and π+(v) = {u | (v,u) ∈ E} the set
of postconditions associated with node v ∈ V. An exploit
e = (u,v) ∈ E is feasible when its precondition u is active.
• Nodes Vr = {v ∈ V | π−(v) = ∅} without preconditions

are called root nodes. Nodes Vl = {v ∈ V | π+(v) = ∅}
without postconditions are called leaf nodes.
• Each node v ∈ V is assigned a node type θ (v) ∈ {∨,∧}.

An ∨-type node v can be activated via any of the feasible
exploits into v . Activating an ∧-type node v requires all
exploits intov to be feasible and taken. Root nodes (∧-type
nodes without preconditions) have no prerequisite exploits,
and so can be activated directly. We denote by V∧ the set
of all ∧-type nodes and V∨ the set of all ∨-type nodes.
�e sets of edges into ∨-type nodes and ∧-type nodes,
respectively, are denoted by E∨ = {(u,v) ∈ E | v ∈ V∨}
and E∧ = {(u,v) ∈ E | v ∈ V∧}.

• �e activation probability p(e) ∈ (0, 1] of edge e = (u,v) ∈
E∨ represents the probability the ∨-node v becomes ac-
tive when the exploit e is taken. ∧-type nodes are also
associated with activation probabilities; p(v) ∈ (0, 1] is the
probability v ∈ V∧ becomes active when all exploits into
v are taken.

De�nition 3.2 (A�ack Graph Game). An a�ack graph security
game is de�ned on a Bayesian a�ack graph G = (V, s0,E,θ ,p) by
elements Ψ = (T,Vg, S,O,D,A,R,C):

• Time step: T = {0, . . . ,T } where T is the time horizon.
• Player goal: A non-empty subset Vд ⊆ V of nodes are dis-

tinguished as critical security conditions. �e a�acker aims
to activate these goal nodes while the defender a�empts
to keep them inactive.

• Graph state: S = {S0, . . . , ST } where St = {v ∈ V |
st (v) = 1} represents the active nodes at time step t .
• Defender observation: O = {O0, . . . ,OT }, where Ot

associates each node v with one of the signals {0v , 1v }.
Signal 1v (0v ) indicates v is active (inactive). If v is active
at t , signal 1v is generated with probability p(1v | st (v) =



Algorithm 1: State transition for node v , according to
T (St ,At+1,Dt+1).
1 Initialize st+1(v) ← st (v);
2 if v ∈ Dt+1 then
3 st+1(v) ← 0; // defender overrules attacker

4 else
5 if v ∈ At+1 ∩ V∧ then
6 with probability p(v), st+1(v) ← 1
7 else
8 for (u,v) ∈ At+1 ∩ E∨ and st+1(v) = 0 do
9 with probability p(u,v), st+1(v) ← 1

1) ∈ (0, 1], and if v is inactive, signal 1v is generated with
probability p(1v | st (v) = 0) < p(1v | st (v) = 1). Other-
wise, signal 0v is generated. �e signals are independently
distributed, over time and nodes.

• Player action: D = {D0, . . . ,DT } where defender action
Dt ⊆ V comprises a set of nodes which the defender dis-
ables at time step t . A = {A0, . . . ,AT } where a�acker
action At ⊆ V∧ ∪ E∨ consists of (i) ∧-type nodes v ∈ V∧,
meaning that the a�acker takes all exploits into v to acti-
vate that node at time step t and (ii) exploits into ∨-type
nodes (u,v) ∈ E∨, meaning that a�acker takes exploit
(u,v) to activate the ∨-type node v at time step t .

• Goal reward: R assigns a reward for the players to each
goal node v ∈ Vд . ra (v) > 0 is the a�acker reward and
rd (v) < 0 is the defender reward (i.e., a penalty) if v is
active. For inactive goal nodes, both receive zero.

• Action cost: C assigns a cost to each action the players
take. In particular, ca (e) < 0 is the a�acker’s cost to at-
tempt exploit e ∈ E∨ and ca (v) is the a�acker’s cost to
a�empt all exploits into ∧-type nodev ∈ V∧. �e defender
incurs cost cd (v) < 0 to disable node v ∈ V.

• Discount factor: γ ∈ (0, 1].

Initially, D0 ≡ ∅, A0 ≡ ∅, and S0 ≡ ∅. We assume the defender
knows only the initial graph state S0, whereas the a�acker is fully
aware of graph states at every time step. �us, we can set O0 = ∅. At
each time step t+1 ∈ {1, . . . ,T }, the a�acker decides which feasible
exploits to a�empt. At time step t +1 = 1, in particular, the a�acker
can choose any root nodesv ∈ Vr to activate directly with a success
probability p(v). Simultaneously, the defender decides which nodes
to disable to prevent the a�acker from intruding further.

3.2 Timing of game events
�e game proceeds in discrete time steps, t + 1 ∈ {1, . . . ,T }, with
both players aware of the current time. At each time step t + 1, the
following sequence of events occurs.

(1) Observations:
• �e a�acker observes St .
• �e defender observes Ot ∼ O(St ).

(2) �e a�acker and defender simultaneously select actions
At+1 and Dt+1 according to their respective strategies.

(3) �e environment transitions to its next state according
to the transition function St+1 ∼ T (St ,At+1,Dt+1) (Algo-
rithm 1).

(4) �e a�acker and defender are assessed rewards (and/or
costs) for the time step.

When an active node is disabled by the defender, that node becomes
inactive. If a node is activated by the a�acker at the same step it is
being disabled by the defender, the node remains inactive.

3.3 Payo� function
We denote by ΩT = {(A0,D0, S0), . . . , (AT ,DT , ST )} the game his-
tory, which consists of all actions and resulting graph states at each
time step. At time t , St is a resulting graph state when the a�acker
plays At , the defender plays Dt and the previous graph state is
St−1. �e defender and a�acker’s payo�s with respect to ΩT , which
comprise goal rewards and action costs, are computed as follows:

U d (ΩT ) =
T∑
t=1

γ t−1

∑
v ∈Dt

cd (v) +
∑

v ∈Vд∩St

rd (v)


U a (ΩT ) =
T∑
t=1

γ t−1


∑
e ∈At∩E∨

ca (e) +
∑

v ∈At∩V∧
ca (v) +

∑
v ∈Vд∩St

ra (v)
 .

Both players aim to maximize expected utility with respect to the
distribution of ΩT . Since the game is too complex for analytic
solution, we propose heuristic strategies for both players and em-
ploy the simulation-based methodology EGTA to evaluate these
strategies.

4 ATTACKER STRATEGIES
4.1 Attack candidate set
At t + 1, based on St , the a�acker needs to consider only ∨-exploits
in E∨ and ∧-nodes in V∧ that can change the graph state at t + 1.
We call this set of ∨-exploits and ∧-nodes the a�ack candidate set
at time t + 1, denoted by Ψa (St ) and de�ned as follows:
{(u,v) ∈ E∨ | u ∈ St ,v < St } ∪ {v ∈ V∧ \ St | π−(v) ⊆ St }

Essentially, Ψa (St ) consists of (i) ∨-exploits from active precon-
ditions to inactive ∨-postconditions, and (ii) inactive ∧-nodes for
which all preconditions are active. Based on Ψa (St ), we propose a
series of heuristic a�ack strategies, of increasing complexity.

4.2 Uniform attack strategy
Under the uniform a�ack strategy, the a�acker chooses a �xed
fraction of the candidate set Ψa (St ), uniformly at random.

4.3 Value-propagation attack strategy
�e value-propagation strategy chooses actions based on a quanti-
tative assessment of the candidates Ψa (St ). Intuitively, the value
of an a�ack represents its impact on activating the goal nodes by
the �nal time step T . �e main idea of this strategy is to propagate
the a�acker rewards ra (w) > 0 at inactive goal nodes w ∈ Vд \ St
backward to other nodes. �e cost of a�acking and the activation
probabilities are incorporated accordingly. In the propagation pro-
cess, there are multiple paths from goal nodes to each node. �e
a�ack value of a node is computed as the maximum value among



Algorithm 2: Compute A�ack Value
1 Input: t + 1, St , and inverse topological order of G, itopo(G);
2 Initialize node values rw (v, t ′) = 0 and rw (w, t + 1) = ra (w)

for all inactive nodes v ∈ V \ ({w} ∪ St ), inactive goal nodes
w ∈ Vд \ St , and time step t ′ ≥ t + 1;

3 for u ∈ itopo(G) \ St do
4 for v ∈ π+(u) \ St do
5 forw ∈ Vд \ (St ∪ {u}), t ′ = t + 1, . . . ,T − 1 do
6 if v ∈ V∧ then
7 rw (v → u, t ′ + 1) = ca (v)+p(v)rw (v,t ′)

|π −(v)\St |α ;

8 else
9 rw (v → u, t ′ + 1) = ca (u,v) + p(u,v)rw (v, t ′);

10 if rw (u, t ′ + 1) < γrw (v → u, t ′ + 1) then
11 Update rw (u, t ′ + 1) = γrw (v → u, t ′ + 1);

12 Return r̂ (u) = maxw ∈Vд\St maxt ′∈{t+1, ...,T } r
w (u, t ′),

∀u ∈ V \ St ;

propagation paths reaching that node. �is propagation process is
illustrated in Algorithm 2.

Algorithm 2 leverages the directed acyclic topological structure
of the a�ack graph to perform the goal-value propagation. We
sort nodes according to the graph’s topological order and start
the propagation from leaf nodes following the inverse direction of
the topological order. By doing so, we ensure that when a node
is examined in the propagation process, all postconditions of that
node have already been examined. As a result, we need to examine
each node only once during the whole propagation process. In
Algorithm 2, line 1 speci�es input of the algorithm which includes
the current time step t + 1, the graph state in previous time step St ,
and the inverse topological order of the graph G, itopo(G). Line 2
initializes a�ack values rw (v, t ′) of inactive nodes v with respect
to each inactive goal node w and time step t ′. Intuitively, rw (v, t ′)
indicates the a�ack value of node v with respect to propagation
paths of length t ′ − t − 1 from the inactive goal node w ∈ Vд \ St
to v . Given the time horizon T = {0, . . . ,T }, we consider only
paths of length up to T − t − 1. At each iteration of evaluating
a particular inactive node u, Algorithm 2 examines all inactive
postconditions v of u and estimates the a�ack value propagated
fromv tou, rw (v → u, t ′+1). If nodev is of∧-type, the a�ack value
with respect to v , ca (v) + p(v)rw (v, t ′) is equally distributed to all
of its inactive preconditions including u (line 7). �e propagation
parameter α regulates the amount of distributed value. When
α = 1.0, in particular, that value is equally divided among these
inactive preconditions. If node v is of ∨-type, u receives the a�ack
value of ca (u,v) + p(u,v)rw (v, t ′) from v (line 9). Since there are
multiple propagation paths reaching node u, Algorithm 2 keeps the
maximum propagated value (line 11). Finally, the a�ack value r̂ (u)
of each inactive node u is computed as the maximum over inactive
goal nodes and time steps (line 12).

Based on a�ack values of inactive nodes, we compute the value
of a�acking candidates in Ψa (St ), incorporating the cost of each

Algorithm 3: Random Activation
1 Input: t + 1, St , and topological order of G, topo(G);
2 Initialize pact (v) = 1.0, tact (v) = t , and pre(v) = ∅, for all

active nodes v ∈ St ;
3 Initialize pact (v) = p(v), tact = t + 1, and pre(v) = ∅ for all

inactive root nodes v ∈ Vr \ St ;
4 for v ∈ topo(G) \ St do
5 if v ∈ V∨ then
6 Randomly choose a precondition u to activate v with

probability pra (u,v) ∝ pact (u) × p(u,v),∀u ∈ π−(v);
7 Update pact (v) = pact (u) × p(u,v);
8 Update tact (v) = tact (u) + 1;
9 Update pre(v) = {u};

10 else
11 Update pact (v) with respect to all preconditions π−(v);
12 Update tact (v) = maxu ∈π −(v) tact (u) + 1;
13 Update pre(v) = π−(v);

14 Return {(pact (v), tact (v), pre(v))};

candidate and the corresponding activation probability as follows:
r (e) = γ t

[
ca (e) + p(e)r̂ (u)

]
,∀e = (v,u) ∈ Ψa (St )

r (u) = γ t
[
ca (u) + p(u)r̂ (u)

]
,∀u ∈ Ψa (St ),

Finally, the value-propagation a�ack strategy selects a�acks to
execute probabilistically, based on the assessed a�ack value. �e
strategy �rst determines the number of a�acks to execute, then
selects that number of a�acks using a conditional logistic function.
Speci�cally, the probability that exploit e ∈ Ψa (St ) is selected is as
follows:

P(e) = exp [ηar (e)]∑
e ′∈Ψa (St )∩E∨

exp [ηar (e ′)] + ∑
u ∈Ψa (St )∩V∧

exp [ηar (u)] .

�e probability for a ∧-node in Ψa (St ) is de�ned similarly. Model
parameter ηa ∈ [0,+∞) governs how strictly the choice follows
assessed a�ack values.

4.4 Sampled-activation attack strategy
Like the value-propagation strategy, the sampled-activation a�ack
strategy selects actions based on a quantitative assessment of rel-
ative value. Rather than propagation backward from goal nodes,
this strategy constructs estimates by forward sampling from the
current candidates Ψa (St ).

4.4.1 Random activation process. �e a�acker uses the topolog-
ical order of the a�ack graph to sample paths of activation from the
current graph state St . Following this order ensures that all precon-
ditions are visited before any corresponding postconditions. For
each visited node v , we keep track of a set of preconditions pre(v)
which are selected in the sampled-activation process to activate v .
If v is a ∧-node, the set pre(v) consists of all preconditions of v .
If v is a ∨-node, we randomly select a precondition pre(v) to use
to activate v . �is randomized selection is explained below. Each
inactive node v is assigned an activation probability pact (v) and
an activation time step tact (v) according to the random action the



a�acker takes. �e activation probability pact (v) and the activation
time step tact (v) represent the probability and the time step node
v will become active if the a�acker follows the sampled action
sequence to activate v (and the defender takes no action).

�e random activation process is illustrated in Algorithm 3.
When visiting an inactive ∨-node v ∈ V∨ \ St , the a�acker ran-
domly chooses a precondition u ∈ π−(v) (from which to activate
that ∨-node) with a probability pra (u,v). �is probability is com-
puted based on activation probability p(u,v) and activation proba-
bility pact (u) of the associated precondition u (line 6). Intuitively,
pact (u) × p(u,v) is the probability v becomes active if the a�acker
chooses the exploit (u,v) to activate v in the random activation.
Accordingly, the higher pact (u) × p(u,v) is, the higher the chance
that u is the selected precondition for v . We then update v with
respect to the selected u (lines 7–9). When visiting an inactive
∧-node v , all preconditions of v are required to activate v (line 13).
�us, the activation time step of v must be computed based on the
maximum activation time step of v’s preconditions (line 12).

�e activation probability pact (v) of the inactive ∧-node v in-
volves the activation probability pact (u) of all of its preconditions
u ∈ π−(v). �ese activation probabilities {pact (u) | u ∈ π−(v)}
depend on the sequences of nodes (which may not be disjoint) cho-
sen in the random activation process to activate v’s preconditions.
�erefore, we need to backtrack over all nodes in the activation
process of v to compute pact (v). We denote this sequence of nodes
as seq(v) = seq∨(v) ∪ seq∧(v) where seq∨(v) consists of ∨-nodes
only and seq∧(v) consists of ∧-nodes.

seq(v) = {v} ∪ pre(v) ∪ pre(pre(v)) . . .

Based on seq(v), the activation probability, pact (v), is computed as
follows, which comprises the activation probabilities of all edges
and nodes involved in activating v :

pact (v) =
[∏

u ∈seq∨(v) p(pre(u),u)
] [∏

u ∈seq∧(v) p(u)
]
.

4.4.2 Greedy a�ack strategy. At the end of a random activation,
we obtain a sequence of nodes chosen to activate each inactive
goal node. �us, we can estimate the a�ack value of each subset
V̂д ⊆ Vд \ St of inactive goal nodes according to the random
activation:

r (V̂д) =
∑

v ∈V̂д p
act (v)ra (v)γ t act (v)−1

+
∑

v ∈seq∧(V̂д )
pact (v)
p(v) ca (v)γ t act (v)−1

+
∑

v ∈seq∨(V̂д )
pact (v)

p(pre(v),v)c
a (pre(v),v)γ t act (v)−1

where the �rst term accounts for the rewards of the goal nodes
in the subset, and the second and third terms account for the
costs of activating inactive nodes in the corresponding sampled-
activation sequences. In particular, seq∧(V̂д) = ∪v ∈V̂д seq

∧(v) and
seq∨(V̂д) = ∪v ∈V̂д seq

∨(v). �e probability pact (v)
p(v) indicates the

probability all preconditions of the∧-nodev become active and thus
the a�acker can activate v with a cost ca (v). Similarly, pact (v)

p(pre(v),v)
is the probability that the chosen precondition of the ∨-node v
becomes active and thus the a�acker can activate v with a cost
ca (pre(v),v).

�e sampled-activation a�ack strategy aims to �nd a subset of
inactive goal nodes to activate following the random activation
which maximizes the a�ack value. However, �nding an optimal
subset of inactive goal nodes is computationally expensive, because
there is an exponential number of subsets of inactive goal nodes to
consider. �erefore, we use the greedy approach to �nd a reasonable
subset of inactive goal nodes to a�empt to activate. Essentially,
given the current subset of selected inactive goal nodes V̂д (which
was initially empty), we iteratively �nd the next best inactive goal
node u ∈ Vд \ St such that r (V̂д ∪ {u}) is maximized and add u
to V̂д . �is greedy process continues until the a�ack value stops
increasing: r (V̂д ∪ {u}) − r (V̂д) ≤ 0. Based on the subset of chosen
goal nodes, we obtain a corresponding candidate subset:
{v | v ∈ seq∧(V̂д),pre(v) ⊆ St }

∪ {(u,v) | v ∈ seq∨(V̂д), pre(v) = {u},u ∈ St }
which need to activate in current time step t + 1 according to the
sampled-activation process in order to activate the goal subset
V̂д subsequently. We assign the value of the goal subset to this
candidate subset. By running random activation multiple times, we
obtain a set of candidate subsets. Finally, the a�acker action at t + 1
is randomly chosen among these subsets of candidates following a
conditional logistic distribution with respect to the a�ack values of
these subsets.

5 DEFENDER STRATEGIES
At each time step, since the defender does not know the true graph
states, it is important for her to reason about possible graph states
before choosing defense actions. In the following, we �rst study
the defender’s belief update on graph states at each time step and
then propose di�erent defense heuristic strategies.

5.1 Defender belief update
As mentioned before, in our game, the defender knows the initial
graph state, in which all nodes are inactive. As the game evolves,
the defender needs to take into account both her observations and
the assumed a�acker strategy to update her belief on possible graph
states. We denote by bt = {bt (St )} the defender’s belief at the end
of time step t , where bt (St ) is the probability the graph state at
time step t is St , and

∑
St bt (St ) = 1.0. At time step 0, b0(∅) = 1.0.

Based on the defender’s belief bt−1, action Dt , and observation Ot ,
we can update the defender’s belief bt as follows:
bt (St ) = p(St | bt−1,Dt ,Ot ) ∝ p(St , bt−1,Dt ,Ot ) (1)
∝ p(Ot | St )×

∑
St−1∈S(bt−1)

bt−1(St−1)
∑

At ∈A(St−1)
p(St | At ,Dt , St−1)p(At | St−1)


where p(Ot | St ) is the probability that the defender receives ob-
servation Ot given the graph state is St at time step t . Because the
alerts with respect to each node are independent from other nodes,
we can compute this observation probability as follows:

p(Ot | St ) =
∏

v ∈V p (ot (v) | st (v)) .

In addition,S(bt−1) is the belief state set associated with the de-
fender’s belief bt−1 at time step t−1:S(bt−1) = {St−1 | bt−1(St−1) >



0}. �e probability of state transition p(St | At ,Dt , St−1) is com-
puted based on the state transition of every node:

p(St | At ,Dt , St−1) =
∏

v
p (st (v) | At ,Dt , St−1) ,

in which the transition probability, p (st (v) | At ,Dt , St−1), is com-
puted in Algorithm 1. Finally, the setA(St−1) consists of all possible
a�ack actions with respect to the graph state St−1. �e probability
p(At | St−1) is the probability the a�acker takes action At at time
step t given the graph state at the end of time step t − 1 is St−1.

Exactly computing the defender’s belief (Equation 1) over all
possible graph states at each time step is impractical. Indeed, there
are exponentially many graph states to explore, as well as an ex-
ponential number of possible a�ack actions. To overcome this
computational challenge, we apply particle �ltering [20], a Monte
Carlo sampling method for performing state inference, given noisy
observations at each time step. �is approach allows us to limit the
number of graph states and a�ack actions considered.

5.2 Simple defense strategies
We present four simple defense strategies which do not take into
account the defender belief on possible graph states. Each targets a
speci�c group of nodes to disable at each time step t + 1.

Uniform strategy. �e defender chooses nodes in the graph
to disable uniformly at random. �e number of nodes chosen is a
certain fraction of |V|.

Min-cut uniform strategy. �e defender chooses nodes in the
min-cut set of the graph to disable uniformly at random. �e min-
cut set is the minimum set of edges that removing them disconnects
the root nodes from the goal nodes. �e number of chosen nodes is
a certain fraction of the number of nodes in the min-cut set.

Root-nodeuniformstrategy. �e defender chooses root nodes
to disable uniformly at random. �e number of nodes chosen is a
certain fraction of |Vr |.

Goal-node strategy. �e defender randomly chooses goal nodes
to disable with probabilities depending on the rewards and costs
associated with these goal nodes. �e probability of disabling each
v ∈ Vд is based on the conditional logistic function:

p(v | t + 1) = exp[ηdγ t (−rd (v) + cd (v))]∑
u ∈Vд exp[ηdγ t (−rd (u) + cd (u))]

,

where γ t (−rd (v)+cd (v)) indicates the potential value the defender
receives for disabling v . In addition, ηd is the parameter of the
logistic function which is predetermined. �e number of nodes
chosen will be a certain fraction of the number of goal nodes. �en
we draw that many nodes from the distribution.

In the following section, we propose two new defense strate-
gies that take into account the defender’s belief on possible graph
states at each time step, called the value-propagation and sampled-
activation defense strategies. �ese two defense strategies use
concepts similar to the value-propagation and sampled-activation
a�ack strategies.

5.3 Defense candidate set
At each time step t + 1, the defender has belief bt on possible graph
states at the end of time step t . For each state in the belief set
St ∈ S(bt ), we de�ne the defense candidate set, Ψd (St ), which

consists of: active goal nodes, ∧-nodes and ∨-postconditions of
exploits in the a�ack candidate set Ψa (St ). We aim at disabling not
only active goal nodes but also nodes in the Ψa (St ), to prevent the
a�acker from intruding further.

Ψd (St ) = (Vд ∩ St ) ∪ {Ψa (St ) ∩ V∧} ∪ post(Ψa (St )),

where post(Ψa (St )) consists of ∨-postconditions of exploits in
Ψa (St ).

5.4 Value-propagation defense strategy
For each possible graph state St ∈ S(bt ), we �rst estimate the prop-
agated defense reward r̂ (u | St ) of each node u ∈ V by propagating
the defender’s rewards rd (w) < 0 at inactive goal nodesw ∈ Vд \St
to u. Intuitively, the propagated defense reward associated with
each node accounts for the potential loss the defender can prevent
for blocking that node. �e detail is presented in Algorithm 5 in the
appendix A, with the idea is similar to the value-propagation a�ack
strategy. Based on that, we then can estimate the defense values,
r (u | St ), for defense candidate nodes u ∈ Ψd (St ) as follows:

r (u | St ) = cd (u) +

−r̂ (u | St ) − rd (u), if u ∈ St ∩ Vд

−
∑
k p

(
st+1(u)=1 |Ak ,St

)
N a r̂ (u | St ), otherwise

For active goal nodes u ∈ Vд ∩ St , r (u | St ) comprises not only
the cost cd (u) but also the propagated defense reward r̂ (u | St )
and the defender’s reward, rd (u), at u. For other defense candidate
nodes, r (u | St ) takes into account the a�ack strategy to compute
the probability u becomes active as a result of the a�acker’s action
at t + 1. Essentially, the higher probability a candidate node u
becomes active, the higher defense value for the defender to disable
that node. Because there is an exponential number of possible
a�ack actions, we sample a set of N a a�ack actions, denoted by
{Ak } where k = 1, 2, . . . ,N a , according to the assumed a�ack
strategy. �e defense value for each u in Ψd (St ) \ (Vд ∩ St ) takes
into account the probabilityu becomes active (as a result of sampled
a�ack actions), denoted by p

(
st+1(u) = 1 | Ak , St

)
, which is equal

to:
I (u ∈ post(Ak ))

[
1 − ∏

e ∈Ak |post(e)=u
(1 − p(e))

]
, if u ∈ post(Ψa (St ))

I (u ∈ Ak )p(u), if u ∈ Ψa (St ) ∩ V∧,

where I (Φ) is a binary indicator for condition Φ. Finally, based on
the defense values with respect to each graph state in the belief
state set,S(bt ), we can compute the expected defense values over
S(bt ) as follows:

r̄ (u) = γ t
[∑

St ∈S(bt )
bt (St )r (u | St )

]
,

for all defense candidate nodes u ∈ ∪St Ψd (St ). �e probability the
defender will choose each node u to disable is computed according
to the conditional logistic function with a predetermined parameter
value. �e number of chosen nodes to disable is a certain fraction
of the cardinality of the defense candidate set ∪St Ψd (St ).



5.5 Sampled-activation defense strategy
In this defense strategy, we leverage the random activation process
as described in Section 4.4 to reason about potential a�ack paths the
a�acker may follow to a�ack goal nodes. Based on this reasoning,
we can estimate the defense value for each possible defense action
and then select the action which leads to the highest defense value.

5.5.1 Sample a�ack plans. At time step t + 1, for each possible
graph state St ∈ S(bt ), we sample N r random activations, each
resulting in sampled-activation sequences toward inactive goal
nodes. We also sample a set of N a a�ack actions, {Ak } where
k = 1, 2, . . . ,N a , according to the defender’s assumption about
the a�acker’s strategy. For each Ak , we select the best random
activation among the N r sampled-activation samples such that
performing Ak at t + 1 can lead to the activation the subset of
inactive goal nodes with the highest a�ack value according to
that random activation (Section 4.4). We denote by ra(Ak ) the
sequence of nodes (sorted according to the topological order of the
graph) which can be activated in future time steps based on Ak and
the corresponding selected random activation. We call each pair
(Ak , ra(Ak )), an a�ack plan for the a�acker.

5.5.2 Estimate defense values. Based on sampled a�ack plans
(Ak , ra(Ak )), ∀k = 1, 2, . . . ,N a , we can estimate the defense value
of any defense action Dt+1 ⊆ V with respect to St as follows:

r (Dt+1 | St ) =
∑
k r (Dt+1 | St ,Ak , ra(Ak ))

N a ,

where r (Dt+1 | St ,Ak , ra(Ak )) is the defender’s value for playing
action Dt+1 against (Ak , ra(Ak )) which is determined based on
which goal nodes can potentially become active given players’
actions Dt+1 and (Ak , ra(Ak )). To determine these goal nodes,
we iteratively examine nodes in ra(Ak ) to �nd which goal nodes
v ∈ Vд of which sequence seq(v) is not blocked by the defender’s
action Dt+1. Recall that seq(v) is a sequence of nodes to activate in
the chosen random activation to activate v .

�is search process is shown in Algorithm 4, where isBlocked(u)
indicates if the a�ack sequence to node u according to (Ak , ra(Ak ))
is blocked by the defender (isBlocked(u) = 1) or not (isBlocked(u) =
0). Initially, isBlocked(v) = 0 for all nodes v in ra(Ak ) \Dt+1 while
isBlocked(v) = 1 for all v ∈ Dt+1. While examining non-root
nodes in ra(Ak ), an ∨-node u is updated to isBlocked(u) = 1 if
all preconditions of u in pre(u) are blocked. On the other hand,
an ∧-node u becomes blocked when any of its preconditions is
blocked. Given {isBlocked(v)}, we can estimate the defense value
r (Dt+1 | St ,Ak , ra(Ak )) at time step t + 1 as follows:

r (Dt+1 | St ,Ak , ra(Ak )) =
∑

v ∈Dt+1
cd (v)γ t

+
∑

v ∈Vд p
act (v)rd (v)γ t act (v)−1 (1 − isBlocked(v))

where the �rst term is the cost of performing Dt+1. �e second term
accounts for the potential loss of the defender which comprises
the blocked status, the activation probability, the activation time
step, and the rewards of all the goal nodes. Finally, the expected
defense value of each Dt+1 over the defender’s belief is computed

Algorithm 4: Find blocked nodes
1 Input: St ,Dt+1,Ak , ra(Ak );
2 Initialize block status isBlocked(v) = 0 for all

v ∈ ra(Ak ) \ Dt+1 and isBlocked(v) = 1 for all v ∈ Dt+1 ;
3 for u ∈ ra(Ak ) \ Vr with isBlocked(u) = 0 do
4 if u ∈ V∨ then
5 if isBlocked(pre(u)) then
6 isBlocked(u) = 1;

7 else
8 if isBlocked(v) for some v ∈ pre(u) then
9 isBlocked(u) = 1;

10 Return {isBlocked(u)}.

as follows:

r (Dt+1 | bt ) =
∑

St
bt (St )r (Dt+1 | St )

5.5.3 Greedy defense strategy. Finding an optimal defense ac-
tion is computationally expensive, because there is an exponential
number of possible defense actions. �erefore, we propose two dif-
ferent greedy heuristics to overcome this computational challenge.

Static greedy heuristic. �is heuristic greedily �nds a reason-
able set of nodes to disable over the defender’s belief bt . Given the
current set of selected nodes Dt+1 (which was initially empty), the
heuristic �nds the next best node u such that r (Dt+1 ∪ {u} | bt )
is maximized. �e iteration process stops when disabling new
nodes does not increase the defender’s value, i.e., r (Dt+1 ∪ {u} |
bt ) − r (Dt+1 | bt ) ≤ 0 for all u.

Randomized greedy heuristic. �is heuristic greedily �nds a
reasonable set of nodes Dt+1(St ) to disable with respect to each St in
S(bt ). For each St ∈ S(bt ), given the current set of selected nodes
Dt+1(St ) (which was initially empty), the heuristic �nds the next
best nodeu such that r (Dt+1(St ) | St ) is maximized. As a result, we
obtain multiple greedy defense actions {Dt+1(St )} corresponding
to possible game states St in S(bt ). �e defender then random-
izes her choice over {Dt+1(St )} according to a conditional logistic
distribution with respect to the defense value {r (Dt+1(St ) | bt )}.

6 EXPERIMENTS
We evaluate the solution quality of the proposed strategies in vari-
ous game se�ings with di�erent graph topologies, node type ratios,
and the defender’s observation noise levels.

6.1 Player strategies
We tune the strategies for the players by adjusting their parameter
values. In our experiments, the percentage of candidates chosen
to a�ack for the a�acker’s strategies is pa ∈ {0.3, 0.5} of the to-
tal number of a�ack candidates. �e logistic parameter value is
ηa ∈ {1.0, 3.0}. As a result, our experiments consist of nine di�erent
a�ack strategy instances: (i) a No-op (aNoop) instance in which the
a�acker does not perform any a�ack action; (ii) two Uniform (aU-
niform) instances with pa ∈ {0.3, 0.5}; (iii) four Value-propagation
(aVP) instances with pa ∈ {0.3, 0.5} and ηa ∈ {1.0, 3.0}; and (iv)
two Sampled-activation (aSA) instances with ηa ∈ {1.0, 3.0}.



�e percentage of nodes chosen to protect for the defender
strategies is pd ∈ {0.3, 0.5} of the total number of defense can-
didate nodes. �e logistic parameter value is ηd ∈ {1.0, 3.0}. In
addition, the defender’s assumption about the a�acker strategy
considers the same set of aforementioned a�ack parameter values.
�us, we evaluate 43 di�erent defense strategy instances: (i) a No-
op (dNoop) instance in which the defender does not perform any
defense action; (ii) two Uniform (dUniform), two Min-cut uniform
(dMincut), and two Root-only uniform (dRoot-only) instances with
pd ∈ {0.3, 0.5}; (iii) four Goal-only (dGoal-only) instances with
pd ∈ {0.3, 0.5} and ηd ∈ {1.0, 3.0}; (iv) 16 aVP-dVP instances — the
defender follows the value-propagation defense strategy while as-
suming the a�acker follows the value-propagation a�ack strategy.
�ese 16 defense strategy instances correspond to: pd ∈ {0.3, 0.5}
and ηd ∈ {1.0, 3.0}, pa ∈ {0.3, 0.5} and ηa ∈ {1.0, 3.0}; (v) eight
aSA-dSA instances. �ese eight strategy instances correspond to
ηd ∈ {1.0, 3.0}, ηa ∈ {1.0, 3.0}, and whether the defender uses
randomized or static greedy heuristics; and �nally (vi) eight aVP-
dSA instances. �ese eight strategies correspond to ηd ∈ {1.0, 3.0},
pa ∈ {0.3, 0.5} and ηa ∈ {1.0, 3.0}.

6.2 Simulation settings
We consider two types of graph topologies: (i) layered directed
acyclic graphs (layered DAGs); and (ii) random directed acyclic
graphs (random DAGs). Graphs in the former case consist of multi-
ple separate layers with edges connecting only nodes in consecutive
layers. We generate 5-layered DAGs. �e kth layer (k = 1, . . . , 5)
has 25 × 0.8k−1 nodes. All nodes in the last layer are goal nodes.
In addition, edges are generated to connect every node at each
layer to 50% of nodes at the next layer (which are chosen uniformly
at random). In the la�er case, random DAGs are generated with
|V| = 100 and |E| = 300. In addition to leaf nodes, other nodes
in random DAGs are selected as goal nodes uniformly at random
given a �xed number of goal nodes (which is 15 in our experiments).
�e number of ∧-nodes is either 0% or 50% of the nodes in graphs.

�e defender’s cost to disable each node u ∈ V, cd (u), is gen-
erated between 1.2lmin (u)−1 × [−1.0,−0.5] uniformly at random
where lmin (u) is the shortest distance from root nodes to u. �e
a�acker’s costs are generated similarly. �e a�acker reward and
the defender’s penalty at each goal node u are generated within
1.2lmin (u)−1 × {[10.0, 20.0], [−20.0,−10.0]} uniformly at random.
Finally, the activation probability associated with each edge with
an ∨- postcondition and with each ∧-node are randomly generated
within [0.6, 0.8] and [0.8, 1.0] respectively.

We consider three cases of observation noise levels: (i) high noise
— the signal probabilities p(1v | s(v) = 1) and p(1v | s(v) = 0)
are generated within [0.6, 0.8] and [0.2, 0.4] uniformly at random
respectively; (ii) low noise — p(1v | s(v) = 1) and p(1v | s(v) = 0)
are generated within [0.8, 1.0] and [0.0, 0.2]; and (iii) no noise —
p(1v | s(v) = 1) = 1.0 and p(1v | s(v) = 0) = 0.0. �e number of
time steps is T = 10. �e discount factor is γ = 0.9.

6.3 Strategy evaluation
Based on the aforementioned se�ings, we generated 10 di�erent
games in each of our experiments. For each game, we ran 500
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Figure 1: Strategy evaluation, layered DAGs, 0% ∧-nodes

simulations to estimate the payo� of each pair of players’ strategy
instances. As a result, we obtain a payo� matrix for each game
based on which we can compute Nash equilibria using Gambit [14].
We compute the utility each player obtains for playing the proposed
strategy instances (instead of the equilibrium strategy) against the
opponent’s equilibrium strategy. We compare that with the utility
of the players in the equilibria to evaluate the solution quality of
the proposed strategies. Each data point of our results is averaged
over the 10 games. In addition, instead of showing results of every
individual defense strategy instance (43 in total), we present results
of the defense strategies averaged over all corresponding instances.

6.3.1 Results on layered DAGs. Our �rst set of experiments is
based on layered DAGs, as shown in Figure 1 (0% ∧-nodes) and
Figure 2 (50% ∧-nodes). In these �gures, the x-axis represents the
defender’s or the a�acker’s expected utility, and the y-axis rep-
resents the corresponding strategies played by the players. For
example, Figures 1(a)(b)(c) show the a�acker’s utilities for play-
ing the strategies indicated on the y-axis against the defender’s
equilibrium strategy, when the percentage of ∧-nodes in graphs is
0%.
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Figure 2: Strategy evaluation, layered DAGs, 50% ∧-nodes

In Figures 1(d)(e)(f), and 2(d)(e)(f), the defense sampled-activation
strategy (aVP-dSA and aSA-dSA) always obtains the defense utility
close to the equilibrium utility (Eq) in all game se�ings regardless of
the assumed a�ack strategies (i.e., whether the a�acker follows the
value-propagation or sampled-activation a�ack strategies with cer-
tain parameter values). In fact, when the percentage of ∧-nodes is
0%, the Nash equilibria obtained for all games based on EGTA only
comprises the defender’s sampled-activation strategy instances.
�is result shows that the sampled-activation defense strategy is
robust to the defender’s uncertainty about the a�acker’s strategy.
Furthermore, when the observation noise level increases from no
noise to high noise, the defender’s sampled-activation strategies
does not su�er from a signi�cant loss in her utility. �is result im-
plies that the sampled-activation defense strategies are also robust
to the defender’s uncertainty about true graph states. Among the
no-belief-update strategies, the goal-only strategy outperforms the
root-only, min-cut, and uniform strategies in all game se�ings. �is
result shows that goal-only is a good candidate strategy when the
defender’s belief update is not taken into account. In addition, the
goal-only strategy even obtains a higher utility than aVP-dVP in
the cases of low and high observation noise.

Figures 1(a)(b)(c) and 2(a)(b)(c) show that in all game se�ings,
the a�ack sampled-activation strategy (i.e., aSA-3.0 and aSA-1.0)
consistently obtains high a�ack utility compared with the a�acker’s
equilibrium strategy (Eq). Even though the defender’s equilibrium
strategies focus on competing against the sampled-activation a�ack
strategy, this a�ack strategy still performs well. �e utility obtained
by the a�acker’s value-propagation strategy (aVP-0.5-3.0, aVP-
0.5-1.0, aVP-0.3-3.0, and aVP-0.3-1.0), on the other hand, varies
depending on the value of the a�ack logistic parameter (ηa ). In
particular, both aVP-0.5-3.0 and aVP-0.3-3.0 with ηa = 3.0 obtain a
considerably higher utility for the a�acker compared with aVP-0.5-
1.0 and aVP-0.3-1.0 with ηa = 1.0. Compared to all other strategies,
the a�acker’s uniform strategy (aUniform-0.3 and aUniform-0.5)
obtains the lowest a�ack utility.

When the percentage of ∧-nodes is 50%, aNoop gets a high prob-
ability in the a�acker’s equilibrium strategies in all game se�ings.
In Figures 2(a)(b)(c), aNoop obtains the a�acker’s utility (which is
zero) approximately the same as the equilibrium a�ack strategy. In
fact, when the number of ∧-nodes is large, it is di�cult for the at-
tacker to intrude deeper in the a�ack graph, because compromising
∧-nodes takes more e�ort. Consequently, the defender obtains a
signi�cantly higher utility when the percentage of ∧-nodes is 50%
(Figures 2(d)(e)(f)) than when it is 0% (Figures 1(d)(e)(f)). �e dNoop
strategy also involves in the defender’s equilibrium strategy when
the percentage is 50%. Finally, in Figure 1(c), the a�acker’s equi-
librium utility is approximately zero even when all the nodes are
of ∨-type. �is result shows that when the defender knows graph
states, our sampled-activation defense strategy is highly e�ective
such that the a�acker cannot achieve any bene�t from a�acking.

6.3.2 Results on random DAGs. Our second set of experiments
are based on random DAGs (Figure 3). �ese �gures show that the
solution quality of the defender’s strategies are similar to the case of
layered DAGs. �e defender’s sampled-activation strategy obtains
a defense utility approximately the same as the equilibrium defense
strategy (Eq) (Figures 3(d)(e)(f)). For the a�acker’s strategies, the
sampled-activation a�ack strategy does not always obtain a high
utility for the a�acker. In fact, this a�ack strategy obtains the lowest
a�ack utility in the case of low observation noise (Figure 3(b)). �e
solution quality of the value-propagation a�ack strategy, on the
other hand, varies depending on the values of both the logistic
parameter ηa and the percentage of candidates chosen to a�ack
pa . For example, when there is no observation noise (Figure 3(c)),
aVP-0.5-3.0 and aVP-0.3-3.0 with ηa = 3.0 obtain a considerably
higher a�ack utility compared to aVP-0.5-1.0 and aVP-0.3-1.0 with
ηa = 1.0. On the other hand, in the case of low observation noise
(Figure 3(b)), aVP-0.5-3.0 and aVP-0.5-1.0 with pera = 0.5 obtain
the highest a�ack utility compared with other a�ack strategies.

7 SUMMARY
In this work, we study the problem of deploying security coun-
termeasures on Bayesian a�ack graphs to protect network data
from cyber-a�acks. We propose a new simultaneous multi-stage
a�ack-graph security game model. Our game model encapsulates
security environments with signi�cant dynamics and uncertainty
as a stochastic process over multiple time steps. We employ EGTA
to analyze this complex security game, as obtaining an analytical
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Figure 3: Strategy evaluation, random DAGs, 0% ∧-nodes

solution would be impractical. We propose di�erent parameterized
heuristic strategies for both players which leverage the topological
structure of a�ack graphs and employ sampling to overcome the
computational complexity. Our EGTA results on various game set-
tings show that our defense heuristics not only outperform several
baselines, but are also robust to defender uncertainty about graph
states and the a�acker’s strategy.
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A PROPAGATED DEFENSE REWARD
�e idea of computing propagated defense rewards is similar to
computing propagated a�ack values. In lines (3–12) of Algorithm 5,
we compute the propagated defense reward r̂ (u | St ) for all nodes
u ∈ V. In particular, rw (v → u, t ′ + 1) is the defense reward the
postcondition v propagates to the precondition u with respect to
the inactive goal node w and time step t ′ + 1.

Algorithm 5: Compute Propagate Defense Reward
1 Input: time step, t + 1, graph state, St , inverse topological

order of G, itopo(G);
2 Initialize defense reward rw (v, t ′) = +∞ and

rw (w, t ′) = rd (w) for all nodes v ∈ V \ {w} and inactive
goals w ∈ Vд \ St , for all time steps t ′ ∈ {t + 1, . . . ,T };

3 for u ∈ itopo(G) do
4 for v ∈ π+(u) \ St do
5 forw ∈ Vд \ (St ∪ {u}), t ′ ∈ {t + 1 . . .T − 1} do
6 if v ∈ V∧ then
7 rw (v → u, t ′ + 1) = p(v)rw (v, t ′);
8 else
9 rw (v → u, t ′ + 1) = p(u,v)rw (v, t ′);

10 if rw (u, t ′ + 1) > γrw (v → u, t ′ + 1) then
11 Update rw (u, t ′ + 1) = γrw (v → u, t ′ + 1);

12 Return r̂ (u | St ) = min
w ∈Vд\St

min
t ′∈{t+1, ...,T }

rw (u, t ′) (, +∞), ∀u;
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