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Abstract

Given recent applications of defender-attacker Stackelberg
Security Games in real-world domains such as wildlife pro-
tection, a majority of research has focused on addressing un-
certainties regarding the attacker in these games based on
the exploitation of attack data. However, there is an impor-
tant challenge of deceitful attacks; the attacker can manipu-
late his attacks to mislead the defender, leading her to con-
duct ineffective patrolling strategies. In this work, we focus
on addressing this challenge while providing the following
main contributions. First, we introduce a new game model
with uncertainty about the attacker type and repeated interac-
tions between the players. In our game model, the defender
attempts to collect attack data over time to learn about the at-
tacker type while the attacker aims at playing deceitfully. Sec-
ond, based on the new game model, we propose new game-
theoretic algorithms to compute optimal strategies for both
players. Third, we present preliminary experiment results to
evaluate our proposed algorithms, showing that our defense
solutions can effectively address deceitful attacks.

Introduction
Defender-attacker Stackelberg Security Games (SSG) have
been successfully applied for solving many real-world se-
curity problems (Tambe 2011; Fang et al. 2016; Basilico,
Gatti, and Amigoni 2009; Letchford and Vorobeychik 2011).
In these security problems, there exist different uncertainties
regarding the attacker such as uncertainties in his types, pref-
erences, and behavior. This leads to a challenging research
question: How to determine effective patrolling strategies
in security scenarios with such uncertainties? Fortunately,
in security domains such as wildlife protection (Fang et al.
2016), repeated interactions between rangers and poachers
in conservation areas allow rangers to collect poaching signs
over time. Thus, the rangers can exploit the poaching data to
acquire knowledge about the poachers, specifically learning
aforementioned unknown properties of the poachers. The
rangers can then plan patrolling strategies accordingly.

However, the defender has to face with another impor-
tant challenge: the attacker can manipulate his attacks in
order to deceive the defender. Deceitful attacks could sig-
nificantly deteriorate the learning outcome for the defender,
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thus resulting in ineffective patrolling strategies. Therefore,
the defender must take into account the attacker’s manip-
ulation of attacks when using the collected attack data to
learn about the attacker. In fact, existing work on uncertain-
ties in SSG assumes the attacker is always truthful (Hagh-
talab et al. 2016; Balcan et al. 2015; Blum, Haghtalab,
and Procaccia 2014; Nguyen et al. 2016; Kar et al. 2017;
Gholami et al. 2017). Therefore, their proposed patrolling
solutions based on collected attack data are vulnerable to
deceitful attacks. In this work, we focus on addressing the
challenge of deceitful attacks in a repeated SSG setting with
uncertainty in the attacker’s type. We aim at (i) studying
the attacker’s manipulation of attacks to mislead the de-
fender about his type; and (ii) determining effective pa-
trolling strategies given the attacker’s manipulation.

In particular, we provide the following main contribu-
tions. First, we introduce a new repeated security game
model with unknown attacker type. In our game model, the
defender attempts to collect attack data over multiple time
steps to learn about the attacker’s type and then plan pa-
trolling strategy accordingly. On the other side, the attacker
tries to fool the defender about his type by manipulating his
attacks at every time step. In addition, the attacker’s pay-
offs dynamically change over time, adding further uncer-
tainty which needs to be taken into account in the defender’s
strategic reasoning. To that end, our model provides a hierar-
chical view of strategic reasoning of players regarding their
assumptions about the opponent’s strategies.

Second, we propose new game-theoretic algorithms to (i)
compute optimal deceitful attack strategies; and (ii) com-
pute optimal patrolling strategies given the manipulated at-
tack data. Our algorithms take into account future possibili-
ties of player’s interactions to recursively reason about play-
ers’ strategies at every time step. In addition, we propose a
limited look-ahead heuristic to limit the number of future
time steps to consider in computing players’ strategies. This
heuristic allows us to overcome the computational challenge
of exploring exponentially many future possibilities. Third,
we provide preliminary experiment results, analyzing our
game model over proposed attack and defense solutions.

Related Work
Learning in Security Games. Previous work on SSG stud-
ies the challenge of uncertainties in these games in a re-



peated game setting in which the defender can collect at-
tack data over multiple time steps (Haghtalab et al. 2016;
Balcan et al. 2015; Blum, Haghtalab, and Procaccia 2014;
Nguyen et al. 2016; Kar et al. 2017; Gholami et al. 2017).
The collected data can be used to learn a specific unknown
property of the attacker, which is then exploited to find ef-
fective patrolling strategies. Previous work heavily relies on
the assumption that the attacker plays truthfully at every time
step. Therefore, their proposed defense solutions are vulner-
able to deceitful attacks. In our work, we study the challenge
of uncertainty in the attacker’s type in a repeated Stackelberg
security game in which the attacker aims at manipulating his
attacks to mislead the defender about his type.
Secrecy and Deception in Security Games. The problem
of secrecy and deception has been widely studied in security
games (Guo et al. 2017; Bier and Zhuang 2008; Rabinovich
et al. 2015; Farrell and Rabin 1996; Brown et al. 2005;
Hendricks and McAfee 2006; Xu et al. 2015). Previous work
studies security scenarios in which information available to
the defender and the attacker is asymmetric. In previous
work, the defender can exploit such asymmetry property by
strategically revealing or disguising her information to the
attacker. This results in responses of the attacker which are
in favor of the defender. For example, in (Guo et al. 2017),
the defender can strategically disguise her defense resources
to deceive the attacker about the defender’s type. In this
work, we study an opposite scenario in which the attacker
acts deceitfully to mislead the defender.
Adversarial Machine Learning. Machine learning is an
important tool in security research to analyze and identify
malicious activities in different security scenarios such as
intrusion detection and spam email filtering. However, ma-
chine learning in an adversarial environment is faced with
an important challenge that opponents may try to cause ma-
chine learning algorithms to fail in many ways. Recently,
there have been several studies on adversarial machine learn-
ing, attempting to investigate different attack scenarios on
machine learning algorithms (Brückner and Scheffer 2011;
Lowd and Meek 2005; Barreno et al. 2006; Brückner, Kan-
zow, and Scheffer 2012; Barreno et al. 2010). For example,
causative attacks alters the training process by influencing
the training data or exploratory attacks attempts to discover
information about the learner and its training data. Different
machine learning algorithms are then proposed which can
resist these sophisticated attacks. In this work, we focus on
a causative attack scenario in security games. Existing work
on causative attacks in adversarial learning relies on predic-
tion accuracy of the learner as the direct measure to study
strategic solutions for both players. Our work, on the other
hand, aims at obtaining effective patrolling strategies which
can minimize the damage of attacks in security games, given
some learning result based on collected attack data.

Background
In Stackelberg Security Games (SSG), a defender attempts
to allocate limited security resources to protect a set of im-
portant targets, N = {1, 2, . . . , N} (Tambe 2011). On the
other side, an attacker aims to attack one of these targets.

Suppose the defender has K < N resources. A pure de-
fense strategy is an allocation of these K resources over the
targets, each protecting one target. A mixed defense strat-
egy is a probability distribution over pure defense strategies.
Similarly, a pure attack strategy is to attack a target in N. A
mixed attack strategy is a probabilistic distribution over pure
attack strategies. In the Stackelberg framework, the defender
commits to a mixed strategy. The attacker is aware of the de-
fender’s mixed strategy and thus, he can play a best response
(i.e., best pure attack strategy) accordingly.

The defender’s mixed strategy can be equivalently rep-
resented as marginal coverage probabilities over the tar-
gets. Let xi denote the probability the defender protects tar-
get i ∈ N. A mixed defense strategy x = {x1, . . . , xN},
xi ∈ [0, 1], is feasible if

∑
i∈N xi ≤ K. We denote by X the

set of feasible defense strategies. Let y = {y1, y2, . . . , yN},
yi ∈ [0, 1],

∑
i∈N yi = 1, denote a feasible mixed attack

strategy. Y denotes the set of all feasible attack strategies.
If the attacker attacks a target i ∈ N, he obtains a re-

ward Rai > 0 if the defender is not protecting this target.
Otherwise, the attacker receives a penalty P ai < 0. Con-
versely, the defender gets a penalty P di < 0 in the former
case and a reward Rdi > 0 in the later case. We denote
by (Ra,Pa) = {(Rai , P ai )} and (Rd,Pd) = {(Rdi , P di )}
where i ∈ N the payoffs of the attacker and the defender
respectively. Given a mixed defense strategy x, an attack of
target i yields an expected utility for defender and attacker
respectively, which is computed as follows:

Udi (x) = xiR
d
i + (1− xi)P di ,

Uai (x) = xiP
a
i + (1− xi)Rai .

Game Model
Repeated security game
We consider a repeated Stackelberg security game over a
time horizon T = {1, 2, . . . , T}. At each time step t ∈ T,
the defender commits to a mixed strategy xt ∈ X, the at-
tacker responds by playing an attack strategy yt ∈ Y. In
our game, there is a discrete set of attacker types Λ = {λ}
associated with a prior distribution p = {pλ} — pλ is the
probability the attacker is of type λ where

∑
λ p

λ = 1, pλ ∈
(0, 1). At the beginning of the game, nature draws an at-
tacker type λ from the distribution p. The attacker is aware
of his type λ. On the other hand, the defender is aware of the
prior distribution of attacker types p but she does not know
the drawn attacker type.

Furthermore, for each attacker type λ ∈ Λ, the attacker’s
payoffs at each time step t ∈ T is governed by a random en-
vironmental factor. The value of this factor varies over time,
resulting in different payoff realizations for the attacker
across different time steps. For example, in wildlife pro-
tection, poachers’ payoffs depend on various features such
as available poaching resources and animal density which
change over time. Formally, each attacker type is associated
with a payoff distribution fλ over a continuous payoff space,
denoted by Ωλ. At each time step t, a payoff realization of
the attacker type λ, denoted by (Ra,t,Pa,t) ∈ Ωλ, is ran-
domly drawn by nature from the distribution fλ. We assume



that both players know this payoff distribution, fλ, for each
type λ ∈ Λ. In our game, the realizations of the attacker’s
payoffs are only revealed to the attacker at the beginning of
each time step. On the other hand, these realizations at all
time steps are unknown to the defender.

Players’ Strategy
Defense strategy: At each t, the defender observes the at-
tacked target zt which is randomly drawn from the attack
strategy yt. The defender can collect attack data {(xt, zt)}
over multiple time steps to predict which attacker type is
playing. Based on the prediction result, she then decides on
which patrolling strategies to execute in future time steps. In
our game, we consider the scenario in which the defender’s
patrolling plan over T consists of two separate phases:

• Learning phase: The defender plans ahead of time a set
of different defense strategies to play in the first T l time
steps. The main goal of this phase is to collect attack re-
sponses to learn the attacker type. We assume the attacker
is aware of this set of defense strategies in advance.

• Execution phase: Based on the learning result, the de-
fender decides on optimal defense strategies in next T e =
T−T l time steps. We assume that in this execution phase,
the defender commits to the same optimal defense strat-
egy with respect to the learning result at every time step.

Attack strategy: At each time step, given the attacker’s pay-
off realization and the defender’s strategy, the attacker can
always play a best response (i.e., attack a target with the
highest expected utility). However, he can intentionally de-
viate from best responses in the learning phase, which could
mislead the defender about his type. Consequently, the de-
fender may choose a patrolling strategy in the execution
phase which is in favor of the attacker. Essentially, the at-
tacker only has to decide on which attack strategies to play
in the learning phase to mislead the defender. He then can
always play a best response against the patrolling strategy
chosen by the defender in the execution phase.

Strategic reasoning
Given the game setting and the players’ strategy space, there
are two important questions: (i) How should the attacker
choose which attack strategy to play at each time step in
the learning phase in order to mislead the defender about his
own type and benefit the most? (ii) How should the defender
exploit the attack data to decide on the defense strategy in
the execution phase, given that the attacker is trying to mis-
lead her? In fact, the answer for (i) depends on what assump-
tion the attacker makes about the defender’s exploitation of
attack data. Likewise, the answer for (ii) relies on what as-
sumption the defender has with respect to the attacker’s ma-
nipulation of attacks in the learning phase. Essentially, the
strategic reasoning for both players can be described via a
hierarchical view as follows:

• Level-0: The level-0 attacker always plays a best response
at every time step. The level-0 defender predicts the at-
tacker type based on the collected attack data in the learn-
ing phase, assuming the attacker is at level-0. Then the

defender chooses an optimal defense strategy to play in
the execution phase based on the learning result.

• Level-1: The level-1 attacker intentionally plays attack
strategies (which may be different from the best re-
sponses) in the learning phase to mislead the defender
about his type, assuming the defender is at level-0. On
the other hand, the defender follows the same procedure
as at level-0 but assumes the attacker is at level-1.

• Level-L (L > 1): Both players follow the same strategic
procedure as at level-1. Yet, the attacker assumes the de-
fender is at level L − 1 while the defender assumes the
attacker is at level L.

In this work, we focus on the level-0 and level-1 strategic
reasoning. We aim at (i) computing optimal attack strategies
for the attacker in the learning phase; and (ii) computing an
optimal defense strategy in the execution phase, given the
attack data collected in the learning phase.

Level-0
At level-0, the attacker always plays a best response at ev-
ery time step. Therefore, given the attack data collected in
the learning phase {(xt, zt)} where t ∈ {1, 2, . . . , T l}, the
defender can compute the posteriori distribution of attacker
types based on Bayes’ rule as follows:

p(λ | (x1, z1), (x2, z2), . . . , (xT
l

, zT
l

))

∝ pλ
∏
t

p(zt | xt, λ)

= pλ
∏
t

∫
4(xt,zt)

fλ(Ra,t,Pa,t)d(Ra,t,Pa,t)

where the payoff set 4(xt, zt) = {(Ra,t,Pa,t) ∈ Ωλ |
zt is a best response w.r.t. (xt,Ra,t,Pa,t)}. Given the pos-
teriori distribution, the defender has to decide on which pa-
trolling strategy to execute in the execution phase. We con-
sider three approaches:

MAP-based approach
The defender uses the Maxiumum A Posteriori (MAP) esti-
mation to select the attacker type with the highest posteriori
probability (that is a point estimate):

λ∗ = argmax
λ∈Λ

p(λ | (x1, z1),(x2, z2), . . . , (xT
l

, zT
l

))

Then she aims at computing an optimal defense strategy,
x∗, against the type λ∗ to play in the execution phase. Es-
sentially, x∗ is computed as to maximize the defender’s ex-
pected utility at each time step t ∈ {T l + 1, T l + 2, . . . T}
in the execution phase, which can be formulated as follows:

x∗ = argmax
x∈X

∫
(Ra,Pa)∈Ωλ∗

[
fλ

∗
(Ra,Pa)

× Udi∗(x,Ra,Pa)(x)
]
d(Ra,Pa)

where i∗(x,Ra,Pa) = argmaxi∈N Uai (x, (R
a,Pa)) is

the target with highest expected utility for the attacker.



Practically, this optimization problem can be approximately
solved by discretizing the continuous payoff space Ωλ∗

and
then applying existing algorithms for solving Bayesian se-
curity games (Tambe 2011).

Bayesian approach
The defender aims at computing an optimal defense strategy,
x∗, against the posteriori distribution over all attacker types
in Λ. This can be formulated as an optimization problem of
maximizing the defender’s expected utility at each time step
t ∈ {T l + 1, T l + 2, . . . T} in the execution phase, which is
formulated as follows:

x∗ = argmax
x∈X

∑
λ∈Λ

[
p(λ | (x1, z1), (x2, z2), . . . , (xT

l

, zT
l

))

×
∫
(Ra,Pa)∈Ωλ

fλ(Ra,Pa)Udi∗(x,Ra,Pa)(x)d(R
a,Pa)

]
Similarly, we can discretize the continuous payoff space Ωλ

for all attacker types λ ∈ Λ and apply Bayesian-game algo-
rithms to approximately solve this optimization problem.

No learning approach
The defender aims at computing an optimal defense strategy
x∗ with respect to the prior distribution of attacker types, p,
over Λ. In other words, she does not exploit the attack data
collected in the learning phase. The problem of finding x∗ in
this case is similar to the posteriori-based approach but with
respect to the prior distribution p. This prior-based strategy
is not influenced by the attacker strategies in the learning
phase. We consider this defense strategy as a baseline.

Level-1
At level-1, the attacker determines which attack strategy to
play at each time step in the learning phase to mislead the
defender about his type, assuming the defender is at level-0.
On the other hand, the defender has to decide which defense
strategy to execute in the execution phase given the collected
attack data {(xt, zt)}, assuming the attacker is at level-1.

Optimal attack strategies
In the execution phase, the attacker only needs to always
play a best response at each time step. Therefore, the at-
tacker’s main goal is to decide attack strategies in the learn-
ing phase. We denote by λ̂ is the true attacker type. At each
time step t, the payoff realization (Ra,t,Pa,t) ∈ Ωλ̂, which
is drawn from the distribution f λ̂, is revealed to the attacker.
However, he is uncertain about future payoff realizations.
Therefore, the attacker has to take into account all possible
payoff realizations and corresponding attack strategies in fu-
ture time steps to make decision on which attack strategy to
play at time step t. In fact, finding optimal attack strategies
in the learning phase can be solved recursively as follows:

At last time step T l. At time step T l, the attacker’s pay-
off realization (Ra,T l ,Pa,T l) is revealed to the attacker.
The attacker’s goal is to find an optimal attack strategy
at T l such that his accumulated utility in expectation over

all time steps {T l, T l + 1, . . . , T} is maximized. We de-
note the attacker’s actions at previous time steps t ∈
{1, 2, . . . , T l − 1} by zT

l−1 = {z1, z2, . . . , zT l−1}. Note
that these actions are randomly drawn from his attack strate-
gies {y1,y2, . . . ,yT

l−1} and are known to the defender.
The defense strategy chosen in the execution phase only de-
pends on the pure attack actions played in the learning phase,
and not on the mixed attack strategies. Therefore, finding an
optimal attack strategy at T l can be formulated as the fol-
lowing maximization problem:

Q(zT
l−1,Ra,T l ,Pa,T l) = (1)

max
y∈Y

∑
i∈N

yi

[
Uai (x

T l , Ra,T
l

i , P a,T
l

i ) + T e × Ua(zT
l−1, i)

]
where the objective function depends only on attack
actions taken previously zT

l−1, the payoff realization
(Ra,T l ,Pa,T l) and the attack strategy y at current time step
T l. This objective consists of separate terms respective to
each pure attack strategy i ∈ N. In the objective function,
Uai (x

T l , Ra,T
l

i , P a,T
l

i ) is the attacker’s expected utility for

attacking target i with respect to (xT
l

, Ra,T
l

i , P a,T
l

i ). In ad-
dition, Ua(zT

l−1, i) is the attacker’s expected utility at each
time step t ∈ {T l+1, T l+2, . . . , T} in the execution phase
with respect to the set of attacker’s actions in the learning
phase (zT

l−1, i). Essentially, Ua(zT
l−1, i) is determined as

an expectation over all possible payoff realizations at each
time step, as follows:

Ua(zT
l−1, i) =

∫
(Ra,Pa)∈Ωλ̂

[
f λ̂(Ra,Pa)

× Ua(x∗(zT
l−1, i),Ra,Pa)

]
d(Ra,Pa)

where x∗(zT
l−1, i) is the level-0 defender’s optimal mixed

strategy to play in the execution phase given her observation
(zT

l−1, i) in the learning phase. As explained in the previous
section, this optimal defense strategy depends on whether
the defender follows the MAP or Bayesian or No learning
approach. In addition,

Ua(x∗(zT
l−1, i),Ra,Pa) = max

j∈N
Uaj (x

∗(zT
l−1, i), Raj , P

a
j )

is the attacker’s expected utility for playing a best response
with respect to (x∗(zT

l−1, i),Ra,Pa).
Proposition 1 At last time step T l, given attack actions at
previous time steps zT

l−1, there exists an optimal pure at-
tack strategy solution for (1).
As shown in (1), the optimal pure attack strategy is to at-
tack target i with highest accumulated utility over {T l, T l+
1, . . . , T} for the attacker:

max
i∈N

[
Uai (x

T l , Ra,T
l

i , P a,T
l

i ) + T e × Ua(zT
l−1, i)

]
We can discretize the payoff space Ωλ̂ and apply Bayesian-
game algorithms to compute the attacker’s utility at each
time step of the execution phase, Ua(zT

l−1, i). According
to Proposition 1, we can solve (1) by iterating over all pure
attack strategies to find the optimal attack one.



At time step t < T l. At time step t < T l, the payoff real-
ization (Ra,t,Pa,t) is revealed to the attacker. The attacker’s
actions at previous time steps zt−1, which are randomly
drawn from his strategies (y1,y2, . . . ,yt−1), are known to
the defender. The attacker aims at finding an optimal strat-
egy as to maximize his accumulated utility in expectation
over all time steps {t, t + 1, . . . , T}, taking into account all
possible future payoff realizations.

We assume that for each possible attack action at t, i ∈ N,
and each possible payoff realization at next time step t + 1,
(Ra,Pa), the attacker’s maximum accumulated utility in
expectation over {t + 1, t + 2, . . . , T} only depends on
{zt−1, i} and (Ra,Pa). We denote this optimal utility by
Q((zt−1, i),Ra,Pa). This assumption holds true for the
last time step T l. Then finding an optimal attack strategy
at t can be represented as follows:

Q(zt−1,Ra,t,Pa,t) = max
y∈Y

∑
i∈N

yi

[
Uai (x

t, Ra,ti , P a,ti )+∫
(Ra,Pa)∈Ωλ̂

f λ̂(Ra,Pa)Q((zt−1, i),Ra,Pa)d(Ra,Pa)
]

(2)

of which objective function depends on (zt−1,Ra,t,Pa,t)
and the attack strategy y ∈ Y at current time step t. Here,
Uai (x

t, Ra,ti , P a,ti ) is the attacker’s expected utility for at-
tacking target i ∈ N with respect to (xt, Ra,ti , P a,ti ). This
objective function consists of separate terms corresponding
to each possible pure attack strategy i ∈ N. Therefore, we
obtain the following proposition:
Proposition 2 At time step t < T l, given attack actions at
previous time steps zt−1, there exists an optimal pure attack
strategy solution for (2).
According to Proposition 2, we can approximately solve (2)
by discretizing the payoff space Ωλ̂ of the attacker and iter-
ating over all pure attack strategies to find an optimal one.

Limited look-ahead attack strategies
In order to compute optimal attack strategies at every time
step in the learning phase, we have to take into account all
possible payoff realizations in future time steps. Even we
can discretize the payoff space of the attacker, there are
still exponentially many possible payoff realizations over all
time steps to consider. As a result, exactly computing opti-
mal attack strategies is impractical. In this work, we propose
the limited look-ahead heuristic to overcome this computa-
tional challenge. Essentially, at each time step t in the learn-
ing phase, the look-ahead heuristic only considers a small
number of future time steps including t, {t, t+1, . . . , t+M}
where t+M < T l andM is the number of time steps to look
ahead. The heuristic then attempts to find an optimal attack
strategy at t while assuming t + L to be the last time step
in the learning phase. This approach allows us to limit the
number of possible future payoff realizations to consider.

Optimal defense strategy
The level-1 defender assumes the attacker is at level-1. At
the end of the learning phase, the defender obtains the ob-

servation zT
l

which consists of all attack actions till time
step T l. The defender does not know the payoff realizations
{(Ra,t,Pa,t)} where t = 1, 2, . . . T l. She is only aware of
the payoff distribution fλ over the payoff space Ωλ for all
attacker types λ ∈ Λ. Since the payoffs of the attacker at ev-
ery time step are i.i.d, the defender can update the posteriori
distribution over attacker types as follows:

p(λ | (x1, z1), (x2, z2), . . . , (xT
l

, zT
l

)) (3)

∝ p(λ)×
∫
(Ra,1,Pa,1)∈Ωλ

[
p(z1 | x1,Ra,1,Pa,1, λ)×

fλ(Ra,1,Pa,1)
]
d(Ra,1,Pa,1)

×
T l∏
t=2

∫
(Ra,t,Pa,t)∈Ωλ

[
p(zt | xt,zt−1,Ra,t,Pa,t, λ)×

fλ(Ra,t,Pa,t)
]
d(Ra,t,Pa,t)

where p(zt | xt, zt−1,Ra,t,Pa,t, λ) is the probability the
attacker of type λ attacks target zt given his action history
zt−1 and his payoff realization, (Ra,t,Pa,t), and the de-
fense strategy xt at t. As shown in Proposition 2, there exists
an optimal pure attack strategy at each time step in the learn-
ing phase. Thus, we have: p(zt | xt, zt−1,Ra,t,Pa,t, λ) ∈
{0, 1}. In addition, the defender can determine this probabil-
ity by examining the optimal attack action for the level-1 at-
tacker of type λwith respect to (xt, zt−1,Ra,t,Pa,t) (which
is computed in the previous section) is zt or not. Finally, we
can approximately compute the posteriori distribution over
attacker types in (3) by discretizing the payoff space of every
attacker type λ ∈ Λ.

Given the posteriori distribution of attacker types, the de-
fender aims at computing an optimal defense strategy in the
execution phase. The defender can either follow the MAP or
Bayesian approach, which is similar to the level-0 defender.

Experiments: Preliminary Results
In our experiments, we aim at evaluating the solution quality
of proposed strategies of players at level-0 and level-1. We
run experiments on security games with the number of tar-
gets N = 5 and the number of defender resources K = 3.
The number of attacker types is |Λ| = 3. The probability
distribution over attacker types p is generated by uniformly
at random. For each attacker type λ ∈ Λ, we consider a dis-
crete distribution f̄λ over a discretized payoff space Ω̄λ with∣∣Ω̄λ

∣∣ = 4. The number of time steps in the learning phase
and the execution phase is T l = 10 and T e = T−T l = 100.
The defender payoffs and the attacker payoffs in Ω̄λ are gen-
erated uniformly at random within the ranges [1, 10] for re-
wards and [−10,−1] for penalties at each target.

We evaluate three attack strategies: (i) aL0-BR (the level-
0 attacker who always plays a best response); (ii) aL1-MAP
(the level-1 attacker, assuming the defender is at level-0 and
follows the MAP-based approach); and (iii) aL1-Bayesian
(the level-1 attacker, assuming that the defender is at level-0
and follows the Bayesian approach).

In addition, we evaluate seven defense strategies. These
strategies differ according to whether the defender is at



aL0-BR aL1-MAP aL1-Bayesian
56.32 54.79 54.99
75.73 54.79 62.75
80.37 67.25 64.17
73.79 89.74 78.28
66.02 76.15 76.34
68.70 78.88 70.60
66.08 71.77 76.47

(a) Defender accumulated utility in expectation

aL0-BR aL1-MAP aL1-Bayesian
-1.69	 -2.34	 -2.56	
-10.20	 -2.34	 -5.97	
-9.40	 -3.67	 -3.54	
-9.34	 -17.66	 -12.77	
-5.94	 -11.70	 -11.92	
-4.94	 -9.42	 -7.45	
-4.66	 -6.08	 -8.72	

(b) Attacker accumulated utility in expectation

aL0-BR aL1-Bayesian
0.68 0.32

dL0-Bayesian dL1-MAPvsaL1-MAP
0.37 0.63

(c) Nash equilibrium

Figure 1: Game 1, Strategy evaluation

level-0 or level-1, which strategic approaches the defender
follows, and what assumptions the defender has regard-
ing the attacker. These seven defense strategies include: (i)
dL0-Prior (the defender is at level-0 and follows the no
learning approach); (ii) dL0-MAP (level-0 defender, MAP-
based approach); (iii) dL0-Bayesian (level-0 defender,
Bayesian approach); (iv) dL1-MAPvsaL1-MAP (level-1
defender, MAP-based approach, assuming the attacker plays
aL1-MAP); (v) dL1-MAPvsaL1-BAY (level-1 defender,
MAP-based approach, assuming aL1-Bayesian); (vi) dL1-
BAYvsaL1-MAP (level-1 defender, Bayesian approach, as-
suming aL1-MAP); and (vii) dL1-BAYvsaL1-BAY (level-1
defender, Bayesian approach, assuming aL1-Bayesian).

In the following, we present results of three different
games. For each game, we run 30 simulations to compute
the players’ accumulated utility over all time steps in expec-
tation for playing each pair of proposed strategies. The re-
sults are shown in Figures 1, 2, and 3. In particular, Figures
1(a), 2(a), and 3(a) show the defender’s accumulated util-
ity for playing strategies (listed in the first column) against
the attack strategies (listed in the first row). For example, in
Figure 1(a), the defender obtains a utility of 56.32 for play-
ing dL0-Prior against the attack strategy aL0-BR. Similarly,
Figures 1(b), 2(b), and 3(b) show the attacker’s accumulated
utility. Finally, Figures 1(c), 2(c), and 3(c) show Nash equi-
libria of games constructed based on players’ utility in Fig-
ures 1(a)(b), 2(a)(b), and 3(a)(b) respectively.

In Figures 1(a), 2(a), and 3(a), the defender’s utility for

aL0-BR aL1-MAP aL1-Bayesian
76.82 81.92 83.18
107.79 38.90 40.15
110.02 63.74 45.12
82.06 111.15 62.43
76.82 85.42 117.97
82.06 98.56 64.53
76.82 85.42 109.25

(a) Defender accumulated utility in expectation

aL0-BR aL1-MAP aL1-Bayesian
130.31 125.89 121.92
112.71 205.69 201.72
104.62 157.85 192.15
126.28 109.64 173.68
130.31 123.20 102.95
126.28 116.24 154.82
130.31 123.20 102.14

(b) Attacker accumulated utility in expectation

aL0-BR aL1-MAP aL1-Bayesian
0.56 0.26 0.18

dL0-Bayesian dL1-MAPvsaL1-MAP dL1-MAPvsaL1-BAY
0.14 0.15 0.71

(c) Nash equilibrium

Figure 2: Game 2, Strategy evaluation

playing either dL0-MAP or dL0-Bayesian is significantly
lower when the attacker plays aL1-MAP or aL1-Bayesian
than when the attacker plays aL0-BR. This result shows that
when the level-0 defender follows a learning approach (i.e.,
MAP-based or Bayesian), she suffers a significant loss in
her utility if the attacker plays deceitfully to mislead her.
Meanwhile, by playing any of level-1 defense strategies (i.e.,
the last four defense strategies shown in the first column),
the defender’s utility increases significantly compared to the
level-0 strategies. This result confirms the importance of tak-
ing into account deceitful attacks for the defender.

In Figures 1(b), 2(b), and 3(b), if the defender plays level-
0 learning-based strategies (i.e., MAP-based or Bayesian ap-
proach), the attacker can gain a great benefit by manipulat-
ing his attacks. For example, Figure 2(b) shows that the at-
tacker obtains an utility of 205.69 for playing the aL1-MAP
strategy, which is approximately twice more than his utility
for playing aL0-BR, against the dL0-MAP defense strategy.
In addition, the attacker obtains a higher utility for playing
any level-1 strategies than playing aL0-BR against level-0
learning-based defense strategies, i.e., dL0-MAP and dL0-
Bayesian. This result implies that if the defender is at level-0
and follows MAP-based or Bayesian approach, the attacker
can always gain benefit by playing deceitfully regardless of
his assumption about the defender.

Finally, the Nash equilibrium result in Figures 1(c), 2(c),
and 3(c) involve strategies from both level-0 and level-1 for
the defender and the attacker. In addition, no pure Nash equi-
librium exists in all three games.



aL0-BR aL1-MAP aL1-Bayesian
203.13 202.46 204.11
276.85 233.88 210.39
294.80 204.56 206.20
203.13 251.21 204.11
220.47 220.27 262.57
203.13 260.04 204.11
219.23 210.84 269.91

(a) Defender accumulated utility in expectation

aL0-BR aL1-MAP aL1-Bayesian
23.45 20.90 21.23
7.35 30.12 23.07
2.18 21.52 21.85
23.45 10.80 21.23
19.66 26.12 9.54
23.45 7.36 21.23
19.52 23.36 5.84

(b) Attacker accumulated utility in expectation

aL0-BR aL1-MAP aL1-Bayesian
0.16 0.53 0.31

dL0-MAP dL1-MAPvsaL1-BAY dL1-BAYvsaL1-MAP
0.25 0.28 0.47

(c) Nash equilibrium

Figure 3: Game 3, Strategy evaluation

Summary
In this work, we studied the problem of deceitful attacks in
security games. We proposed a new repeated security game
model in which the defender can collect attack data over
multiple time steps to learn the attacker type and then plan
patrolling strategies accordingly. Meanwhile, the attacker
can manipulate his attacks to deceit the defender about his
type, leading her to choose patrolling strategies which would
benefit the attacker the most. We then propose new game-
theoretic algorithms to compute optimal strategies for both
players, taking into account all future possibilities given the
attacker’s payoffs dynamically change over time. We pro-
vide preliminary experimental results, showing that our de-
fense solutions can effectively address deceitful attacks.
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