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ABSTRACT
This paper studies the problem of sequential manipulative attacks in
Stackelberg security games inwhich the attacker attempts to orches-
trate its attacks over multiple time steps to mislead the defender’s
learning of the attacker’s behavior, which will eventually influence
the defender’s patrol strategy towards the attacker’s benefit. Pre-
vious work along this line of research only focuses on one-shot
games in which the defender only learns the attacker’s behavior
and then design his corresponding strategy once. Our work, on
the other hand, investigates the long-term impact of the attacker’s
manipulation in which current attack and defense choices of play-
ers will determine the future learning and patrol strategy of the
defender. In particular, we have three key contributions. First, we
introduce a new multi-step manipulative attack game model that
captures the impact of sequential manipulative attacks carried out
by the attacker over the entire time horizon. Second, we propose a
new algorithm to compute an optimal manipulative attack plan for
the attacker, which tackles the challenge of multiple connected opti-
mization components involved in the computation across multiple
time steps. Finally, we present our preliminary experimental results
on the impact of such misleading attacks, showing a significant
benefit for the attacker and loss for the defender.
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1 INTRODUCTION
Stackelberg security games (SSGs) have been widely applied for
solving many real-world problems in public safety and security,
cybersecurity, and conversations [5, 22, 25, 28]. In fact, there have
been several applications of SSGs such as ARMOR (used by police
officers for protecting airport terminals at Los Angeles International
Airport) [22], PROTECT (used by US Coast Guard officers to protect
ferries) [25], and PAWS (used by NGOs in multiple national parks
across the world for protecting wildlife) [5], etc. SSGs are well
known for well capturing strategic interactions between a defender
and an attacker over a set of important targets.

In recent work, machine learning-based techniques have been
used for modeling and predicting the attacker’s behavior based
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on collected attack data [7, 11, 26, 30]. Several different proposed
behavior models were shown to have a high prediction accuracy
of attack activities in different security-related domains. For exam-
ple, in PROTECT, Quantal Response was used to predict decision
making of the attacker in the domain of ferry protection [25]. In
addition, in the PAWS-related work, different models such as Quan-
tal Response, logistic regression, and decision tree, etc were used to
capture the behavior of poachers (i.e., predicting where the poach-
ers are likely to set trapping tools such as snares to catch wild
animals)[5, 7, 11, 26]. These behavior models, after being trained,
will be incorporated in to determining an optimal strategy of the
defender.

However, as pointed out in previous work, since the defender
relies on some attack data to make prediction, the attacker can in-
tentionally change its attack behavior to misleading the defender’s
learning [19, 20]. A failed learning result would cause the defender
to choose ineffective patrolling strategies, which will benefit the
attacker in the end. Intuitively, the attacker is perfectly rational,
but pretends to act in a boundedly rational manner. The attacker
may suffer an immediate loss for deviating from a myopic optimal
response, but it will gain a significantly more benefit as a result of
the defender’s deteriorated strategies. In this work, we focus on
analyzing such manipulative attacks of the attacker.

There are, in fact, some existing work which belong to this line
of research [19, 20]. The existing work mainly studies one-shot
game scenarios in which the defender only performs the learning
of the attacker behavior once and then commits to a single defense
strategy afterward. However, in many real-world domains such
as wildlife protection, the defender and attacker often interact in
a repeated manner. That is, at each time step, given a historical
attack and patrol data, the defender updates his learning of the
attacker’s behavior and re-generates a new defense strategy while
the attacker responds accordingly by launching a certain number of
attacks. These new defense and attack actions are then collected for
the future use. This learning-patrolling-attack loop will continue
until the end of the time horizon. In this multi-step interaction
scenario, it is clear that the existing one-shot SSG studies may fail
to capture the long-term impact of the attacker’s manipulation.

In this work, we study the problem of sequential manipulative
attacks in multi-step SSGs. We aim at investigating the long-term
manipulative decisions of the attacker and the accumulative impact
of the attacker’s manipulation on both the defender and attacker’s
utility. We provide the following three key contributions. First, we
introduce a new multi-step manipulative attack game model. In our
gamemodel, the defender follows a two-stage learning-patrolling at
each time step to play. On the other hand, at each time step, the at-
tacker attempts to find an optimal attack strategy given the current



defense strategy, taking into account the tradeoff between the im-
mediate utility loss for playing boundedly rational at current time
step and the future utility gain for misleading the defender. Second,
we present a new algorithm to compute such optimal manipulative
attack plan for the attacker. The key challenge of computing an op-
timal attack plan is that it involves multiple connected optimization
components over the entire time horizon, which is not straight-
forward to solve. In order to tackle this computational challenge,
our new algorithm follows the Projected Gradient Descent (PGD)
approach to iteratively update the attack plan based on the gradient
of the attacker’s utility with respect to its attacks. Inspired by hyper-
parameter learning, we then determine this gradient based on the
recursive relationships of the gradient components involved in the
gradient updating steps of the inner optimization levels. Finally, we
provide a preliminary experimental analysis on the impact of the
attacker’s sequential attack manipulation on the accumulated util-
ity of both players. We show that the attacker gains a substantially
higher utility wile the defender suffers a significant loss as a result
of the attacker’s manipulation.

2 RELATEDWORK
Attacker behavior modeling is an important research line in SSGs
which focuses on building behavior models of the attacker in vari-
ous security-related domains such as wildlife protection [7, 11, 30].
Several different models were proposed before, including Quan-
tal Response, decision trees, and neural nets-based models. These
models enable the defender to predict boundedly rational decisions
of human attackers such as poachers using historical attack data
as well as other domain-dependent data. For example, in wildlife
protection, rangers can collect poaching signs such as snares during
their patrols [5]. These observations of rangers are then used as
poaching data to predict poaching activities in the future. These
behavior models, after being trained, are then integrated into gen-
erating effective patrolling strategies for the defender.

However, there is a rising concern about the vulnerability of
these learning-patrolling methods against a deceptive attacker who
intentionally maneuvers its attacks to fool the defender’s learn-
ing. Such manipulation of the attacker could lead to poor-quality
patrolling strategies of the defender. Previous work has demon-
strated that weakness of the learning-patrolling methods in one-
shot SSGs [19, 20]. For example, Nguyen et. al study the security
situation in which a rational attacker (among other boundedly-
rational attackers) tries to influence a portion of attack data (which
that attacker can control) in one-shot games where the defender
relies on Quantal Response to predict the behavior of the entire
attacker population [19]. Beside this line of work, there is another
research direction which studies the attacker’s manipulation when
the defender uses attack data to predict the attacker’s type. Related
work has so far looked into a simple learning situation in which
the defender uses the Bayes rule method to update his belief about
the attacker’s type over time [21].

Our work is also related to adversarial learning in machine learn-
ing in the sense that there is an adversary who attempts to fail
machine learning algorithms by, for example, attacking the train-
ing/testing data or interfering with the learning process. Poisoning
attacks (i.e., altering the training data) are perhaps the most closely

related to our work [10, 13, 15, 27, 31]. Different attack methods
were designed to deteriorate the performance of standard machine
learning algorithms such as Support Vector Machine and neural
nets, etc. Differentiating from this research line, in our problem,
decision quality (which is measured via utilities of players) in terms
of defense and attack strategies is the ultimate objective of both the
defender and attacker, rather than just the prediction accuracy.

Finally, in a somewhat related research area, Secrecy and Decep-
tion in Security Games, previous work investigated situations in
which information available to the defender and attacker is asym-
metric [3, 6, 8, 9, 23, 29, 32]. They then determine how the defender
should strategically reveal or disguise his information to the at-
tacker so as to influence the attacker’s decision for the sake of the
defender’s benefit.

In this work, we study the attacker’s manipulations of its se-
quential attacks over multiple time steps whereas the defender uses
Quantal Response to predict the attacker’s behavior.1 Unlike the
one-shot SSGs, in this multi-step scenario, reasoning about the
attacker’s decisions at each time step has to take into account the
impact of such decisions on future interaction outcomes of players.

3 PRELIMINARIES
Stackelberg security games (SSGs). SSGs are a class of leader-

follower games in which a defender has to allocate a limited number
of security resources, 𝑆 , over a set of important targets {1, . . . , 𝑁 }
to protect these targets against an attacker. In one-short SSGs, a
pure strategy of the defender is an assignment of security resources
to the targets. A mixed strategy of the defender is a probability
distribution over these pure strategies. In the context of no resource-
scheduling constraints, a mixed strategy of the defender can be
equivalently represented as a marginal probability vector x = {𝑥𝑛}
where 𝑥𝑛 ∈ [0, 1] is the marginal coverage probability at target 𝑛
and

∑
𝑛 𝑥𝑛 ≤ 𝑆 . We denote by X = {x :

∑
𝑛 𝑥𝑛 ≤ 𝑆, 0 ≤ 𝑥𝑛 ≤ 1,∀𝑛}

the set of all feasible mixed strategies of the defender. In one-short
SSGs, the attacker is assumed to be aware of the defender’s mixed
strategy and attacks one of the targets accordingly.

In SSGs, the players’ payoff depends on which target the attack-
ers attacks and whether the defender is protecting that target or not.
In particular, when the attacker attacks a target 𝑛, if the defender
is not protecting 𝑛, the attacker will receive a reward of 𝑅𝑎𝑛 while
the defender gets a penalty of 𝑃𝑎𝑛 . Conversely, if the defender is
protecting 𝑛, the attacker gets a penalty 𝑃𝑎𝑛 < 𝑅𝑎𝑛 and the defender
obtains a reward 𝑅𝑑𝑛 > 𝑃𝑑𝑛 . Given a mixed strategy of the defender
x, when the attacker attacks 𝑛, the defender and attacker’s expected
utility at 𝑛 is computed as follows:

𝑈𝑑
𝑛 (𝑥𝑛) = 𝑥𝑛 (𝑅𝑑𝑛 − 𝑃𝑑𝑛 ) + 𝑃𝑑𝑛 (1)
𝑈 𝑎
𝑛 (𝑥𝑛) = 𝑥𝑛 (𝑃𝑎𝑛 − 𝑅𝑎𝑛) + 𝑅𝑎𝑛 (2)

A standard game-theoretic solution concept in SSGs is Strong Stack-
elberg Equilibrium (SSE) in which players play optimally against
each other. We denote by 𝑏𝑟 (x) ∈ argmax𝑛 𝑈𝑑

𝑛 (𝑥𝑛) the attacker’s
best response to the defender’s strategy x. Then, formally, a pair
(x∗, 𝑏𝑟 (x∗)) form an SSE if and only if:

• The attacker plays a best response: 𝑏𝑟 (x∗).
1Note that, even though we focus on the QR-behavior modeling scenario in this work,
our methods can be generalized to any differentiable behavior models.



• The defender plays an optimal strategy:

x∗ ∈ argmax
x
𝑈𝑑
𝑏𝑟 (x) (𝑥𝑏𝑟 (x) )

Quantal Response attack behavior model. Quantal Response is
a well-known behavior model used in both behavioral economics
and game theory [16, 17, 30]. While an SSE considers a perfectly
rational attacker, QR assumes a boundedly rational attacker who
attacks each target 𝑛 with the following probability:

𝑞𝑛 (x, 𝜆) =
𝑒𝜆𝑈

𝑎
𝑛 (𝑥𝑛)∑

𝑛′ 𝑒
𝜆𝑈 𝑎

𝑛′ (𝑥𝑛′ )

where 𝜆 ≥ 0 is the model parameter which controls the attacker’s
rationality. Intuitively, the higher the value of 𝜆 is, the more rational
the attacker is. In particular, when 𝜆 = 0, the attacker is non-
strategic; it attacks each target uniformly at random. On the other
hand, when 𝜆 = +∞, the attacker is perfectly rational; it only attacks
targets with the highest expected utility. In practice, the model
parameter 𝜆 is derived based on historical attack data collected
by the defender and is optimized via the Maximum Likelihood
Estimation (MLE) [18]. Given the attacker plays according to QR,
the defender and attacker’s utility is computed as follows:

𝑈𝑑 (x, 𝜆) =
∑
𝑛

𝑞𝑛 (x, 𝜆)𝑈𝑑
𝑛 (𝑥𝑛)

𝑈 𝑎 (x, 𝜆) =
∑
𝑛

𝑞𝑛 (x, 𝜆)𝑈 𝑎
𝑛 (𝑥𝑛)

Multi-step sequential learning, patrolling, and attacking. In many
real-world security domains such as wildlife protection, the de-
fender and attacker repeatedly interact with each other through
a multi-step learning-patrolling-attacking loop. The one-shot SSG
model is then extended to capture such security scenarios. The
overview of this multi-stage interaction loop is illustrated in Fig-
ure 1.
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Figure 1: Learning-patrolling-attacking loop in the multi-
step Stackelberg security games

Formally, at each time step 𝑡 , let’s denote by (X𝑡−1,Z𝑡−1) the
historical patrolling strategies and attacks at previous time steps.
(X𝑡−1,Z𝑡−1) is also the data the defender uses to learn the at-
tacker’s behavior. In particular, X𝑡−1 = {x1, . . . , x𝑡−1} where x𝑡 ′ =
{𝑥𝑡 ′,1, 𝑥𝑡 ′,2, . . . , 𝑥𝑡 ′,𝑁 } with 𝑡 ′ ≤ 𝑡 − 1 is the defender’s mixed strat-
egy at time step 𝑡 ′. In addition, Z𝑡−1 = {z1, . . . , z𝑡−1} where z𝑡 ′ =
{𝑧𝑡 ′,1, 𝑧𝑡 ′,2, . . . , 𝑧𝑡 ′,𝑁 } is the attack density distribution at time step
𝑡 ′ (i.e., 𝑧𝑡 ′,𝑛 is the number of times the attackers attacks target 𝑛

at time step 𝑡 ′). At each time step 𝑡 , the defender’s strategy x𝑡 are
determined based on a two-stage learning-patrolling:

• Learning: The defender optimize the QR parameter 𝜆𝑡 based
on (X𝑡−1,Z𝑡−1), which is the result of the MLE problem:

max
𝜆

𝑙𝑜𝑔𝐿(X𝑡−1,Z𝑡−1, 𝜆)

s.t. 𝜆 ≥ 0

where 𝑙𝑜𝑔𝐿 is the log-likelihood function:

𝑙𝑜𝑔𝐿(X𝑡−1,Z𝑡−1, 𝜆) =
𝑡−1∑
𝑡 ′=1

𝑁∑
𝑛=1

𝑧𝑡 ′,𝑛 log[𝑞𝑛 (x𝑡 ′, 𝜆)]

• Patrolling: Given the learning outcome 𝜆𝑡 , the defender finds
an optimal strategy x𝑡 accordingly, which is an optimal so-
lution of the following optimization problem:

max
x

𝑈𝑑 (x, 𝜆𝑡 )

s.t.
∑
𝑛

𝑥𝑛 ≤ 𝑆

0 ≤ 𝑥𝑛 ≤ 1,∀𝑛

which maximizes the defender’s utility with respect to the
attacker’s QR-behavior parameter 𝜆𝑡 .

At the first time step 𝑡 = 1, in particular, the defender does not have
any data. Therefore, the defender can choose any strategy x1 to
play. For example, the defender can play the 𝑆𝑆𝐸 strategy.

4 MANIPULATIVE SEQUENTIAL ATTACKS
Since the defender relies on historical attack data to learn the at-
tacker’s behavior, a clever attacker can orchestrate its attacks to
fool the defender, influencing the defender’s learning and as a re-
sult, leading to ineffective patrolling strategies which benefit the
attacker. In our model, the attacker is perfectly rational, but pre-
tends to be boundedly rational to mislead the defender. By acting in
this manipulative way, the attacker suffers some immediate utility
loss (for playing boundedly rational) but would obtain a significant
long term benefit as the result of its influence on the defender’s
patrolling strategies. The attacker goal is to find an optimal ma-
nipulative sequential-attack strategy that maximizes the attacker’s
accumulative expected utility across the entire time horizon, given
the trade-off between the loss and benefit of such pretentious bound-
edly rational playing. In this paper, we will focus on analyzing such
manipulative attacks in the security scenario in which the defender
follows the QR model to predict the attacker’s behavior. However,
our method can be extend to any differentiable behavior model
such as SUQR and neural nets, etc.

Formally, this problem can be represented as the following:

max
z

∑
𝑡

𝑈 𝑎 (x𝑡 , z𝑡 ) (3)

s.t. 𝜆𝑡 ∈ argmin
𝜆≥0

𝑙𝑜𝑔𝐿(X𝑡−1,Z𝑡−1, 𝜆),∀𝑡 (4)

x𝑡 ∈ argmax
x∈X

𝑈𝑑 (x, 𝜆𝑡 ),∀𝑡 (5)∑
𝑛

𝑧𝑡,𝑛 ≤ 𝐾, 𝑧𝑡,𝑛 ∈ N,∀𝑛, 𝑡 (6)



which maximizes the attacker’s accumulated expected utility over
the entire time horizon. In particular, the expected utility of the
attacker at time step 𝑡 is computed as follows:

𝑈 𝑎 (x𝑡 , z𝑡 ) =
∑
𝑛′
𝑧𝑡,𝑛′𝑈

𝑎
𝑛′ (𝑥𝑡,𝑛′)

Constraints (4–5) represent the two-stage learning-patrolling of the
defender at each time step 𝑡 . Constraint (6) ensure that the attacker
can only launch at most 𝐾 attacks at each time step. The constant
𝐾 represents the attacker’s limited capability in influencing the
defender’s learning.

Overall, the problem (3–6) consists of multiple connected opti-
mization levels. The decision on which targets and how frequently
to attack at each time step not only influence the utility outcome
at current time step but also affect the learning outcomes of the
defender in future time steps. As a result, that attack decision of
the attacker will contribute to the future utility outcomes that
the attacker will receive. Apparently, the problem (3–6) is chal-
lenging to solve. We propose to relax the attack variables {𝑧𝑡,𝑛}
to be continuous and then apply the Projected Gradient Descent
(PGD) approach to solve it. Essentially, starting with some initial
values of z0 = {z01, z

0
2, . . . , z

0
𝑇
}, PGD iteratively updates the values

of these attack variables based on the gradient step. Let’s denote
by 𝐹 =

∑
𝑡 𝑈

𝑎 (x𝑡 , z𝑡 ), at each update iteration 𝑖 , given the current
estimation z𝑖−1 = {z𝑖−11 , z𝑖−12 , . . . , z𝑖−1

𝑇
}, we update:

z𝑖 = z𝑖−1 + 𝛼 𝑑𝐹

𝑑z𝑖−1
(7)

where 𝛼 > 0 is the step size. PGD then projects the updated value
into the feasible region by finding the closest point in the region
Z = {z : ∑𝑡,𝑛 𝑧𝑡,𝑛 ≤ 𝐾, 𝑧𝑡,𝑛 ≥ 0,∀𝑡, 𝑛}.This projection step is done
via solving the following optimization problem:

min
z∈Z

| |z𝑖 − z| |2

which is a convex optimization problem and therefore can be solved
optimally using any optimization solver (such as Matlab Optimiza-
tion) This update process will continue until convergence (i.e., the
update does not improve the attacker utility in (3)). Once converged,
we obtain a local optimal solution of (3–6). By running this iterative
process multiple times with different initial values of the attack
variables, we get multiple local optimal solutions. The final solution
will be the best with the highest accumulated utility for the attacker
among the local optimal ones.

Now, the core of PGD is to compute the gradient of the attacker
utility at a value z of the attack variables:

𝑑𝐹

𝑑z
=
∑
𝑡

𝑑𝑈 𝑎 (x𝑡 , z𝑡 )
𝑑z

=
𝑑𝑧𝑡 ′,𝑛′

𝑑z
𝑈 𝑎
𝑛′ (𝑥𝑡 ′,𝑛′) +

∑
𝑡 ′

∑
𝑛′
𝑧𝑡 ′,𝑛′ (𝑃𝑎𝑛′ − 𝑅

𝑎
𝑛′)
𝑑𝑥𝑡 ′,𝑛′

𝑑z

which depends on the two gradient components 𝑑𝑧𝑡′,𝑛′
𝑑z and 𝑑𝑥𝑡′,𝑛′

𝑑z .
The first component, 𝑑𝑧𝑡′,𝑛′

𝑑z , is the gradient of the number of attacks
at each target and time step with respect to other targets and steps.

This component is simply determined as follows:

𝜕𝑧𝑡 ′,𝑛′

𝜕𝑧𝑡,𝑛
= 0 if 𝑡 ′ ≠ 𝑡 or 𝑛′ ≠ 𝑛

𝜕𝑧𝑡 ′,𝑛′

𝜕𝑧𝑡,𝑛
= 1, otherwise.

The second component is 𝑑𝑥𝑡′,𝑛′
𝑑z = { 𝜕𝑥𝑡′,𝑛′𝜕𝑧𝑡,𝑛

}, which is the gradient
of the defender’s strategy at each time step with respect to the
number of attacks across all targets and time steps. Note that 𝜕𝑥𝑡′,𝑛′

𝜕𝑧𝑡,𝑛

is non-zero only when 𝑡 ′ > 𝑡 since the defender’s strategy at each
step only depends on the historical attacks at previous time steps.
By applying the chain rule, it can be decomposed into two parts:

𝜕𝑥𝑡 ′,𝑛′

𝜕𝑧𝑡,𝑛
=
𝜕𝑥𝑡 ′,𝑛′

𝜕𝜆𝑡 ′
· 𝜕𝜆𝑡

′

𝜕𝑧𝑡,𝑛
,∀𝑡 ′ > 𝑡

𝜕𝑥𝑡 ′,𝑛′

𝜕𝑧𝑡,𝑛
= 0,∀𝑡 ′ ≤ 𝑡

The challenge is that, even though 𝑥𝑡 ′,𝑛′ depends on 𝜆𝑡 ′ and 𝜆𝑡 ′
depends on 𝑧𝑡,𝑛 , we do not have a closed form of 𝑥𝑡 ′,𝑛′ and 𝜆𝑡 ′ as a
function of 𝜆𝑡 ′ and 𝑧𝑡,𝑛 , respectively. Inspired by hyper-parameter
learning [14], we assume the defender uses the projected gradient
descent approach to optimize her learning and strategy in (4) and
(5). In the following, we present our PGD-based method to estimate
the gradient components 𝜕𝑥𝑡′,𝑛′

𝜕𝜆𝑡′
and 𝜕𝜆𝑡′

𝜕𝑧𝑡,𝑛
for all 𝑡 ′ > 𝑡 .2

4.1 Compute the gradient 𝑑x𝑡
𝑑𝜆𝑡

The defender strategy at time step 𝑡 , x𝑡 , is an optimal solution of:

max
x

𝑈𝑑 (x, 𝜆𝑡 )

s.t.
∑
𝑛

𝑥𝑛 ≤ 𝑆

0 ≤ 𝑥𝑛 ≤ 1,∀𝑛

The above problem is a non-convex optimization problem, which
we propose to solve using projected gradient descent. Our tech-
nique of obtaining 𝑑x𝑡

𝑑𝜆𝑡
is to differentiate through the steps of this

PGD algorithm; this approach has been referred to as hyper or
(sometimes) meta gradient in literature [1].

If PGD is used, thenwe have: startingwith an initial strategy x0 ∈
X which is randomly generated, at each iteration of the gradient
descent 𝑖 ≥ 1, given the current defender strategy x𝑖−1, we update:

x𝑖
′
= x𝑖−1 + 𝛼 𝜕𝑈

𝑑 (x𝑖−1, 𝜆𝑡 )
𝜕x𝑖−1

(8)

Then the updated (possibly infeasible) strategy is projected back to
the feasible region. We obtain a new feasible strategy x𝑖 which is

2In [19], they propose a different approach to compute these gradient components in
one-shot SSGs by exploiting the underlying characteristics of the defender’s learning
and patrolling (such as the uniqueness of the optimal solution). Their approach is
applicable only when the Quantal Response model is used for predicting the attacker’s
behavior. On the other hand, our approach, in fact, can be applied for any differentiable
behavior models of the attacker including SUQR and neural nets, etc.



an optimal solution of the following optimization problem:

min
x

| |x − x𝑖
′
| |2 (9)

s.t.
∑
𝑛

𝑥𝑛 ≤ 𝑆 (10)

0 ≤ 𝑥𝑛 ≤ 1,∀𝑛 (11)

The problem (9–11) is a convex optimization problem, which can
be easily solved using any convex solver. Clearly, x𝑖 is a function
of x𝑖′ . Therefore, we have the gradient decomposition:

𝑑x𝑖

𝑑𝜆𝑡
=
𝑑x𝑖

𝑑x𝑖′
· 𝑑x

𝑖′

𝑑𝜆𝑡
(12)

In the following, we will show how to compute the two gradient
components on the RHS of (12). First, we denote by 𝐺 (x𝑖−1, 𝜆𝑡 ) =
𝜕𝑈𝑑 (x𝑖−1,𝜆𝑡 )

𝜕x𝑖−1 , which is a function of (x𝑖−1, 𝜆). By taking the deriva-
tive on both side of the equation (8) with respect to 𝜆𝑡 , we obtain:

𝑑x𝑖
′

𝑑𝜆𝑡
=
𝑑x𝑖−1

𝑑𝜆𝑡
+ 𝛿 𝑑𝐺 (x𝑖−1, 𝜆𝑡 )

𝑑𝜆𝑡
=
𝑑x𝑖−1

𝑑𝜆𝑡
+ 𝛼

[
𝜕𝐺

𝜕𝜆𝑡
+ 𝜕𝐺

𝜕x𝑖−1
· 𝑑x

𝑖−1

𝑑𝜆𝑡

]
=⇒ 𝑑x𝑖

′

𝑑𝜆𝑡
= 𝛼

𝜕𝐺

𝜕𝜆𝑡
+
[
𝛼

𝜕𝐺

𝜕x𝑖−1
+ 𝑑𝑖𝑎𝑔(®1)

]
· 𝑑x

𝑖−1

𝑑𝜆𝑡

which show that we can compute the gradient 𝑑x𝑖
′

𝑑𝜆𝑡
recursively.

Next, in order to compute the gradient 𝑑x𝑖
𝑑x𝑖′

, which is the gradient
of the projected strategy x𝑖 with respect to the gradient-based
updated strategy x𝑖

′ . For the sake of presentation, we abstractly
reformulate the projection problem (9–11) as the following convex
optimization problem:

min
x

𝑓 (x, x𝑖
′
) (13)

s.t. 𝐴x ≤ 𝑏 (14)

where 𝑓 (x, x𝑖′) = | |x − x𝑖
′ | |2 and 𝐴 =


®1𝑇

𝑑𝑖𝑎𝑔(®1)
−𝑑𝑖𝑎𝑔(®1)

 and 𝑏 =


𝑆

®1
®0

 with
®1 is an 𝑁 × 1 vector of all ones. Following the results presented
in [4], since (13–14) is a convex optimization problem, we can apply
the Implicit Function Theorem [12, 24] upon the KKT conditions [2]
of this problem, to obtain the gradient 𝑑x𝑖

𝑑x𝑖′
, formulated as follows:[

∇2
x𝑖 𝑓 (x

𝑖 , x𝑖
′) A𝑇

𝑑𝑖𝑎𝑔(𝜂)A 𝑑𝑖𝑎𝑔(Ax𝑖 − 𝑏)

] 
𝑑x𝑖
𝑑x𝑖′
𝑑𝜂

𝑑x𝑖′

 = −
[
𝑑∇x𝑖 𝑓 (x𝑖 ,x𝑖

′ )
𝑑x𝑖′

0

]
(15)

=⇒

𝑑x𝑖
𝑑x𝑖′
𝑑𝜂

𝑑x𝑖′

 = −
[
∇2
x𝑖 𝑓 (x

𝑖 , x𝑖
′) A𝑇

𝑑𝑖𝑎𝑔(𝜂)A 𝑑𝑖𝑎𝑔(Ax𝑖 − 𝑏)

]−1 [𝑑∇x𝑖 𝑓 (x𝑖 ,x𝑖
′ )

𝑑x𝑖′

0

]
(16)

where 𝜂 is the dual variable of with respect to x𝑖 .
Based on the above analysis, we present Algorithm 1 which com-

putes the gradient 𝑑x𝑡
𝑑𝜆𝑡

. Overall, Algorithm 1 runs 𝑛𝑅𝑜𝑢𝑛𝑑 , each
round find a local optimal strategy solution and its gradient with
respect to 𝜆𝑡 . At each round 𝑟𝑜𝑢𝑛𝑑 , Algorithm 1 starts by initializ-
ing a defender strategy x0. Then at each iteration 𝑖 , the algorithm
updates the defender’s strategy as well as its corresponding gradi-
ent (lines (6–9)). The function 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 (x𝑖′,X) returns the projected

Algorithm 1: Compute the gradient 𝑑x𝑡
𝑑𝜆𝑡

1 Initialize 𝑜𝑝𝑡𝑈 = −∞;
2 for 𝑟𝑜𝑢𝑛𝑑 = 1 → 𝑛𝑅𝑜𝑢𝑛𝑑 do
3 Initialize x0; 𝛿𝑈 = +∞; 𝑖 = 0;
4 while 𝛿𝑈 > 0 do
5 Update 𝑖 = 𝑖 + 1;
6 Compute x𝑖′ = x𝑖−1 + 𝛼 𝜕𝑈𝑑 (x𝑖−1,𝜆𝑡 )

𝜕x𝑖−1 ;

7 Compute 𝑑x𝑖
′

𝑑𝜆𝑡
= 𝛼 𝜕𝐺

𝜕𝜆𝑡
+
[
𝛼 𝜕𝐺
𝜕x𝑖−1 + 𝑑𝑖𝑎𝑔(®1)

]
· 𝑑x𝑖−1

𝑑𝜆𝑡
;

8 Compute (x𝑖 , 𝑑x𝑖
𝑑x𝑖′

) = 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 (x𝑖′,X);

9 Compute 𝑑x𝑖
𝑑𝜆𝑡

= 𝑑x𝑖
𝑑x𝑖′

· 𝑑x𝑖
′

𝑑𝜆𝑡
;

10 Update 𝛿𝑈 = 𝑈𝑑 (x𝑖 , 𝜆𝑡 ) −𝑈𝑑 (x𝑖−1, 𝜆𝑡 );
11 if 𝑜𝑝𝑡𝑈 < 𝑈𝑑 (x𝑖 , 𝜆𝑡 ) then
12 Update 𝑜𝑝𝑡𝑈 = 𝑈𝑑 (x𝑖 , 𝜆𝑡 );
13 Update x𝑡 = x𝑖 ;
14 Update 𝑑x𝑡

𝑑𝜆𝑡
= 𝑑x𝑖

𝑑𝜆𝑡
;

15 Return (x𝑡 , 𝑑x𝑡𝑑𝜆𝑡
);

strategy and its gradient (x𝑖 , 𝑑x𝑖
𝑑x𝑖′

), which is based on the compu-
tation described in (13–16) This iteration process stops when the
update does not increase the defender’s utility (i.e., 𝛿𝑈 ≤ 0). Finally,
the optimal defender’s strategy and its gradient is determined based
on the maximum defender’s utility over all the rounds (line (12–14)).

4.2 Compute partial derivative 𝜕𝜆𝑡
𝜕z𝑡′

where 𝑡 ′ < 𝑡
The learning outcome, 𝜆𝑡 , is an optimal solution of:

max
𝜆≥0

𝑙𝑜𝑔𝐿(X𝑡−1,Z𝑡−1, 𝜆) (17)

where X𝑡−1 = {x1, . . . , x𝑡−1} and Z𝑡−1 = {z1, . . . , z𝑡−1} are the de-
fender’s strategies and the attacker’s attacks at previous time steps.
Note that the defender’s strategy at first time step 𝑡 = 1, x1, is not
determined based on any training data. The log-likelihood function
𝑙𝑜𝑔𝐿 is concave in 𝜆. Therefore, the problem (17) can be solved op-
timally using any optimization solver. If we use gradient descent to
solve the above optimization problem, then we have: starting with
some initial value of 𝜆, denoted by 𝜆0, which is randomly generated,
at each iteration 𝑖 , given the current value 𝜆𝑖−1, we update:

𝜆𝑖 = 𝜆𝑖−1 + 𝛼 𝜕𝑙𝑜𝑔𝐿(X𝑡−1,Z𝑡−1, 𝜆𝑖−1)
𝜕𝜆𝑖−1

(18)

We denote by𝐻 (X𝑡−1,Z𝑡−1, 𝜆𝑖−1) = 𝜕𝑙𝑜𝑔𝐿 (X𝑡−1,Z𝑡−1,𝜆𝑖−1)
𝜕𝜆𝑖−1

. By taking
the derivative of both sides of the above equation, we obtain:

𝜕𝜆𝑖

𝜕z𝑡 ′
=
𝜕𝜆𝑖−1

𝜕z𝑡 ′
+ 𝛼

[
𝑡−1∑

𝑡 ′′=𝑡 ′+1

𝜕𝐻

𝜕x𝑡 ′′
· 𝜕x𝑡

′′

𝜕z𝑡 ′
+ 𝜕𝐻

𝜕𝜆𝑖−1
· 𝜕𝜆

𝑖−1

𝜕z𝑡 ′
+ 𝜕𝐻

𝜕z𝑡 ′

]
(19)

𝜕x𝑡 ′′
𝜕z𝑡 ′

=
𝑑x𝑡 ′′
𝑑𝜆𝑡 ′′

· 𝜕𝜆𝑡
′′

𝜕z𝑡 ′
, 𝑡 ′ + 1 ≤ 𝑡 ′′ ≤ 𝑡 − 1 (20)



which shows that we can compute the gradient 𝜕𝜆𝑖

𝜕z𝑡′
can be com-

puted recursively. Therefore, we present Algorithm 2 to compute
the gradient 𝜕𝜆𝑡

𝜕z𝑡′
with 𝑡 ′ < 𝑡 . The inputs of Algorithm 2 include:

(i) Previous defense strategies X𝑡−1; (ii) Previous attacks Z𝑡−1; and
(iii) the gradients { 𝜕𝜆𝑡′′𝜕z𝑡′

} and {𝑑x𝑡′′
𝑑𝜆𝑡′′

}, for all 𝑡 ′′ > 𝑡 ′ and 𝑡 ′′ < 𝑡 .

Note that the gradient {𝑑x𝑡′′
𝑑𝜆𝑡′′

} is computed based on Algorithm 1.

Algorithm 2: Compute the gradient 𝜕𝜆𝑡
𝜕z𝑡′

where 𝑡 ′ < 𝑡

1 Input: X𝑡−1,Z𝑡−1, { 𝜕𝜆𝑡′′𝜕z𝑡′
} , and {𝑑x𝑡′′

𝑑𝜆𝑡′′
}, for all 𝑡 > 𝑡 ′′ > 𝑡 ′

2 Initialize 𝜆0 and 𝛿𝐿 = +∞;
3 while 𝛿𝐿 > 0 do
4 Update 𝑖 = 𝑖 + 1;
5 Compute 𝜆𝑖 = 𝜆𝑖−1 + 𝛼 𝜕𝑙𝑜𝑔𝐿 (X𝑡−1,Z𝑡−1,𝜆𝑖−1)

𝜕𝜆𝑖−1
;

6 if 𝜆𝑖 < 0 then
7 𝜆𝑖 = 0;
8 𝜕𝜆𝑖

𝜕z𝑡′
= 0;

9 else
10 𝜕𝜆𝑖

𝜕z𝑡′
= 𝜕𝜆𝑖−1

𝜕z𝑡′
+

𝛼

[
𝑡−1∑

𝑡 ′′=𝑡 ′+1
𝜕𝐻
𝜕x𝑡′′

· 𝑑x𝑡′′
𝑑𝜆𝑡′′

· 𝜕𝜆𝑡′′
𝜕z𝑡′

+ 𝜕𝐻
𝜕𝜆𝑖−1

· 𝜕𝜆𝑖−1
𝜕z𝑡′

+ 𝜕𝐻
𝜕z𝑡′

]
;

11 Update 𝛿𝐿 = 𝑙𝑜𝑔𝐿(·, ·, 𝜆𝑖 ) − 𝑙𝑜𝑔𝐿(·, ·, 𝜆𝑖−1);

12 Return (𝜆𝑡 = 𝜆𝑖 , 𝜕𝜆𝑡𝜕z𝑡′
= 𝜕𝜆𝑖

𝜕z𝑡′
) for all 𝑡 ′ < 𝑡 ;

At each iteration 𝑖 , Algorithm 2 updates the QR parameter as well
as its gradient (𝜆𝑖 , 𝜕𝜆𝑖𝜕z𝑡′

) based on (18–20). Lines (7–8), in particular,
is the projection step which guarantees that the learning outcome to
be greater than zero. This iteration process stops when the update
does not increase the log-likelihood objective (i.e., 𝛿𝐿 ≤ 0).

5 PRELIMINARY EXPERIMENT
In our experiments, we evaluate both solution quality and runtime
performance of our proposed algorithm. We aim at analyzing the
impact of the attacker’s sequential manipulative attacks on both
the defender and attacker’s utility across the entire time horizon.

We generate game payoffs uniformly at randomwithin the range
[0, 10] for the rewards and the range [−10, 0] for the penalties of
players at each target. We vary the number of targets, which is
chosen from the set {8, 10, 12, 14, 16}. We also examine different
resource-target ratios (i.e., 𝑆

𝑁
= 0.3 and 𝑆

𝑁
= 0.5), as well as different

number of time steps (i.e., 𝑇 = 4 and 𝑇 = 8). In our games, the
maximum number of attacks at each time step is limited to 𝐾 = 50.
Each of our data points is averaged over 30 game instances.

Our solution quality results are shown in Figures 2 and 3. In
these figures, the x-axis represents the number of targets in the
games while the y-axis refers to the attacker’s utility (Figure 2) or
the defender’s utility (Figure 3) on average per time step. We com-
pare two cases: Manipulated — the attacker plays manipulatively
by following our algorithm; and None — the attacker plays myopic
optimally at each time step. Figure 2 shows that the attacker gains
a significant higher utility for manipulating its attacks at every step
compared to the None case. In addition, by comparing between the
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Figure 2: Attacker Utility Evaluation
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Figure 3: Defender Utility Evaluation

𝑆
𝑁

= 0.3 and the 𝑆
𝑁

= 0.5 resource-target ratio cases (Figures 2(a)(b)
versus Figures 2(c)(d)), the utility gain (i.e., the difference between
Manipulated and None) that the attacker obtains is shown to in-
crease when this ratio increases. This result makes sense since the
defender’s strategy space is expanded when we increases the ratio
𝑆
𝑁
. Thus the attacker has more flexibility to influence the defender’s

strategy choices, which results in a higher gain for the attacker. On
the other hand, the utility of the attacker in both Manipulated and
None decreases when 𝑆

𝑁
increases. This is because the defender’s

coverage probability at each target increases when 𝑆
𝑁

increases,
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Figure 4: Runtime Performance

which clearly lowers the attacker’s expected utility at each tar-
get (the attacker’s expected utility is a decreasing function of the
defender’s coverage probability at each target). Conversely, we ob-
serve opposite trends for the defender’s utility (Figure 3). That is,
the defender suffers a substantial utility loss (Manipulated versus
None) as a result of the attacker’s manipulation.

In both Figures 2 and 3, comparing between the 4-step and 8-step
games, we find mixed results regarding the long-term impact of the
attacker’s manipulation. In particular, when the ratio is 𝑆

𝑁
= 0.5,

Figures 2(c)(d) show that the attacker gains less average utility per
time step in the 8-step games, indicating that the impact of the
attacker’s manipulation is lessen when increasing number of steps.
However, in the case of ratio 𝑆

𝑁
= 0.3, that trend does not hold

(Figures 2(a)(b)). The impact results on the defender side are also
similar in the sense that the long-term impact of the attacker’s
manipulation fluctuates across different number of targets and
resource-target ratios. Finally, the correlation between the players’
utility and the number of targets is unclear.

Our evaluation on runtime performance is shown in Figure 4.
The x-axis is the number of targets while the y-axis represents the
runtime of our algorithm on average in seconds. Overall, Figure 4
shows that the algorithm’s runtime gradually increases when the
number of targets increases. The runtime reaches approximately
300 seconds in 16-target, 8-step games when the ratio is 𝑆

𝑁
=

0.3 (Figure 4(a)). On the other hand, it reaches approximately 370
seconds in the similar game setting but with 𝑆

𝑁
= 0.5 (Figure 4(b)).

6 SUMMARY
In this work, we study the problem of sequential manipulative at-
tacks in multi-step SSGs in which the attacker intentionally changes
its attack behavior to fool the defender’s learning, and thus influ-
ence the defender’s strategies towards its long-term benefit. We
propose a new security game model which captures such manipu-
lative attacks. We then develop a new algorithm which determines
an optimal manipulative attack plan for the attacker. Our algorithm
follows the SGD-based approach and leverages the ideas of hyper-
parameter learning and implicit function theorem to estimate the
gradient components required for the gradient step update in SGD.
We provide preliminary empirical results which analyze the impact
of the attacker’s manipulation on both players’ utility accumulated
in the entire time horizon. The results clearly show a significant
benefit for the attacker and loss for the defender.
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