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Abstract

Due to their socialization and communication difficulties,
young children with autism spectrum disorder (ASD) face
many challenges in traditional school environments. Intelli-
gent tutoring systems (ITS) are a promising technology for
supplementing instruction for children with ASD. However,
previous work in the design of such systems often does not
consider crucial cognitive features of students, such as work-
ing memory deficits and the zone of proximal development
(ZPD), which, at a high level, refers to the difference between
what a student can accomplish on their own and what they
can accomplish with the help of a knowledgeable other. Fur-
thermore, these systems are frequently not tailored for use by
children with ASD, potentially causing significant shortcom-
ings in the effectiveness of their learning. Aiming to address
these issues, we propose RELETAS, an intelligent tutoring
system which uses a state-of-art reinforcement learning algo-
rithm to learn effective, customized tutoring policies for chil-
dren with ASD. RELETAS also incorporates working mem-
ory deficits and ZPD in its student models. We provide initial
results of our system on a digit identification task and discuss
potential directions for future work.

Introduction

Autism spectrum disorder (ASD) is one of the most severe
childhood neuro-psychiatric disorders, and it has emerged
as a major public health concern in the United States. In
2018, one in every 59 children suffered from ASD (Baio
et al. 2018). The number of children with ASD diagnoses
has markedly increased over the last decade, as has the de-
mand for services. ASD is characterized by resistance to
change, ritualistic and repetitive behavior, and problems in
social development, communication, executive function, and
generalization (American Psychological Association 2018;
de Marchena, Eigsti, and Yerys 2015). As a result, in com-
parison with their peers, students with ASD can experi-
ence significant challenges from many aspects of classroom
learning, such as those relating to socialization, communica-
tion, and generalization (Gobbo and Shmulsky 2012).
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Intelligent tutoring systems (ITS) are a promising means
of teaching children with ASD (Mondragon et al. 2017).
However, most existing ITS are not directly applicable for
children with ASD for several reasons. First, most ex-
isting ITS are designed for use by neuro-typical school-
going children and are not tailored for children with ASD.
For example, existing ITS do not account for the working
memory deficits that are often seen among children with
ASD (Barendse et al. 2013). Similarly, they do not consider
the zone of proximal development (ZPD) of children with
ASD. The ZPD of children with ASD is important to con-
sider, as a child with ASD typically experiences a number
of challenges when in the ZPD, including, but not limited
to, becoming overwhelmed with new experiences (Sahin et
al. 2018). By not considering the ZPD of these students, an
ITS may pose questions that cause the student to either be-
come bored or discouraged. Second, most existing ITS out-
put static tutoring strategies, where each child is presented
with the same sequence of lessons and examples irrespective
of their performance on previous lessons. Customized tutor-
ing strategies are especially desirable for students with ASD,
as the challenges each individual faces differ widely; thus,
teaching policies must be tailored accordingly. Reinforce-
ment learning (RL) offers one way of customizing these tu-
toring strategies; however, there is little existing work on
RL-based ITS for children with ASD, with one exception
discussed in detail in Related Work.

This paper presents Reinforcement Learning for Effec-
tive Tutoring of Autistic Students (RELETAS), a novel
ITS which uses RL to learn adaptive long-term tutoring
policies for teaching children with ASD. In the develop-
ment of RELETAS, we address the shortcomings in pre-
vious ITS with the following contributions. First, we pro-
pose a parameterized learning model for the student’s learn-
ing process which explicitly takes into account the vary-
ing ZPD, memory capabilities, and learning capability of
each ASD student. Second, we formulate the problem of se-
quentially recommending lessons and questions to a student
with ASD as a partially observable Markov decision process
(POMDP) (Kaelbling, Littman, and Cassandra 1998). The
transition probabilities are defined implicitly through the
student’s learning model, and thus indirectly depend on the



individual student’s characteristics. Third, we use deep RL
to learn effective and customized policies for the students.
We use an LSTM (Hochreiter and Schmidhuber 1997) for
the RL policy in order to capture the the temporal dependen-
cies of the questions presented to the student. We also use
a hierarchical representation of the action space, where we
leverage the success of unsupervised clustering techniques
to significantly reduce the action space of our problem. We
provide initial results of our system on a digit identification
task and discuss potential directions for future work.

Related Work

There exists a long history of research in developing ITS
for students using sequential planning models, with a spe-
cific focus on POMDP planning to account for uncertain-
ties in the teaching process. Previous work uses POMDPs
to tackle uncertainties in the mental processes (Folsom-
Kovarik, Sukthankar, and Schatz 2013) and emotional
states (Theocharous et al. 2009) of students. Both ap-
proaches use a distinct POMDP per student and define an
exact model of the transition probabilities for each student a
priori. In practice, students have different underlying transi-
tion models; knowing these models in advance is unrealistic.

There has also been work in specifically using RL in an
ITS. To our knowledge, RL was first incorporated into an
ITS for students with ASD by Sarma and Ravindran (2007),
who proposed their framework to teach students with ASD
to differentiate between four different patterns. In their ap-
proach, they use the negative of the mean square error of the
output of the student neural network model as the reward for
the RL algorithm. As such, they do not consider whether the
questions are too difficult or too easy for the student. Ad-
ditionally, they do not incorporate a memory model or the
ZPD in their representation of autistic students.

Using RL in ITS was further extended by Chi, Van-
lehn, and Litman; Malpani, Ravindran, and Murthy (2010;
2011). In the former work, they learn Markov transitions
from a set of data collected using random tutoring strategies
and use it to infer a successful tutoring strategy; however,
this approach is infeasible using real data, as most existing
data involving student-ITS interactions does not involve a
random strategy, which can lead to data sparsity in the col-
lected data. In the latter work, they use RL to implicitly train
the ITS with an adaptive student model that estimates the
learning parameters of the student; however, they do not di-
rectly consider the memory nor the ZPD of the student, nor
do they directly consider autistic students.

Recently, RL was applied to POMDP models for intelli-
gent tutoring systems (Wang 2018; 2014); however, students
with ASD were not directly considered in those works. In
these papers, the reward for the RL algorithm is based solely
on student preferences: that is, the RL algorithm receives a
negative reward if the student rejects the question and a pos-
itive reward if the student accepts the question. These meth-
ods were evaluated only on the student rejection rate and not
learning outcomes (such as performance on a final exam in
the subject being taught).

Problem Setting

We describe the abstract environment within which our ITS
operates. We assume that there a set of N distinct concepts
c1,Ca,...cy that we want the student with ASD to learn.
Each concept could correspond to a different part of speech,
different mathematical operations, and so on. As previously
discussed, a critical challenge faced by students with ASD is
generalizing past knowledge to slightly modified questions.
To ensure that these students can overcome this difficulty,
we assume that for each concept c;, there exists a set of
questions and examples j; that correspond to that particular
concept. For example, suppose c; corresponds to the con-
cept representing nouns. Then, there exists a set of questions
and/or examples j; pertaining to nouns which the ITS can
ask the student to complete. In the real world, this question
bank of examples can be created with the help of teachers
and special-needs educators.

Given a question bank as input, our ITS, RELETAS, runs
for a pre-determined number of rounds O, where Q refers
to the number of questions attempted by the student. In each
round ¢ = 1,2,...9, RELETAS selects a question that cor-
responds to a particular concept and asks the student to at-
tempt to answer that question. In response, the student pro-
vides an answer to the query and whether they believe that
they are a bit confused or bored. The performance (i.e., cor-
rect or incorrect answer) and the feedback of the student
(i.e., whether they are feeling a bit bored or confused) on
this question is used as feedback to update the ITS question
selection policy for future rounds. The goal of RELETAS
is to find an optimal question selection policy, which maxi-
mizes learning outcomes for students with ASD.

Handwritten Digit Identification

For exposition, we instantiate this environment with a real-
world learning task of: “teaching students with ASD how to
identify written digits.” While we focus on this specific task,
our environment is general enough to accommodate many
real-world learning scenarios for autistic students, such as
emotion recognition (Golan et al. 2009). In the digit identifi-
cation task, students must label images of handwritten digits
between 0-9. We focus on this task for the following rea-
sons. First, students with ASD tend to have difficulties with
learning and remembering basic mathematical objects and
concepts (Winoto et al. 2018), so this task is relevant. Sec-
ond, due to the variance of shapes for individual digits in
handwritten digits, accurate recognition of handwritten dig-
its represents a setting in which autistic students must gener-
alize their knowledge about digit shapes to different exam-
ples. Because autistic students tend to struggle with general-
ization, this setting is challenging. Third, the general setting
of multi-class classification is a common one encountered
by students during traditional schooling.

The MNIST dataset (LeCun et al. 1998) consists of
70,000 images of handwritten digits. In our setting, each
separate digit i € {0, ..., 9} represents a distinct concept (for
a total of N = 10 concepts), and j; refers to the set of data-
points in the MNIST dataset which are labeled as digit :. We
split the dataset into a training question bank consisting of
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Figure 1: A high-level diagram showing the interaction be-
tween the student model and the ITS during the RL training
process. At the start of each episode, the student is given the
hold-out test questions [1] to take the initial exam [2] using
the initialization of student NN [3]. Then, at each timestep,
the RL agent chooses a question from the training data [4]
to ask the student [5]. The student NN answers the selected
question [6]. The output from the NN is used to determine
whether the question was in the student’s ZPD [7]. That in-
formation and the answer is observed by the RL agent [8].
The RL agent uses that information to choose a new question
in the next timestep. The reward function uses that observa-
tion and the question to provide a reward to the RL agent
[9]. Before the student is presented with the new question,
the student is given the answer to the previous question [10].
The question-answer pair is stored in the student’s working
memory [11]. All elements in the short term memory are
used to train the student NN [12]. At the end of the episode,
the student takes the final exam with the same test questions
as in the initial test [13]; the improvement in the test scores
is used as part of the reward for the RL agent [14].

60, 000 questions and answers and a testing question bank
consisting of 10, 000 questions and answers.

RELETAS

We now describe RELETAS, a novel ITS that uses RL to
teach students with ASD. The goal of RELETAS is to find an
optimal question selection policy, which maximizes learning
outcomes for students with ASD. RELETAS consists of the
following components: a student model, a POMDP, and an
RL algorithm. We use the student model to approximately
model autistic student learning behavior when interacting
with an ITS. By interacting with the students through the
POMDP model, the RL algorithm learns a policy for pre-
senting questions to the students. We show the high-level
process of the student-ITS interaction in Figure 1.

Student Model

We create two populations of synthetic students: one for
training and one for testing. Each student has a parameter-

ized function for answering questions posed by the RL pol-
icy, a memory model, and a ZPD model. We describe our
model of students with ASD in detail.

Student Neural Network We model the student’s current
capability with a parameterized function F, which takes as
input a matrix representation of an image and outputs a prob-
ability distribution over possible labels. We can select dif-
ferent functions depending on the task. For example, if we
want the student to make predictions based on time-series
data, we could use an LSTM (Hochreiter and Schmidhuber
1997) as our parameterized function. We model the learning
process of the student as updating the model parameters as
the student is provided with more examples and labels from
an expert. The update rule used here can be task dependent
and provided by domain experts.

As noted by Cohen (1994), artificial neural networks
trained with backpropagation can approximately model the
generalization abilities of autistic individuals. At a high
level, they report that ANN models with either very small
neuronal connection densities or very high neuronal con-
nection densities resemble the capabilities of individuals
with ASD. In our work, we use a convolutional neural
network with a large number of neurons to model the
decision-making process of the student. We choose to use
a CNN following the previous literature on visual process-
ing in ASD (Nagai, Moriwaki, and Asada 2015) and because
CNNs have recently been shown to align with biological
object recognition in people (Kuzovkin et al. 2018). When
training the model, we use Adam (Kingma and Ba 2015) as
our gradient descent optimization algorithm and categorical
cross entropy loss as our loss function.

Student Memory Model Students do not have perfect
memories. As a result, they tend to forget questions or ex-
amples that they may have successfully attempted in the
past. In our approach, the student maintains a fixed-length
memory queue of the past n questions and answers. When
the student is asked to answer a new question and is given
the proper answer to it, they retrieve from memory all n of
the previous questions and answers stored in the memory
queue. These examples are used to train the student ANN
for a single epoch. This model is similar to a student’s work-
ing memory. After being presented with a new question, a
student may then recall all previously-given questions and
answers and use those question-answer pairs to strengthen
their knowledge in those areas.

Zone of Proximal Development Model The theory of the
zone of proximal development (ZPD) refers to the differ-
ence between what a student can accomplish on their own
and what a student can accomplish with the help of a knowl-
edgeable other (Murray and Arroyo 2002). In other words,
for a posed question to be in a student’s ZPD, it must not
be too difficult or too easy for the student to answer. As a
result, the student does not become too bored or confused,
respectively, and the question is at an appropriate level that
leads to their proximal development.

We use the CNN model to incorporate the student’s zone
of proximal development in our student models. More for-



mally, the output from the CNN F(m,) can be equivalently
viewed as the probability of the student providing the cor-
rect answer to question m,. Each student has a student-
specific parameter (3, which we select for each student by
sampling uniformly at random from the range [0.3, 0.5]. The
ZPD of the student is defined as follows: the student re-
mains in their ZPD after attempting question m,, if and only
if F(my) € [0.5 — 3,0.5 + f]. Note that, in this defini-
tion, F(m,) represents the ease of successfully completing
question m,. If F(m,) € [0,0.5 — f], then that implies
that the student found the question m, too easy, whereas
if F(mg) € (0.5 + B,1], then that implies that the student
found question m,, too difficult.

Each time the student is given a question that is outside of
their ZPD, either the student’s level of boredom or level of
discouragement is increased by 1. Once the student becomes
too bored or too discouraged, the student stops answering
questions entirely and the interaction with the ITS ends.

POMDP Model

We now describe the POMDP model used in RELE-
TAS. A partially observable Markov decision process
(POMDP) (Kaelbling, Littman, and Cassandra 1998), M =
(S, A,Q,P,O,R,~), is comprised of: the state space S;
the action space A; the observation space (2; the transition
probability distribution P : S x A x & — [0, 1]; the con-
ditional observation probability O : s’ x a — o; the re-
ward function R : S x A — R; and a scalar discount factor
v € (0, 1], which governs the importance of future rewards.
In the POMDP setting, the algorithm interacting with the
environment does not directly observe the state and, instead,
gets potentially noisy observations of the state.

Actions Instead of representing each question in the ques-
tion bank as a possible action, we organize the action space
in the following way. Before the ITS interacts with the stu-
dent, we separate the training data based on its label. Within
each concept, we perform k-means clustering (Lloyd 1982)
to construct k clusters of the data, where k is a tunable pa-
rameter that we can set. We choose to cluster the actions
to capture similarity between questions. The ITS selects a
concept and cluster from which it would like to present a
question to the student. The exact question is then selected
uniformly at randomly from that cluster. By clustering the
actions, we reduce the action space significantly — from
60,000 (if we were to represent each individual question
from the set of training questions as an action) to N X k,
where N is the number of concepts and k is the number of
clusters within each concept.

Observations The underlying state of the POMDP de-
pends on the student network, which the RL algorithm does
not have access to; instead, the RL algorithm receives in-
complete observations of the state. At each timestep, after
performing an action, the RL algorithm receives an observa-
tion o € Q of the following form: o = (7, ¢;, ji, i, f, 2).
The first component 7 denotes the total number of rounds
remaining in the student-ITS interaction. When 7 = 0, the
episode terminates. The second component ¢; denotes the
concept corresponding to the question that the student was

asked in the previous round. The third component j; de-
notes the cluster within the concept from which the question
asked in the previous round was drawn. The fourth compo-
nent ; = {1,..., N} denotes the label (answer) that the stu-
dent gave for the question in the previous round. Although
the student neural network outputs a probability distribution
over labels, our RL algorithm only observes the answer that
the student thinks is most likely to be true. The fifth com-
ponent f = {0, 1} is a binary flag that denotes whether the
student correctly answered the question from the last round.

The sixth component z = {0, 1} is a binary flag that de-
notes whether the student noted that the question increased
their confusion or boredom. If z = 1, that indicates that the
question was likely outside of that student’s ZPD. In a real
setting, we could get this observation by either asking the
student to answer how they are feeling or how difficult they
perceive the question to be when they answer each ques-
tion, or by enabling the ITS to have access to indicators of
attention, such as eye gaze (D’Mello et al. 2012), and/or un-
derlying emotional state (Mauss and Robinson 2012).

Rewards Our reward function R(s,a) used in training
the RL algorithm is defined as follows. At the start of the
episode, the student takes the final exam, which is the ques-
tion bank of hold-out test examples. Their score is recorded
as o,. At each timestep during training, when the student
is presented with questions by the ITS, if the student cor-
rectly answers the question and the question was within the
student’s ZPD, then the RL algorithm receives a reward of
2. If the student incorrectly answers the question, but the
question was within the student’s ZPD, the RL algorithm
receives a reward of 1; the same goes for if the student cor-
rectly answers the question, but the question was not within
the student’s ZPD. If the question was neither answered cor-
rectly, nor within the student’s ZPD, then the RL algorithm
receives a reward of 0. At the end of the episode, the student
takes the final exam again. Their score o is recorded. The
reward in the last step thus has an additional term which is
(0§ — 0,) x 100. We scale the additional term because the
primary objective of the RL algorithm is to ensure that the
student performs well on the final exam.

Reinforcement Learning

Our goal is to develop an ITS which customizes its question
selection policies to each individual student’s capabilities.
As such, we choose to use RL to learn a customized policy
for presenting questions to students. In RL, the goal of the
algorithm is to determine the most rewarding behavior over
time, as represented by a policy which maps observations to
actions. Policy gradient algorithms are a family of RL algo-
rithms, where the policy is directly modeled and optimized.
Proximal policy optimization (PPO) algorithms are a type
of policy gradient algorithms that have shown great perfor-
mance on a variety of tasks (Schulman et al. 2017). We use
the version of PPO created by Hill et al. (2018) as our RL al-
gorithm. To capture the temporal dependencies of the ques-
tions presented to the student, we use an LSTM (Hochreiter
and Schmidhuber 1997) as our policy network.



Experiments

In all experiments, we compare the performance of PPO to a
random baseline, where the students are randomly presented
with questions to answer. For PPO, we use a learning rate of
1 x 1075 for the first and third experiments and a learning
rate of 1 x 1076 for the second experiment. For all experi-
ments, we use k = 3 for the action clustering For all experi-
ments, we train PPO for 30, 000 rounds (timesteps), and set
the maximum length of each episode to be 100 rounds. As a
result, the number of episodes for each experiment differs.

We assume that the students have some prior knowledge
related to the learning task. This assumption corresponds
to pretraining the student population with a small number
of examples from the training set. To perform this pretrain-
ing procedure, we uniformly at random select 400 examples
from the training dataset and train the CNN for three epochs
before the student interacts with the ITS. . We choose n = 5
for the length of the student memory queue.

In the testing phase, we cease the training of PPO. We
generate 200 new students to interact with PPO and the ran-
dom baseline and report the performance of the students on
the initial pretest (when they rely on their pretrained knowl-
edge) and the performance of the students on the final test
(after they have interacted with either the baseline or PPO).

We conduct the following experiments. In the first experi-
ment (setting one), we vary the student-specific parameter (3
in our training and testing populations of students. In other
words, each student has a different ZPD. In the second ex-
periment (setting two), we vary 3, as in setting one, and
we vary the weights in the weight vector for the 10 dif-
ferent concepts by independently sampling it. By varying
the weights, we change how much examples from each of
the concepts contributes to the loss. This sampling is per-
formed before the pretraining phase, resulting in different
prior knowledge for each student. In the third experiment
(setting three), we vary also 3. Instead of independently
sampling the weight vector, as in setting two, we use a fixed
weight vector for each of the 10 concepts. This sampling is
performed before the pretraining phase, meaning all students
should have a similar distribution of prior knowledge, but it
is imbalanced among the 10 digits.

Results

We report our preliminary results on the aforementioned
experimental settings. In general, we find that the policies
learned using RL are able to achieve greater reward with
training. We also find that, in settings one and three, the pol-
icy learned using RL performs better on average than the
random baseline. However, we need to perform more exper-
iments to determine if the results are statistically significant.

Setting One

In Figure 2, we show the learning curve of PPO in setting
one. We see that, over time, PPO receives more reward, then
eventually levels out. At the end of training, PPO receives a
reward of around 1, 450, which means that the final student
with which PPO interacted correctly answered 1,450 out of
10, 000 queries on the final exam.

Figure 2: Learning curve of PPO for setting one. The x axis
shows the number of timesteps that the ITS interacts with the
student. The y axis shows the total reward for each episode.

Figure 3: Learning curve of PPO for setting two. The x axis
shows the number of timesteps that the ITS interacts with the
student. The y axis shows the total reward for each episode.

In Table 1, we show the results of PPO compared to a
random baseline on a hold-out test population of 200 stu-
dents. Compared to the baseline, on average, PPO achieves
higher episode reward, leads to a larger improvement on the
final test, and interacts with the students for more timesteps
per episode. We were surprised that using PPO led to higher
episode reward on average and a larger improvement on the
final test: we expected the performance of the RL algorithm
to be on par with random, as noted by Sarma and Ravin-
dran (2007) in a similar problem setting. One explanation
is that the RL algorithm kept the students in their ZPD for
longer, so the RL algorithm could present the student with
more questions than the random baseline.

Average Average Average
Episode Improvement Episode
Reward Length
PPO 1512.26 14.32 68.85
Random | 1357.25 12.87 64.95
Table 1: Test results for setting one.
Setting Two

In Figure 3, we show the learning curve of PPO in setting
two. We can see that, over time, PPO receives more reward,
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Figure 4: Learning curve of PPO for setting three. The x axis
shows the number of timesteps that the ITS interacts with the
student. The y axis shows the total reward for each episode.

then eventually levels out. However, compared to the learn-
ing curve for setting one, PPO receives less reward in gen-
eral. Also, notably, the reward drops sharply during the train-
ing procedure, which may be explained by the algorithm en-
countering a student whose parameters (such as ZPD) made
it such that the current policy did not work well with that stu-
dent. At the end of training, PPO receives a reward of around
1,350, which means that the final student that PPO inter-
acted with was able to answer 1, 350 out of 10, 000 queries
correctly on the final exam.

In Table 2, we show the results of PPO compared to a ran-
dom baseline on a hold-out test population of 200 students.
Compared to a random baseline, on average, PPO achieves
lower episode reward, leads to less improvement on the fi-
nal test, and interacts with the students for less timesteps per
episode. The results for setting two could be explained by
the presence of more variance in the student parameters. Due
to the higher overall variance, it could be more challenging
for the RL algorithm to learn in this environment. As a re-
sult, PPO performance is worse than the random baseline.

Average Average Average
Episode Improvement Episode
Reward Length
PPO 1206.53 11.46 64.73
Random | 1275.05 12.06 66.84
Table 2: Test results for setting two.
Setting Three

In Figure 4, we show the learning curve of PPO in setting
three. We can see that, over time, PPO receives more re-
ward, then eventually levels out. At the end of training, PPO
receives a reward of around 1, 000, which means that the fi-
nal stuent that PPO interacted with was able to answer 1, 000
out of 10, 000 queries correctly on the final exam.

We also report the results of deploying the trained PPO
policy and a random baseline on a hold-out test population of
200 students. In Table 3, we show these results. Compared to
arandom baseline, on average, PPO achieves higher episode

reward, leads to a larger improvement on the final test, and
interacts with the students for more timesteps per episode.
Compared to setting two, PPO may perform better than the
random baseline because there is less variance in the student
parameters than in setting two.

Average Average Average

Episode Improvement Episode

Reward Length
PPO 1054.20 9.83 65.73
Random | 940.12 8.80 63.61

Table 3: Test results for setting three.

Discussion and Future Work

The results of our experiments to some extent show promise
for using RL to learn tutoring policies for teaching students
with autism spectrum disorder. However, the variance of per-
formance metrics is notably high among different episodes
since the student-specific parameter and pre-training data
are both independently sampled for the synthetic student in
each episode. Therefore, as part of future work, we plan to
run more experiments for a larger number of test episodes
comparing the random policy with the PPO policy to dis-
cern whether the performance difference between the two
approaches is indeed statistically significant.

We also plan to improve upon the POMDP model by ex-
ploring different ways of modeling the action space, such as
clustering questions based on difficulty. Another direction is
to test our framework on domains of structured knowledge,
where students must master certain skills before learning
new ones, such as the task of learning calculus or a foreign
language. Furthermore, we plan to expand our student model
by using a more complex representation of student memory
inspired by work in cognitive science and by incorporating
more student-specific parameters, such as frustration. The
student-specific parameters could be sampled from distribu-
tions pre-defined with domain knowledge, but could also be
fitted to approximate real students when trajectory data of
learning procedure of a population of students is available.
Finally, we would like to show that our work can be used by
wide variety of students. To demonstrate this, we plan to test
our framework using some of the student models described
by Lanillos et al. (2019).
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