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ABSTRACT 
Game theoretic algorithms have been used to optimize the 
allocation of security resources to improve the protection of 
critical infrastructure against threats when limits on security 
resources prevent full protection of all targets. Past approaches 
have assumed adversaries will always behave to maximize their 
expected utility, failing to address real-world adversaries who are 
not perfectly rational. Instead, adversaries may be boundedly 
rational, i.e., they generally act to increase their expected value 
but do not consistently maximize it. A successful approach to 
addressing bounded adversary rationality has been a robust 
approach that does not explicitly model adversary behavior. 
However, these robust algorithms implicitly rely on an efficiently 
computable weak model of adversary behavior, which does not 
necessarily match adversary behavior trends. We therefore 
propose a new robust algorithm that provides a more refined 
model of adversary behavior that retains the advantage of efficient 
computation. We also develop an ensemble method used to tune 
the algorithm’s parameters, and compare this method’s accuracy 
in predicting adversary behavior to previous work. We test these 
contributions in security games against human subjects to show 
the advantages of our approach.  

Categories and Subject Descriptors 
H.4 [Computing Methodology]: Game Theory 

General Terms 
Algorithms, Security 
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1. INTRODUCTION 
Many security situations can be modeled by Stackelberg games in 
which one player, the leader, commits to a mixed strategy and 
adversaries, the followers, respond knowing the leader’s strategy 
[4]. Game theoretic algorithms allow limited resources to be 
randomly planned and scheduled accounting for the different 
values associated with attacks on different targets and for the 
predicted adversary response. This approach has been used to 
develop many algorithms, including algorithms deployed for 
many years to allocate security resources for LAX, several major 
US ports and transit systems, the Federal Air Marshals, and 
sustainability schemes for preventing environmental crime  [13].   

Many currently deployed algorithms, such as DOBSS [9] and 
ASPEN [13], generate an expected-utility-maximizing solution 
assuming that adversaries are perfectly rational, always seeking to 
maximize their expected reward. However, the assumption of 
perfect adversary rationality is not ideal, as substantial evidence 
has suggested the bounded rationality of human adversaries where 
human adversaries do not consistently make expected utility-
maximizing choices [3, 14]. Two general conceptual approaches 
seek to address bounded adversary rationality. The first is to begin 
with a detailed model of adversary behavior and build an 
algorithm that exploits this model, as in [15, 16]. The second is a 
robust approach that has an implicit model of adversary behavior, 
as in [5, 10, 11]. While the question of which approach performs 
better has not been settled, we focus on this second approach 
because it has a few advantages over the alternate approach: (1) it 
is more robust to potential inaccuracies within the model of 
adversary behavior since it uses milder modeling assumptions 
than the strict modeling assumptions of the other approach; and 
(2) these algorithms tend to have significantly faster runtimes.  

The most effective robust approach to date has been the MATCH 
algorithm [11] based on robust optimization [1], and research has 
found MATCH to be highly effective when tested against human 
adversaries [11]. By coupling the performance of the attacker and 
defender, it guards against the possibility of large losses to the 
defender. However, MATCH has some important limitations that 
this study seeks to address. The model implicit in MATCH is a 
weak model of adversary behavior that fits our data poorly. Also, 
while MATCH prevents large disproportionate losses to the 
defender, it leaves open the possibility of large losses to the 
defender resulting from poor attacker choices, which may be an 
unacceptable outcome. We propose a new algorithm, RADAR, 
that attempts to correct these problems by using a refined model 
of adversary behavior.  

We also test RADAR against MATCH in an online game against 
human adversaries, an approach that has been used in many 
previous studies to test other algorithms using the same 
framework [8, 11, 15]. We find that RADAR generally performs 
better than MATCH.  

2. BACKGROUND AND RELATED WORK 
Previous game-theoretic approaches, including currently deployed 
approaches such as DOBSS [9] and ASPEN [13] and other 
research into game theoretic algorithms for security [2, 6], assume 
adversaries choose the strategy that maximizes their expected 
utility. Real-world adversaries often choose sub-optimal 
strategies, causing these approaches to perform poorly in tests 
against human adversaries in non-zero sum games [15]. 

To date, two approaches have been developed to address the 
bounded rationality of human adversaries. One is to begin with a 
model of adversary behavior and craft a response to that model. 
Algorithms using this approach are less robust, since the model 
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may not accurately predict how adversaries will actually behave. 
Moreover, since the models these algorithms are based on are 
often nonlinear, they lead to optimization problems for the 
defender that are nonlinear and non-convex, which are difficult to 
solve and have very large runtimes. For example, this is the case 
with one of the most successful model-based approaches based on 
the Quantal Response model [16].  

MATCH [11], an algorithm based on robust optimization, was 
developed to address these deficits. Its runtime is shown to be 
significantly smaller than model-based approaches [11]. 
MATCH’s general approach is to maximize the defender’s 
expected utility with a constraint bounding the loss of the 
defender with regard to the loss of the attacker when the attacker 
deviates from the optimal action. We present the Mixed Integer 
Linear Program (MILP) for MATCH below, but first, we define 
our problem space, using the same notation as [11]. 

The defending force has K resources to assign to a mixed strategy 
for protecting a set of targets  Each target ti has a 
reward  for the attacker and  penalty for the defender if the 
target is attacked when unprotected, and has a penalty  for the 
attacker and reward  for the defender if the target is attacked 
when protected. The defender’s strategy x is set of probabilities, 
where xi is the probability that target ti is protected at a given time. 
The attacker’s strategy is given by , and represents 
the single target the attack chooses to attack. represents 
the expected utility for the defender of an attack on target i given 
strategy x, which can be calculated by . 
Likewise,  represents the expected utility for the attacker 
of an attack on target i, calculated by .  

MATCH can be represented as the following MILP [11]: 

max  
 

s.t.  (1) 

 (2) 

 
(3) 

(4) 

  

(5) 

MATCH attempts to maximize the defender’s expected utility, 
given by . Constraints (1) and (2) ensure that the defender uses 
all her resources and that the probability each target is protected is 
between zero and one. Constraint (3) sets q as the target that 
maximizes the attacker’s expected utility. Constraint (4) requires 
the defender to maximize her expected utility of the attacker’s 
optimal target choice. Finally, the key constraint (5) bounds the 
loss of the defender with respect to the loss of the attacker. The 
left side calculates the loss in expected utility resulting from the 
attacker deviating from the optimal target. The right side 
calculates the loss in expected utility for the defender resulting 
from this deviation. The loss in expected utility to the defender is 
constrained to be no more than  times the loss to the attacker. 

MATCH’s strength is that it addresses bounded adversary 
rationality using a more robust approach than relying on an 
explicit model of adversary behavior. MATCH constrains the loss 
to the defender when the attacker deviates from the optimal by 

adding a lower bound on the expected utility for the defender of 
sub-optimal targets. Therefore, even when adversaries select sub-
optimal targets, the defender will not suffer a very large loss in 
expected utility. 

MATCH implicitly assumes a model of adversary behavior in 
which the frequency with which a target is attacked has a linear 
relationship with the expected utility of the target. A large 
deviation by the attacker from the optimal choice will also lead to 
large losses to the defender, which MATCH accepts because it 
assumes larger deviations are less likely; it performs well if the 
size of the deviation relates to the frequency of that deviation. 
Since the loss to the defender correlates in a linear fashion with 
the size of the deviation by the attacker, MATCH implicitly 
assumes the likelihood of a deviation should correlate in a linear 
fashion with the size of that deviation.  

3. RADAR ALGORITHM 
3.1 Key Insights into RADAR 
This study proposes RADAR (Risk-Averse Defense against 
bounded Adversary Rationality), an algorithm based on a 
modification of MATCH. MATCH has a constant ratio of 
expected utility sacrificed by the defender to expected utility 
sacrificed by the attacker, whereas in RADAR, this ratio 
decreases with greater attacker sacrifices. This results in a risk-
averse strategy since it limits the risk that large attacker sacrifices 
result in large defender losses. 

One potential problem with MATCH is that as adversaries select 
increasingly sub-optimal targets, the defender will receive 
increasingly sub-optimal outcomes. While MATCH prevents 
large disproportionate losses resulting from small deviations by 
the attacker from their optimal choice, it still allows for the 
possibility of a poor attacker choice resulting in a large loss to the 
defender. Such large losses may be an unacceptable outcome. As 
security agencies are typically risk-averse [12], larger losses may 
be seen as disproportionately worth avoiding. An algorithm that 
generates strategies consistent with this preference for avoiding 
large risks, such as RADAR, may thus be desirable. 

Second, the assumption of a linear relationship between a target’s 
expected utility and its likelihood of being attacked does not fit 
our experimental data, where we test defender strategies in 
security games against human subject. In Figure 1, each data point 
represents one target in one game. The x-axis represents expected 
utility, and the y-axis represents frequency, or the number of times 
a target was selected for attack.  Since expected utilities differ 
across different games, we normalize each expected utility 
between -1 to 1 by dividing the expected utility of a target by the 
highest expected utility in that game. The frequency of attack is 
expressed as a percentage by dividing the number of users 
selecting it for attack by the total number of users, i.e., we 
normalize each point between 0 to 1. We gathered 200 data points 
from 82 human subjects. Our experimental setup is explained in 
further detail in section 5. 

 
Figure 1. Best fit lines for attack data 
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The solid line in Figure 1 represents the single best fit line. 
MATCH assumes that because there is a consistent linear 
relationship between expected utility and frequency, one line 
should best fit this graph. However, we find that using three best 
fit lines for each third of the graph, shown as the dotted lines in 
the figure, better fits the data. These three lines have significantly 
different slopes: the first line has a slope of -0.015, the second has 
a slope of 0.193, and the third has a slope of 0.660. Using three 
best fit lines has a stronger correlation with the data, with a 
correlation coefficient of 0.6683 compared to the single line’s 
coefficient of 0.6188. This finding is statistically significant (p < 
0.05). 

3.2 MILP 
Based on this analysis, we introduce RADAR. Constraints (5b) 
through (7) further limit the potential for large losses resulting 
from sub-optimal adversary choices, resulting in a risk-averse 
strategy. The MILP for RADAR is shown below: 

  
 

s.t. (1) 

(2) 

 
(3) 

 (4) 

 +  
(5a) 

 +  
(5b) 

…  

 +  
(5c) 

 (6) 

 (7) 

Constraints (1) through (4) serve the same functions in RADAR 
as they do in MATCH. Constraint (5) constrains the defender’s 
losses in the same way MATCH does, with  controlling the ratio 
of the defender’s loss to the attacker’s loss. However, since each 
additional constraint within line (5) has a greater value of  and 
a smaller value of  than the previous constraint, the losses to the 
defender are constrained to decreasing values as the attacker 
deviates further from his optimal strategy.  

The constraints in (5) can be displayed in the form of a graph. In 
Figure 2, the x-axis represents the potential difference in expected 
value for the attacker between the attacker’s optimal target choice 
and chosen target, and the y-axis represents the same difference in 
expected value for the defender. The slopes and intercepts in the 
inequalities represent a possible set of  and  values for a 
version of RADAR. The loss for the defender relative to the loss 
for the attacker is bounded to the region at the bottom of the 
graph, the intersection of all the inequalities. 

  
Figure 2. Graph of equations in constraint 5 for RADAR  

In this figure, if the attacker loses one unit of expected utility by 
selecting a sub-optimal target, both MATCH and RADAR will 
ensure that this selection will be up to one unit away from the 
optimal for the defender, marked as point A in the graph (if  and 

 = 1). If the attacker’s choice deviates two units from the 
optimal, then a defender using MATCH will lose two units of 
expected utility as well, while RADAR will lose only 1.5 points, 
marked as point B in the graph.  

In all forms of RADAR in this paper, we used four constraints 
within constraint (5) of RADAR, with four values of  and .  

4. TUNING AND WEIGHTING 
ALGORITHMS 
In both MATCH and RADAR, the parameters  in MATCH and 
( , mk) in RADAR are key pre-determined values controlling the 
loss of the defender. Therefore, it is important to tune these 
parameters effectively to obtain a better patrolling strategy for the 
defender. In this section, we first introduce the adaptation of an 
iterative program originally used to tune MATCH to RADAR. We 
then propose an ensemble model of adversary behavior to make 
more accurate behavioral predictions. 

4.1 Tuning Program 
We develop an iterative tuning program to tune RADAR. This 
program is adapted from a program used to tune MATCH [8], and 
can be represented as below: 

Initialize  (1)

Iterate through values of ,  (2) 

) (3) 

         (4) 

        If : (5) 

             ,  (6) 

Return , ,  (7)

The program uniformly generates a set of N samples for each 
parameter  and  within a range, and then iterates 
through each sampled value for each parameter to find the best 
combination of parameters. Specifically, Line 1 initializes the 
value of 𝛾 (the final expected utility for the defender) at a large 

negative number -Z. Line (2) iterates through values of  and 
 (for example, with a set of nested for loops). Line (3) uses 

the current parameter values to generate a protection strategy x 
using RADAR, and line (4) uses this protection strategy to 
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determine the defender’s expected utility for each target, and to 
generate a prediction of adversary behavior P using a model of 
adversary behavior j, e.g., SUQR [8], explained in section 5.3.  
refers to the predicted likelihood of a target i being attacked, 
which comes from the model of human behavior. In line (6), the 
defender’s total expected utility is computed given x under the 
assumption that the attacker responds stochastically according to 
the human behavior model j. This process is repeated for each 
parameter value combination, and the output of the program in 
line (7) is the set of parameter values that generates the highest 
defender expected utility. Note that for the 
MATCH and RADAR algorithms, tuning is helpful even if not 
enough data is available to accurately estimate the parameters of 
the SUQR model; this is because SUQR is not directly used to 
predict adversary behavior, but is used as a heuristic 
to tune the parameters of our robust approach. 

4.2 Ensemble Model 
The tuning program in section 4.1 requires a model of adversary 
behavior to generate a prediction of which targets adversaries may 
choose to attack. The more accurate these models are, the better 
the tuned algorithms will perform against human adversaries. The 
following ensemble model of adversary behavior replaces the 
single model j used in the section above. 

The ensemble model is a heuristic to tune RADAR’s parameters, 
but is not used in the algorithm itself. We favor this approach 
because using the ensemble model mitigates the risk of a single 
model being flawed by including several models, whereas a single 
model is not robust to this risk. However, using a model of 
adversary behavior in the algorithm itself greatly slows the 
algorithm’s runtimes (as shown in the Introduction), which is 
especially problematic given that the ensemble model uses several 
models of adversary behavior and is therefore more complex.  

The following algorithm allows multiple models to be combined 
into weighted average prediction (ensemble modeling of 
adversary behavior), replacing the use of a single model in the 
original tuning program. The algorithm multiplies the prediction 
made by each model by a certain value less than one (a “weight”), 
where the sum of all the weights is one. These products are 
summed to generate a final prediction. The algorithm, shown 
below, optimizes these weights such that the final prediction 
matches as closely as possible the actual behavior of attackers.  

In the following algorithm,  corresponds to the final prediction, 
 refers to the weight corresponding to a model j, and  refers to 

the adversary behavior from actual data. The predictions, { }, 
are a set of probabilities denoting the probability each target is 
attacked, while the data, { } are a set of percentages denoting 
how many times each target is attacked. 

   

s.t.   (1) 

 (2) 

 (3) 

 (4) 

Constraints (1) and (2) replace the use of an absolute value, which 
cannot be used in a linear program, and define Gi as the 1-norm 

distance between the final prediction Pf and the actual data D. The 
algorithm minimizes G by adjusting the values of  to bring  
closer to . The output is an optimal value for each weight, and 
an optimal final prediction. The final prediction is used to replace 
the prediction  in the tuning program in section 4.1. This 
ensemble method is used in the tuning programs for both MATCH 
and RADAR for the sake of consistency. 

We used four models of adversary behavior in the ensemble 
model: Quantal Response (QR), Subjective Utility Quantal 
Response (SUQR), a uniform attack distribution (Uniform), and a 
perfectly rational adversary (Rational Adversary), all of which are 
explained in section 5.3.  
We argue that the ensemble model has two advantages over any 
singular model. First, it is more robust to inaccuracies of a single 
model. If one model in the ensemble approach happens to fit the 
data poorly, the incorporation of additional models will mitigate 
the impact of the inaccuracy. Second, the ensemble model can be 
no worse than any single model. Even if a single model fits the 
test set better than any combination of models, the output of the 
ensemble model would assign a weight of 1 to that single model.

5. EXPERIMENTS 
5.1 Format of Experiments 
The algorithms were tested in an online game, in the same format 
as [8, 11, 15]. In all the experiments, the defending force used 
three guards to protect eight gates. A screenshot of the game 
interface is shown in Figure 3. 

 
Figure 3. Screenshot of game interface.  

As shown in Figure 3, each human subject, playing the role of the 
attacker in the security game, chooses one gate in each game, with 
full information about the rewards and penalties associated with 
an attack on each gate. Subjects also know the probability of each 
gate being protected, but do not know which gates will be 
protected at a given time.   

Before playing, subjects were given a brief tutorial and a practice 
round to ensure they understood the game. The experiments were 
run in Amazon Mechanical Turk with a payment of US $1.50 for 
playing. Subjects received an additional $.10 for each “point” of 
reward earned. Two “dummy” games with obvious answers were 
included (ie, the gate with the highest reward and lowest penalty 
had the lowest probability of being protected), and if subjects did 
not select the obvious answers their results were not counted.  

Since the weighting algorithm requires some data to learn the 
weights for the different models, we conducted our experiments in 
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two batches, a training data set and a test set. In both sets, we used 
four reward structures from a previous study [15] that found these 
structures to be representative of a larger group of reward 
structures. In the training set, we compared versions of RADAR 
and MATCH whose parameter values were determined without 
tuning, i.e., by hand. Our training set includes data from 39 
subjects who each played 12 games each in the training set, using 
3 reward structures1 with 4 algorithms, DOBSS, MATCH with  
=1, and 2 parameter sets of RADAR2.  

The data from the training set was used in the weighting and 
tuning algorithms to generate a tuned version of RADAR and 
MATCH. The test set of experiments included the tuned and 
untuned versions of MATCH and RADAR, and DOBSS. 43 
subjects played 20 games each (4 reward structures with 5 
algorithms) in the test set. The training and test sets had an 
entirely different subject pool. 

In the following sections, we compare the performance of each 
algorithm against human adversaries, then provide findings 
regarding the ensemble model. 

5.2 Algorithm Results 
We present our results in four sets of pairwise comparisons 
between RADAR and each other algorithm. In each of the 
following graphs, the x-axis represents an algorithm’s 
performance, measured by the defender’s expected utility 
obtained by different algorithms given the subjects’ responses. On 
the y-axis, each pair of bars represents the results from one game. 

 

Figure 4. Bar graph comparing performance of RADAR-
tuned vs DOBSS 

 

Figure 5. RADAR-tuned vs RADAR-untuned 

                           
1 We omitted the fourth reward structure in the training set since 

the strategies generated by each untuned algorithm were very 
similar. In the test set, the tuned algorithms generated different 
strategies. 

2 Both versions set ,  , and  to 1, 0.5, 0.25, and 0.125. In 
one version, , , , and  are 0, 0.5, 1, and 3.75; and in 
the other, , , , and  are 0, 0.875, 1.75, and 2.40625. 

 

Figure 6. RADAR-tuned vs MATCH-tuned 

 

Figure 7. RADAR-tuned vs MATCH-untuned 

We note several key findings. First, as shown in Figure 4, 
RADAR-tuned outperforms DOBSS by a very large margin in all 
four games. Since DOBSS’ approach represents a common 
assumption of adversary rationality also found in some recent 
algorithms, RADAR’s better performance over DOBSS is an 
important finding. Second, as shown in Figure 5, tuning RADAR
causes it to perform better in 3 of 4 games. This shows that the 
process of tuning RADAR is an important step to improve its 
performance. Third, in Figure 6, RADAR-tuned outperforms 
MATCH-tuned in all four games.  

Figure 7, where RADAR-tuned is compared to MATCH-untuned, 
is the only instance where RADAR-tuned does not perform the 
best in at least three games. Here, RADAR-tuned performs better 
in games 1 and 4, and there is no statistically significant 
difference in game 2. While MATCH performs better in game 3, 
the fact that tuning both algorithms made them perform worse in 
this game casts doubt on this finding. Since the tuning process 
was calibrated using past data, subjects in the training set may 
have played game 3 different than subjects in the test set, skewing 
the results. Interestingly, MATCH suffers more from tuning in 
this game than RADAR does, i.e. the difference between 
MATCH-tuned and MATCH-untuned is larger than the difference 
between RADAR-tuned and RADAR-untuned, which provides 
evidence of RADAR’s robustness. Based on these results, we can 
conclude there are some reward structures for which RADAR is 
superior to both the tuned and untuned versions of MATCH. 

5.3 Weighting Algorithm Results 
In this section, we explain why the tuned version of RADAR 
performed better than the untuned version: the ensemble model 
used to tune it predicted adversary behavior well. 

We use four models of adversary behavior: Quantal Response 
(QR), Subjective Utility Quantal Response (SUQR), a uniform 
distribution (Uniform), and a perfectly rational adversary who 
attacks only the optimal target (Rational Adversary). QR predicts 
that targets with a higher expected utility are more likely to be 
attacked. SUQR is based on QR, but replaces the expected utility 
function with a heuristic it assumes humans use in place of 
calculating expected utilities. For a detailed discussion of QR, see 
[7], and for a detailed discussion of SUQR, see [8]. Using the data 
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from the training set of experiments, the weighting program 
generated a set of weights used in the ensemble model, which 
generated predictions of adversary behavior. These predictions are 
compared to the predictions made by each model individually by 
their fit with the actual data.  

In Figure 8, predictions made by the ensemble model were 
compared to the predictions of other models in two ways: first, by 
how well they fit the training set, and second, by how well they fit 
the test set. On the y-axis, the models’ accuracies are expressed as 
the average 1-norm distance between each model’s prediction and 
the actual data, then normalized between 0 and 1 by dividing it by 
the highest possible 1-norm distance.  

 
Figure 8. Comparison Between Accuracy of the Ensemble 

Model and Other Models 

In the figure, the ensemble model’s predictions match the 
adversary’s behavior more closely than any other model with 
statistical significance. We additionally note that the ensemble 
model is more robust when the test data varies from the training 
data. In Figure 8, QR fits the training set best, whereas SUQR fits 
the test set best. Selecting QR as the single model based on its 
performance in the training set would have failed to fit the test set 
accurately, whereas the ensemble model fits both data sets well. 
These findings, in addition to the ensemble method’s two general 
advantages shown in section 4.2, are a strong indication that the 
ensemble model is an effective method to predict human behavior. 

6. CONCLUSIONS 
Game theoretic algorithms have been used to improve the 
protection of critical infrastructure against threats, but many 
algorithms assume perfect adversary rationality. A leading robust 
approach to addressing imperfect human decision-making, 
MATCH, has been successful in experimental evaluation. 
Unfortunately, MATCH implicitly relies on a weak model of 
adversary behavior, which should be refined to fit our data more 
closely. Our new robust algorithm, RADAR, provides a refined 
model of adversary behavior, and plays a more risk-averse 
strategy than MATCH, which may be desirable for risk-averse 
security agencies. We also develop an ensemble method to predict 
human behavior and use this method to tune the parameters in 
MATCH and RADAR. We test these contributions in human 
subjects experiments, and find that RADAR performs as well or 
better than MATCH in three of four games. RADAR also 
consistently outperforms an algorithm assuming perfect adversary 
rationality. We also find that our ensemble modeling approach 
predicts adversary behavior significantly more accurately than 
alternative models of adversary behavior, highlighting the 
advantages of such an approach. 
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