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Abstract
Many real-world problems exhibit competitive situations in
which a defender (a defending agent, agency, or organiza-
tion) has to address misinformation spread by its adversary,
e.g., health organizations cope with vaccination-related mis-
information provided by anti-vaccination groups. The rise of
social networks has allowed misinformation to be easily and
quickly diffused to a large community. Taking into account
knowledge of its adversary’s actions, the defender has to seek
efficient strategies to limit the influence of the spread of mis-
information by the opponent.
In this paper, we address this problem as a blocking influence
maximization problem using a game-theoretic approach. Two
players strategically select a number of seed nodes in the so-
cial network that could initiate their own influence propaga-
tion. While the adversary attempts to maximize its negative
influence, the defender tries to minimize this influence. We
represent the problem as a zero-sum game and apply the Dou-
ble Oracle algorithm to solve the game in combination with
various heuristics for oracle phases. Our experimental results
reveal that by using the game theoretic approach, we are able
to significantly reduce the negative influence in comparison
to when the defender does not do anything. In addition, we
propose using an approximation of the payoff matrix, making
the algorithms scalable to large real-world networks.

Introduction
With an increasing number of users, online social networks
have become important and efficient media for disseminat-
ing information to a large number of people. People tend to
be influenced by their social friends in deciding whether to
adopt an innovation such as a political idea or a new product.
Many diverse topics in the research areas of sociology, eco-
nomics, epidemiology, and computer science closely relate
to the social network domain such as effects of advertising,
epidemics and spread of certain social behavioral patterns
(Achrekar et al. 2011), (Fu et al. 2011), (Trusov, Bucklin,
and Pauwels 2009).
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Although social networks are considered as the main news
resource for many people today, there is no guarantee of cor-
rectness for the information. Misinformation available in so-
cial networks could cause a great negative effect in the large
population. There are examples of this phenomenon in the
health domain in which vaccination misinformation is preva-
lent in social networks, partially accounting for the decreas-
ing rate of vaccination (Shetty 2010). In fact, in many cases,
misinformation is intentionally spread by groups which op-
pose vaccination (Davies, Chapman, and Leask 2002), (Kata
2011). In the presence of misinformation, it is important to
find out an efficient way to diffuse ‘good’ information to
fight against the misinformation campaigns.

Many researchers have addressed this scenario as a com-
petitive influence problem, seeking strategies to efficiently
limit misinformation propagated by opponents (Borodin,
Filmus, and Oren 2010), (Budak, Agrawal, and El Abbadi
2011). In their work, they make a strong assumption that
opponents are static; meaning that their actions are already
known and fixed. In real-world problems, however, the pres-
ence of intelligent adversaries who act strategically against
actions of the defender makes the problem much harder
to solve. This scenario represents the situation that anti-
vaccination activists actively spread misinformation in so-
cial networks in the attempt of preventing people from get-
ting vaccines (Smith 2010) (Kata 2011).

Motivated by this scenario, the key novelty of this pa-
per is the application of game theoretic approach to analyse
the problem in combination with influence diffusion models
in social networks. We model the problem as a zero-sum
game in which each player chooses a set of ‘source’ nodes
to propagate their own influence simultaneously. While the
adversary attempts to maximize their negative influence, the
defender spreads their positive influence to block that nega-
tive influence. We adopt the Linear Threshold Model (LTM)
which emphasizes strong relations between people influenc-
ing their common social friends (Kempe, Kleinberg, and
Tardos 2003) to examine the influence cascades in social
networks.
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This game-theoretic model is computationally challeng-
ing because of the large number of strategies and the diffi-
culty in computing payoffs. To cope with the problem of
the large number of strategies, similar to (Tsai, Nguyen,
and Tambe 2012), we apply the Double Oracle algorithm
to solve the problem. In short, the Double Oracle algorithm
computes an exact Nash equilibrium of the game using only
a small portion of the payoff matrix (each element of the
matrix is the payoff for a pair of players’ actions). How-
ever, in their work, they haven’t dealt with the problem of
the difficulty in computing payoffs, which makes their algo-
rithms infeasible for large games. In our works, we pro-
pose using the LDAG approach (Chen, Yuan, and Zhang
2010) for approximating the payoff matrix which outper-
forms their Monte-Carlo approach in runtime. Finally, we
applied several ways to approximate the oracle phases: 1)
the GreedyMC heuristic which guarantees a good solution
(Kempe, Kleinberg, and Tardos 2003) but runs slowly, 2) the
GreedyLDAG heuristic which shows good results in the case
of fixed attacker actions (He et al. 2011), and 3) our new-
PageRank originated from the PageRank algorithm (Page
et al. 1999) which provides a comparable solution to the
GreedyMC while runs faster. Extensive experiments were
conducted with both synthetic and real-world graph data in
order to analyse both runtime efficiency and solution quality
of these algorithms.

Domain Example - Vaccination
Misinformation Problem

This section outlines a motivating domain as an example,
however, our techniques may generalize to several domains;
indeed, the rest of the paper will use a more general domain.

Vaccines are one of the most important and efficient meth-
ods for people to protect themselves from diseases. How-
ever, a vast amount of negative vaccination information
available in social networks is negatively affecting people’s
perception of vaccinations. Approximately 25.3% of the
HPV-related video clips on Youtube potrayed the HPV vac-
cination negatively (Ache and Wallace 2008) and 43% of
MySpace blogs which contain HPV information are classi-
fied as negative (Keelan et al. 2010).

There exist anti-vaccination groups who are intentionally
spreading vaccination misinformation. Anti-vaccination
lobbying organizations such as the US National Vaccine In-
formation Centre (NVIC) and the Coalition for SafeMinds
have become so highly organised that they threaten vaccina-
tion rates (Shetty 2010). Health agencies such as the Euro-
pean Society of Clinical Microbiology and Infectious Dis-
eases (ESCMID) and World Health Organization (WHO)
have become increasingly concerned about the vaccination
misinformation that anti-vaccination groups are spreading
(Shetty 2010).

It’s important for health experts to figure out an efficient
way to communicate with the public to fight against anti-
vaccination messages. Both the messenger and the way the
message is communicated are essential for the message to be
effective. In fact, it is impossible for supporters to persuade
all users of social media directly due to the budget and time

constraint. Instead, strategists attempt to point out a small
number of early ‘positive’ adopters in order to trigger a large
cascade of further ‘good’ adoptions, to minimize the number
of users who adopt negative information.

The vaccination problem can be modelled as a misinfor-
mation blocking problem in which vaccination supporters
attempt to spread correct vaccination information to limit
the influence of incorrect information provided by vaccina-
tion opponents. Vaccination supporters are presented as the
defender that attempts to find a set of source nodes to start
spreading positive influence (correct information) from in
order to minimize the number of negatively influenced nodes
(users who adopt negative information). Anti-vaccination
groups are defined as the adversary who are finding a set of
nodes to spread negative influence (incorrect information) to
maximize the number of such nodes.

Related Work
The problem of finding a small set of influential nodes in
a social network such that their aggregated influence in the
network is maximized is called the Influence Maximization
Problem (IMP). In IMP, a social network is represented as a
directed graph in which nodes are users and edges are con-
nections between users; orientations of edges imply the di-
rection of influence. Each edge is associated with a weight
representing influence strength between the users. Finding
exact optimal solutions for IMPs is computationally diffi-
cult (it is NP-hard for most models that have been studied
(Kempe, Kleinberg, and Tardos 2003)) and has motivated re-
searchers to look for various approximations that run faster
while still keeping a high solution quality.

Kempe proposed a greedy algorithm which guarantees an
(1 − 1

e )-approximation for IMPs (Kempe, Kleinberg, and
Tardos 2003). Following this study, researchers have inves-
tigated different techniques for solving IMPs where they uti-
lize the local structures of networks to estimate the influence
of nodes over the networks (Chen, Wang, and Wang 2010),
(Chen, Yuan, and Zhang 2010). In addition to seeking new
techniques, other studies looked at variances of IMPs such
as the Competitive Maximization Problem that addresses the
case of two players competing with each other in order to
maximize their own influence (Bharathi, Kempe, and Salek
2007), or the case where one player tries to limit his / her
competitor’s influence (He et al. 2011). Nevertheless, none
of these studies address the context where both players are
strategic, and always assume a fixed action for one player. In
our study, we address the influence blocking problem where
both the players are strategic: we model the IMP as a zero
sum game and assume that the adversary responds optimally
against the defender’s action.

For large-graph zero-sum games, (Jain et al. 2011) used
a Double Oracle approach to iteratively generate the set of
actions for both the defender and attacker to determine an
exact Nash equilibrium of the game. This approach over-
comes the computational barriers of traditional algorithms
for zero-sum security games which require generating the
whole action space for both players.

(Tsai, Nguyen, and Tambe 2012) applied the Double Or-
acle approach to solve contagion games in the counterin-
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surgency domain. In their study, the Independent Cascade
Model (ICM) (Kempe, Kleinberg, and Tardos 2003) is used
to present the influence diffusion process in networks. In
short, ICM emphasizes the role of the active nodes that
spread influence to other nodes; each active node can in-
fluence other inactive nodes independently from other ac-
tive nodes. In this paper, we look at the Linear Threshold
Model (LTM) (Kempe, Kleinberg, and Tardos 2003) which
focuses on the role of inactive nodes: each inactive node is
activated only when there is a sufficient number of its neigh-
bors already activated. These two models could be applied
to different domains. For example, ICM was investigated
in the context of marketing (Goldenberg, Libai, and Muller
2001) and LTM is the general model of the models studied
in the sociology (Granovetter 1978). Moreover, they use the
exact payoff matrix, which works well with their domain’s
networks. This is also inapplicable for our domain because
of runtime issues in large social networks. Our approach of
using an approximation of the payoff matrix overcomes this
runtime barrier.

Problem Definition
We represent a social network as a directed graph G(V,E)
where V is the set of nodes and E is the set of edges in the
graph. Each node u in the graph represents a user and each
edge (u, v) represents an influence between two users in the
network. The direction of each edge infers the orientation of
influence. Each edge eu,v = (u, v) in G is associated with a
weight wu,v measuring the influence of user u on user v.

We model the misinformation blocking problem as a zero-
sum game in which a defender’s purpose is to minimize the
number of negatively activated nodes and an attacker aims to
maximize the number of such nodes. Each node in the graph
has three different states: negative, neutral, and positive.
Initially, the defender can choose a subset of their ‘source’
nodes (positively activated nodes), Sd ⊆ V , and the attacker
can select a subset of their ‘source’ nodes (negatively ac-
tivated nodes), Sa ⊆ V , to start spreading their influence
simultaneously. Nodes other than the source nodes stay neu-
tral in the beginning of the influence diffusion process. The
payoff for the attacker, ua, is the expected number of nodes
influenced by that player while the defender’s payoff, ud, is
the opposite of the attacker’s payoff, −ua. The objective is
to find an optimal mixed strategy for the defender given that
the attacker will respond optimally.

We use the commonly used and fundamental Linear
Threshold Model which is described in the next section to
represent the influence spreading process in our problem.

Influence Diffusion Model
In LTM, a node u activates its neighbor v in correlation
with v’s other neighbors. Initially, each node v is associated
with an activation threshold θv which is chosen uniformly
at random in [0, 1] representing the weighted fraction of v’s
neighbors that must be positively (negatively) activated in
order for v to be positively (negatively) activated. The diffu-
sion process is unfolded in discrete time steps. Given a set
of ‘source’ nodes, an inactive node v can be activated only

when the weighted sum of its activated neighbors exceeds
the threshold θv . The total sum of weights of edges ending
at v,

∑
u wuv , satisfies

∑
u wuv ≤ 1. The activation process

stops when no more nodes can be activated.
In our competitive diffusion model, two players dis-

seminate their influence simultaneously from their ‘source’
nodes. When a node is activated by both players at the same
time, the defender has probability p of defeating the attacker
and thus activating that node. More specifically, in LTM,
if the weighted sum of positively activated neighbors and
weighted sum of negatively activated neighbors of an in-
active node w exceeds the positive threshold θ+w and neg-
ative threshold θ−w respectively at the same time, then w has
probability p of being positively and probability (1 − p) of
being negatively activated. In this scenario, each directed
edge (u, v) is associated with two weights: w+(u, v) and
w−(u, v) that correspond to the positive and negative influ-
ence of the node u on node v respectively. This assumption
makes sense as in general, w+(u, v) is not always necessar-
ily equal to w−(u, v).

Computing the Payoff Matrix
Exact Payoff: Under the Linear Threshold Model in which
the influence propagation process is described as a prob-
abilistic process, for each pair of actions of players, their
payoffs can be computed using the Monte Carlo simulation
(Kempe, Kleinberg, and Tardos 2003). However, the Monte
Carlo simulation requires generating thousands of samples
which is time-consuming to exactly compute payoff val-
ues. Therefore, we propose using the LDAG (Local Directed
Acyclic Graph) influence model to compute the payoff ma-
trix in which influence to each node is estimated locally in
its neighborhood area (Chen, Yuan, and Zhang 2010).

Approximated Payoff: In a single LDAG model in which
there is one single player, it computes a local DAG (Directed
Acyclic Graph) for every node u in the graph which covers
a significant portion of influence from other nodes to u such
that each node v ∈ LDAG(u) must satisfy Inf(v, u) ≥ θ
where θ is a given threshold and Inf(v, u) is a measure
of the influence from v to u. The activation probability
of a node u, denoted by ap(u), can be computed by sim-
ply aggregating the activation probabilities of its neighbors
in its LDAG: ap(u) =

∑
v∈Nin(u)

wv,uap(v). This prop-
erty allows a linear computation of the activation probabil-
ity of a node within its local DAG (see (Chen, Yuan, and
Zhang 2010) for more details of computing Inf(v, u) and
LDAG(u),∀u, v ∈ V ). This activation probability value
could be used to approximate the payoffs.

In the competitive influence problem, however, both the
negative and positive influence are diffused simultaneously
and interfere with each other. A new competitive model
which utilizes LDAG is proposed by (He et al. 2011) to deal
with this problem. In their study, they assume that when a
node is activated by both players at the same time, the at-
tacker will have the advantage over the defender. Yet, it is
not difficult to adjust their model for our general case. For
each pair of actions, the adversary’s payoff would be

∑
u∈V

ap−(u) and the defender’s payoff is −
∑

u∈V ap
−(u). By
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using the negative activation probabilities of nodes, we can
approximate the payoff matrix that overcomes the runtime
issue of the exact computation of the payoffs. For more de-
tails about computing ap−(u), see (He et al. 2011).

Double Oracle Approach
The most common approach to solve a zero-sum game is the
naive Maximin algorithm. In general, Maximin computes a
Nash equilibrium for the game. Although it gives an ex-
act solution for the game, it suffers from both memory and
runtime barriers because of its requirement of enumerating
the whole payoff matrix. Specifically, the size of the payoff
matrix increases exponentially with the size of the graph.
For example, if the number of nodes in the graph, N , was
equal to 1000, and the number of defender resources |Sd|
was equal to 30, there will be

(
1000
30

)
actions of the defender.

Therefore, computing the payoff matrix for a large game is
a computational limitation.

The Double Oracle algorithm, in contrast, deals with only
a small portion of the players’ action space while still guar-
anteeing to generate an exact Nash equilibrium for the game
(McMahan, Gordon, and Blum 2003), (Jain et al. 2011).
Thus, it is very efficient to solve large real-world games. The
core part of the Double Oracle algorithm is the Maximin al-
gorithm. Instead of generating the whole action space for
both players, it iteratively adds a new action into the current
set of chosen actions in the defender and adversary oracle
phases. The Double Oracle algorithm is described in Algo-
rithm 1. In this algorithm, D and A respectively denote the
sets of actions of the defender and the attacker generated
so far. The Maximin computes equilibrium mixed strate-
gies for the defender and adversary given the payoff matrix
P (D,A) computed either exactly or approximately over D
and A. The outcome of Maximin is a probability distribu-
tion (xD, xA) over D and A, respectively. In the defender
oracle phase, a new defender action is generated which is an
optimal pure strategy for the defender against the attacker’s
mixed strategy (A, xA) given by Maximin. Similarly, the ad-
versary oracle phase generates a new optimal action for the
attacker against (D,xD). The process stops when no new
actions are generated.

Algorithm 1 DOUBLE ORACLE ALGORITHM

1: Initialize D with random defender allocations.
2: Initialize A with random attacker allocations.
3: repeat
4: (xD, xA) = Maximin(D,A, P(D, A))
5: D = D ∪ {DefenderOracle(A, xA)}
6: A = A ∪ {AttackerOracle(D,xD)}
7: until convergence
8: return (D,xD), (A, xA)

Maximin
In the Double Oracle algorithm, the Maximin algorithm
solves for the optimal strategies for both players given the
set of strategies generated from oracle phases so far. Specif-
ically, finding an optimal mixed strategy of the defender can

be described as the following Maximin linear program::
maximizexD

rD

subject to rD ≤
∑
d

xd · rd(d, a),∀a ∈ A∑
d∈D

xd = 1

where rd(d, a) is the defender’s payoff given a defender’s
pure strategy d and an adversary’s pure strategy a. The lin-
ear program for finding an optimal mixed strategy for the
adversary is similar.

Defender Oracle Phase
The defender oracle phase computes the optimal pure strat-
egy of the defender against the mixed strategy of the attacker
generated by Maximin. In the following, we address two
cases: 1) the Exact Oracle which computes the defender op-
timal response, yet copes with low runtime efficiency, and 2)
the Approximated Oracle that generates a good approxima-
tion for the defender’s optimal action and runs much faster.

Exact Oracle: In the exact defender oracle phase, we
look for an optimal pure strategy of the defender in the
whole strategy space of the defender. Using the exact or-
acle phase provides the best action for the defender. Nev-
ertheless, the defender’s action space is very large even in
small graphs. For example, given a graph with N = 100
and |Sd| = 3, the number of pure strategies for the defender
is
(
100
3

)
≈ 1.62 · 105. This exponentially large pure strat-

egy space significantly deteriorates the algorithm’s runtime
performance.

To overcome this issue, we propose using an approxima-
tion for the defender oracle phase. Details are described in
the following:

Approximated Oracle In the approximated oracle, we
propose using three heuristics to estimate the defender pure
action: GreedyMC, NewPageRank and GreedyLDAG.

GreedyMC: We use the greedy algorithm proposed by
Kempe (Kempe, Kleinberg, and Tardos 2003) to estimate
the best action for the defender against the attacker’s mixed
strategy generated by Maximin. In short, the main idea of
GreedyMC is to iteratively add a new node into the de-
fender’s list of seed nodes until the size of the seed set
reaches the number of defender resources. The algorithm
is described in Algorithm 2.

Let γ(d, a) be the set of nodes u, which are negatively
activated if a is a pure strategy of the attacker and no strat-
egy of the defender and are not negatively activated if a is
a pure strategy of the attacker and d is a pure strategy of
the defender. This γ(d, a) is the set of nodes that have been
blocked from the negative influence. Let σ(d, a) be the car-
dinality of γ(d, a) and σ(d, (A, xA)) =

∑
a xa · σ(d, a) be

the expected number of blocked nodes over the adversary’s
mixed strategy (A, xA).

Under LTM, it is demonstrated that if σ(d, (A, xA)) is
monotone and submodular,1 the GreedyMC algorithm guar-
antees that σ(d, (A, xA)) ≥ (1 − 1

e )σ(d
∗, (A, xA)) where

1Sub-modularity property: Given a set U , a function f : U →

47



Algorithm 2 GREEDYMC ALGORITHM, (A, xA)
1: Initialize defender action d = ∅
2: repeat
3: v = maxu(σ(d, (A, xA))− σ(d ∪ {u}, (A, xA)))
4: d = d ∪ {v}
5: until |d| > numRes, where numRes is number of defender

‘source’ nodes.
6: return d

d∗ is the optimal pure strategy of the defender. Then apply-
ing GreedyMC to the defender oracle phase can achieve an
approximation ratio of (1− 1

e ) for the optimal expected num-
ber of blocked nodes (Tsai, Nguyen, and Tambe 2012), i.e.,
σ((D,xD), (A, xA)) ≥ (1 − 1

e )σ((D
∗, xD∗), (A

∗, xA∗))
where (D,xD), (A, xA) are the players’ mixed strategies re-
turned by the Double Oracle algorithm using GreedyMC for
the defender phase and (D∗, xD∗), (A

∗, xA∗) is the exact
Nash equilibrium solved by the algorithm using the exact
defender phase.

(He et al. 2011) provides a thorough proof for the sub-
modularity property of function σ(d, (A, xA)) in the case
that negative influence always wins positive influence when
both influences activate a node at the same time. Following
their proof, this property can be easily demonstrated in our
general case.

NewPageRank: Although GreedyMC provides a good
solution quality, however, it still uses the Monte-Carlo simu-
lation for its computation which is time-consuming. PageR-
ank is the algorithm used by Google search engine (Page
et al. 1999). The fundamental idea of PageRank is that the
importance of a web page can be determined by the links
pointing to it from other web pages, which means that the
importance of a page is increased by the number and rank
of sites that link to it. Thus, the rank of a page P , denoted
r(P ), is defined as the following: r(P ) =

∑
Q

r(Q)
|Q| where

a page Q pointing to the page P and |Q| is the number of
pages pointing to Q.

In LTM, the importance of every node in a graph is ‘voted’
by its out-neighbors (i.e., set of nodes which can be influ-
enced by that node) which is very similar to to the core
of PageRank. Motivated by this similarity, we propose the
newPageRank algorithm to apply into the oracle phases: For
each node u, its negative rank r−(u) is computed as fol-
lows: r−(u) =

∑
v∈Nout(u)

s−(u, v)r−(v) where s−(u, v)
is the normalized weight of the edge (u, v), s−(u, v) =

w−(u,v)∑
u∗∈Nin(v) w

−(u∗,v) . The positive rank of each node is com-

puted similarly. These ranks infer how important each node
is in influencing other nodes in the graph. The newPageR-
ank algorithm is given in Algorithm 3.

Given that u is a ‘source’ negative node, Line (6) of Algo-
rithm 3 means that all of its in-neighbors can not pass their
negative influence through that node, Line (9) means that if
a node v ∈ Nout(u) is positively activated, the defender has
successfully blocked negative influence from u passing to v.

R is sub-modular iff f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T )
where S ⊆ T .

Algorithm 3 NEWPAGERANK ALGORITHM, (A, xA),
r−(u), u ∈ V
1: Initialize defender action d = ∅,
2: Initialize blocking value b(u) = 0, ∀u ∈ V
3: for all a ∈ A do
4: for all node u ∈ a do
5: Initialize new negative rank r∗(v) = r−(v),∀v ∈ V
6: Compute the new ranks r∗(v) = r∗(v) −

w−(v, u)r−(u), ∀v ∈ Nin(u)
7: end for
8: for all node u ∈ a do
9: b(v) = b(v)+ xaw

−(u, v)r∗(v), ∀v ∈ Nout(u), v /∈ a
10: b(u) = b(u) + xar

∗(u)p
11: end for
12: end for
13: d = topKub(u), u ∈ V
14: return d

Similarly, Line (10) means that if u is activated by both the
defender and adversary at the same time, the defender has a
chance of p to block the negative influence that u can spread.
The blocking value of each node v, b(v), is the measurement
of the negative influence that is blocked by v if v is chosen as
a positive ‘source’ node. Finally, the set of nodes that have
the highest blocking values is chosen to be the pure strategy
of the defender in Line (13).

GreedyLDAG: Motivated by the LDAG model, a new
algorithm to approximate the defender oracle phase is pro-
posed by He et al. (2011) which outperforms GreedyMC
in runtime while still guaranteeing a good solution quality
in practice. Although their algorithm is applied for dealing
with an adversary’s fixed pure strategy, we expand it to the
case of a mixed strategy of the adversary (A, xA).

Let OutS+(u) be the set of nodes that node u
can influence and δ(u, x, (d, a)) = ap−(x, (d, a)) −
ap−(x, (d ∪ {u}, a)) be the amount of negative influ-
ence to the node x that is blocked by adding the node
u into the defender action d. Let DecInf(u) be the to-
tal amount of negative influence blocked by adding u:
DecInf(u) =

∑
a∈A xa

∑
x∈OutS+(u) δ(u, x, (d, a)) =∑

x∈OutS+(u)Ea∈Aδ(u, x, (d, a))

GreedyLDAG, given in Algorithm 4, can be summarized
as follows: iteratively add a new node u with the highest
DecInf(u) value to the set of ‘seed’ nodes of the defender.
Yet instead of recomputing DecInf(u) for every u /∈ d in
every iteration, GreedyLDAG makes updates only for the
nodes u that are affected by the newly added node to d in
previous iteration (Lines (7-8)).

Attacker Oracle Phase
Similar to the defender oracle phase, we can use both the
exact and approximated computations for the attacker’s best
response against the mixed strategy of the defender gener-
ated using Maximin. However, the attacker’s objective func-
tion is different as the attacker attempts to maximize the
number of negatively activated nodes.

The newPageRank algorithm in the adversary oracle
phase is similar to the defender oracle phase, except for
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Algorithm 4 GREEDYLDAG ALGORITHM, (A, xA)
1: Initialize defender action d = ∅
2: Compute DecInf(u) for every u
3: repeat
4: v = argmaxuDecInf(u)
5: for x ∈ OutS+(v) do
6: for u ∈ LDAG+(x) do
7: DecInf(u) = DecInf(u)− Ea∈A[δ(u, x, (d, a))]
8: DecInf(u) = DecInf(u) + Ea∈A[δ(u, x, (d ∪

{v}, a))]
9: end for

10: end for
11: d = d ∪ {v}
12: until |d| > numRes, where numRes is number of de-

fender’s source nodes.
13: return d

Lines (8)-(11), which are replaced by ∀u ∈ V, v(u) =
v(u) + xdr

∗(u), u /∈ d and v(u) = v(u) + xd(1 −
p)r∗(u), u ∈ d respectively. It measures how much neg-
ative influence the node u can diffuse if it is chosen as a
negative ‘source’ node. Finally, we can apply approxima-
tions for the both oracle phases, which speeds up the double
oracle algorithm.

Experiments

We evaluate both the runtime efficiency and solution quality
for the algorithms in this section.

Data Sets

For these experiments, we use two data sets on graphs: (1)
synthetically generated scale-free graphs, and (2) real net-
work obtained from the caHepTh graph (Les 2012). A scale-
free network is a connected graph with the property that the
distribution of node degrees follows a power law. Scale-
free graphs have been commonly used as proxies for real-
world networks because node degrees in many real-world
graphs exhibit a power law distribution (Clauset, Shalizi,
and Newman 2007). On the other hand, the caHepTh graph
represents the collaboration network of Arxiv High Energy
Physics Theory containing 9877 nodes and 51971 edges.

In our settings, random graphs of various sizes were gen-
erated which are either scale-free graphs or extracted sub-
graphs of the caHepTh network. We ran 30 trials for each
graph size. Each edge of the graph, eu,v = (u, v), is as-
signed a weight w+

u,v = w−u,v = 1
indeg(v) , where indeg(v)

is the in-degree of the node v. We set p = 0.5, meaning that
negative and positive influence have 50/50% chance to win
the opposite side in every simultaneous activation. We ran
30000 Monte Carlo simulations per estimation.

We applied different heuristics for both the defender and
attacker oracle phases. The combination of oracle phases us-
ing different heuristics generated 12 variants of the Double
Oracle algorithm. The list of these 12 variants are provided
in the Table 1.

Algo Label Def. Oracle Att. Oracle
DOEEMC EXACT EXACT
DOAEMC GREEDYMC EXACT
DOEAMC EXACT GREEDYMC
DOAAMC GREEDYMC GREEDYMC
DOAEPR NEWPAGERANK EXACT
DOEAPR EXACT NEWPAGERANK
DOAAPR NEWPAGERANK NEWPAGERANK
DOAELDAG GREEDYLDAG EXACT
DOEALDAG EXACT GREEDYLDAG
DOAALDAG GREEDYLDAG GREEDYLDAG
MCPR GREEDYMC NEWPAGERANK
PRMC NEWPAGERANK GREEDYMC

Table 1: Algorithms evaluated

(a) Exact Defender Phase (b) Exact Defender Phase

(c) Exact Attacker Phase (d) Exact Attacker Phase

Figure 1: Performance on Scale-free graphs

Results
In the following, we first conducted numerous experiments
using the MCPayoff matrix (exact payoff matrix) to exam-
ine the performance of several heuristics applied for oracle
phases and finally we compare the performance of the al-
gorithm between using MCPayoff matrix and using LDAG-
Payoff matrix (approximated payoff matrix).

MCPayoff: In the Figure 1, the x-axis is the size of
graphs and the y-axis is the average reward of the defender
(for the reward graphs) or the average runtime in seconds
(for the runtime graphs). The defender’s reward is com-
puted based on the mixed strategy of the defender gener-
ated by the Double Oracle algorithm and the optimal pure
strategy of the adversary responding against the defender’s
strategy. We conducted experiments with one approximated
oracle phase on small scale-free graphs of 8 to 20 nodes. It
shows that using the double oracle approach could consider-
ably limit the negative influence of the attacker when com-
pared to a defender who does not execute any action (labeled
NODEF in Figure 1). In addition, although the GreedyMC
provides a better solution as compared to the newPageRank
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(a) caHepth, Def Reward (b) caHepth, Runtime

(c) ScaleFree, Def Reward (d) ScaleFree, Runtime

Figure 2: Performance on subgraphs of 25 nodes

and GreedyLDAG heuristics, its runtime grows very quickly
even in small graph sizes (It reaches 20 minutes when the
size of graphs is 16 nodes). Overall, the newPageRank out-
performs other heuristics in the consideration of the tradeoff
between the runtime and the solution quality.

In order to efficiently block the negative influence, the de-
fender could use a large number of resources, however, in-
creasing the number of defender resources will deteriorate
the runtime of the algorithm. To analyze the trade-off be-
tween the defender reward and the runtime of the algorithms,
we generated experiments with subgraphs of 25 nodes ex-
tracted from both random scale-free and caHepTh graphs.
These results are shown in Figure 2, where the x-axis is the
number of defender resources and the y-axis is the runtime
in seconds or the defender reward. In these experiments,
four algorithms were used: DOAAPR, MCPR, PRMC,
DOAAMC. These four algorithms are chosen as they run
fast as well as generate a high solution quality. It shows
that DOAAMC is the most sensitive in runtime toward the
number of defender resources. It means that GreedyMC run-
time is considerably affected by the number of defender re-
sources. In addition, using more defender resources defi-
nitely blocks the negative influence more efficiently (the de-
fender reward increases steadily in the graphs).

From previous experiments, it is shown that the new-
PageRank heuristic could give us a high solution quality and
low runtime consumption. However, it can be seen that ap-
plying newPageRank into the defender and attacker oracle
phases could provide very different results. In the following
experiment, we investigate the difference in performance be-
tween the defender and the attacker oracle phases under the
same heuristics.

In Figure 3, experiments were conducted in subgraphs
with size 20 to 100 nodes extracted from the caHepTh graph.
The number of defender and attacker resources are dRes
= aRes = 5. We examined three algorithms: DOAAPR,

(a) Defender Reward (b) Runtime

(c) Number of Defender Pure
Strategies

Figure 3: Heuristic performance on the caHepTh subgraphs

(a) Defender Reward, PRMC al-
gorithm

(b) Runtime, DOAAPR algo-
rithm

Figure 4: Performance comparison between the MCPayoff and
the LDAGPayoff matrix on the caHepTh subgraphs

MCPR, and PRMC. These algorithms are chosen because
they can run on large data sets. In this experiment, we
approximated the reward of the defender, i.e., using the
GreedyMC heuristic to compute the pure strategy of the at-
tacker against the mixed strategy of the defender generated
by the algorithms. It can be clearly seen in Figure 3a and
Figure 3b that the defender reward in the MCPR case is
worse than in the PRMC, however, MCPR runs much faster
as compared to PRMC. It can be inferred that newPageRank
gives a better estimation of the influence blocking values (in
the defender oracle phase) than the influence spreading val-
ues (in the attacker oracle phase) of every node in graphs. In
addition, Figure 3c shows that the number of defender pure
strategies generated by the Double Oracle algorithm using
PRMC is more than using MCPR. In other words, the oracle
algorithm converges more quickly in MCPR than in PRMC.
Finally, applying the newPageRank heuristic on both the or-
acle phases could provide a very fast algorithm.

LDAGPayoff: Although applying the newPageRank
heuristic on both oracle phases could considerably reduce
the runtime consumption, using the MCPayoff in the Max-
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imin part still makes the algorithms run slowly. In our final
experiment, we evaluate the performance of using LDAG-
Payoff matrix in large graphs. Figure 4a shows that the
PRMC algorithm generates a slightly worse defender reward
for LDAGPayoff as compared to when using MCPayoff.
The defender reward is computed in the same way as in the
previous experiment. Yet, the required runtime is reduced
extremely in the LDAGPayoff case which is shown in the
Figure 4b. Furthermore, the DOAAPR algorithm takes only
20 seconds in LDAGPayoff while 10 minutes in MCPayoff
in average to finish computation in a 8000 node graph.

Conclusion
This study has applied a game-theoretic approach with the
influence blocking mechanism of the LTM model on social
networks. We present an algorithm based on double ora-
cle approaches that can compute solutions to problems of
real-world sizes. We presented 3 heuristics: GreedyMC,
GreedyLDAG, and newPageRank and explored 12 combi-
nations of these heuristics for solving this problem. Our
experimental results show that the newPageRank heuristic
outperforms the others in balancing between solution qual-
ity and runtime efficiency. Finally, the approach of using
the payoff approximation opens a new efficient way to solve
contagion games in large social networks.
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